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Baryogenesis and dark matter from freeze-in
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We propose a simple model in which the baryon asymmetry and dark matter are created via the decays
and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet
fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and
their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the
out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be
long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In
generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the
phenomenological possibilities for low-scale baryogenesis.
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I. INTRODUCTION

One of the most important questions in particle physics is
the origin of the baryon asymmetry. While the Standard
Model (SM) contains CP violation that distinguishes
between rates of particle and antiparticle interactions, it
is widely accepted that the degree of CP violation in the
SM is insufficient to explain the magnitude of the observed
asymmetry (see, for example, Ref. [1]). Furthermore, the
generation and preservation of an asymmetry requires a
departure from equilibrium that is not realized in the SM:
with the observed Higgs boson mass, the SM predicts a
second-order electroweak phase transition, which is insuf-
ficient to generate a baryon asymmetry [2-5].

Resolving the origin of the baryon asymmetry neces-
sitates the existence of new particles and interactions
beyond the SM. Various theoretical scenarios for baryo-
genesis exist, including but not limited to electroweak
baryogenesis [2,3,6,7], leptogenesis [8] (inspired by the
see-saw mechanism for neutrino mass generation [9-14]),
and realizations within grand-unified models [15,16]. Some
models of baryogenesis are challenging to test, whether
because the relevant mechanism operates at high scales that
are not kinematically accessible to current or future experi-
ments, or because satisfying the out-of-equilibrium con-
dition for baryogenesis predicts small couplings for the new
particles relative to other SM couplings. There are,
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however, baryogenesis scenarios that are testable in their
minimal incarnations: electroweak baryogenesis, whose
dynamics are necessarily constrained to lie around the
weak scale and which accommodates large couplings of
beyond-SM states to the Higgs in order to give rise to a
first-order phase transition; and freeze-in leptogenesis, also
known as the Akhmedov-Rubakov-Smirnov (ARS) mecha-
nism or leptogenesis via neutrino oscillations [17,18].

In this paper, we study a new class of models inspired by
ARS leptogenesis. We consider a framework in which light,
gauge-singlet Majorana fermions y; interact feebly through
a Yukawa coupling

Fiiai®; + He., (1)

where y, are SM fermions and ®; are new scalars with the
same gauge quantum numbers as y,. Here we focus on
scenarios where the scalars carry quantum chromodynam-
ics (QCD) charge, with w = Q;,ug, or dg. Collider
searches then constrain the masses of the QCD-triplet
scalars @; to be at or above the TeV scale. We impose a
Z, symmetry under which only y; and ®; are odd, making
the y particles dark matter (DM) candidates.

For appropriate parameter choices, these ingredients are
sufficient to generate a baryon asymmetry. The relevant
dynamics are somewhat involved, but that should not
obscure the simplicity of the model setup. Decays of ®
particles produce coherent superpositions of y mass eigen-
states, whose subsequent time evolution and scattering can
produce an overall @ asymmetry. The net (B — L)g and
hypercharge )4 stored in the @ sector are balanced by
opposite charges (B — L)gy and YVgy stored in SM par-
ticles. At temperatures above the electroweak scale, rapid
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sphaleron and SM-Yukawa-induced processes redistribute
the (B — L)gy asymmetry among baryons and leptons,
whereas Bg, the baryon number in @, is left unchanged.
Because the resultant Bgy, differs in magnitude from By, a
net baryon asymmetry survives after the @ particles decay
and disappear, provided @ particles survive until the time of
sphaleron decoupling.

Certain essential phenomenological considerations par-
allel the ARS case. To satisfy the out-of-equilibrium
Sakharov condition and generate an asymmetry [19], the
Yukawa couplings must satisfy |F,;| <1077, This is a
model of freeze-in baryogenesis because the y; do not come
into equilibrium while the asymmetry is being generated.
The baryon asymmetry is enhanced for y; mass splittings of
order 10 keV, so that y; oscillations have time to develop
before sphaleron decoupling, but are not so rapid that the
asymmetry generation saturates at early times and gives a
smaller asymmetry. However, we find that our model
predictions are qualitatively distinct from ARS, giving rise
to significant enhancements in the baryon asymmetry in
parts of parameter space as well as new phenomenological
probes.

In place of the right-handed neutrinos (RHNs) of ARS
are new cosmologically stable neutral states y; that we
identify as the DM; these singlet y; states have negligible
mixing with SM fermions. It is the oscillations of the DM
particles themselves that are responsible for baryogenesis,
and our model generally favors DM states with a non-
degenerate mass spectrum. This is unlike viable ARS
models, where the dynamics of DM is unrelated to the
generation of the baryon asymmetry via RHN oscillations,
and which typically require highly degenerate y masses.

The beyond-SM (BSM) QCD-charged scalars ®; can
qualitatively alter the baryon asymmetry calculation. We
pay particular attention to the possibility of having more
than one scalar, which tends to dramatically enhance the
baryon asymmetry. In the two-scalar case, the different
channels for y production and annihilation lead to an
asymmetry at O(F*), rather than at O(F®) as in standard
ARS leptogenesis.

Successful baryogenesis requires a B — L asymmetry to
be stored in the @ sector until sphaleron decoupling. When
combined with the DM abundance constraint, we find that
this favors the mass of the lightest @ particle to be not far
above the TeV scale and its lifetime to be comparable to or
larger than the Hubble time at electroweak-scale temper-
atures, corresponding to values of cz 2 1 cm. Consequently,
the model can be probed by the Large Hadron Collider
(LHC), and much of the parameter space predicts long-lived
particle signatures.

The properties of the heavier @ scalar(s) are much less
constrained. In the two-scalar case, it is viable to have
Mg, > Mg, , and in this “decoupled-®,” regime the baryon
asymmetry and DM abundance depend on the properties
of @, only through the characteristics of the coherent

background of y; particles left behind after the @, particles
have entirely decayed/annihilated away. It is worth empha-
sizing that this coherent background can be CP-symmetric
“Initially,” that s, just after the @, particles have disappeared.
The CP violation arises from time-evolution phases, in
tandem with phases encoded in the coherent y background
when expressed in the @, interaction eigenbasis.

More generally, the asymmetry in the decoupled-®,
regime is independent of the origin of the coherent back-
ground of DM particles. It could be left behind by the
decays of a heavy particle with different quantum numbers
than @, for example the inflaton.

Our baryon asymmetry and DM results for the two-®
model in the decoupled-®, regime are summarized in
Figures 4, 5, and 6, which show the preference for sub-
MeV y masses, and for the lighter @ particle to be in the
few-TeV range and long-lived for collider purposes.

Meanwhile, the analysis of the single-scalar scenario (in
which the same BSM particle is involved in y production
and y annihilation) is dramatically impacted by the fact that
the SM states participating directly in the asymmetry
generation are quarks rather than leptons. Unlike the
situation for the leptonic case, where different flavors of
leptons can have different chemical potentials, quark flavor
mixing drives the quark chemical potentials towards a
universal value, thereby suppressing one possible source of
asymmetry (here we work in the approximation of flavor-
universal quark chemical potentials and save a more careful
study for future work).

On the other hand, the large top Yukawa coupling opens
up the possibility that flavor dependence in the thermal
masses of the active fermions plays a role in generating the
baryon asymmetry at O(F*y?). In fact, we find that top-
Yukawa effects make the single-®, two-y model viable for
obtaining the observed baryon asymmetry and DM abun-
dance, although it is more constrained than the two-scalar
scenario (see Fig. 7), and most of the parameter space will
be tested by searches for heavy scalars at the Large Hadron
Collider.

In the absence of SM-Yukawa effects, we need three or
more y particles to get an O(F®) contribution to the
asymmetry. In this case, we find that the model’s ability
to simultaneously satisfy the baryon asymmetry and dark-
matter abundance constraints is marginal at best (see
Fig. 8). The observed baryon asymmetry can still be
realized if one imagines a different explanation for the
DM and a decay mechanism for massive y particles, and in
this scenario the prospects for @ discovery at colliders are
quite promising (see Figs. 10 and 11).

Our study is organized as follows: in Sec. II, we provide
a qualitative review of the mechanism of freeze-in baryo-
genesis, and we perform an analytic calculation of the
asymmetry in the weak-washout limit for a representative
model that illustrates the parametric dependence of
the asymmetry on the model parameters. In Sec. III,
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we investigate the model where the singlets responsible for
baryogenesis couple to SM quarks and two new QCD-
charged scalars, providing a comprehensive study of the
parameters giving rise to successful baryogenesis and DM.
In Sec. IV, we study the more constrained model with only a
single new scalar. Finally, we discuss these models’
experimental signatures and prospects for discovery in
Sec. V.

We now discuss connections between our work and
earlier studies of ARS leptogenesis and freeze-in DM. In
minimal extensions of the SM, the only renormalizable
coupling of singlet fermions y is via the neutrino portal,
giving rise to the ARS mechanism. In the context of ARS
leptogenesis, the y particles are RHNs that lie in the GeV
mass range. Because the RHNs are low in mass relative to
the electroweak scale, they can potentially be produced in
intensity frontier and other collider experiments [20]. ARS
leptogenesis therefore provides a well-motivated, testable
mechanism for both the generation of neutrino masses as
well as baryogenesis. Consequently, this mechanism for
baryogenesis and its discovery prospects have been well
studied in the literature [21-48]. Indeed, the first dedicated
searches for GeV-scale RHNs have now been performed at
the ATLAS, CMS, and LHCb experiments at the Large
Hadron Collider [49-52]. Baryogenesis from freeze-in is
also possible in models without oscillations, in which the
relevant CP-violating phases for baryogenesis originate
from the interference of tree and loop diagrams in scattering
processes [53-55].

Models of freeze-in are inherently sensitive to other
couplings of the sterile states to the SM. This is well known
in the case of freeze-in models of DM, where the largest
coupling of the hidden particle tends to dominate its
cosmology and phenomenology [56-60] (for a recent
review, see Ref. [61]). While there have been a few studies
of freeze-in baryogenesis where there exist new fields
beyond the minimal ARS model [29,62-64], there has
not to our knowledge been a comprehensive attempt to
study of the parametric regimes and signatures associated
with nonminimal scenarios.

II. MECHANISM OF FREEZE-IN BARYOGENESIS

A. Qualitative overview of freeze-in baryogenesis

The mechanism of baryogenesis via singlet oscillations,
which is most studied as a mechanism for low-scale
leptogenesis [17,18], generates an asymmetry through
the out-of-equilibrium production of singlets and their
subsequent annihilation; this differs from conventional
leptogenesis, which generates an asymmetry through the
singlets’ decay. We now review the mechanism of baryo-
genesis via singlet oscillations, highlighting certain aspects
of the parametric dependence of the asymmetry.

In this section we focus on the minimal case, with
exactly two massive Majorana singlets, y;. We couple y; to

a SM field, v, and a set of scalars, ®@;, which have the
same SM gauge quantum numbers as y,:

£5-Yign - (Fapa® +He). (@)
The standard Type-I see-saw mechanism is realized if the y;
fields are the RH neutrinos, y, are the left-handed lepton
doublets, and there is a single @ which is the SM Higgs field.
However, different SM fermions y, and scalars ®; can
realize baryogenesis as well; in that case, the @; must be new
scalars. We have expressed the Yukawa couplings, F';, in the
basis where the y; Majorana masses are diagonal.

As we will soon see, baryogenesis favors a low mass
scale for the y;, and in fact we are mainly interested in
scenarios with M; < MeV. The y masses are essential for
inducing y oscillations, but we can otherwise neglect them
throughout the baryon-asymmetry calculation, and we take
all y interactions to respect the U(1) —o Symmetry realized
in the massless-y limit. Note that we label the singlet states
so that ® decays produce j particles and @* decays produce
X particles.1

Consider first the case with a single scalar, ®. In order for
the singlets not to come into equilibrium, their Yukawa
couplings must be very small, |F,;| < 1. As in most freeze-
in scenarios, we assume that at initial times n,, = 0. The
decay ® — w7 produces an interaction-basis state of y
fields which is a coherent superposition of y; mass
eigenstates. Because the y scattering is out of equilibrium,
each interaction-basis particle propagates coherently,” with
the mass eigenstates y; acquiring phases e %, where
¢; = [E,dt. At some later time, the y fields annihilate
with a potentially different SM fermion flavor y4 into @ via
the inverse-decay process y;y — ®. The net process is
wp® — w,®, with coherent contributions from the propa-
gation of both y; particles; see Fig. 1. The matrix element
for this process is proportional to

M(ps® = y,P) x FalF;;le_"qj‘ + FazF}‘}ze_""ﬁ?. (3)

The matrix element for the CP-conjugate process has
F — F*, with propagation phases unchanged. The result
is a CP-violating asymmetry

AT, = [M(ps® — y @) — |M(,0* — 7,0 (4)

o Im(F, FpoF 1 F o) sin(gy — ¢1) (5)

"The corresponding helicity assignments depend on the
identity of the active fermions. For y = Qy, the y; have positive
helicity and the y; have negative helicity; for y = uy the opposite
is true; etc.

The mass splittings among y; states that we consider are
sufficiently small that there is negligible decoherence in the
production process.
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FIG. 1. Feynman diagram illustrating the process of y; pro-
duction, propagation, and annihilation. First, the scalar ® decays
into the SM quark v, and x;; the ¥, field propagates and then
annihilates with another SM field y; to reconstitute ®. The net
reaction is y3® — y,@. In general, since y; is out of equilibrium,
the full process is a coherent sum over intermediate y; states.

&
:Im(F:;lFZZFﬂlFHZ) sin |:/ ddt(Ez—El):| (6)

g

This factor appears in the contribution to the rate of
asymmetry generation at inverse-decay time t;;, due to y
particles produced with a particular momentum at decay
time 7.

1. Generation of nonzero asymmetry

Equation (6), which applies in the single-® case, implies
that O(F*) asymmetries can arise within individual v,
flavors. At this order, however, we do not get an overall
asymmetry in SM particles relative to antiparticles.
Summing over active flavors gives

ZAFa/)’ o« Im[(F'F),(F'F)y] = 0, (7)
ap

confirming that the total y asymmetry vanishes at O(F*).

An overall asymmetry is possible at higher order in F;
for example, if the y are leptons and the flavor asymmetries
in e, u, and 7 are destroyed at different rates, then a total
asymmetry results at O(F°) [18]. If the y are quarks, the
flavors are brought into equilibrium with one another
through their couplings to the SM Higgs, and there are
no asymmetries in individual flavors even at O(F*);
nevertheless, a source for the total asymmetry still results
at O(F®) if the number of y, is greater than or equal to three
[65]. We discuss this further in Sec. IV B.

To show that the total y asymmetry vanishes at O(F*) in
the single-scalar case, we assumed that the relevant
interaction rates depend on the active fermion flavor only
though the couplings F,;. Thermal mass effects can
invalidate this assumption. These effects are of higher

order in some coupling, but they can be important for the
top quark in particular, as we show in Sec. IVA.

Now we turn to the case with two scalars, @
and @,. Remarkably, in this situation a total y asymmetry
results at O(F*)! The reason is that we now have
two sets of Yukawa couplings, F!, and F2,, and since
Im[(F'TF!),(F?*"F?),,] # 0, an asymmetry can be gener-
ated. In fact, the underlying mechanism works even if only a
single active flavor of y has couplings to y; and ®@,.

We perform a direct calculation of the asymmetry in
Sec. II B and show that it is indeed nonzero, but here we
provide a qualitative understanding of how the mechanism
works. Take Mg, > M, for concreteness, and consider two
possible net processes initiated by @, decay: (1) the feebly
interacting jy state produced in the decay may not participate
in any subsequent scattering, so that the net process is
D, — yy, or (2) the y state may later scatter to produce a @,
particle, so that the net process may be summarized as ®, —
@, (with one y emitted into the plasma and one y absorbed
from it). The first net process induces equal and opposite
changes to the total @ and y abundances, while the second
has no effect on these total abundances.

The point is that CP violation can lead to a difference
between the fraction of decaying @, particles that partici-
pate in @, — y¥ (as opposed to @, — @) and the fraction
of decaying @7 particles that participate in ®; — yy (as
opposed to @3 — @7). Consequently, a y asymmetry arises
at O(F*).

One may worry that this asymmetry is canceled when
one includes processes initiated by ®@; decay, with the roles
of @, and ®, reversed. However, because the number of @,
particles produced at lower temperatures is Boltzmann
suppressed, the net process ®; — @, typically completes
at high temperatures T ~ Mg,. In effect, the processes
®; - @, and ®, — D, are active during different cosmo-
logical time periods, and so the numbers of @ particles
involved in them are unrelated.

Moreover, it is possible that the timescale for y oscillations
to have an effect is comparable to the Hubble time at 7" ~ M, ,
butmuch longer than the Hubble time at 7 ~ M @, Inthis case,
CP violation is negligible in ®; — ®,, which therefore
cannot cancel an asymmetry produced by ®, — @,.

Note that it is crucial that the decay and the inverse decay
happen at different times, and that Hubble expansion
changes the particle kinematics during the interval between
those times. This gives rise to the necessary differences in
the thermal suppressions that apply at the decay and inverse-
decay times. If the Universe were not expanding and instead
in a state of exact equilibrium, then any Boltzmann
suppressions would affect ®; — ®, and &, — ®; proc-
esses equally, leading to a vanishing asymmetry. Indeed, we
have checked that in the limit of zero Hubble expansion, or
alternatively when Mg, = Mg, such that both fields have
the same thermal distribution, the net asymmetry is exactly
zero at O(F*).
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2. x oscillations and Hubble expansion

Having outlined the conditions for obtaining a nonvanish-
ing total asymmetry in SM states, we now discuss the
parametrics of the requisite y oscillations. Taking the y
production time to be much earlier than the inverse-decay
time ¢, we can approximate the oscillation factor in Eq. (6) as

sin M’dﬂ(Ez - El)} =~ sin [Atdt’ ?;gﬂ (8)

AM3,
6p<r>H<t>]’ ®)

where H(t) is the Hubble expansion rate at time ¢,
AM3, = M5 — M3, and we have assumed that the y fields
are highly relativistic, E; ~ p + M3 /2p.

Because both p and H decrease with Hubble expansion,
the phase factor oscillates at a frequency that increases with
time. Assuming that p ~ T, we thus find that at times for
which AM3,/T < H, the argument of the sine function is
very small and so is the asymmetry production rate.
Conversely, for AM3,/T > H, the asymmetry production
rate undergoes rapid oscillations that time-average to zero.
The bulk of the asymmetry is thus created when
AM3, /T ~ H, which corresponds to T o, ~ (AM3,Mp)'/3.
We are then led to expect the dependence

:sin{

asymmetry o« (AM3,)72/3, (10)

or something roughly similar, based on the assumption
that the final asymmetry should scale approximately as
1/ H (Tosc)'

This estimate ignores the fact that asymmetry generation
is suppressed below some temperature 7Ty If AM3, is
too small, the oscillations develop too late to produce a
significant asymmetry. Regardless of the identity of y,, a
nonzero final baryon asymmetry requires that the y asym-
metry is processed by sphaleron transitions that are only
active in the unbroken electroweak phase at T 2 T,,. So
T cuiofr 1810 general at least as high as T, If the y, are quarks,
then we need the oscillations to begin even earlier, because
collider constraints require the masses of QCD-charged @, to
be 21 TeV. For T, . < Mg, , @, inverse decays are highly
suppressed at what would otherwise have been the time of
maximal asymmetry generation. In a model with heavy BSM
scalars, then, we have Ty ~ Mo, -

The general point is that to avoid suppression of the
asymmetry, we need T 2 Tcuofr, With the asymmetry
maximized when the two temperatures are comparable.
According to the very rough estimates given above (which
we will refine in our subsequent calculations), this corre-
sponds to a y mass-squared splitting of AM2, ~ keV? for
T cuoff = Tew- Thus, freeze-in baryogenesis naturally favors
light y fields, M, ~ keV. However, an asymmetry can still
be obtained for heavier y fields, provided they are highly

degenerate. In the ARS scenario, M, ~ GeV whereas the
mass splitting M, — M is often eV or smaller (although
there are exceptional cases with nondegenerate spectra
[27]). In any case, the preference for small singlet masses
makes the y states kinematically accessible at laboratory
experiments.

For Tys. > T.., y oscillations have time to become rapid
before sphaleron decoupling, and in this regime one finds
that the standard ARS model does indeed exhibit the
scaling of Eq. (10); see Eq. (99) below. More generally,
the exact dependence on AM3, in the rapid-oscillation
regime is slightly model-dependent. For example, in the
decoupled-®, regime, the two-scalar scenarios of Sec. II B
lead to a final asymmetry that scales as (AM3,)~" for
Tosc > My, ; see Egs. (48), (50), and (51).

3. Survival of the asymmetry

In subsequent sections, we will focus on scenarios in
which the only nongauge interactions of ®; are those of
Eq. (2), and with (®;) =0. Then all ®; interactions
conserve both B and L, with ®; carrying the same charges
as y,. Thus, it seems that when the ®@; decay (as they must),
all asymmetries are destroyed! This, however, ignores two
important effects. The first is that SM spectator effects
(including B- and L-violating sphaleron processes) distrib-
ute the y, asymmetry into all SM fermions, causing the B
and L stored in SM fermions to differ in magnitude from
those stored in the ®;. The second is that the connection
between quark and lepton asymmetries is broken after the
electroweak phase transition (when B and L become
separately conserved). If one of the ®; states does not
decay entirely until after the electroweak phase transition,
then although its eventual decays cancel the B — L asym-
metry that had been stored in SM fermions, equal and
opposite B and L asymmetries survive.

These arguments suggest that the lifetime of the lightest
scalar @; should be at least comparable to the inverse
Hubble scale at T,,,. By an interesting numerical coinci-
dence, H(T,,)~" ~ 1 cm, and hence one of the ®; states is
typically long lived on collider scales. Since the @, carry
SM gauge charges, they can be produced at colliders and
give rise to long-lived particle signatures (see Sec. V).

B. Calculation of the O(F?%) asymmetry
in two-scalar scenarios

In this section we perform a detailed calculation of the
O(F*) baryon asymmetry for the two-y, two-® case: I = 1,
2and i = 1, 21in Eq. (2). Our final expression for the O(F*)
asymmetry, as expressed in Eqs. (30) and (31), is applicable
for any choice of the SM fermions y,, including couplings
to all three generations of active flavors. One can think of
these two-scalar models as a proxy for more general
scenarios in which a coherent background of oscillating
DM particles (of unspecified origin) participates in inverse
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decays of BSM particles carrying SM charges. The
“decoupled-®,” results presented in Sec. III are particularly
relevant from that perspective. Those results also apply for
arbitrary y,, but we do assume Mg, > T.,, to arrive at the
simplified final expressions of Eqs. (48) and (49).

Although the results of this section are broadly appli-
cable, we will refer to the y, as quarks to align with our
focus in later sections, which present numerical results for
the particular case in which the vy, fields are right-handed
up-type quarks, with @®; and @, carrying charges
(3.1,2/3) under the SU(3), x SU(2),, x U(1), SM gauge
group. We focus on QCD-charged scenarios because the
parameters for viable baryogenesis and the model phe-
nomenology are very different from the well-studied ARS
leptogenesis scenario where the v, are leptons. One can
conceive of various scenarios in which a multiplet of SM-
singlet DM particles couples feebly to a SM field and BSM
fields. We leave study of some of these alternatives to
future work.

To streamline our discussion and derivation, we couple
only a single flavor of SM fermion, “Q,” to ®; and y;, so
that our Lagrangian becomes

E:)—%)‘ﬁ;{,—(F}Qd)wl—F%Qd)z;(,—i—H.c.). (11)
However, we will express our final results so that they
apply equally well to the three-active-flavor case. We
impose a Z, symmetry under which ®;, ®,, and y; have
charge —1 and the SM fields all have charge +1. In this
case, the y; states are also stable DM candidates, and the
neutrino-portal coupling L,Hy, is forbidden.

We adopt a perturbative approach to the calculation of
the baryon asymmetry, both for physical clarity and
because the requirement of y as a viable DM candidate
mandates that we are in the weak-washout regime. Strong
washout effects do become important when we study
single-scalar models without the DM constraint in
Sec. IV B 2, and there we adopt a fully numerical treatment
of the relevant system of quantum kinetic equations.

Our perturbative calculation uses Maxwell-Boltzmann
statistics throughout. It also neglects thermal contributions
to the @; and Q masses, along with the production and
scattering of y from 2 <> 2 processes. These effects are
most important at 7 > Mq)i, while decays and inverse
decays predominantly occur at 7' ~ Mg, . Thus, neglecting
thermal masses is not expected to have a huge effect. The
principal exception is if y oscillations occur at 7 > Mg, , in
which case the result presented here will underestimate the
production and scattering rates.

With these simplifications, our final expressions for the
baryon asymmetry appear below in Egs. (30) and (31). We
show in Appendix A 1 that generalizing these expressions
to include thermal masses has only a modest quantitative
impact. We further find in Appendix A 3 that results based

on Egs. (30) and (31) match rather well with what we get by
numerically solving the quantum kinetic equations for the y
and y density matrices, taking into account thermal masses,
quantum statistics, and back-reaction/washout effects.

The calculation proceeds in four steps: first, a coherently
propagating population of y; states is produced from the
decay of the heavier scalar ®,. Second, some part of this
population subsequently rescatters into ®;. Third, we
account for the phases from the coherent propagation
and compute the difference in rates between yQ — @,
and yQ — ®*, which leads to a baryon asymmetry.3
Fourth, we evolve the asymmetry down to the electroweak
phase transition temperature, 7, to determine the size of
the ultimate baryon asymmetry.

1. Step 1: y production

The important y (y) production mode is from ®, — Qy
(D; — Qy); the y population from ®, decay can be found
by simply interchanging F? <> F! in this calculation. We
wish to calculate the spectrum of jy particles present at a
dimensionless time z = T.,,,/T corresponding to temper-
ature 7', since the y momentum affects the oscillation phase
according to Eq. (8); we must consider contributions from
®, decays that occur at any 2, = Tey/To,decay < 2 The
energy of a y particle produced at time z, is not preserved
by the Hubble expansion; however, since y is relativistic
throughout the asymmetry generation process, E; ~ pj,
and the comoving energy y = Ej/T is constant with respect
to time.

The differential y production in time dt, due to decays of
@, particles having momenta in some window d3pq>2 is

ayr — L Mo, o 2
2
5(z2) Eo, (27)

3fquz(Eq>2)d3p¢2dt2, (12)

where Y% = n//s is the comoving number density of jy
particles, s is the entropy density, gg is the number of @,
degrees of freedom (gq = 6 if Q = Q1 and g = 3 for Q =
ug or Q = dg), and we have included a time dilation factor
to account for the fact that the plasma-frame decay rate of
@, is slower than its rest-frame decay rate. We may express
d3pq>2 as Eq,|pa,|dEq,d¢d cos 0, where cos 6 is the angle
between the @, momentum in the plasma frame and the jy
momentum in the ®, rest frame. Assuming Maxwell-
Boltzmann statistics for @, and integrating over ¢, we
then have

*In our full expression for the baryon asymmetry, we also track
the asymmetry resulting from the opposite process where y
particles are initially produced from ®; decay and rescatter into
@,. However, we focus on only one of these processes for now, as
it is straightforward to obtain the other by interchanging
q)l <> (1)2.
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dYZ? — Mo, 9O —Eo,n/Tew

s(zp) ™ dn?

pq)z |d CcosS 9qu>2 dtz.

Neglecting the thermal mass for Q, we find y=
2 (Ep, + |Po,|c0s0)/(2T,,,), which restricts Eq, > E;+
M(ZI,2 /AE;. Finally, we change variables from (cos 6, 1,) to
(¥.22), and we integrate over Eg, to obtain

JVE — 4557¢ M(IJZF;DZMO e_ye—przzﬁ/MT%w)’)
g, Tow

Z%dydzz, (13)

where My ~ Mp;/(1.66,/7,) ~7 x 10'7 GeV is defined so
that the Hubble expansion rate is H = T2 /M, and g, is the
effective number of relativistic degrees of freedom. We thus
have an expression for the (comoving) number density of
particles with a particular comoving energy y produced at
time z,.

In addition to being relevant for the baryon asymmetry,
this abundance of y + j particles can also account for the
observed abundance of DM. Assuming that the Yukawa
coupling is sufficiently small that y is not brought into
equilibrium, Eq. (13) gives the leading result for the y + j
abundance in perturbation theory. Integrating over all y and
7, gives the summed abundance of all y and y particles

produced by @E*) decays (i =1, 2):

Y}{*‘D}_’ — ]359‘1) Tew 2 & (14)
' 47539* MCD,- Hew 7

where H., is the Hubble expansion rate at sphaleron
decoupling.

2. Step 2: Inverse decay

In Eq. (13), we have calculated the abundance of y with
comoving energy y and production time z,. This abundance
then leads to the inverse decay process yQ — ®;, which
changes the abundance of the field ®@;. Note that there is
also a process yQ — ®,, but according to the arguments of
Sec. I A, this cannot lead to an asymmetry at O(F*). We
also emphasize that any primordial process that populates a
coherent superposition of y; and y, states can lead to an
asymmetry from Steps 2—4 outlined here, independent of
their origin.

We calculate the number of yQ — @, inverse decays that
occur between times z; and z; + dz;, where as usual,
721 =T.,/T;. The Boltzmann equations specify that the
inverse decay rate is the same as the decay rate, but
with the substitution of the distribution functions as

o (Eo,) = f7f5(Eg). The limits of the phase-space
integrals are otherwise unchanged. We already know the
decay rate as a function of f¢ (Eq, ): we simply take Eq. (12),
substitute ®, — @, and make the substitution f (Eq, ) —

f7f qu (Eg). Furthermore, conservation of energy dictates that

Ey = E¢, — E; = Eg, — yT, and thus assuming Boltzmann
statistics,

fo(Eg) = €3 (Ea,)- (15)

Substituting and integrating over Eg, gives a similar result to
before:

_ 4590 Mo Lo Mo _v, 2/a72,0)

dy® —
4ntg, T3,

Zidydz, f.

Finally, we have that

dayr 45
o Tag 1o
and so
My Ty M
dy® = I @0 B (17)
ew
M2, 21 /(4T2) 2 ;
e o el gz, dyr. (18)
y

We can readily substitute the result from Eq. (13), or the
distribution f from any other out-of-equilibrium j produc-
tion process. To obtain the abundance of ®} from the CP-
conjugate process, we replace F — F*.

3. Step 3: Oscillations and asymmetry

The results of Steps 1 and 2 are valid for the single-y
case. We now modify those results to apply when linear
combinations of y mass eigenstates propagate coherently
between the points of y production and y annihilation.

Our single-y result has

dY® Ty T, o |[F12|F2[2, (19)

where F' and F? are the couplings to ®, and ®,,
respectively. Consistent with the arguments of Sec. I A,
we replace

[FIPIF?? = |[FIFy e™h + FIFy e ™2 (20)

for the two-y case. That is, we sum coherently over the
production and inverse decay processes mediated by differ-
ent y; mass eigenstates. The phases are calculated from the
time of @, decay to the time of @, inverse decay, and the
physical phase is the difference’

*Our notation is slightly confusing because there are two types of
scalar @ ,, as well as two types of fermion y; ,. The phases ¢, , and
energies E| , refer to the propagation of the y, , mass eigenstates,
while the times ¢, , refer to decay/inverse-decay of @ ;.
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4
b — :/ dt(E, — Ey) (21)
153
~ / " A (22)
- t 2yT

_ AM%lMO Z? - Z%
62 vy

(23)

The coherent oscillation phase thus depends on the comov-
ing energy of the propagating singlet (y), as well as the
times of production (z,) and scattering (z;).

Combining this with the result of Eq. (17), we find

dY® — dY® « 4lm(F!F3*F3F}")

AMZ M 3_.3
x sin (#Zl Z2). (24)
673y y

Finally, an analogous calculation gives an asymmetry in @,
from the process ®; — Qy, yO — ®,; the result is found
by simply interchanging the @ index 1 <> 2 in all of our
results so far.

For an asymmetry to be generated, y production,
propagation, and annihilation must all be coherent proc-
esses [66]. Given the relatively large ® — ®* annihilation
rate to gluons, I'g o) 2 10 GeV, the overall energy uncer-
tainty in @ decays and inverse decays is many orders of
magnitude larger than the energy splitting between y mass
eigenstates, AE ~ ATMZ. Therefore, we do not expect coher-
ence loss in y production or annihilation to be an issue.
Propagation decoherence seems more likely to be impor-
tant. In the wave-packet picture, the group velocities of the
constituent y mass eigenstates differ by Av ~ AM?/E?.
Approximating the spatial spread in the y wave packet to be
Oy~ Fgfcol, the requirement that the spatial separation
between the two mass eigenstates remains less than o,
leads to a coherence time Of .y, ~ E?/(T'p e AM?). This
coherence time is longer than the time for oscillations to
develop, t. ~ E/AM?, provided that Ipeol S E is satis-
fied. The scale of the y energy E is set by the larger of M
and the temperature 7. We therefore expect I'g . to be
perturbatively smaller than E, which would imply that y
coherence survives long enough for oscillations to have an
effect. While these rough, qualitative considerations are
reassuring, a more careful study of decoherence in this
framework is certainly merited.

4. Step 4: From ® asymmetry to baryon asymmetry

The interactions of Eq. (11) conserve baryon number,
with B = 1/3 assigned to ®;. Taking only those inter-
actions into account, we get equal and opposite baryon
asymmetries in @ and Q, and no final asymmetry survives
once the @ particles decay to Qy.

Spectator processes among the other SM quarks and
leptons can, however, prevent this destruction from happen-
ing and directly connect the phenomenology of @, , to the
baryon asymmetry. The rate of asymmetry production in @ is
equal and opposite to the that in Q; however, the asymmetry
in Q is quickly distributed amongst all SM quark, lepton, and
Higgs species via sphalerons and SM Yukawa interactions.
By contrast, the @ asymmetry is not distributed amongst any
other particles. Thus, the baryon asymmetries stored in the
SM and ® sectors have different magnitudes when spectator
processes are taken into account.

To make this quantitative, we solve a system of equations
relating SM chemical potentials and abundances in equi-
librium [67], with the hypercharge and B — L conservation
equations modified to include the ®; abundances. In this
way we can relate asymmetries to the B — L asymmetry in
the SM sector:

SY® +6Y® = KoYp 1 sm (25)
Yp =KsYp_1sm- (26)

Here Yy is the total baryon asymmetry, including that
stored in ®;,, but we exclude the ® asymmetries in
calculating Y_; . Conservation of B — L leads directly
to Ko = —3, while the value of Ky depends on the gauge
charges of Q: we find Kz = —54/79 for Q = Q;, —63/79
for Q = ug, and —45/79 for Q = dg.’

Taking the sphaleron-decoupling temperature to be T, =
131.7 GeV [68], we work in the approximation that electro-
weak-symmetric conditions apply for z = T, /T < 1, tran-
sitioning abruptly to B conservation for z > 1. The final
baryon asymmetry is then Kp/Kg(8Y® 4+ 8Y®2), ;. We
estimate that this instantaneous-transition approximation
introduces an error of at most ~15% in the final baryon
asymmetry, based on the broken-phase equilibrium value for
Y/Yp_1 sm- We adopt a more careful treatment of sphaleron
decoupling only for Sec. IV B 2, in the context of a strong
washout scenario that features potentially rapid variations in
the @ asymmetry at z ~ 1.

The ultimate baryon asymmetry depends on the @,
asymmetries at sphaleron decoupling, which are in turn
proportional to the fraction of @, particles that survive
until z = 1. For each scalar, we therefore dress the con-
tribution to its asymmetry from inverse decays at z; with
the survival factor

So,(z1) = exp (— /l - dt(I“q)i)), (27)

where (I'p) is the thermally averaged decay width.
Neglecting thermal masses and adopting Maxwell-
Boltzmann statistics, we get

SFor the leptonic cases, we have g = 1, along with Ky =
25/79 for L; and Ky = 22/79 for eg.
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Mg,

T, (1 Ki(%z)
So,(z1) =exp (_ H(Dl / dzz %) (28)
ew J7; ) TW’Z

where KC; are modified Bessel functions of the second kind.
Washout from ®; decay can also be taken into account by
solving the quantum kinetic equations including both
source and washout terms, as done in Appendix A 3.

The survival of a substantial fraction of ®; scalars down
to the electroweak scale suggests that I'g, < H.,, for at least
one of the scalars. This leads to the conclusion that the
decay length of one of the scalars satisfies c7q = 1 cm.
This is interesting from a phenomenological perspective,
since this is precisely the set of decay lengths that lead to
long-lived particle signatures at colliders. The freeze-in
baryogenesis mechanism therefore provides a very explicit
link between the baryon asymmetry, the Hubble expansion
rate at the electroweak phase transition time, and collider
signatures. We explore collider signatures in more detail
in Sec. V.

5. Final result

Putting together the results from the four steps of our
calculation, we find the baryon asymmetry today equals the
asymmetry at the time of the electroweak phase transition:

B 256g.75Ke TS,

e e_' 1 )
Iy = / dy =z | daizi S (z)e il
Z
x A " dzy e~ sin [%(z?—zg)}, (30)

where a; = (Mg, /2Tey)* and  fo. = MoAM3, /6T3,,.
Again, we have neglected thermal masses throughout.

To make more transparent the connections between the
baryon asymmetry and physical properties of the new states
such as masses and decay widths, we reparametrize the

asymmetry as follows:
_ (Mo (Ma,
47[49* ’Cd) Tew Tew
I'p \ (To
x (H—evlv> <He;><112—121), (31)

where we have used

B

Tr[FTF
F@[_ - %M@i, (32)

and defined the Jarlskog-like invariant 7 by

Alm(F!F>* F2F1*) = JTr[F'T F\Tr[F2T F2).

This invariant can be parametrized in terms of six mixing
angles,

J = sin 20, sin 20, cos p; cos p, sin(¢y — ),  (33)

where
FiTFi

cosl; = —( - )1-1, (34)

Tr(FITFT)

FITFi
cosp; = |T( : )121| — (35)
V(FTF) (FTFT),

)i = afg<Fi-i-Fi>12v (36)

with 0 < (0;, p;) < 7/2. Our derivation assumed couplings
to a single quark flavor, in which case we should regard F!
and F? as y-space row vectors in the above equations,
consistent with the index placement in Eq. (2). However,
Egs. (31)-(36) apply equally well in the three-flavor case,
F} — F',. The 0; angles parametrize the relative strength of
the coupling to y, vs y,, while the p; angles parametrize the
degree to which the couplings to y; and y, are aligned in
quark-flavor space; for a single quark flavor, cosp; = 1.
Finally, the ¢; give the relative phases.

Our final result is consistent with our arguments from
Sec. IT A. In particular, we can specialize to the case of a
single scalar by making Mg = Mg, and F I'= F? (and
including only the /;, term); in this case, the asymmetry
vanishes at this order in perturbation theory, recovering
the standard ARS result. In Sec. IV, we return to the single-
scalar scenario, showing that asymmetries can arise at
O(F*y?) and at O(F®) in the model where ® couples to
quarks, although even the O(F®) asymmetry has a different
parametric dependence than in ARS leptogenesis, due to the
equilibration among quark flavors in the SM. We also note
that, if we take M, = Mg, and neglect washout effects, we
get I, —I,; =0, in accordance with our arguments in
Sec. IT A that the asymmetry should vanish in this limit.

In the absence of washout, our result is independent of a
possible cross-quartic coupling, /Ilz(dﬂd)z)z + H.c. In that
limit, ®,®; <> ®7P, scattering does not affect the final
baryon asymmetry, which is determined by the total @
asymmetry at sphaleron decoupling. However, those scat-
terings can impact decay-washout effects (which our
perturbative result encodes in the Sg, functions). To arrive

at Eq. (31), we assumed that the ®,/®\" and ®,/®."
asymmetries evolve independently. In many cases of
interest, for example if the y oscillations necessary for
asymmetry generation begin at temperatures well below
Mg, , this assumption is valid. Moreover, when @, ® <«
@] D, scattering does affect the final asymmetry it does not
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generally reduce it dramatically in viable parameter
regions. For simplicity, we therefore neglect ®,®} <«
@] D, scattering.

We conclude by noting that a nonzero baryon asymmetry
can still be obtained in the limit Mq, > Mg, . In this case,
from the perspective of the low-energy effective theory,
there exists a primordial coherent y background that
interacts once to generate a baryon asymmetry. We there-
fore see that our two-scalar model readily generalizes to
any scenario where a nonthermal coherent y ensemble is
produced in the early Universe. This could include, for
example, production from inflaton decays, or from the
decays of some other particle with different quantum
numbers than ®;. Thus, freeze-in baryogenesis can occur
through any one of a large number of mechanisms of y
production in the Universe, provided there is a weak-scale
state to allow late time y scatten’ng.6

Starting with an assumed primordial y background, one
can use the interaction

£ > —FyL,Hy, +Hec. (37)

to generate the baryon asymmetry via yL — H. That is,
rather than introduce ®; at all, one can exploit the neutrino-
portal coupling, forbidden in our Z,-symmetric models.
This takes us to a version of the ARS scenario in which we
allow an unspecified source of y production, presumably
broadening the viable parameter space. In this scenario,
however, X-ray constraints on y — vy rule out the DM
being composed of those y mass eigenstates that participate
directly in the asymmetry generation. In the models with
@;, a sufficiently small neutrino-portal coupling can leave
our DM abundance and baryon asymmetry calculations
unaltered while still having potentially observable conse-
quences, as discussed in Sec. V B.

III. BARYOGENESIS AND DARK MATTER WITH
TWO SCALARS

In this section, we explore the parameters for which the
freeze-in baryogenesis model of Sec. I B can simultane-
ously account for the baryon asymmetry and DM, finding a
generic preference for masses <5 TeV and lifetimes ¢z 2
0.1 cm for the lightest scalar ®@,.

Given fixed values of the other parameters, we can use
Egs. (14) and (31) to calculate the DM abundance and Y
as functions of (I'y ,T',), or equivalently, (czg,,c7g,).
Figure 2(a) shows results for benchmark parameters
Mgy, =2TeV, Mg, =4 TeV, M} < M, =20 keV, and
0, = 6, = n/4. The maximum possible baryon asymmetry

°In the context of electroweak baryogenesis models, asym-
metry generation by Majorana fermion DM scattering has been
considered for example in [69], where (unlike here) a chemical
potential is first generated in a dark sector and subsequently
transferred to the SM sector.

consistent with these inputs, (Yjz),. 1S realized by
choosing the other angles to give J =1 (as discussed
below, the DM abundance depends on 8 and 6,, but not on
the other parameters determining 7).

Figure 2(a) shows that, for these inputs, a Y of around
twenty times the observed value is possible, without
overproducing DM. Furthermore, to avoid overproduction
of DM, both @ particles must be long-lived on collider
scales, and the y, 7 abundances must remain well below
equilibrium values, ensuring the validity of our perturbative
calculation.

As already emphasized, Mg, can be much larger than
Mg, without suppressing the magnitude of the baryon
asymmetry, provided the abundance of y produced in @,
decays, Ygﬂ , is held fixed by increasing the couplings to
®,. This is evident in Fig. 2(b), which shows contours of
baryon asymmetry and y/y energy density in the
(ctg,, Y4™) plane for various M, .

For the case with approximately degenerate scalars
(Mg, = 2.1 TeV), the results are sensitive to our
assumption of no @, ®; <> OjP, scattering. We see two
(YB)max contours for that scenario, corresponding to
whether the ®/®* asymmetry at sphaleron decoupling is
stored dominantly in ®; (with J =1) or @, (with
J = —1). The asymmetry is almost entirely in ®@; in the
viable parameter space consistent with the DM constraint.

We now provide additional details underlying all of the
results of this section, including Fig. 2. First, in calculating
the baryon asymmetry, we replace the survival function in
Eq. 31) with its z; = 0 value, Sq,(0), which can then be
taken outside the integrals in Eq. (30). That is, we
approximate @ production to be at the time of reheating
for the purpose of estimating washout via @ decay, while
still taking into account time dilation. Given that asym-
metry production by y scattering dominantly occurs at
temperatures well above T, this is a reasonable approach.
We show in Appendix A that more careful treatments give
similar results (see Fig. 14).

Regarding the DM constraint, we adopt a Z,-symmetric
model, so that both y mass eigenstates are stable on
cosmological time scales. We therefore require’

pj{ﬁ? < Pcdm

=432 % 10710 GeV. (39)
A S

We are particularly interested in the case where this bound
is saturated and the y particles make up all of the DM.

7Following Ref. [70], we take Qnh*>=0.1186 and
Qph? = 0.02226. This gives

Pcdm _ (Szcdmh2

W) mNYB =432 x 10_10 GeV (38)
s B

for Y = 8.65 x 107! and a nucleon mass my = 0.938 GeV.
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values. In (a), M, is held fixed, and the region in which a large enough baryon asymmetry can be achieved without overproducing DM
is shaded; (b) compares contours for various Mg, as a function of the lifetime of ®; and the total y + 7 abundance produced in the

decays of @,, Y’f’_‘ . For both plots, the baryon asymmetry is maximized for | 7| = 1, and we take the ® quantum numbers to be those of
ug. For the DM contours we assume M3 ~ AM3, and neglect the energy density stored in the lighter y mass eigenstate.

The total y + 7 abundance from the decay of the scalar
(OF% Y{H{ , is given by Eq. (14). Since the mixing angles 6;
defined in Eq. (34) parametrize the relative couplings of ®;
to the two y mass eigenstates, we find

pZ—Jr)?_ (@)
- X

s Y )1(+)? + M;(((DZ) Y)z{ﬂ?’ (40)
where
]\71)((@") = cos® O;M, + sin’ O;M, (41)

is the average mass of y and j particles produced in d>,(.*>

decays, weighted by abundance.
To simplify our analysis we focus first on the case in
which the y masses are hierarchical,
M, > M,, (42)
to an extent that we can neglect M entirely. We consider
the implications of having larger M, toward the end of this
Section. For the remaining parameters, taking y; to be
effectively massless maximizes the space that gives the
correct baryon asymmetry consistent with the DM con-
straint of Eq. (39). In this hierarchical regime we take

AM%1 ~ M% (43)

and

M ~ sin? 0,M,, (44)

giving

M, (sin® 0, YA + sin® 0,Y47) < pc% (45)
as our DM constraint. For the parameters adopted in
Fig. 2(a), this translates roughly to Y/ <4 x 107,
consistent with our earlier claim that the DM constraint
requires the y particles to remain well out of equilibrium.

A. The decoupled-®, regime

Figure 2(b) shows that, while the baryon asymmetry is
reduced as Mg, approaches Mg, , the masses need to be
close to get a strong suppression. Because we get quali-
tatively similar results for Mg, > Mg, as for modest
hierarchies, Mg, 2 2M¢g, , we work in the “decoupled-
®,” regime for the remainder of this section. In this regime,
the generation of the asymmetry can be factorized into the
production of a y abundance, which oscillates and then
scatters into @; at a much later time.

More precisely, we adopt an approximate expression for
Y that applies when

Mg, > Mg > T, (46)
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and

AM3 M,
—20 < (47)
My
2
are both satisfied. When Eq. (47) is satisfied, y oscillations
develop at temperatures 7' << M¢,. We can then ignore the

term with /,; in Eq. (31), because inverse decays of @, are
highly Boltzmann-suppressed by the time oscillations

begin. Given that the (I)g*) population annihilates away at
high temperatures, we can furthermore take # = 0 at the
moment of y production, when calculating the oscillation
effect. In the I}, integral of Eq. (30), this amounts to
neglecting the term with z, in the sine function. Finally,
Eq. (46) allows us to extend the z; and z, integrations in
Eq. (30) to infinity, because Boltzmann suppressions of the
®, decay and @, inverse decay rates effectively cut off the
integrals at lower values of z; and z, in any case. Using
Eq. (14), we can then approximate Eq. (31) by

v, _8g0KpT YM(M)Z (Fd)l ) S0, (0) 12 (Bosc). (48)

3Ky 7 \ Mo, ) \Hey
with
T2 (Bose) = /Ooo dyye_y/o‘” dxx'/?e~*
x sin [Bosex™/2y'?] (49)
and
Bose = w. (50)

Figure 3 shows a plot of Ij(f,). The asymptotic
behavior is

0.100+

e
=
S

1 12 (Bosc)

107}

1077 L

8 -6 -4 =2 0 2
IOgIO(Bmc)

FIG. 3. The function T;,(fos) appearing in Eq. (48), which
gives the baryon asymmetry in the decoupled-®, regime.

(3ﬁ/2)ﬁ050 ﬁOSC << 1’

VT (3Posc)  Pose > 1. G1)

Ty (Pose) = {

and the maximum value (le)max ~ 0.364 is attained for
PBose = 0.385, corresponding to

Mg, \ 32
2 ~ D,
(w /AM21>mlez ~20 keV x <—TeV> . (52)

Increasing or decreasing / AM %1 by an order of magnitude
from this value shifts ... by two orders of magnitude and
suppresses 1, by a factor of roughly ~3 x 1072

B. Numerical results in the decoupled-®, regime

To get a sense of where the model’s most promising
parameter space lies, we perform two random scans over
the couplings and masses that determine p*** and Y in the
decoupled-®, regime, using Eqgs. (14), (40), (44), and (48).
The shaded regions in Fig. 4 show the preferred @
parameter space that emerges.

We now explain how these scans were performed. First,
we impose an upper bound on Y’gﬂ . Because the Sakharov
conditions require a departure from equilibrium [19], at
least some linear combination of y states must be out of
equilibrium at the time of inverse decay into @;.
Baryogenesis can still occur if a linear combination of y
states does come into equilibrium. For example, it is

possible that <I>g*) decays thermalize some linear combi-
nation of y; and y, (and the associated C P-conjugate state),
in which case the total abundance of y and j particles left
over after @, annihilation approaches the equilibrium value
for a single mass eigenstate,

, 135£(3
YiF = f( ) ~4x 1073, (53)
4r* g,
We impose this value as our upper bound on Y{J’Z ,
Y47 <4 %1073, (54)

even though one can imagine viable scenarios in which
a larger-than-equilibrium abundance is produced at high
temperatures.®

We also require

M, > 10 keV, (55)

¥For example, if the background of y/y particles is produced
nonthermally by a source that couples to a single linear
combination of y; and y,, the orthogonal linear combination
of ¥, and y, could remain out of equilibrium given a sufficiently
long oscillation timescale.
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FIG. 4. The shading shows relative frequencies for points that give the correct baryon asymmetry and DM abundance in two different

random scans over couplings and masses, as described in the text. In the “overall-scale” scan of (a), the magnitude of each F

1
al 18

generated by multiplying a log-distributed overall scale by a random number in the range [0, 1], and similarly for each F2,. In the
“uncorrelated-couplings” scan of (b) the magnitudes of each F!, are taken to be log-distributed and fully uncorrelated. The contours
(identical for the two plots) enclose regions in the (M, , c7) plane that can give a large enough baryon asymmetry while satisfying the
DM constraint of Eq. (45), under three different coupling assumptions. We take the ® quantum numbers to be those of up.

to approximately satisfy structure-formation constraints
(for example, the authors of Ref. [71] argue that Lyman-
a constrains M, 2 12 keV provided y +y production
occurs at electroweak temperatures).

Taking three active flavors, we start with randomly
generated F! and F? coupling matrices and a randomly
generated Mg, > 1 TeV (with a flat prior in the logarithm
of Mg, ). In all cases, we take Mg, > Mg . We include

points in Fig. 4 if we can find a rescaling of the F? matrix
and a value for M3 = AM3, that give the observed DM
density and baryon asymmetry, subject to the constraints
Y4 <4 x 107 and M, > 10 keV. Figures 4(a) and 4(b)
differ only in how the initial F' couplings are generated.

Figure 4(a) is based on the “overall-scale” scan: overall
scales of the coupling matrices F' and F? are randomized
with flat priors in the logarithms of those scales, the
magnitude of each individual coupling F’, is obtained
by multiplying the appropriate overall scale by a random
number in the range [0, 1], and each coupling is finally
assigned a random complex phase.

Figure 4(b) is based on the ‘“uncorrelated-couplings”
scan: absolute values of couplings F’, are independently
randomized with flat priors in the logarithms of those
absolute values, and each coupling is then assigned a
random complex phase.

To different degrees, both scans prefer Mg, to be in the
~1 — few TeV range, making this a promising scenario with
respect to collider searches. The uncorrelated-couplings scan
tends to produce larger hierarchies among coupling matrix
elements, making small ® branching ratios to y, less rare

and avoiding overproduction of DM. This produces a
broader distribution in (Mg, , c7g,) space.

To interpret the numerical scan results, we also analyti-
cally identify viable regions in the (Mg, . c7) plane under

— Y Vil for 6y = 6 = /4 W
204 ---- (Vo (Vo for V¥¥ =4 x 1073 i
10} . ]
o . .
(0]
=)
S i
=
100 1000
M,,(keV)
FIG. 5. The maximum baryon asymmetry consistent with the

DM constraint of Eq. (45), as a function of Mg, and M, in two
different coupling scenarios. We assume M % ~ AM %1 and neglect
the energy density stored in the lighter y mass eigenstate. For this
particular plot, we have not imposed structure formation con-
straints relevant for M, < 10 keV. We take the ® quantum
numbers to be those of up.
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FIG. 6. Results of repeating the two scans of Fig. 4 with M,/M, = 1/2 (top), M,;/M, = 1/10 (middle), and M;/M, = 1/100
(bottom). For points with 0 < M| < 10 keV, we restrict the y| energy density to be no larger than 1/3 of the total DM energy density to
evade structure-formation constraints [72,73].
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specific coupling assumptions. We marginalize over the
other, unspecified parameters to find the maximum baryon
asymmetry subject to the DM constraint; for further details
see Appendix B.

If we set Y4™¥ at what we take to be its maximum
allowed value, thereby saturating Eq. (54), the observed
baryon asymmetry can be attained for points within the
blue contour of Fig. 4. For this maximum value of ¥4, we
avoid overproduction of DM only for 8, < 0.1, correspond-
ing to a @, that decays preferentially to the massless y, as
opposed to y5.

We can alternatively adopt fixed values for the mixing
angles 6, and 6,. Allowed regions lie within the red contour
of Fig. 4 for 6, = 0, = z/4 (in which case ®; and @, both
decay to y, and y, with equal probabilities) and within the
green contour for 8; = 6, = 1/10 (in which case ®; and ®,
both decay predominantly to y;). The M, > 10 keV con-
straint has a significant impact on the 6, = 6, = 7/4 para-
meter space, cutting out a region with smaller Mg, and c7g,
where the model would predict an overabundance of DM.

In Fig. 4(a), the bulk of the scan points are enclosed within
the red, equal-mixing contour, consistent with the fact that
the overall-scale scan leads to more anarchic coupling
structures and consequently large mixing angles among all
states.

We also see in Fig. 4 that the viable parameter space is
restricted to Mg <6 TeV and crp, 2 4 mm if ® decays
produce y; and y, in equal abundance (red contour), but
that the allowed values expand to Mg, < 35 TeV and into
the sub-mm decay regime if ® decays mainly produce very
light y particles (blue contour). In Fig. 5 we find that the
corresponding ranges for the y, mass are M, < 150 keV
and M, <4 MeV, respectively.

In Figs. 4 and 5 we take y; to be effectively massless by
equating M3 = AM3, and neglecting the energy density
stored in the lighter y mass eigenstate. As shown in Fig. 6,
the viable (Mg, . c7e,) space shrinks further if we adopt
different assumptions for M. As a result, the prospects for
testing the model become even more promising.

The bound Mg, < 35 TeV applies when @, have the
same quantum numbers as ug, but the results are roughly
the same in the Q; and dp cases. While the upper end of
this mass range is likely to be inaccessible even at a
100 TeV collider [74], it is at the very least a firm upper
bound in the two-scalar model. As the scan results suggest,
saturating this upper bound requires a special alignment of
parameters, while more generic parameters typically prefer
values of Mg, that are more accessible at colliders.

Finally, if we consider the baryon asymmetry alone and
abandon the DM constraint of Eq. (45), Eq. (48) places a
very weak upper bound on the mass of the lighter scalar,

1/2 1/2
Mg, <570 Tev(g‘]’gil*) < ) . (56)

17
Y2

4 %1073

If we impose the bound of Eq. (54), the two trailing factors
are order-one or smaller.

IV. BARYOGENESIS AND DARK MATTER WITH
A SINGLE SCALAR

Having thoroughly explored the parameter space giving
rise to baryogenesis and DM in a model with two scalars,
we now return to the more ARS-like scenario with a single
scalar. We consider the same model as Sec. II B, but now
including only a single scalar, @, with couplings to all
quark generations:

M _

L£> —71)_((17(1 — (FarQo®y; +He.). (57)
As argued in Sec. II A, the baryon asymmetry is expected to
be smaller with only a single scalar, and indeed we show in
this section that the viable parameter space for baryogenesis
and DM is much more constrained than in Sec. III. This is
due to the fact that the baryon asymmetry arises at higher
order in perturbation theory, either O(F*y?) or O(F°),
where y, is the SM top quark Yukawa coupling.

We start by discussing why the O(F*) asymmetry
vanishes if we neglect SM Yukawa couplings. Generating
an asymmetry relies on processes such as ® — Q.7, Oy —
@ differing in rate’ from the equivalent processes for ®. To
determine the total asymmetry, we must sum over all quark
flavors a, #, which we can organize into a sum over pairs of
processes with the two quark flavors switched, such as the
pair consisting of the “(1,2)” process ® — Q7,70, — ©
and the “(2,1)” process ® — Q,y,yQ; — ®. In the absence
of SM Yukawa couplings, flavor dependence enters only
through the F,; Yukawas themselves. The (1,2) and (2,1)
rates are then related by F <> F*, and their sum is thus
symmetric under F' <> F*, guaranteeing a vanishing asym-
metry once we include the CP-conjugate processes.

SM Yukawa couplings spoil this cancellation. Most
significantly, the large top Yukawa coupling produces
flavor nonuniversality in the quark thermal masses, leaving,
for example, less available phase space for (inverse) decays
involving tp than for those involving ug. Thermal mass
effects are more important at high temperatures, and so
flavor dependence of the kinematics tends to be more of an
issue in the decays than in the inverse decays (thermal-mass
effects are unimportant for inverse decays that occur at
T < Mg, for example). Within the pair ® — Ry, ugy — @
and ® — ugy, gy - D, the (tg, ug) process is therefore
kinematically suppressed relative to (ug, #g), and the two
rates are no longer related by F <> F*. This source of
asymmetry is consistent with CPT which, due to the
expansion of the Universe, only relates equal-time rates

"We take the “rate” for ® — Q. Qpy — @ to mean the
contribution to the Qg — ® rate at some fixed inverse-decay
time, due to jy particles that were produced in association with Q,,.
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for processes that can be approximated as instantaneous.
Since the resulting asymmetry vanishes in the flavor-
universal limit y, — 0, we find the resulting asymmetry
is O(F*y?).

Note that an asymmetry at this order requires more than
just flavor-non-universal quark or lepton masses. It requires
flavor-non-universal temperature dependence of the ®-
decay reaction densities, which arises in our scenario due to
the large tree-level ® mass.

Indeed, the asymmetry vanishes if we can express the
® — Q,j reaction densities as y,(T) = 7,f(T), where 7,
are flavor-dependent constants and f(7) is the same for
every flavor. In that case the rates for ® — Q.y;, Qp¥; —
® and ® — Qpy;, Oy — © share the common factor
f(T,)f(T,), where T, and T, are the decay and inverse-
decay temperatures, respectively. As for the case with
flavor-universal quark masses, the two rates differ only
by F < F*, and the asymmetry vanishes at this order.

This is of particular relevance to ARS leptogenesis,
where @ is the SM Higgs. In this case, no fields have
significant tree-level masses in the unbroken phase, all
reaction densities must scale like y,(T) = 7,T* from
dimensional analysis, and consequently the O(F*) asym-
metry vanishes even in the presence of a 7 thermal mass.
This is not quite true at 7'~ T, since at this point the
Higgs tree-level mass is relevant, and so a small effect may
be observed there. The O(F*y?) asymmetry we find in our
model therefore crucially depends on the tree-level @ mass,
and the asymmetry generation at this order is highly
suppressed for T > M.

In the rest of this section, we consider two separate,
equally motivated cases: in the first, the top quark couples

@ s 2 ]
\\\\\ — My =15TeV
al \\ — My=2TeV |
P \\ — My=25TeV
ﬁ 37 \\\\\ —_ M¢=3TCV 4
= R
E Al e o
R O R
Sl S
S S
_____-_sﬂﬂﬂk eSS =
Ot ‘
10 20 30 40 50 60
M,, (keV)

appreciably to y and @, and an asymmetry is generated
according to the flavor-non-universal mechanism described
above. In the second, the top quark does not couple
appreciably to y and @, in which case the smallness of
the light-quark Yukawa couplings leads to the dominant
asymmetry production occurring instead at O(F9).

A. Top-mass-induced asymmetry

Here we consider in detail the single-scalar scenario in
which the asymmetry arises at O(F*y?), adopting couplings
to ug-type quarks for concreteness. We treat thermal masses
as described for the two-scalar case in Appendix A 1, with
further details given below. That is, we use Egs. (A2) and
(A4), except that for the top quark we include a Yukawa
contribution [75]:

_ 1 1 1

M, = <§g§ +g9i+ Zﬁ) 1. (58)
This expression is based on the finite-temperature quark
dispersion relation in the high-momentum regime. Here and
below, bars over masses indicate that thermal contributions
are included.

Our results for this scenario, with the p*™% = p 4, con-
straint in place, are summarized in Fig. 7. As described
below, the angle @ parametrizes the relative overall strength
of @’s couplings to y; (taken to be massless) versus y, (taken
to have M, > 10 keV). In Fig. 7(a) we take 0 = x/4,
corresponding to equal-strength couplings to y; and y,.
We see that there exists parameter space in which a realistic
baryon asymmetry and DM abundance can simultaneously
be realized, with Mg < 2.5 TeV and M, < 60 keV.

(b)
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— optimal

10] IS — O=n/4 |

— 0=m10 1000
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..... A | | o.0010
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FIG. 7. Results for the single-scalar scenario with top-mass-induced asymmetry. For both plots, we take M; = 0 and impose
P = pegm- In (a), we take @ = /4 and show the maximum possible baryon asymmetry for various values of Mg and M,. In (b),
(Mg, c7) points for which the maximum possible baryon asymmetry is equal to (¥ ), lie on the contours shown. We include € among
the adjustable parameters for the black contours, whereas we fix @ at the indicated values for the others. As described in the text, the

shading shows relative frequencies for points that give Y5 > (Y3)

obs

in a random scan over couplings and masses. For the solid (dashed)

contours of both plots we take Ay = 0 (1/3) in calculating the scalar thermal mass; see Eq. (Al).
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Figure 7(b) shows the viable (Mg, c7) parameter space.
For the black contours we maximize Y with respect to all
other parameters including 6, while for the other contours
we consider fixed values of 6.

As we did for the two-scalar scenario, we also perform a
random scan for a rough, qualitative determination of the
preferred parameter space, also shown in Fig. 7(b). We start
with randomly generated Mg, > 1 TeV and M, > 10 keV
(with flat priors in the logarithms of these masses). Taking
three active flavors, we generate a random coupling texture
by assigning each F’; a random number in the range [0, 1]
multiplied by a random complex phase. This texture for F
determines sin@ (along with all other relevant mixing
angles and phases), allowing the overall scale of F, and
therefore Iy, to be determined by the p*™# = p 4, require-
ment. We keep points with Yz > (Y)ps-

Taken together, the results of Fig. 7 show that the viable
parameter space is significantly more limited than for the
two-scalar case, making the prospects for conclusively
testing this scenario at colliders particularly favorable.
While the contours of Fig. 7(a) show that it is in principle
possible for the ® mass to be as large as ~4 TeV, the scan
suggest that generic patterns of couplings prefer smaller
masses, Mg <2 TeV. For this scenario, ® must couple
both to the top quark and at least one flavor of light quark.
Production of ®®* at colliders would lead to various final
states involving isolated jets from ® — gy and/or top
quarks from ® — tj.

A caveat regarding Fig. 7 is that, unlike for the two-
scalar scenario, the baryon asymmetry arises here as an
intrinsically thermal-mass-related effect. We have adopted
a rather crude quasiparticle approximation to obtain our
results; for example, our use of the high-momentum limit
of the quark dispersion relation might be called into
question given the relatively large coefficients appearing
in Eq. (58). However, even when we adopt the low-
momentum dispersion relation (thereby reducing quark
thermal masses-squared by a factor of two), the model can
still satisfy the DM and baryon asymmetry constraints. A
more refined finite-temperature field theory calculation
might give a more robust determination of the viable
parameter space.

We now provide additional details on our calculation
of the O(F*y?) asymmetry. Following our treatment of the
two-scalar case in Appendix A 1, we define the flavor-
dependent functions

M, (2)
Pa(Z) =1- Mé(Z) (59)
along with
_ Mg (2)
(Z) = M([;(Z) (60)

By retracing the steps of the perturbative calculation of
Sec. II B, but with a single scalar, and with temperature-
dependent masses included, we find that the baryon asym-
metry can be expressed as

_ 459 Ky Mg Z4Im[Fy1Fy2*F52F51*]
- A
47[49* IC(I) TZngW 7.8 (16”>2

1-py(3)

e -y 1 B ;
<[ [ asel2e @
0

1-ps()

Xe—affz(Z)ﬂy(Z)A d7' 7% (Z)ps( Ve 5] 2

2 50y ! : — -
y e_ain(z ps(2) sin |:ﬁosc <u>:| ’ (61)

y

where the survival function S¢(z) can be obtained from
Eq. (A10), with the substitutions Mg, — Mg, 7; — 7, and

(FF1), Mgp?2
Fq) pz - Z 1y6}/][ y (62)

Applying the same substitutions in Eq. (A11) gives the DM
abundance.

As a consistency check on our calculations, we can
compare Eq. (61) with the contribution to Yz coming from

CI>g*) decay followed by CI>(1*) production, in the two-scalar
case with flavor-universal thermal masses. The two-scalar
result is given by Eqgs. (31) and (A9), with only the 7, term
included. We reproduce those expressions by starting with
the single-scalar Y of Eq. (61) and making the appropriate
substitutions: Mg, — Mg, Mg, , S (2) = So, (2),7(2) =71 (2),
72(2') = 12(2'), p,(2) = p1(2), and ps(2') = po(2).

If we neglect the z-dependence in the survival function
by taking S¢(z) = So(0), Eq. (61) can be simplified
somewhat by exploiting the z <> 7' symmetry of the
integrand. We find

4595 Kg My 4Im[F, | F))* F5 F s ]
Y 0
5= 4atg, Ko T2 HA, ol );5 (167)*
o0 e_y
x / dy 3 Im{P, ()0 (63)
where

]—ﬂy(f)

1
H,(y) = A dezfz(Z)p},(z)e_ @Y

o~ @) i (64)

Because we take into account only third-generation
Yukawa couplings, the symmetry between the first two
quark generations allows us to rewrite the baryon asym-
metry as
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Yp~ —
b 167749* ’C(I)j Tew Hew SCD(O)
o0 e_y
x / dy S (M) (65)

where we neglect Yukawa coupling contributions to ther-
mal masses in H;,, and where

J = sin®20sin 2p, sin2p, cos’ ysin(¢ps — o), (66)

with
F'F
cosf = ( )11, (67)
Tr(F'F)
F
cosp; = | i1| (68)
(F'F);
| ,F%F,
cosy = |Za71,2 al 2| (69)

\/Za:l,2|Fal |22ﬁ:1.2|Fﬁ2‘2

¢12 = arg <Z F;]FaZ) ) (70)

a=12
¢ = arg(F3,F3)). (71)

The angles 6, p;, and y all lie in the first quadrant.
Analogously to the two-scalar case, @ parametrizes the
relative overall strength of the y; couplings compared to
those of y,. Each p; angle reflects the coupling strength of
y1 to the third-generation quark, relative to overall y;
coupling strength. The angle y parametrizes the degree
of alignment between the couplings of y; and y, within the
first two generations. Finally, ¢p;, and ¢5 are relative phases
between the couplings of y; and y, to the first two
generations and to the third generation, respectively.

Figure 7 is based on the Y expression of Eq. (65) and
the DM abundance of Eq. (A11), modified for the single-
scalar scenario as described above. For 6 <1 and
M, < M,, both p*** and Y are approximately propor-
tional to 6%. This differs from the two-scalar model, where
Yz ~ 0, for small ,. In Fig. 7(b), the viable (Mg, c7)
parameter space is consequently not enhanced much by
suppressing the y; couplings relative to those of y,, in
contrast with the two-scalar scenario.

B. Asymmetry with flavor-universal masses

We now turn to the scenario where the top quark has a
vanishing coupling to y;, F3; =0. In this case, the
asymmetry can arise only at O(F®), which is the same
order as ARS leptogenesis. There are crucial differences
between the model in Eq. (57) and the conventional ARS

model. In the absence of neutrino masses, B/3 — L, is
conserved for all three lepton flavors in the SM, while
different quark flavors come into chemical equilibrium at
temperatures 7 > T.,. The dominant source for the
asymmetry in ARS leptogenesis relies on the accumulation
of asymmetries in individual lepton flavors, even though
the total asymmetry sums to zero; these flavor asymmetries
are then converted to a total lepton asymmetry by washout
processes. For quarks, however, all flavors have equal
chemical potentials, and the flavor asymmetries are there-
fore driven to zero by SM scattering processes. The
standard ARS results therefore do not hold in the case
where the y fields couple predominantly to quarks.

As recently pointed out in Ref. [65], however, there
exists an additional source term for the baryon asymmetry
at O(F®), and it is nonzero even for vanishing initial quark
flavor chemical potentials. When SM-Yukawa effects in the
reaction densities are negligible, this is the dominant source
for the baryon asymmetry in the case of QCD-charged .
Here we perform a systematic study of its effects.

The source in question requires three or more y fields.
We find that the asymmetry it produces is sufficient to
account for the observed baryon asymmetry over a rela-
tively restricted part of parameter space. In particular, we
find that Mg < 2.5 TeV to obtain the observed baryon
asymmetry. The model therefore faces strong constraints
from collider probes of @, and the bulk of the parameter
space can be tested with current experiments.

To study the O(F®) asymmetry, we turn to Kinetic
equations that give the evolution of density matrices for
the various particle abundances; see Refs. [65,76] and
references therein. We continue to focus on rates for
processes that conserve U(1),_q, since violations of this
symmetry include Majorana mass insertions that are
subdominant at high temperature given the small masses
for y in our model [18]. We are thus led to the single-scalar
versions of Egs. (A42), (A43), and (A46), the kinetic
equations presented in Appendix A3 for the two-scalar
case. As we explain there, these are momentum-integrated
equations that assume a thermal ansatz for the y momentum
distribution. This treatment of the momentum dependence
simplifies the analytic calculation of the O(F®) asymmetry,
and the two-scalar results of Appendix A2 suggest it
should give correct Y values to within a factor of two. We
refer the reader to Appendix A 3 for notational background
and other details regarding the kinetic equations.

We assume there are no preexisting asymmetries and
solve the equations iteratively assuming small coupling F.
Given our assumption of flavor-universal quark chemical
potentials, there is no asymmetry at O(F*), and conse-
quently the asymmetry at O(F®) does not depend on
washout terms. Eq. (A42) then becomes

avys,
dlnz

1
= _E{y(% Yr — Y}éq}’ (72)
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where, as described in Appendix A3 and specifically
Eq. (A31), 7, is a dimensionless reaction-density matrix
for y production, defined in the interaction picture. Y%, is
proportional to the density matrix for y, containing infor-
mation on both the abundance and phases for the coherent y
states. It is convenient to define the dimensionless function
7(z), obtained from the 7, reaction density of Eq. (A31) by
stripping off the (F'F),, and oscillation factors:

[70(1)]11 = (F+F)1 IAM} 2 /3”““7( )s (73)
where
213, / T\-' 36£(3)T3,
/’t(z)sc = MO <E—> = 71-27]\;0 ~ (375 keV)z. (74)
X

The total y — 7 asymmetry, 6Y%, is found by taking the
trace of the difference in y and y density matrices:
8Y# = Tr[Y* — Y*]. The U(1), o symmetry guarantees
that 8Y7 is the same as 6Y® = Y® — Y®'. Following the
discussion for the two-scalar case leading to Egs. (25) and
(26), the final baryon asymmetry can therefore be calcu-
lated as

Yy =—26Y7(z =1). (75)

Starting with the initial condition ¥# = Y% =0, we can
obtain at O(F?) the y abundances

2dzy _ . ;
Y)](J(Z) = (FTF)”quA Tlly(zl)e’AM?ﬂ?/SﬂgSC. (76)

Because Y7 is obtained by switching F <> F*, it is clear
that no asymmetry arises at O(F?), and straightforward to
show that none arises at O(F*) either.

We determine the O(F®) contribution to the baryon
asymmetry by computing the y asymmetry iteratively using
Eq. (72) three times. In this way we calculate the asym-
metry to be

SYX(z eq/zdzz/“ de/ZZda
0

x Tr[{7(z3). {7(22). 7(z1) } } =

Because of the cyclic property of trace, the integrand is
fully symmetric under any permutation of the variables of
integration. We can thus use the following identity for
symmetric integrands, S:

Z 23 22
/dZ3/ dZQ/ dZ]S(Zl,Zz,Z3)
0 0 0
1 z [z [z
—/ / / dZ3dZ2dZ18(Zl,Z2,Z3), (78)
3o Jo Jo

(F— F*)]. (77)

which permits us to factorize our integral into a product of
three integrals. With appropriate use of the symmetry of the
integrand and relabelling of variables of integration, we get

zY}é tdzzdzodzy _, _, . _
Y7 (z q/ / / 2 5(2)7(20)7(23)
0 23 22 2

X E e AM”Z +AMJKZZ+AM%(, z)/3”%sc
1.J.K

X Im[(FTF);(FTF) ; (FTF) ). (79)

The summed quantity is nonzero for I # J # K; thus, we
need three y particles to get a nonzero asymmetry (in
agreement with the finding of Ref. [65]). We assume for
simplicity that there are precisely three y fields. We must
then sum separately over even and odd cyclic permutations
of {1,2,3}. The permutations within each equivalence
class are identical due to the symmetry of the integrand
under permutations of {zj,z,.z3}, while interchanging
even and odd permutations is equivalent to complex
conjugating both the oscillation factor and F. We thus
obtain our final expression for the y asymmetry:

oY% (z) = —2Yé§qu[(FTF)12(FTF)23(FTF)M]
X Im[le(Z)]F%(Z)JNcn (2)], (80)

where

~ ZdZI_ /3
Fu@ = [(Gr)esii (s

Because Mg, > T, in our QCD-triplet ® model, the
production of the baryon asymmetry is dominated by
interactions that occur when the ® mass is dominated
by its tree-level value, rather than by the thermal correc-
tions typical in the conventional ARS scenario. Thus, for
our subsequent numerical work we neglect all thermal
masses, which leads to the following expression for the
dimensionless reaction density 7(z):

7(z) = goMsTey z3/°o du
3213 YigSewHew  Jo €+ 1

o0 1 1
d . (82
X /A4(2DZZ/(4MT§W) w(ew + 1 + eu+vv _ 1) ( )

In our final expression for the baryon asymmetry, we
include the effects of @ decays prior to the electroweak
phase transition on the asymmetry through the inclusion of
a survival factor analogous to Eq. (28). Note that the
survival factor actually modifies the integrand so that it is
no longer symmetric with respect to interchange of z; with
Z; or z,. This makes the calculation considerably more
complicated. However, because the asymmetry is predomi-
nantly produced at 7 2 1 TeV and the greatest sensitivity

115023-19



BRIAN SHUVE and DAVID TUCKER-SMITH

PHYS. REV. D 101, 115023 (2020)

of the survival factor is to decays at 7,, < 1 TeV, we can
to a good approximation assume the asymmetry is pro-
duced very early on and take S4(0) as our survival factor,
calculated using Eq. (28). This reestablishes the symmetry
of the integrand, and the baryon asymmetry is consequently

2K 5
Ko
X Sd)(o)lm[}lz(z)fﬁ(z)}u (2)]-

Yp(z) Y)éqlm[(FTF)12(FTF)23(FTF)31]

(83)

Below, we compare this perturbative result to a fully
numerical solution to the kinetic equations and find good
agreement in the weak-washout regime; see Fig. (9).

1. Baryon asymmetry and dark matter

We now proceed to study the parameter space over which
the baryon asymmetry can be obtained. We also investigate
whether this parameter space is consistent with obtaining
the correct abundance of DM, finding that it is unlikely that
x can have the correct DM abundance if we impose the
observed baryon asymmetry.

As we will show in Sec. V, the most constraining aspects of
the model with a QCD-charged scalar are the direct limits
from colliders, Mgy = 1 TeV. As a result, the dominant
epoch of y production and inverse decay is T ~ 1 TeV, with
a corresponding optimal mass splitting of AM? ~ (10 keV)?
corresponding to oscillations at 7 ~ M. This leads to an
upper bound on the asymmetry for fixed F.

Since the baryon asymmetry arises at O(F®) in the case
of a single scalar, the baryon asymmetry is much smaller
than in Sec. IIB for the same Yukawa couplings.
Alternatively, the Yukawa couplings must be larger to
accommodate the observed baryon asymmetry, leading to
the overproduction of y in this scenario relative to the DM
abundance. This overproduction can satisfy cosmological
constraints on N if y decays to lighter species, but this is
incompatible with y being the DM.

To set up our numerical studies, we parametrize the
coupling factor of Eq. (83) in a manner analogous to what
we did for the two-scalar model in Eq. (33),

AIm[(F'F)y(F'F)y3(F'F)3,] = J[Te(FTF)P,  (84)
where J is a Jarlskog-like invariant. In Appendix C, we
show that 7 < 1/27. However, the optimal choice for the
baryon asymmetry may lead to an overproduction of DM.
To demonstrate this, we introduce the angle

(FTF)II
TrFF’

cos, = (85)
which is analogous to the 8; angles of the two-scalar model
and describes how strongly ® is coupled to y; relative to
the two heavier species. Similarly, a related quantity,

1 (F'F)y
TrFF’

cosf, = (86)

sin 01
specifies the coupling of ® to y, relative to its coupling to
x3- As shown in Appendix C,

J o cos? @, sin* 0, sin’(26,), (87)
which is maximized for cos@, = 1/v/3 and 6, = /4.
However, the DM abundance depends on

P o M| cos? 0, + M, sin” 0, cos? 6,

+ Mj sin? 6, sin’ 0,. (88)
If M, — 0, then it may be preferable to have 6, < 1, which
suppresses the baryon asymmetry but also prevents an
overabundance of DM. For our numerical studies, we fix
6, = z/4 but scan over all possible values of 8, to uncover
the largest possible parameter space consistent with both
the observed baryon asymmetry and DM abundance. For a
complete description of the other parameters in 7 and their
optimal values, see Appendix C.

Since Ty, = Tr(F'F)Mg/ 161, it is possible to express
the asymmetry in terms of Mg, ['q (or, equivalently, czg),
and the mass splittings AM?2,. To simplify the numerical
study, we parametrize the y masses and splittings through a
single parameter, M,: M|, = 0, M, = M,,, and M5 = 2M,.
This minimizes the DM abundance while keeping an equal
mass splitting between states.

We now investigate the possibility that the y fields con-
stitute the DM. In this case, we fix the values of Mg, M,
and J as described above; requiring the y abundances as
calculated in Eq. (76) to match the observed DM abun-
dance dictates the value of Tr(F'F), which in turn can be
used to calculate the baryon asymmetry. This is the
maximum baryon asymmetry subject to the requirement
of obtaining the DM abundance, since the baryon asym-
metry can always be made smaller with smaller values of
the CP-violating phases in 7.

We show in Fig. 8 our results for a scalar mass of
Mg = 1 TeV. We see that, even for the favorable parameters
we have chosen, the maximum possible baryon asymmetry is
Yz~ 6x 107!, below the observed value. Since Mg >
1 TeV from current collider constraints (see Sec. V), we
conclude that simultaneously accounting for DM and the
baryon asymmetry is impossible, or at least very difficult, in
this particular scenario. The lack of viable parameter space is
directly linked to the fact that the asymmetry arises at O(F®)
with a single scalar while the DM abundance is still
established at O(F?), a serious obstacle to simultaneously
satisfying both observed abundances.

In examining our results, we have found that the largest
baryon asymmetry consistent with the DM abundance is
associated with large mixing angles 6, ~ 1. This is in
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FIG. 8. For 6, =n/4, Mg =1 TeV, and equally-spaced y

masses M, =0, M, =M,, and M;=2M,, the maximum
baryon asymmetry that can be obtained in the single-scalar
scenario of Sec. IVB when we impose the requirement that
the total y abundance match the observed DM abundance. The

observed baryon asymmetry is indicated with a dashed red line.

contrast with our findings in the two-scalar model, where
there was a larger parameter space associated with small
mixings. Since we now have two massive y states, and @
must couple to all three of them to generate a baryon
asymmetry, it is difficult to get an appreciable asymmetry
without significantly populating the heavier states.
Additionally, according to Eq. (87) the baryon asymmetry
for small mixing angles is proportional to @7, which is a
significant suppression. Indeed, as we show in the next
section, it is difficult to obtain the observed baryon
asymmetry even for maximal mixing and removing all
constraints from DM.

2. Baryon asymmetry without dark matter

Above, we found that imposing the requirement that y
constitute the DM yields a baryon asymmetry that is too
small. Alternatively, obtaining the correct baryon asym-
metry leads to an overabundance of y. This is not
necessarily a problem: since the y hidden sector is relatively
poorly constrained, it is possible that there exist additional
states to which the heavier y fields could decay. For
example, we could imagine a model with a new massless
singlet scalar ¢ such that y, 3 — y;,¢ prior to recombina-
tion. Because all of the y fields have subthermal number
densities and they are produced at 7 ~ TeV, such a scenario
is safely within cosmological limits from the effective
number of neutrinos (N) provided y; is sufficiently light.

While it may be possible for y or some other hidden
sectors fields to be DM in this scenario, the details depend
sensitively on the content and structure of the hidden
sectors. Because of the loss of predictive power with
respect to the DM abundance in this scenario, we instead
take a different approach: we simply assume that the y
fields decay to (nearly) massless particles that are safe from
cosmological limits, and abandon the requirement of

obtaining the DM density. We then explore which param-
eters can still give rise to the baryon asymmetry based on
the production and oscillations of y.

As in Sec. II B, the baryon asymmetry depends on
several physical parameters: the mass of the scalar, Mg;
the Yukawa couplings, or alternatively the @ lifetime
¢ty = 1/Ty; the mass splittings, AM?,, and the CP phases
as encoded in J. Because we wish to explore the most
expansive parameter space that gives rise to the observed
baryon asymmetry, we set 7 to its maximal single-scalar
value of 1/27 (see Appendix C). Once again, we para-
metrize the y masses and splittings through a single
parameter, MX: M, =0, M, = Ml, and M; = 2M;{-

Up until now, we have employed a perturbative analysis
as outlined in Sec. II, which is valid in the out-of-
equilibrium, weak-washout regime. The requirement that
y constitute the DM situates us safely within the perturba-
tive regime. Once we relax this assumption, however, it is
possible that y attains a near-equilibrium abundance and
baryogenesis can still occur. For example, if y decouples at
T Z 100 GeV, then each Weyl fermion only contributes
0.05 to Ng; [77]. As a result, we must consider the
possibility that the y particles come close to equilibrium.

It is perhaps surprising that the strong-washout regime
would be relevant at all for baryogenesis, since the asym-
metry appears to be exponentially damped. However, if the
CP-violating source and washout terms are both large, then
the asymmetry can reach a quasi-steady-state solution where
dYg/dz =0 due to a cancellation between source and
washout terms: if the kinetic equations have the form
dYg/dz = S(z) — W(z)Yp, we see that a quasi-steady-state
solution is obtained with Y = S(z)/W(z). In this case, the
asymmetry is not exponentially suppressed.

To generate a sizable asymmetry in the strong washout
regime, we need a large source of CP-violation down to
T ~ T, since the production rate of @ is suppressed by
e Mo/Tew this suggests that Mg, cannot be too much larger
than the electroweak scale for the strong washout regime to
be relevant. Furthermore, we must have Y, # Y. For the
optimal benchmark outlined in Appendix C with J =
1/27, F'F has a zero eigenvalue, meaning that there is a
linear combination of y states that does not interact with ®.
This is valid until oscillations become important, in which
case the final y state is brought into equilibrium. For
sufficiently small M, this can lead to an appreciable CP-
violating rate even at T ~ T,.

There is one final effect we must consider: sphaleron
decoupling. In the strong-washout regime, the baryon
asymmetry is being continually generated and destroyed
at T~ T, and so the final baryon asymmetry depends
sensitively on the effects of sphaleron decoupling. In other
words, it is perhaps too simplistic to assume that sphaleron
decoupling is instantaneous at T, =~ 130 GeV. To go
beyond this instantaneous approximation, we follow
Ref. [43]; since there are no new chiral states that couple

115023-21



BRIAN SHUVE and DAVID TUCKER-SMITH

PHYS. REV. D 101, 115023 (2020)

0.100}

0.010¢

ct (cm)

0.001¢

1074,

1075¢

1076,‘ ) ) ) 4
1.0 1.5 20 2.5 30

Mgy (TeV)

0.100}

0.010¢

ct (cm)

0.001¢

10744

1075¢

1076,‘ ) ) ) 4
1.0 1.5 20 2.5 30

Mgy (TeV)

FIG. 9. For the single-scalar model with no DM constraint, comparison of parameters giving rise to the observed baryon asymmetry
based on (blue, dashed) perturbative analysis, and (purple, solid) solution of kinetic equations. The y masses are M; = 0, M, = 5 keV,
M; = 10 keV. (Left) Couplings correspond to optimal CP-violating parameters from Appendix C. (Right) Couplings correspond to the

modified benchmark from Appendix C.

to sphalerons in our model, the rates relating baryon and
lepton number are the same as in the SM. The effect is a
gradual decoupling of sphalerons as we approach T.,,.
Putting all of these effects together, we solve the kinetic
equations with a thermal ansatz for the y energies to
compute the baryon asymmetry, including washout and
back-reaction terms. To illustrate the parameter space for
which strong washout is relevant, we compare the full
solution of the kinetic equations with that of our perturba-
tive analysis in Fig. 9. We show results for both the optimal
benchmark couplings from Appendix C, as well as for a
modified benchmark (also outlined in Appendix C) which
leads to an earlier equilibration time of all y interaction
eigenstates. Any area to the left of the indicated contours
can give rise to the observed baryon asymmetry. The
asymmetry in the strong-washout limit is still relevant,
but is much reduced relative to the optimal benchmark.
We show in Fig. 10 the contours giving rise to the
observed baryon asymmetry for different y masses using
the solution to the full kinetic equations. We show results
for both the optimal CP-violating parameters and the
modified benchmark (see Appendix C). We see that it is
possible to obtain the observed baryon asymmetry for
My < 2.5 TeV depending on the @ lifetime. It is evident
that the strong-washout limit is relevant for a wide range of
y masses. We also observe interesting features in the shapes
of the contours, which are due to the presence of a
multitude of important time scales in the asymmetry
generation process, including three oscillation times cor-
responding to the AM3,, as well as the time scale of the
decays and inverse decays of ®. While we have attempted
to characterize the precise shapes of the oscillations in the

contours in Fig. 10, we have been unable to find a simple
explanation due to the irreducible complexity of the four
different time scales. However, we have checked that our
solutions are robust against variations of the methods of
performing the numerical integration, as well as under
small variations of the initial conditions and parameters,
suggesting that our solutions are physically correct.

For czg < 0.01 cm, the only phenomenologically dis-
tinguishable feature of the model is the value of Mg: the
@ — y — Q couplings are sufficiently small as to be difficult
to probe directly, and @ now decays promptly in a collider
experiment, which removes the main experimental conse-
quence of the nonzero lifetime. Therefore, we truncate
Fig. 10 at c7q, = 0.01 cm, and for shorter lifetimes present
instead the maximum value of M that can give rise to the
baryon asymmetry with c7q < 0.01 cm. The maximum
Mg values are found via a scan over the crgp — Mg
parameter space, and to remove jaggedness associated with
the granularity of the scan we perform a running average.
We show the maximum value of Mg consistent with the
baryon asymmetry for different values of M, in Fig. 11. We
see that the maximum value of Mg is obtained for
M, ~10-20 keV, such that oscillations regularly occur
at the sphaleron decoupling temperature but are not too fast.
We also see that the modified benchmark permits a smaller
range for Mg, at ¢z < 0.01 cm, which is consistent with
Fig. 9.

To summarize the results of the analysis with a single
QCD-triplet scalar, neglecting flavor-dependence in the
quark thermal masses, we find that obtaining the observed
baryon asymmetry is possible but is apparently incompat-
ible with y being DM candidates. The parameter space for a

115023-22



BARYOGENESIS AND DARK MATTER FROM FREEZE-IN

PHYS. REV. D 101, 115023 (2020)

0.50¢

ct (cm)

0.10¢

0.05¢ -

001k s ‘ ‘ _
10 1.5 20 25 30

M]) (TCV )

0.50¢

cT (cm)

0.10¢

0.05¢

0.01L : ‘ ‘ e
10 1.5 20 25 3.0

My (TeV)

FIG. 10. Comparison of parameters giving rise to the observed
baryon asymmetry for ¢z > 0.01 cm, based on a full solution of
kinetic equations for (top) the optimal CP-violating parameters;
(bottom) the modified benchmark, both from Appendix C. The y
masses are M| = 0, M, = M,,, M3 = 2M,, with: (purple) 5 keV,
(black) 30 keV, (red) 50 keV, (blue) 80 keV.

baryon asymmetry is quite limited, with the scalar having a
mass Mg < 2.5 TeV, with lifetimes ranging from prompt
to the centimeter scale. This gives the model excellent
prospects for discovery or exclusion in the high-luminosity
phase of the LHC.

3. Comparison of asymmetry with ARS leptogenesis

We conclude this section by comparing two potential
O(F®) contributions to the baryon asymmetry: (1) the
standard ARS contribution involving flavor-dependent

>
(0]
e
s
3
g
1.4¢
5 10 20 50
M, (keV)
FIG. 11. Maximum value of Mg that allows successful gen-

eration of the baryon asymmetry in the strong washout limit
(ctep < 0.01 cm) as a function of M. The y masses are M| = 0,
M, = M,, M3 = 2M,,. The CP-violating parameters are (red) the
optimal benchmark, and (blue) the modified benchmark de-
scribed in Appendix C. It is evident that @ must be lighter than
approximately 2.5 TeV.

washout, and (2) the contribution studied above and
identified in Ref. [65], which survives when the active
fermions have flavor-universal chemical potentials, i.e., the
relevant one in the QCD-triplet scalar case.

To make this comparison we need to go beyond the
kinetic equations developed in Appendix A3, which
assume flavor-universal chemical potentials for the active
fermions. We instead consider

dy* 1 (.
D) Sl N )
asy” Y%

— Tr[p¥7 - 7¥7)  s¥ (Y—) Ty, (90)

dll’lZ eq

where 6Y“ is the asymmetry in the SM fermion flavor a;
because of rapid scattering, we do not have to keep track of
oscillations or preserve off-diagonal components of the 6Y*
density matrix. Note that we now include a flavor-specific
washout reaction density 7%V along with #), the flavor-
specific version of the reaction density considered earlier.
In place of Eq. (73), we can write these y-space matrices as

76" (D)1 = FogFae® e sy (2), - (01)

where 7°(z) and 7%(z) are dimensionless and flavor-
universal functions of temperature.

The standard analytic results for ARS assume that the
scattering processes for y production are dominated by
2 <> 2 processes and decays of the SM Higgs where the
dominant contribution to the Higgs mass comes from
thermal processes. In this case, all reaction densities are
by dimensional analysis proportional to 7%, and because the
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barred reaction densities are obtained from these by
stripping off the coupling factors and dividing by
Yi4s(z)H(z), we have

0,w 4
a){ Tew

=0,w _
") = o (92)
Y)e(qsewHew

where a)? and a; are dimensionless constants. To make a
meaningful comparison we use this form for the reaction
densities to calculate both O(F®) contributions.

Conventional ARS contribution.—At O(F*), the y abun-
dance leads to an asymmetry in SM fermions due to a
difference in y and j rates for flavor a:

zdz 5 5 _
r°(e) = [ ") V1 (22) ~ R ()
d d
:4ZIm[F(1JF F FJI /Z = /Zz 2
I<J 0
AM3, (23 -

w%wmm{ Zﬂw (93)

s

However, as argued in Sec. I A, the total asymmetry is zero
because

8Y! ==Y 8Y < Y [FoFiy(F'F);;] = 0. (94)
A total asymmetry arises at O(F®) because
d > oy = Yy > sYeTryy (95)
dinz 20~ T\ye ) £ Va:

Integrating to z.,, = 1, we obtain

=3 ['(5) Soramae o9

- Y (52) [ Forere. o)

Thanks to Eq. (92), the analytic results simplify signifi-
cantly because the factors of z cancel in the integrals and we
have, restricting ourselves to only two y particles,

AM2 2 \2/3
/dzz/ dz sin 21(22 Zl)}Nl.4<&> (98)

ﬂosc AM%]
for AM3, /332> > 1 (i.e., many oscillations prior to time
z) [76]. We then have

e SSEITE (1 )y
(quseWHeW)2 AM3,

xZﬁwwmmamﬁvm,<%

a €q

which agrees with Eq. (A8) of Ref. [76] for the case where
y is coupled to SM leptons.

Contribution without flavor-dependent washout.—We now
compare the ARS result with what we get when we evaluate
Egs. (80) and (81), plugging in Eq. (92) as the barred
reaction density. Defining ;; = AM?,/3u2, and taking
the limit of many oscillations (z>3;; > 1), we find

eiir/6 F(4/3>
/3 °
1J

aTew

fu(z) -
”( qusewHew

(100)
where we have selected mass orderings such that #;; > 0 to
simplify the phases. This gives us

( )3Tégvyeq/"osclm[(F-}-F)12(FTF)23(FTF)31]
(qusewHew) (AM%IAM§2AM§I)1/3

oY = 2.1

Beyond O(1) factors, the relative factor of al/ay, and the
fact that this contribution relies on a distinct combination of
Yukawa couplings from the ARS asymmetry in Eq. (99), we
find that the new contribution suffers from a (u2,./AM?)!/3
suppressionlo relative to the ARS contribution; otherwise,
the asymmetries from the two terms are comparable.

V. SIGNALS OF FREEZE-IN BARYOGENESIS

A. Collider signatures

The models proposed in this paper have very specific
phenomenological signatures that follow naturally from the
observed baryon asymmetry. They arise from the existence
of one or more QCD-triplet scalars, ®@, with lifetimes often
governed by

Iy < Hgy ~cm™!, (101)
Connections between the baryon asymmetry, particle life-
time and the Hubble expansion rate at the electroweak scale
arise in other models as well [78-81], but in our case the
connection between the decay rate of the scalar and H.,, is
particularly direct.

Particles which travel macroscopic distances before
decaying give rise to spectacular signatures at colliders.
Because the only truly long-lived particles (LLPs) in the
SM have masses <5 GeV, the decay of a TeV-scale LLP
has no irreducible backgrounds. However, such decays may

This is a suppression because u2,. < AM?; otherwise, the
assumption of many oscillations prior to the electroweak phase
transition is not satisfied and these results do not hold.
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not be reconstructed using standard algorithms, and the
backgrounds are challenging to characterize. Searching for
LLPs has therefore been identified as a primary opportunity
for the discovery of new particles, and a large community
of theorists and LHC experimentalists are working on new
ways of looking for LLPs (82)."

Several earlier studies have noted that freeze-in DM
models can give rise to LLP signatures [60,85-95]. In
particular, Ref. [90] has done a careful study of models that
are accessible at the LHC. However, general freeze-in DM
models do not necessarily predict states that are accessible
at colliders: the BSM particles may be very heavy while
still giving rise to the observed DM abundance. By
contrast, when we require both DM and baryogenesis in
a freeze-in model, the parameter space shrinks considerably
in both mass and lifetime: very long lifetimes yield an
insufficient abundance of baryons, while very short life-
times lead to excessive washout and overproduction of DM.
Furthermore, ® masses well above the TeV scale suppress
the baryon asymmetry, and so our model largely predicts
new scalars that are accessible at current or future colliders
and with lifetimes in the 1-100 cm range.

The primary prediction of our model is the existence of
one or more scalars ®, which carry QCD charge and have
proper lifetimes ranging from promptly decaying to
10 meters. These particles subsequently decay to a SM
quark and an invisible y state. This leads to several distinct
signatures depending on the decay location, including:

(1) One or more heavy quasistable charged particles

resulting from @ being bound inside a hadronic final
state prior to its decay. These states leave tracks with
unusual ionization or timing properties that can be
distinguished from SM particle tracks;

(2) One or two displaced hadronic vertices or jets,

accompanied by missing transverse momentum;

(3) A pair of prompt jets plus missing transverse

momentum, in the case where the ® decay occurs

sufficiently rapidly that its decay point cannot be

reliably distinguished from the interaction point.
Top quarks may be produced in @ decays, in which case the
signatures only become more striking, with a sizable
fraction of events having final-state leptons. In the sin-
gle-scalar scenario of Sec. IVA, for example, ® decays
would yield a mixture of light quarks and tops. Below we
focus on light-quark signatures, under the assumption that
top couplings lead to even stronger constraints.

1. Heavy stable charged particles
The most relevant search for heavy stable charged
particles (HSCPs) is from ATLAS [96]. This search uses

36 fb~! of data at 13 TeV. The analysis makes use of
the distinctive ionization signature in the inner tracker of

"Eor other reviews of theoretical motivations for LLPs and
existing experimental searches, see Refs. [83,84].

slow-moving, massive LLPs; as a result, this search is
sensitive to shorter-lifetime LLPs than other HSCP
searches. The analysis also provides limits on the scalar
mass as a function of c¢z. In the case of a scalar with the
same charges as ug, the search excludes LLPs with
ct 2 10 cm, with the most stringent constraint of
1375 GeV for @ that traverses the entire detector.

2. Displaced and delayed jets

There are many different searches for high-mass particles
decaying to displaced and delayed jets targeting decays in
different parts of the detector and in different kinematic
regimes [97-101]. Most relevant for us are searches most
sensitive to LLP lifetimes ¢z <1 m, since these are the
parameters that are largely uncovered by the HSCP
searches.

There are two powerful searches that are readily reinter-
preted for our model. The first is a search by CMS for delayed
jets [101] with 137 fb~! of data at 13 TeV. This search is most
sensitive to heavy LLPs with ¢z ~0.1-1 m m, since the
propagation of the slow LLP over an appreciable time leads
to a significant delay for the resulting jets [102]. The CMS
search includes limits on a benchmark model with LLPs that
decay to a gluon plus an invisible particle; this is very similar
to our model where the LLLP decays to a quark plus an
invisible particle. We assume there is no appreciable change
in the signal efficiency for the quark scenario, and interpret
their cross-section limits as a function of LLP mass and
lifetime in terms of our signal. The best constraints are for
Mg < 1.6 TeV for lifetimes of 20 cm, and we truncate the
sensitivity at Mg = 1 TeV since that is as low as Ref. [101]
goes in their search.

The second search is a CMS search for displaced jets
[98] based on 35.9 fb~! of data at 13 TeV. This search relies
on a trigger requiring at least two displaced jets, meaning
jets that contain less than three prompt tracks and at least
one displaced track. Displaced tracks associated with each
jet pair in the event are used to construct secondary vertices,
which must have a track mass larger than 4 GeV. While the
parton produced in @ decays is massless, QCD gives a
mass associated with the resulting jets, allowing for this
selection to be passed. Importantly, the vertex recon-
struction does not require tracks from both jets in a pair
to be assigned to the vertex; as a result, displaced jets
arising from separate decays (in our case, from the two
® — jy decays) can still pass the selections, which gives
sensitivity to our model. Ref. [98] gives cross-section limits
for a model where the LLP decays to a gluon and a
massless, invisible particle. This is not exactly the same as
our model, which gives a quark in the LLP decay, and so we
suspect there may be a slightly lower sensitivity to the
quark model because the jet mass is smaller. Nevertheless,
we expect comparable limits for the two cases, and in the
absence of more information for reinterpretation we assume
the limits are the same for gluon and quark decays for the
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purpose of our analysis. CMS presents limits on two LLP
masses: 950 GeV and 2400 GeV. The 950 GeV is most
appropriate for our model, and so we reinterpret the cross
section limits in terms of limits on Mg as a function of cz.
The strongest limit is for ¢z ~2 cm, with constraints on
Mg Z 1.6 TeV, although there exist constraints on Mg 2
0.8 TeV for lifetimes ranging from 0.1-1000 cm.

Other searches, including an ATLAS displaced vertex
search [97], are expected to yield comparable results.
ATLAS does not provide an interpretation in terms of a
jet plus missing momentum LLP decay, and so it is more
involved to reinterpret that search; furthermore, given that
the cross section limits in Ref. [97] are comparable to those
from the searches we have used, we expect the results to be
qualitatively similar.

3. Prompt jets and Ey

Finally, in the short lifetime limit there exist stringent
constraints on ® — jy from searches for jets and missing
transverse momentum. The most stringent constraint comes
from searches for squarks: if @ decays predominantly to
light-flavor quarks, then Mg = 1.13 TeV, while the con-
straints are slightly stronger if it decays to tops
(Mg zZ 1.175 TeV) or bottoms (Mg = 1.25 TeV) [103].
Strictly speaking, these limits only apply in the limit of
prompt decays (c¢z < 10 um). If @ has a longer lifetime, the
sensitivity is expected to degrade, but provided it decays well
before the calorimeter the jets should still be reconstructed.

Recently, there have been more efforts to reinterpret
prompt searches in terms of LLP models in order to
determine precisely at what lifetimes prompt searches fail,
and to identify any possible gaps between prompt and long-
lived searches [82,104—108]. None of these studies are
directly applicable to the ® — j+ Ey signature in our
model; however, several reinterpret prompt searches for
gluinos decaying to 2j + Er. Since we expect the lifetime
dependence of the jet reconstruction efficiency to be
roughly independent of the number of jets in the final
state, we use the results of Ref. [107] to derive a ratio
between the excluded prompt cross section and the
excluded cross section at a finite lifetime cz. We then
assume this ratio is the same for our signature, and use this
to reinterpret the prompt squark limits of Ref. [103] for
finite lifetimes. While this is only an approximate pro-
cedure, we expect that it gives the correct qualitative
behavior of the limits for ® — gy decays.

4. Summary of collider constraints and prospects

We summarize the existing collider constraints in
Fig. 12. It is evident that nearly all the parameter space
with Mg, <1 TeV is ruled out, with the possible exception
of a small sliver around ¢z = 10 cm. However, it is likely
that the delayed jet search has some sensitivity below
1 TeV, which would close most of the sliver. It is evident

HSCP

1000 -

Delayed Jets

Displaced Jets

0.100

Prompt

0.001 L : : :
0.8 1.0 1.2 1.4

Mg (TeV)

FIG. 12. Summary of existing collider constraints from (purple)
heavy stable charged particle searches; (blue) delayed jet
searches; (red) displaced jet searches; (brown) searches for
prompt decays to jets and K. Details are provided in the text.

that a combination of prompt and long-lived searches
currently gives excellent sensitivity to the freeze-in baryo-
genesis model with anew QCD-charged scalar. The search of
Ref. [103] is new and, as understanding of the detectors
improves, we expect sensitivity could get even better,
allowing excellent prospects for discovery. At /s =
14 TeV, the high-luminosity phase of the LHC should have
more than 10 signal events for Mg, < 2.5 TeV, and this is the
upper mass limit of possible sensitivity at the LHC for high-
efficiency, low-background searches.

While our reinterpretations of existing searches show
good sensitivity to ® — gy, most of the existing searches
do not directly give results in terms of our simplified model.
It may be true, for example, that the smaller mass of the
quark-initiated jet could reduce sensitivity relative to a
model with gluons. We therefore suggest that the exper-
imental collaborations explicitly include a quark +Z
model in their LLP studies, since it is theoretically well
motivated and it may be that variants of the existing search
strategies could be used to improve signal efficiency for the
quark model. It would also facilitate reinterpretation and
give a more accurate understanding of how much of the
model space is covered by current and planned collider
searches.

B. Z,-violating signals

So far, we have assumed that the only coupling of ® to
the SM is via the operator(s) in Eq. (2). This is true if there
exists a Z, symmetry under which @ and y are charged and
the SM fields are uncharged. However, one can also
imagine a scenario without such a symmetry: in this case,
baryon-number-violating terms such as

A;j®@*did; +H.c. (102)
are allowed, depending on the ® quantum numbers (here
we have switched to Weyl-spinor notation). Unless the 4;;
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couplings are tiny (that is, not much larger than the Fy,
couplings responsible for the baryon asymmetry and DM
production), this term would lead to rapid ® — jj decay,
leaving prompt signatures in colliders. Because the term
violates baryon number, it would also potentially lead to a
larger asymmetry that does not depend on spectator effects
in the manner of the Z,-symmetric models.

However, such operators lead to proton decay via off-
shell ®-mediated processes, such as p — z*y. This leads
to extremely strong constraints on A: indeed, we have
checked that even if ® couples exclusively to heavy-flavor
quarks at tree-level, there are couplings to light-flavor
quarks induced at loop level that violate proton decay
constraints unless || < |F|. Therefore, our preliminary
investigation finds that Z,-violating couplings of @ to
quarks are constrained to be so small that, if present, they
are unlikely to dramatically alter the phenomenology.

Another potentially important Z,-violating term is the
neutrino-portal coupling

L > yLHy+H.c. (103)
This coupling leads to decays y — 3v and, more impor-
tantly, y — yv, giving rise to X-ray line signatures with
E, = M, /2if y is the DM. This could, for example, explain
a possible feature in X-ray data at £, ~ 3.5 keV (first noted
in Refs. [109,110]), although there is conflicting evidence
(or lack thereof) for the existence of this line in different
galaxies and clusters. The coupling y could easily be large
enough to account for any X-ray lines that are observed,
while being small enough to not otherwise disrupt how our
mechanism works. In particular, since y is produced at
temperatures well above the electroweak scale, it is
produced colder than conventional sterile neutrinos via
the Dodelson-Widrow mechanism, although a 3.5 keV X-
ray line would still be in tension with structure formation
constraints that require M, 2 10 keV [71].

VI. CONCLUSIONS

Early-Universe oscillations of DM particles, y, may have
played a central role in generating the baryon asymmetry.
In this paper we studied models in which these oscillations
lead to asymmetric rates for yq - ® and yg — ®*, where
@ is a a QCD-triplet scalar. Exploration of the phenom-
enology for different BSM-particle spins and SM charges is
a work in progress. Together, these various scenarios
constitute a rich array of testable low-scale baryogenesis
models, which simultaneously explain the DM and baryon
abundances and generically predict new long-lived states at
colliders.

We considered separately the minimal case, with a single
y interaction term, and scenarios in which there are
multiple, distinct ways of producing and annihilating y
particles. The presence of multiple channels tends to greatly

enhance the baryon asymmetry. For concreteness, we
demonstrated this enhancement in a model with two
QCD-charged scalars, both with couplings to y. Alter-
natively, a primordial out-of-equilibrium abundance of y
from inflation or dynamics in the very early Universe is
sufficient to realize the enhancement.

Along with sub-MeV y masses, viable parameter points
for DM and baryogenesis typically have Mg ~ 1-few TeV,
and ¢z 2 1 cm, leading to striking signatures at colliders.
The DM constraint pushes us into the weak-washout
regime, where the asymmetry calculation is analytically
tractable and physically transparent. Independent of DM
considerations, the baryon asymmetry in the weak-washout
regime is strongly suppressed for @ lifetimes much less
than the Hubble time at sphaleron decoupling, because it
depends on the ®/®* asymmetry at that time. This
provides a concrete link between cosmological time scales
and long-lived particle searches at colliders.
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APPENDIX A: COMPARISON OF
CALCULATIONAL SCHEMES FOR
THE TWO-SCALAR MODEL

In this appendix we compare various methods of
calculating Y and p*™# with the simplified perturbative
calculation from Sec. II B. We first consider two modified
perturbative calculations, one that includes thermal masses
(Sec. A 1), and a second that adopts a thermal ansatz for the
y momentum distribution (Sec. A2). We then use that
thermal ansatz to go beyond the perturbative framework
(Sec. A3). We write down and numerically solve an
appropriate system of kinetic equations that incorporates
back-reaction and washout effects, thermal masses, and
quantum statistics. We find that the discrepancies when
compared with the “minimal” Y and p**7 calculations of
Sec. II B are typically smaller than ~50%, corresponding to
modest differences in the viable parameter regions for
baryogenesis and DM.
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1. Thermal mass effects

We approximate quark thermal mass contributions based
on the finite-temperature quark dispersion relation in the
high-momentum regime. Using bars where thermal effects
are included, we therefore take

Méi - Méi + (Ag +Aielf)T2’ (Al)

iy = AT, (A2)

where the gauge contributions, identical for ®; and Q, are
given by [75]

1 3 1
= A =@+ —F+—¢, A3
Q=01 A, 3g3+1692+144g1 (A3)
. L, 1,
Q= ug: Ay:§93 "‘591’ (A4)
. 1 2 1 2
Q:dR'Ag:§g3+%gl‘ (AS)

In our analysis of two-scalar models, we neglect contri-
butions to M, from SM Yukawa couplings, leaving a more
careful treatment of the top quark for future work. The
coefficient A’ allows us to consider the effects of extra
contributions to M@i coming from scalar self-interactions.

We incorporate thermal mass effects in our Yz and p*™*
calculations with the help of the dimensionless functions

() =12, (40
and
112
) =125 (A7)

Neglecting thermal masses amounts to taking 7; — 1 and,
given that we neglect Yukawa contributions to O masses,
p; — 1. For the ®; decay widths, these definitions imply

Lo, (z) = 7:(2)p}(2) o, (A8)

Using these functions, the final baryon asymmetry can still
be represented by Eq. (31), except with a modified
expression for /;;:

1-pi(z)

o e 1 _
L = A dy? 0 dzSe,(2)2°7; (2)pi(z)e 71"

1-p;()

—a»ir?(Z)P‘(Z) IR Ne 7@
X e Yyt ! dZZ TJ(Z )p](z )e i
0

x e~5 T @) gin [ﬁosc <Z3 ;ZB)] . (A9)
and with the survival function now given as
S (2) = exp{ -2 [ a1 )
ew Jz
X W} (A10)
’Cz(fd:fi(zl)zl)

We choose to preserve the definition a; = (Mg, /2Tey)?,
which involves the zero-temperature scalar masses. The
summed abundance of y and y particles from CIDI(-*) decays,
given by Eq. (14) in the absence of thermal masses,

becomes

N 4590 (To,\ (Mo, \?
' 27[4g* HCW TeW
) M
x/ dzz%73 (2)p? (2)K, <T®l r,(z)z).
0 ew

For a particular choice of inputs, Fig. 13(a) shows that
including thermal masses slightly shifts the parameter
space allowed by the baryon asymmetry and DM con-
straints. The p*™# and Y contours move together some-
what, and in fact the range of viable ®; masses is not
significantly affected when we include thermal masses.

To make the plots of Fig. 14, we decouple @, and choose
a value for the y abundance left behind from ®, decays.
Using (Yg)j—y to denote the asymmetry neglecting
thermal masses and taking Sq (z) = So,(0), and using
(Yp)jy to denote the asymmetry with thermal masses and
the full z-dependence in S¢ (z), the blue contours of
Fig. 14(a) show the fractional difference

(Al1)

AT
(YB)M—>M + (YB)M .

gl

(A12)

For the inputs chosen in Fig. 14, neglecting thermal masses
overestimates Yp by roughly 25%. For smaller @, life-
times, 'y, /Hey 2 1, the S, (2) = S¢, (0) approximation
significantly overestimates washout of the asymmetry by ®
decays, partially compensating for the effect of neglecting
thermal masses. Figure 14(b) shows that the fractional
difference is somewhat smaller for the ratio Yz/p*** than
for Yp alone. In general, we find that the minimal
perturbative calculation of Sec. II B typically agrees with
a perturbative calculation incorporating thermal masses at
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FIG. 13. Variations on our perturbative calculations of ¥z and p*™. In both plots, we adopt Maxwell-Boltzmann statistics and replace

the survival function by its z = 0 value: Sg (z) = Sg,(0). The solid contours reproduce our earlier results, see Fig. 2(a). In (a), The
dashed contours show the effect of including thermal mass contributions, with A = 0. (Turning on a moderate scalar self-coupling of
Agr = 1/3 barely changes the plot.) In (b) we adopt a thermal ansatz for the y momentum distribution, leading to Egs. (A17) and (A19).
We use the Maxwell-Boltzmann expressions for (T//E,) and n, in Eqs. (A16) and (A18); switching to the Fermi-Dirac ones again

produces an almost unnoticeable shift.

the 50% level or better, for those parameter regions that are
viable for baryogenesis and DM.

2. A thermal ansatz for the y momentum distribution

In Appendix A3, we will compare our perturbative
calculations of Y and p*** to numerical solutions of
quantum kinetic equations derived using a thermal ansatz
for the y and y momentum distributions. Here we imple-
ment the thermal ansatz in the perturbative context to
isolate its impact. We start with Eq. (13) from our
perturbative calculation, where we found the energy spec-
trum of y particles produced by ®; decays at 7' to be
proportional to

M2 S 2
e—ye Md>jz/(4Tewy), (A13)

where y =E,/T. We replace this spectrum with a
Maxwellian one,

/ /
Ly M3 24y MoeZ Mg,z
e Ve j - 1

2 ,—y
ye™, (Al4)
2TCW TCW )
where the y-independent factors are determined by the
requirement that the integrals over y be the same. We also
replace the y energy dependence in the oscillation factor
with a thermal average,

w5 -,

with

(FD),

(MB). (A16)

2
<T> _ {W_O.456
E, 1/2

After making the replacements in Eqs. (A14)-(A15), we
carry out the y integration in Eq. (30) to obtain

459% }CB l’l%c{q(T) -1 Mq;] 2 M‘Dz 2
Yp=crs 1 J 3
8 [’A IC(D T Tew TeW
r r
(o) G o0,

where the equilibrium y abundance factor is for a single
mass eigenstate and helicity,

(A17)

(né‘q(T)>“_{(4ﬂ2)/(3é(3))=10-9 (FD) (AI8)
T3 a2 (MB),

and where in this version of /;;, only the integrations over ®
production and decay times remain:
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FIG. 14. Comparison of the “minimal” perturbative calculation of Sec. Il B with more refined estimates of Y and p**#. Here we
decouple @, and set the combined y + 7 abundance left behind from @, decays to be Y)zm? =3 x 1072, and we take 7 = 1. The blue
contours show the effect of modifying the perturbative calculation to incorporate thermal masses and the full 7 dependence in the
survival function Sg, (z). The red contours compare the minimal calculation with numerical solution of the kinetic equations presented in
Appendix A 3; in the numerical calculation we use quantum statistics, include thermal masses, and adopt a thermal ansatz for the y
momentum distribution. We show the fractional difference in Y in (a) and the fractional difference in Yz /p*** in (b). For the parameters

chosen, p*™* = p 4 is realized for ¢z~ 6 cm and (Yg). > (Yo 18 realized for cr < 130 cm.

1 Mg
Iij:/ dZS¢i<Z)Z3IC1 <T—1Z>
0 ew
z Mg T
d7 /3K il : = 3_.03 ,
x /O ° 1<Tew Z) o |:ﬁObC<E)(>(Z ‘ >:|

(A19)

with Se, (z) given in Eq. (28). Strictly speaking, Eq. (A17)
applies for the case of Maxwell-Boltzmann statistics, but
we provide Fermi-Dirac expressions for certain quantities
for reference. We can also obtain Egs. (A17) and (A19) by
perturbatively solving the kinetic equations presented in the
following section, once we neglect thermal masses and
adopt Maxwell-Boltzmann statistics.

For a particular set of inputs, Fig. 13(b) compares the
results of the “direct” calculation of Sec. II B with those
based on Egs. (A17) and (A19). As with thermal mass
effects, the thermal ansatz only modestly impacts the
preferred parameter space.

When
Mg, > Mg, > T, (A20)
and
AM3, M,
A0 (A21)
M >,

apply, we can follow the same steps that led to Eq. (48) to
approximate the thermal-ansatz results of Egs. (A17)
and (A19) by

g(DICBj 7+ n)éq(T) - Ty 2 F(IJI
Ype= 51 3
4 ’C(p T M@] Hew

x Sg,(0) /0 " dx K, (x) sin [Z} . <1>x3] (A22)

E,

The ratio of the thermal-ansatz-based Y of Eq. (A22) and
the “direct” Y of Eq. (48) depends on the single dimen-
sionless parameter o, = 4AM5,M,/3M, . Figure 15
shows that the numerical discrepancy between the two
expressions is less than ~50%.

3. Numerical solution of Kinetic equations

To write down the kinetic equations for the two-scalar
model we follow Refs. [65,76]. We avoid having to track

1.6
3 14t
SRy
210}
2 08}
=
0.6+
4 ) 0 2 4
logl()(ﬁosc)
FIG. 15. Comparison of the approximate Yy expressions of

Egs. (A22) and (48), obtained with and without the thermal
ansatz for the y momentum distribution.
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momentum-dependent quantities by adopting a thermal
ansatz for the momentum dependence of the y number-
density matrix,

4
7, (p) = féa(p), (A23)
eq

and similarly for y. Doing so leaves us with the simpler task
of solving momentum-integrated kinetic equations. The y
and 7 number densities are given by the traces of n%, and
n%,, respectively.

We neglect y masses except in oscillations. An unbroken
U(1),_e symmetry under which only y and ®; are charged
(oppositely) then simplifies the analysis. Here we are
motivated by DM considerations, which lead us to focus
on parameter regions with M, ~ 10-100 keV.

Our main goal is to compare our perturbative calculation
from Sec. IIB with numerical integration of kinetic
equations that incorporate washout effects and quantum
statistics. To that end we make further simplifying approx-
imations that might be abandoned in future work. We adopt
the flavor-universal Q masses given in Egs. (A3)-(AY),
thereby ignoring top-Yukawa-related effects. The 1 < 2
processes @; <> Qy are therefore kinematically allowed at
all temperatures. We neglect 2 <> 2 processes, which we
expect to be subdominant, as we found thermal-mass
effects to be. Finally, we assume that quark flavor mixing
is sufficiently rapid to ensure that the Q chemical potentials
are flavor universal.

With these assumptions, the reaction densities entering
into the kinetic equations can be summarized by the matrix
expression

il = go(F7TF), (i1, — i13) / Ty, 72 (k. p.q).

(A24)

where the equilibrium distribution functions enter through

Foi(k.p.q) = Fori(k,p.q) = [1 - f&(p)|f& (q)
le,i(k p.q) = f%(l’)fgg (q)
For.i(k. p.q) = fi(K)f&(p)
Fari(k,p,q) = f)gq(k)fg;"(q). (A25)

In Eq. (A24), the indices i = 1,2 and I, J = 1, 2 reference
® and y flavors, respectively, while X indicates whether the
associated contributions to dn?/dt and dn /dt survive in
the absence of asymmetries (“0”), are driven by a Q, — Q,,
asymmetry (“Q1” and “Q2”), or are driven by a ®; — @
asymmetry (“®1” and “®2”).

The phase space factor in Eq. (A24) is

4’k 1 d’p 1
dlly, = 3 3
(27) 2El(k) (2r) 2EQ(p)
X dgq
(2”)3 2Eq, (q)

with E, (k) = |k|, Eo(p) = \/|p|* + M3, and Eg (q) =

\/la]* + Mg, . Carrying out all integrations besides those

(27)*6* (g — p — k).

(A26)

over Eg. and E, gives

gtD(F”Fi)[J(Méi B MzQ)

[yX,i]IJ = 327[3
™ Ef
x / dEq, / dE,F%,;(k.p.q). (A27)
Mgy, Ey
where
Mé - MZQ Eq), Eq>. 2
Ef=———==—"=%,/|l=—] -1]. (A28)
ZM(I),- Md)i M(I),-

In Eq. (A27) it is to be understood that Fg,(k.p.q)
depends on its arguments only through the associated
energies, with Eyp =Eg, — Ex' For example,

. o(Ea,=E))/T |
Foik,p.q) = (e(Eq,’_—EI)/T n 1> (eEd,i/T _ 1)- (A29)

We present the kinetic equations in terms of dimension-
less interaction-picture quantities

Ut U'ntU
Y=y () = = (A30)
N S
and
U'yU Uty U
g Y (A31)

YisH® — YisH'
where s = 272, T3 /45 is the entropy density, H = T?/M,
is the Hubble parameter, Y%, is the equilibrium abundance
for a single mass eigenstate, and oscillation effects are
encoded in the diagonal matrix

T > M3iM,

U(Z>IJ = eXp |:—I<E—X ﬁz :|5IJ' (A32)

The thermal average (T/E,) is given in Eq. (A16). Note
that for 7* we complex-conjugate the couplings appearing
in y but not the U matrices. For the case of two y mass

eigenstates, we can apply an inconsequential overall phase
to rewrite Eq. (A32) as
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U(z) = diag{ 1. exp {—iﬁosc<%>z3}}, (A33)

where we define B, = AM3,M,/(6T3,,) as before.
For ®; and Q we similarly define ¥ = n/s, along with
the asymmetries

5Y2 = y2 — y0 (A34)

oY® = y® — y¥i, (A35)
We define these quantities and their equilibrium counter-
parts Y, SZ; and Y ch to include a sum over gauge degrees of
freedom (but not, for O, a sum over flavor degrees of
freedom), while Y)éq is the equilibrium abundance for a
single mass eigenstate (and a single helicity: y or j,
not both).

As is typically done, we linearize in Q chemical
potentials,

fep.£ng) 14 6Y©
Fé&(p) 2r

However, a ®; — ®; asymmetry can leave ®; or &7
particles around after ®; — @} annihilations have effec-
tively completed, in which case up, < 7T is not satisfied and
it is not appropriate to linearize in ug . We assume that
@; — ®; annihilations keep these particles in chemical
equilibrium even for temperatures 7 < M, .

In the T < Mg, regime Maxwell-Boltzmann statistics
should apply, giving

(A36)

P (q. £uo,) tug, /T A
A eSO . S A @; , 37
@ A7
which leads to
®(q, tue,) <5f"’f (q)> 2 8f%(q)
J A THe) 4 + . (A38
f(a) 2fe(q))  2f&(q) (A38)

where 6/%(q) = £ (q. #o,) = f*(q. ~o, ). For the sce-
narios we study, Eq. (A38) is a good approximation even
when Maxwell-Boltzmann statistics does not apply. For

o) 1, and
2feq( )

Eq. (A38) approximately reproduces what one gets by
linearizing the full quantum-statistics distribution in g,

T > M®i, it is safe to assume Ho, < T and 2L

5% (q) .

= feil@) £

fd)i(q’ :l::ud),»)

(A39)

Following our treatment of f¢, we neglect momentum

of%i (‘I)’ giving

dependence in the ratio “5
p 2fe (q)

Pi(q, +uq SY®
4 2e) Q(i —Q), (A40)
fed(q) 2Yeq
where we define the function
=VI+x+x-1. (A41)

Having established our notation, we now give the kinetic
equations describing the evolution of the Y# and Y*
matrices:

dy, |
_:E —— %0, YX—Y%
dan i 2{}/0,17 q}
5Y? [ 1 }
+o—s P Vi + 5 {700 ¥
2Y% }/Ql q 2{yQ2, }

S5Y®i
+g - i
(e o

L o1 }} ) (A©2)

and
dY);(J:Z _1{7* Y;’(_Y)(
dinz 4=\ 2Y0" .
oY¢ {
- 7oL Yea+5 {}’an }}
2re

+g(jY:> |:7/<D1 i {anz i Y }} )U (A43)
(*)

In any interaction involving ®@;", the U(1),_q symmetry
requires that the changes in the @;, ®7, y, and y populations
are related by

AN® — AN® = AN* — ANZ, (A44)

which means that the evolution of §Y®: can be determined by

(A45)

dsy®i dY){J
=Tr
dlnz dlnz

_dyj,
dlnz|;

where on the right-hand-side we only include contributions

(%)

from interactions involving @, ’. We therefore get

) S R AL
dinz r[70,: Y% = 75, Y%] + Yeq Yqu 17 01.]
oY@ SY®
+—Tr Yr + Y| - Y% — It
2qu [7sz VQz ] eq ch [}’(1)1 z]
5Y®i S5Y®i
_g(__>n yx +g< >Tr %
2qu [Vcbz; ] 2qu [7@21 ]

(A46)
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Aswedidin Sec. Il B, we neglect @, @) <> ®]®d, scattering.
The viability of the model does not depend on this
simplification.

In Sec. II B we expressed the @ and baryon number
asymmetries in terms of the B — L asymmetry stored in
Standard Model particles. Here we also need to do that for
the Q asymmetry:

(3Y(D] + 5Yq>2 - ’C(DYB—L,SM (A47)
YB = ,CBYB—L,SM <A48)
5YQ — ICQYB—L,SM’ (A49)

with Cp = (=54/79,-63/79,-45/79) and K, = (25/158,
31/79,40/79) for Q = (O, ug, dgr), and with K¢ = 3.
We replace §Y9 — (Ko/Ke)(8Y® + 8Y*2) in Eqs. (A42),
(A43), and (A46) and numerically solve them to determine
the final baryon asymmetry as Yz = (Kz/Kg)(8Y®1 4
5Y®2), evaluated at sphaleron decoupling.

The red contours of Fig. 14 compare the minimal
perturbative calculation of Sec. II B with numerical sol-
ution of the kinetic equations just introduced, incorporating
thermal masses and quantum statistics. For the chosen
parameters, the fractional differences tend to be smaller
than when comparing with the refined perturbative calcu-
lation (blue contours), because the thermal ansatz increases
Yp somewhat, partially compensating for the effect of
including thermal masses, which decreases the asymmetry.

To conclude this discussion, we note that we can
reproduce Egs. (A17) and (A19) as an approximate, per-
turbative solution to Eqs. (A42), (A43), and (A46). We first
use Egs. (A42) and (A43) at to obtain leading order (order-
F?) expressions for Y%,(z) and Y%,(z). We use these
expressions in Eq. (A46) to determine the leading-order
expression for 5Y®. More precisely, we solve exactly the
differential equation obtained from Eq. (A46) by replacing
Y# and Y¥ with their order-F? expressions and neglecting
all reaction densities besides 7, ; and 74, ;, which is equal to
70.; and takes into account ®; decays. We adopt Maxwell-
Boltzmann statistics by taking

fO,i(k’ p, q) - F@l,i(k7p7 q) - fg;’(q) — e_Ed),'(q)/T

(A50)
in Eq. (A27), giving
9o(F'F) ;Mg Tey,
Vol = lrevily = 32137 t
x (1 = 3, /M%)°K, (A;‘DZ> . (ASD)

If we further neglect thermal masses, this procedure finally
reproduces Egs. (A17) and (A19).

APPENDIX B: CONSTRAINED MAXIMIZATION
OF Y IN THE DECOUPLED-®, REGIME

In this appendix we describe how we obtain the contours
of Fig. 4. We use a routine that finds the maximum Y for
given (Mg, ,I'y, ) values, consistent with the observed DM
abundance and with the relevant additional constraint (fixed
Y’;”? , or fixed 0, and 6,). We start by setting the mixing
angles and phases p; and ¢, to optimal values, so that the CP-
violating factor in Eq. (33) becomes J = sin 26, sin 20,.
With Mg, and 'y, fixed, Y then depends on four quantities:
91, 92, Y)é+)?, and Mz.

For the blue, Y{” = 4 x 1073 contour of Fig. 4, we start
by turning Eq. (45) into an equality and using it to solve for
0, in terms of M, and 0, with Y% 2 determined by Eq. (14).
The baryon asymmetry of Eq. (48) then depends on the
remaining two free quantities, #; and M,, through the
factor

sin 20 sin 26,115 (Bose ) (B1)
which we maximize numerically to get optimal values of 9,
and M,, subject to the constraint M, > 10 keV. In this way
we determine the maximum baryon asymmetry for the
given (Mg, ,I'y,) point. For points on the blue contours of
Fig. 4, this maximum Y equals the observed baryon
asymmetry.

The green and red contours of Fig. 4 have fixed values of
6, and ,, so only ¥4 and M, need to be optimized. In
this case we use Eq. (45) to solve for ¥4 in terms of the
other parameters, and then we numerically maximize

Y)2{+1712(ﬂ05c) (BZ)
with respect to M,. )

We can understand the Y4 =4 x 107 contour of
Fig. 4 qualitatively by considering two separate regimes
in turn. We first work under the assumption that the @
couplings are too small for @®; decays to contribute
significantly to the DM energy density, which therefore
must originate almost entirely from ®, decays. In that case,
the parameter €, which determines the relative coupling of

CI>(1*> to y1 Vs y», effectively drops out of the DM constraint.
It only enters into the baryon asymmetry calculation via the
CP-violating factor J. In this case, the baryon asymmetry
is maximized when the sin26; factor in Eq. (33) is
maximal. After we also choose optimal values for p; and
¢; we are left with 7 = sin 26,.

Having fixed 6, = z/4, maximizing Yy for arbitrary
(Mg,.T,) is straightforward. We saturate Eq. (45) to
determine 6, in terms of M, and then all that remains is to
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FIG. 16. Contours of (Y)mu = (Yi)ops for Y47 =4 x 1072,
For the blue, solid contour we impose the DM constraint of
Eq. (45) and require M, > 10 keV (this reproduces the contour
from Fig. 4). As described in the text, the other contours impose
additional constraints. Green, dashed: we set 6, = z/4 and
use Eq. (B5) to determine M,. Red, dot-dashed: we use Eqgs. (B6)
and (B8) to determine 6, 6,, and M,.

determine an optimal value of M,. Here we use our
working assumption that the DM density comes predomi-

(+)

nantly from ®, ' decays, which means that Eq. (45) gives

0, ~ pcdm/s
2 .
\/ M YZ"")(

The small angle approximation for 6, is justified given that
we consider ¥4 =4 x 10 and M, > 10 keV. In this
approximation, the dependence of Yz on M, is then
contained in the factors

(B3)

B;SIC/47]2(BOSC)? (B4)
which is maximized for
Mg\ 3/2
M, = (16.2 keV —1L . B5
= (162 keV) x (%) (B5)

With all parameters besides (Mg, ,I'g, ) finally determined,
we show the points that give the observed baryon asym-
metry in the green contour in Fig. 16.

Now consider the opposite regime, in which the cou-
plings of @, are so large that the DM constraint requires
0; < 1. In that case, the small angle approximation applies
for both 6, and 6,, and it is not difficult to show that the
maximum baryon asymmetry is realized when ®; and ®,

decays contribute equally to the DM energy density. So,
we take

pcdm/s

_ pcdm/s
DM, Y

12
s = =
‘ava

2M, Y

Sill2 91 =

(B6)

and because the baryon asymmetry depends on the factor
sin 26, sin 26,, which scales approximately as 1/M,, we
obtain an optimal value of M, by maximizing

(;10/2112(ﬁosc) (B7)

which leads to

Mo \3/2
M, = (12.9 keV) x <ﬁ> .

TeV (B8)

For these inputs, the points that give the observed baryon
asymmetry lie on the red contour in Fig. 16. Taken together,
the two contours we obtain by considering the opposite
extremes ¢, = n/4 and 6, < 1 reproduce almost all of the

(Y5)max = (Y5)ops contour for ¥4 =4 x 1073,

APPENDIX C: MIXING ANGLES AND PHASES
IN THE SINGLE-SCALAR MODEL

The single-scalar model is characterized by a single
matrix, F,;, which gives the Yukawa couplings between
each SM quark flavor a and y mass eigenstate /. The matrix
F'F enters into the expression for the baryon asymmetry,
and it can be parametrized as follows (by analogy with the
two-scalar case in Sec. II B):

(F'F)

cosf; = TrFTII'*I’ (C1)

1L J(F'F)

cost = sin 6, TrF*}272’ (€2)
B |(FTF),,|

N ER R
B |(FTF)y|

O S F ) n(F F)yy )
B |(FTF)3]

O P (F s )
¢, = arg(F"'F)lz, (C6)
¢y = arg(FTF)B, (C7)
¢3 = arg(FTF)3l. (C8)

In this case, we can compute the Jarlskog-like invariant in
Eq. (84) as
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(C9)

J = cos p; cos p, cos p3 cos” @ sin* 4,

sin®(26,) sin(¢y + ¢, + ¢3).

However, unlike in the case of two scalars, these are not
completely independent parameters: the reason is that there
may not always exist a matrix F corresponding to that set of
parameters. For example, it is possible to have cosp; =1
for all p;, but in this case the sum of the phases
¢1 + ¢d> + ¢p3 = 0! Thus, J is not optimized by requiring
maximal mixing angles, since in that case the effect of the
phases vanishes.

Rather than do a systematic study of the mixing angles
and phases, we instead construct only the optimal value of
J, which allows us to map out the largest possible space of
baryogenesis for the other parameters (such as particle
masses and decay widths). Since 7 is independent of basis,
we can construct the optimal 7 through a judicious choice
of basis.

First, we think of F; as a collection of 3 three-vectors in
active quark flavor space, F,i, Fp, and Fy3. (F'F),,
which appears in the expression for J, can therefore be
seen as a dot product of pairs of these vectors. J is also
independent of the overall magnitudes of the three-vectors
and how the magnitudes are distributed amongst the three
vectors, and so we take each to have unit norm. We can
always choose a flavor basis where the coupling of y; is
exclusively to a single flavor (which we take to be a = 3),
in which case F,; = (0,0,1). Similarly, the freedom to
choose a basis and rephase the quark fields allows us to
write F,, = (0, cos @, sin ¢). Finally, there is no advantage

(C10)

to having F';3 # 0, since its contribution to any dot product
is necessarily zero, and the optimal CP-violation comes
from a maximal relative phase between F,; and F33 (any
phase that is the same between the two entries contributes
only to the overall normalization factor and is irrelevant),
while the imaginary part of the dot product is maximized if
|F22| = |F23‘ = |F32| = |F33| = 1/\/5 The Yukawa tex-
ture for our benchmark case is thus

0
Fuy=|9 (C11)

S5k o
S 5k o

1

It is straightforward to check that this set of Yukawa
couplings corresponds to p; = p, = p3 =P + P + 3 =
0, = /4, and cos @, = 1/+/3. The corresponding value of
J = 1/27, which we use in Sec. IV.

Because this texture of Yukawa couplings has a zero
eigenvalue of FTF, it has special properties with respect to
the equilibration of the y; states. We therefore consider a
second benchmark for the single-scalar study. We modify
the F;, coupling to give three nonzero eigenvalues of FF.
The modified benchmark Yukawa texture is

1 0 0
0o L i

Fo = 2 V2 (C12)
1 1
V' 5
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