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A Stable Adaptive Observer for Hard-Iron and
Soft-Iron Bias Calibration and Compensation for
Two-Axis Magnetometers: Theory and
Experimental Evaluation

Andrew R. Spielvogel! and Louis L. Whitcomb!

Abstract—This paper addresses the problem of on-line esti-
mation and compensation of the hard-iron and soft-iron biases
of a 2-axis magnetometer under dynamic motion, utilizing only
biased measurements from a 2-axis magnetometer.

The proposed adaptive observer formulates the relation be-
tween the true magnetic field vector and the magnetometer
measurements as an algebraic system where the unknown biases
enter linearly. The observer is shown to be globally stable. When
the magnetometer measurements are persistently exciting (PE),
the system is shown to be globally asymptotically stable, and the
biases are shown to converge to their true values. The estimated
biases are used to provide a calibrated magnetic field direction
vector which is utilized to estimate magnetic geodetic heading.

The adaptive observer is evaluated in a numerical simulation
and a full-scale vehicle trial. For the proposed observer: (7)
knowledge of the instrument attitude is not required for sensor
bias estimation, (i:) zero a priori knowledge of the local magnetic
field vector magnitude or vector direction is needed, (ii:) the
system is shown to be globally stable, (iv) the error system is
shown to be globally asymptotically stable when the measured
magnetometer signal is PE. (v) magnetometer hard-iron and
soft-iron bias compensation is shown to dramatically improve
dynamic heading estimation accuracy.

Index Terms—Calibration and Identification, Learning and
Adaptive Systems

I. INTRODUCTION

Dynamic instrumentation and estimation of vehicle atti-
tude, especially geodetic heading, is critical to the accurate
navigation of land, sea, and air vehicles in dynamic motion.
Many of these land and sea vehicles are passively stable
in roll and pitch, and hence, experience relatively modest
changes in roll and pitch during normal operation (e.g. sur-
face vehicles, autonomous underwater vehicles (AUVs), and
underwater ROVs). For this class of vehicles, it is possible to
use 2-axis magnetometers for estimating the heading of the
vehicle. However, the accurate magnetic heading estimation is
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Fig. 1.
Hopkins University (JHU) remotely operated vehicle (ROV) in a laboratory
test tank (diameter of 7.5m and height of 4m). The JHU ROV has a full
suite of navigation sensors, including several IMUs, typically found on deep
submergence underwater vehicles.

The Full-scale experimental trial was conducted with the Johns

commonly vitiated by very significant hard-iron and soft-iron
magnetometer biases.

This paper reports a novel adaptive observer for real-time
estimation of 2-axis magnetometer hard-iron and soft-iron iron
biases of dynamic (rotating and translating) 2-axis magnetome-
ters without a priori knowledge of the instrument’s attitude or
the instrument’s local magnetic field vector. Unlike previous
on-line approaches which utilize the extended Kalman filter
(EKF), global stability of the error system is proved. Moreover,
under a persistently exciting (PE) condition, the error system
is shown to be globally asymptotic stable, and the sensor
bias estimates are shown to converge to the true bias values.
We report performance analyses in a numerical simulation
study and in an actual full-scale experimental trial with a 2-
axis magnetometer on the Johns Hopkins University (JHU)
remotely operated vehicle (ROV) (Figure 1).

Advantages of the proposed approach include the following:
(i) knowledge of the instrument attitude is not required for
sensor bias estimation, (ii) zero a priori knowledge of the
local magnetic field vector magnitude or vector direction
is needed, (i77) the system is shown to be globally stable,
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(iv) the error system is shown to be globally asymptotically
stable when the measured magnetometer signal is PE. (v)
magnetometer hard-iron and soft-iron bias compensation is
shown to dramatically improve dynamic heading estimation
accuracy.

A. Background and Motivation

Accurate sensing and estimation of heading is critical for
precise navigation of a wide variety of vehicles. The need for
accurate heading estimation is particularly acute in the case of
vehicles operating in global positioning system (GPS)-denied
environments such as underwater. Small low-cost underwater
vehicles (UVs) commonly employ micro-electro-mechanical
systems (MEMS) magnetometers to estimate local magnetic
heading typically to within several degrees of accuracy, but
require careful soft-iron bias and hard-iron bias calibration
and compensation to achieve these accuracies. Moreover, mag-
netic heading sensors must be re-calibrated for soft-iron and
hard-iron bias whenever the vehicle’s physical configuration
changes significantly (i.e. sensors or other payloads added or
removed, etc.), as very frequently occurs on oceanographic
marine vehicles. Studies have shown that the accuracy of
these magnetic heading sensors can be a principal error source
in overall navigation solutions [12]. Thus, when employing
magnetic heading sensors it is essential to accurately estimate
sensor biases in order to achieve high accuracy heading
estimation.

In the design of surface and underwater oceanographic
vehicles, great care is taken to isolate and separate on-board
magnetic compasses from any possible time-varying on-board
magnetic disturbance sources. Active electro-magnetic compo-
nents are chosen to have closed magnetic flux-paths, and mag-
netic compass heading are located as far as possible from on-
board passive magnetic, passive permeable, and active electro-
magnetic components. With proper design, time-varying on-
board magnetic disturbance can be rendered negligible. What
remains an ubiquitous problem, however, and is the focus of
this paper, is the estimation and compensation for the the
effects of the magnetic bias (‘“hard iron”) and permeability
(“soft iron”) of the entire vehicle on the compass heading.

B. Literature Review

Several methods for magnetometer bias estimation have
been reported in recent years. Alonso and Shuster proposed the
“TWOSTEP” method [1] for estimating magnetometer hard-
iron sensor bias, and in later work, an extended method for
calibrating magnetometer scale and orthogonality factors, or
soft-iron bias, as well [2]. Vasconselos et al. present bias
estimation (hard-iron and soft-iron) as an ellipsoid fitting
problem which can be solved with an iterative maximum
likelihood estimate (MLE) approach [27]. Many least squares
methods are reported for the ellipsoid fitting problem (e.g. [3],
[5], [6], [18]) and Wu et al. [29] frame the ellipsoid fitting
problem as a particle swarm optimization (PSO). Kok et al.
[13] and Li and Li [15] fuse accelerometer measurements with
magnetometer measurements to estimate magnetometer sensor
bias, and Papafotis and Sotiriadis [19] report an algorithm for

three-axis accelerometer and magnetomoter calibration using
a gradient decent method. These methods, however, are batch
estimators that are not practical for on-line estimation of
magnetometer sensor bias.

Sensor biases change over time due to changes in sensor
payload, temperature, local field disturbances, etc., which
make it imperative to estimate sensor biases in real time. In
([23], [26]) the authors report adaptive methods utilizing mag-
netometer and gyroscope measurements for estimating 3-axis
magnetometer hard-iron sensor biases, but these approaches
do not address soft-iron bias estimation.

Crassidis et al. report an extension to the TWOSTEP method
based on the EKF [4] and Guo et al. present an alternative
EKF approach for doing magnetometer sensor bias estimation
[7]. Han et al. [9] report a gyroscope-aided EKF method for
magnetic calibration. However, these studies do not report
analytical guarantees of the stability or the convergence of
the sensor biases to their true values.

Soken and Sakai [22] report a magnetometer calibration
method using the TRIAD algorithm and an unscented Kalman
filter (UKF). However, this method requires knowledge of the
initial attitude of the instrument, has a slow convergence time,
and the study reports no stability guarantees.

The present paper reports a novel method for real-time soft-
iron and hard-iron bias calibration for 2-axis magnetometers
utilizing only biased measurements from a 2-axis magne-
tometer. The proposed algorithm is shown to be globally
asymptotically stable when the measured magnetometer is PE,
does not require local field information for calibrating the
measured magnetic field vector direction, does not require
any knowledge of the instrument’s attitude, and can easily be
implemented on-line in real-time.

C. Paper Outline

This paper is organized as follows: Section II gives an
overview of the magnetometer measurement model. Section III
reports the adaptive soft and hard iron observer and Section IV
reports a least squares approach. Section V presents numerical
simulation evaluation of the observer. Section VI reports a full
scale vehicle trial. Section VII summarizes and concludes.

II. MAGNETOMETER MEASUREMENT MODEL

Magnetometers (including those employed in IMUs) are
subject to two primary sensor calibration errors: hard-iron and
soft-iron. Hard-iron errors are constant magnetometer sensor
bias terms due to the permanent magnetic signature of the
instrument and the vehicle. Soft-iron errors are non-constant
magnetometer sensor bias terms due to the magnetic perme-
ability of the instrument and the vehicle, and will vary with
vehicle heading and attitude. For most IMU magnetometers,
hard-iron errors dominate soft-iron errors.

We define the following measurement model for 2-axis
magnetometers:

M (t) = Tme(t) + b (1)

where m,, (t) € R? is the noise-free magnetometer measure-
ment, m;(t) € R? is Earth’s true magnetic field, T € R?*2
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Simulation: (a) The parameter error of the estimated fp(t) from the true value ¢,. a, b, c are the components of ¢, as defined in (15). (b) The

parameter error of the estimated l;(t) from the true value b where by, by are the x and y components of the hard-iron sensor bias.

is a diagonally-dominant positive definite symmetric (PDS)
matrix representing soft-iron bias, and b € R? represents the
magnetometer hard-iron bias.

III. ADAPTIVE SOFT-IRON AND HARD-IRON BIAS
OBSERVER

This section reports the derivation of a novel on-line adap-
tive observer for hard-iron and soft-iron magnetometer biases
in 2-axis magnetometers. The biases are assumed to be very
slowly time varying, and hence we model them as constant
terms and update the estimates continuously.

A. Magnetometer Bias System Model

We can rearrange (1) as

my(t) =T~ (mam(t) = b). )
Taking the inner product of (2) with itself results in
e (D)7 = (mn (£) = )" T2 () — b) 3)
=mL ()T %m, (t) — 2m?T ()T 26 + b7 T 2b.
“4)

Subtracting b7 T—2b from both sides results in
¢ =mL ()T *m,, (t) — 2m?E ()T 2b 5)

where ¢ = ||m;(t)||? —bT T ~2b. Dividing both sides of (5) by
¢ results in

1 =mL (t)Tm,,(t) — 2mL o (6)
where I' € R?%? and « € R? are defined as
r=7"2/¢ (7)
and

a=T"2b/¢. (®)

We note that this approach only works when ¢ is not close to
zero. Thus, we require that the hard-iron bias is smaller than
the magnitude of the true magnetic field vector. Fortunately,
this condition is true for most magnetometers.

Using the identity

vec (AXB) = (B" ® A) vec (X) ©)

(6) can be written as
1= [ mLt)eml) —2mL(t) ] { Veca(F) ] (10)

where ® is the Kronecker product and vec (-) is the vector-
ization (or “stack’™) operator [21].

Using the common assumption that the soft-iron bias term
T is a PDS matrix, I' is parameterized as

r—[‘é g]

Using this parameterization and rearranging terms in (10),
the system model becomes

(11

1=wT(t)0 12)
where
ma(t)
_ my(t)
WO = g, (Hmy (1) | 13
—2my, (1)
t
0= OIZ . (14
[ a
tb=10b |, (15)
| ¢

where m, (t) € R and m,,(t) € R are the z and y components
of magnetometer measurement signal m,,(t) respectively,
w(t) € R5 is a known nonlinear time-varying function of
the measured magnetometer signal m,,(¢), and § € R is a



Calibrated Versus Uncalibrated Magnetometer

T e T
o ,;,mwm,::‘;:‘\

uncal mag
Is mag

adap mag

(@
Simulation: (a) Comparison of the uncalibrated (uncal), least squares (ls) calibrated, and adaptive observer (adap) calibrated magnetometer
measurements. (b) Top: The true instrument heading from the first 35 seconds of the simulation. Botfom: Heading error corresponding to the uncalibrated
(uncal), least squares (Is) calibrated, and adaptive observer (adap) calibrated magnetometers during the first 40 seconds of the simulation.

Fig. 3.

constant vector encoding the true soft-iron and hard-iron bias
parameters.

B. Adaptive Observer for Hard-Iron and Soft-Iron Bias

We note that the algebraic system (12) has the same form
as the vector input, single output system presented in Chapter
3 of [16]. (12) can be rearranged such that the exact true plant
takes the form

0=w’(t)f — 1. (16)

Defining 0(t) as the adaptive identifier’s estimate of the
(unknown) true parameter 6, the identifier plant takes the form

a7
(18)

where e(t) as the error associated with the identifier plant, and
A#(t) is the parameter error

AQ(t) = 0(t) — 6. (19)
Note that since 6 is constant
Ad(t) = B(1). (20)

The adaptive observer’s parameter update law for the pa-
rameter 0(t) is chosen to be

AG(t)
o)

—Kw(t)e(t)
—Kw(t)w? (£)0(t) + Kw(t)

21
(22)

where K € R5*® is a constant PDS adaptation gain matrix.
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C. Stability Analysis

Consider the Lyapunov function candidate
1
V= 5A&T(t)K—lA()(t). (23)

where V' is a positive definite, C1, and radially unbounded
function by construction. The time derivative of (23) is

V = AT () KT AB(t) (24)
= —AGT (H)w(t)e(t) (25)
= — AT (H)w(t)wT (t)Ab(t) (26)
<0. 27)

Thus V is negative semi-definite, and the error system (21)
is globally stable. If, in addition, w(t) is PE ([16], [20]), the
error system is globally asymptotically stable. That is, if there
exists finite o, 8,7 > 0 such that

4T
al < / w(T)w? (1) dr < BI (28)
t

for all ¢ > 0 and [ is the identity matrix, then the proposed ob-
server is globally asymptotically stable and lim;_, é(t) =4.
It is unclear how to show analytically that a PE m,, (¢) signal
implies that w(t) is PE. We were able to check numerically,
however, that a variety of PE m,,(t) signals all resulted in
a PE w(t), thus satisfying the conditions of (28). Moreover,
the resulting numerically simulated system was observed to

be asymptotically stable.

IV. LEAST SQUARES SOFT-IRON AND HARD-IRON
ESTIMATION

This section reports the derivation of a least squares ap-
proach for hard-iron and soft-iron magnetometer biases in 2-
axis magnetometers to be used as a comparison to the adaptive
observer presented in the previous section. As in the previous
section, the biases modeled as constant terms.
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Fig. 4. Vehicle Triz}l Experiment: (a) The adaptive observer’s estimated fp(t) where a, b, c are the components of ¢, as defined in (15). (b) The adaptive
observer’s estimated b(t) where by, by are the  and y components of the hard-iron sensor bias.

From (12), the i*" measurement satisfies

1=w! ()0 (29)
where
m2 ,(t)
_ m2,i(t)
wl(t) - 2m$’zé my’i(t) ’ (30)
—2mm7i( )

My i(t) is the i*" magnetometer measurement and m, ;(t),
my;(t) are the  and y components of m,, ;(t) respectively.
By arranging the w; vectors such that

wy
wy
wh = . (31)
wy
(29) can be rewritten as
1 wi
1 wl
= e (32)
1 wl
=wTe. (33)

The least squares solution 6% is
Penrose inverse

then found by Moore-

1

o =wwh) w (34)

V. NUMERICAL SIMULATION EVALUATION

The instantaneous estimated heading can then be computed
as

4 = atan2 (—my, my) — 7o, [25] (35)

where g is the known local magnetic variation and where
mg, € R, my, € R are the x and y components, respectively,
of the m,,, signal.

A. Simulation Setup

The magnetometer sensor bias observer is evaluated in a
numerical simulation.

e Sensor measurements were simulated to represent the
magnetometer of the KVH 1775 IMU (KVH Industries,
Inc., Middletown, RI, USA) [14].

o Magnetometer sensor measurement sampling was simu-
lated at 20 Hz.

o Simulated magnetometer measurements include sensor
noise of o,, = 0.002 Gauss (G) which is consistent with
the KVH 1775 IMU.

o The simulated hard-iron magnetometer measurement bias

0.06

was
b= [ ~0.07 ] ¢

which is consistent with hard-iron biases observed exper-
imentally with the KVH 1775 IMU.
o The simulated soft-iron magnetometer measurement bias

was
11 02
r= { 0.2 0.95 ]

(36)

(37

o Simulations were for a latitude of 39.32°N and a longi-
tude of 76.62W.

o The simulated instrument was commanded to execute
smooth sinusoidal rotations of roughly +300° in heading.
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magnetometers during the first 400 seconds of the vehicle trial experiment.

o The observer’s initial conditions were set to
dty=[1 1 0 0 0]/ (38)

where

¢ = |Imq|”

= | [ 0.205796 —0.040654 | || G.

(39)
(40)

o The gain matrix used during the simulation was

K =diag ([ 100 100 100 1 1]). (4D

B. Simulation Results

The parameter errors from the simulation are shown in
Figure 2 where the recovered value for the estimated hard-
iron bias term b(t) is found by
b(t) = T (t)a(t). (42)
The simulation results show that when the magnetometer
measurements are PE, the parameter estimates converge to
their true values.

Note that T' is T2 scaled by 1/¢. Therefore, in order
to recover the true soft-iron bias, 7', knowledge of the true
magnetic field magnitude is necessary. However, since the
calibrated magnetometer measurement is commonly used as a
reference direction in attitude and heading reference systems
(AHRSs) ([8], [28]), recovering the true magnitude of 7' is
not critical to the accurate estimation of heading. However, if
||+ (t)]] is known (For field vehicles, the local magnetic field
strength is commonly estimated by magnetic field models like
the World Magnetic Model (WMM) [17] or the International
Geomagnetic Reference Field (IGRF) model [24].), ¢ can be
recovered by

¢ = |lmy||> — 07T (43)

= |lm||> — b"Tb (44)
(||

T 140TTY “5)

and hence, the true 7' can be recovered.

Using the simulation’s final parameter estimates, I'(t;) and
l;(t r) to calibrate the magnetometer, the heading estimate of
the instrument is calculated by (35). Figure 3 shows the com-
parison between the uncalibrated and calibrated magnetometer
measurements and the corresponding heading and heading
error of the instrument during part of the simulated experiment.
The simulation shows that after the sensor bias estimates have
converged, the calibrated magnetometer corresponds to a head-
ing root mean square error (RMSE) of 0.63°. This is a vast
improvement over the heading RMSE 24.2° corresponding
to the uncalibrated magnetometer and very close to the error
corresponding to the least squares calibrated magnetometer of
0.58°.

VI. VEHICLE TRIAL EVALUATION
A. Experimental Test Facility

Experimental trials were performed with the JHU remotely
operated vehicle (ROV), equipped with a KVH 1775 IMU
(KVH Industries, Inc., Middletown, RI, USA) [14], in the
7.5 m diameter, 4 m deep fresh water test tank in the
JHU hydrodynamic test facility (HTF). The ROV is a fully
actuated (six-degrees of freedom (DOF)) vehicle with six 1.5
kW DC brushless electric thrusters and employs a suite of
sensors commonly employed on deep submergence underwater
vehicles. This includes a high-end inertial navigation system
(INS), the iXBlue PHINS III (iXBlue SAS, Cedex, France)
([10], [11]), that is used as a ‘“ground-truth” comparison
during the experimental trials. The PHINS is a high-end
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INS (~$120k) with roll, pitch, heading accuracies of 0.01°,
0.01°, 0.05°/ cos(latitude), respectively ([10]). Figure 1 shows
the JHU-ROV operating in the test tank. The JHU ROV
is passively stable in roll and pitch due to a large center-
of-gravity to center-of-buoyancy separation, and experiences
limited roll and pitch excursions in normal operation.

B. Experimental Setup

The adaptive observer for hard-iron and soft-iron magne-
tometer sensor biases is evaluated with a full scale vehicle
trial employing the MEMS magnetometer in the KVH 1775
IMU.

o The magnetometer was sampled at 20 Hz.

o The magnetometer was aligned via a fixture to the ROV’s

iXBLUE PHINS INS (iXblue SAS, Cedex, France).
The PHINS attitude is used as ground truth during the
experimental evaluation of the observer.

o The experiment was conducted at a latitude of 39.32°N
and a longitude of 76.62W.

e The JHU ROV was commanded to execute smooth si-
nusoidal rotations of roughly +200° in heading while in
closed loop control.

o The initial conditions for the sensor bias estimates are
given by (38)-(40).

e The gain matrix K used during the vehicle trial was (41),
the same as in the simulation evaluation.

C. Experimental Results

The estimated parameters from the experiment are shown
in Figure 4 where the estimated hard iron bias term b(t) is
calculated by (42). The vehicle trial results show that when the
magnetometer measurements are PE, the parameter estimates
converge to a steady-state value.

In experimental trials, the true sensor biases are unknown,
and thus the accuracy of the estimated biases cannot be mea-
sured directly. Instead, the accuracy of the heading estimate is
used as an error metric for sensor bias estimation.

As discussed in Section V-B, i,(t) and b(t) can be used
to calibrate the magnetometer measurements for a calibrated
magnetic field reference direction that is used for heading
estimation in AHRSs.

Figure 5 shows the comparison between the uncalibrated,
least squares calibrated, and adaptive observer calibrated
magnetometer measurements and the corresponding heading
error of the instrument during part of the vehicle trial. The
experiment shows that the adaptive observer calibrated mag-
netometer corresponds to a heading RMSE of 1.91°, which
is identical to the heading RMSE corresponding to the least
squares calibrated magnetometer and much improved over the
heading RMSE of 8.77° of the uncalibrated magnetometer.

Figure 6 shows the true roll, pitch, and heading of the
vehicle during the first 400 seconds of vehicle trial. The
vehicle experienced very limited roll and pitch excursions
during the vehicle trial.

Note that, in this experimental trial, the parameter initial
condition was chosen to be far from the true parameter.
Because of this, the estimated parameter had to evolve far
from the initial condition to the true parameter. Hence, the
gain matrix K was chosen to be large to facilitate fast
convergence of the parameter. In the presence of measure-
ment noise, smaller gains allow the estimated parameter to
converge to a smaller neighborhood of the true parameter
than higher gains. However, this increase in accuracy comes
with a longer convergence time. The gain matrix K, used in
the experimental evaluation, provided a balance of accuracy
and fast convergence. It is important to note that in adaptive
systems there is no method for choosing “ideal” gains. Instead
the gain matrix K must be tuned empirically. The sensor
noise, the amount of PE the instrument experiences, and the
accuracy of the initial guess of the bias terms all affect the
rate of convergence and the size of the neighborhood that
the estimated parameters converge to. When tuning K, the
diagonal gains should be chosen large enough such that the
parameters converge to a steady-state neighborhood while
small enough that the parameters do not oscillate. This is a
balancing act as the higher the gains, the faster the parameters
will converge to a neighborhood of the true parameters but
the neighborhood will be larger. Similarly, the smaller the
gains, the slower the convergence, but the neighborhood will
be smaller.

In practice, after an initial calibration of the magnetometer,
the previous parameter estimate could be used as an initial
condition. Thus, after a rough alignment, a smaller gain matrix
can be chosen to provide a more accurate estimate of the true
parameter.

VII. CONCLUSION

This paper reports a novel adaptive observer for on-line,
real-time estimation of hard-iron and soft-iron magnetometer
biases in 2-axis magnetometers for use in AHRSs. AHRSs
commonly use calibrated magnetometers as a measurement
of the magnetic field direction for estimating heading. The
accuracy of these systems rely on the calibrated magnetome-
ter direction to be accurate, but do not require the correct
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magnitude of the calibrated magnetometer. Estimating the
magnetometer’s soft-iron bias up to a scale factor preserves
the calibrated magnetometer’s direction. Hence, the proposed
approach which observes a scaled version of 7', can be
utilized to bias-compensate magnetometers to provide accurate
heading estimates.

The observer uses only magnetometer sensor signals, does
not require knowledge of the instrument attitude, and is shown
to be globally stable. When the measured magnetometer is
PE, the observer is shown to be globally asymptotically
stable where the estimated parameters converge to their true
values. The simulation study and full-scale vehicle experiment
suggest that the observer can be utilized to provide accurate
magnetometer bias compensation for AHRS. The vehicle trial
shows that the estimated parameters converge to a steady
state and the calibrated magnetometer’s corresponding heading
estimate tracks ground truth heading to 1.9° RMSE which is
the RMSE corresponding to the least squares calibration.

In future studies, the authors hope to develop a coarse
and fine alignment protocol to allow for fast convergence
and accurate bias estimation and employ the observer in field
trials.
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