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We propose a simple model in which the baryon asymmetry and dark matter are created via the decays

and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet

fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and

their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the

out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be

long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In

generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the

phenomenological possibilities for low-scale baryogenesis.
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I. INTRODUCTION

One of the most important questions in particle physics is

the origin of the baryon asymmetry. While the Standard

Model (SM) contains CP violation that distinguishes

between rates of particle and antiparticle interactions, it

is widely accepted that the degree of CP violation in the

SM is insufficient to explain the magnitude of the observed

asymmetry (see, for example, Ref. [1]). Furthermore, the

generation and preservation of an asymmetry requires a

departure from equilibrium that is not realized in the SM:

with the observed Higgs boson mass, the SM predicts a

second-order electroweak phase transition, which is insuf-

ficient to generate a baryon asymmetry [2–5].

Resolving the origin of the baryon asymmetry neces-

sitates the existence of new particles and interactions

beyond the SM. Various theoretical scenarios for baryo-

genesis exist, including but not limited to electroweak

baryogenesis [2,3,6,7], leptogenesis [8] (inspired by the

see-saw mechanism for neutrino mass generation [9–14]),

and realizations within grand-unified models [15,16]. Some

models of baryogenesis are challenging to test, whether

because the relevant mechanism operates at high scales that

are not kinematically accessible to current or future experi-

ments, or because satisfying the out-of-equilibrium con-

dition for baryogenesis predicts small couplings for the new

particles relative to other SM couplings. There are,

however, baryogenesis scenarios that are testable in their

minimal incarnations: electroweak baryogenesis, whose

dynamics are necessarily constrained to lie around the

weak scale and which accommodates large couplings of

beyond-SM states to the Higgs in order to give rise to a

first-order phase transition; and freeze-in leptogenesis, also

known as the Akhmedov-Rubakov-Smirnov (ARS) mecha-

nism or leptogenesis via neutrino oscillations [17,18].

In this paper, we study a new class of models inspired by

ARS leptogenesis. We consider a framework in which light,

gauge-singlet Majorana fermions χI interact feebly through

a Yukawa coupling

Fi
αIψ̄αχIΦi þ H:c:; ð1Þ

where ψα are SM fermions and Φi are new scalars with the

same gauge quantum numbers as ψα. Here we focus on

scenarios where the scalars carry quantum chromodynam-

ics (QCD) charge, with ψ ¼ QL; uR, or dR. Collider

searches then constrain the masses of the QCD-triplet

scalars Φi to be at or above the TeV scale. We impose a

Z2 symmetry under which only χI and Φi are odd, making

the χ particles dark matter (DM) candidates.

For appropriate parameter choices, these ingredients are

sufficient to generate a baryon asymmetry. The relevant

dynamics are somewhat involved, but that should not

obscure the simplicity of the model setup. Decays of Φ

particles produce coherent superpositions of χ mass eigen-

states, whose subsequent time evolution and scattering can

produce an overall Φ asymmetry. The net ðB − LÞ
Φ
and

hypercharge YΦ stored in the Φ sector are balanced by

opposite charges ðB − LÞSM and YSM stored in SM par-

ticles. At temperatures above the electroweak scale, rapid
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sphaleron and SM-Yukawa-induced processes redistribute

the ðB − LÞSM asymmetry among baryons and leptons,

whereas BΦ, the baryon number in Φ, is left unchanged.

Because the resultant BSM differs in magnitude from BΦ, a

net baryon asymmetry survives after the Φ particles decay

and disappear, providedΦ particles survive until the time of

sphaleron decoupling.

Certain essential phenomenological considerations par-

allel the ARS case. To satisfy the out-of-equilibrium

Sakharov condition and generate an asymmetry [19], the

Yukawa couplings must satisfy jFαIj≲ 10−7. This is a

model of freeze-in baryogenesis because the χI do not come

into equilibrium while the asymmetry is being generated.

The baryon asymmetry is enhanced for χI mass splittings of

order 10 keV, so that χI oscillations have time to develop

before sphaleron decoupling, but are not so rapid that the

asymmetry generation saturates at early times and gives a

smaller asymmetry. However, we find that our model

predictions are qualitatively distinct from ARS, giving rise

to significant enhancements in the baryon asymmetry in

parts of parameter space as well as new phenomenological

probes.

In place of the right-handed neutrinos (RHNs) of ARS

are new cosmologically stable neutral states χI that we

identify as the DM; these singlet χI states have negligible

mixing with SM fermions. It is the oscillations of the DM

particles themselves that are responsible for baryogenesis,

and our model generally favors DM states with a non-

degenerate mass spectrum. This is unlike viable ARS

models, where the dynamics of DM is unrelated to the

generation of the baryon asymmetry via RHN oscillations,

and which typically require highly degenerate χ masses.

The beyond-SM (BSM) QCD-charged scalars Φi can

qualitatively alter the baryon asymmetry calculation. We

pay particular attention to the possibility of having more

than one scalar, which tends to dramatically enhance the

baryon asymmetry. In the two-scalar case, the different

channels for χ production and annihilation lead to an

asymmetry at OðF4Þ, rather than at OðF6Þ as in standard

ARS leptogenesis.

Successful baryogenesis requires a B − L asymmetry to

be stored in the Φ sector until sphaleron decoupling. When

combined with the DM abundance constraint, we find that

this favors the mass of the lightest Φ particle to be not far

above the TeV scale and its lifetime to be comparable to or

larger than the Hubble time at electroweak-scale temper-

atures, corresponding to values of cτ ≳ 1 cm. Consequently,

the model can be probed by the Large Hadron Collider

(LHC), and much of the parameter space predicts long-lived

particle signatures.

The properties of the heavier Φ scalar(s) are much less

constrained. In the two-scalar case, it is viable to have

MΦ2
≫ MΦ1

, and in this “decoupled-Φ2” regime the baryon

asymmetry and DM abundance depend on the properties

of Φ2 only through the characteristics of the coherent

background of χI particles left behind after the Φ2 particles

have entirely decayed/annihilated away. It is worth empha-

sizing that this coherent background can be CP-symmetric

“initially,” that is, just after theΦ2 particles have disappeared.

The CP violation arises from time-evolution phases, in

tandem with phases encoded in the coherent χ background

when expressed in the Φ1 interaction eigenbasis.

More generally, the asymmetry in the decoupled-Φ2

regime is independent of the origin of the coherent back-

ground of DM particles. It could be left behind by the

decays of a heavy particle with different quantum numbers

than Φ, for example the inflaton.

Our baryon asymmetry and DM results for the two-Φ

model in the decoupled-Φ2 regime are summarized in

Figures 4, 5, and 6, which show the preference for sub-

MeV χ masses, and for the lighter Φ particle to be in the

few-TeV range and long-lived for collider purposes.

Meanwhile, the analysis of the single-scalar scenario (in

which the same BSM particle is involved in χ production

and χ annihilation) is dramatically impacted by the fact that

the SM states participating directly in the asymmetry

generation are quarks rather than leptons. Unlike the

situation for the leptonic case, where different flavors of

leptons can have different chemical potentials, quark flavor

mixing drives the quark chemical potentials towards a

universal value, thereby suppressing one possible source of

asymmetry (here we work in the approximation of flavor-

universal quark chemical potentials and save a more careful

study for future work).

On the other hand, the large top Yukawa coupling opens

up the possibility that flavor dependence in the thermal

masses of the active fermions plays a role in generating the

baryon asymmetry at OðF4y2t Þ. In fact, we find that top-

Yukawa effects make the single-Φ, two-χ model viable for

obtaining the observed baryon asymmetry and DM abun-

dance, although it is more constrained than the two-scalar

scenario (see Fig. 7), and most of the parameter space will

be tested by searches for heavy scalars at the Large Hadron

Collider.

In the absence of SM-Yukawa effects, we need three or

more χ particles to get an OðF6Þ contribution to the

asymmetry. In this case, we find that the model’s ability

to simultaneously satisfy the baryon asymmetry and dark-

matter abundance constraints is marginal at best (see

Fig. 8). The observed baryon asymmetry can still be

realized if one imagines a different explanation for the

DM and a decay mechanism for massive χ particles, and in

this scenario the prospects for Φ discovery at colliders are

quite promising (see Figs. 10 and 11).

Our study is organized as follows: in Sec. II, we provide

a qualitative review of the mechanism of freeze-in baryo-

genesis, and we perform an analytic calculation of the

asymmetry in the weak-washout limit for a representative

model that illustrates the parametric dependence of

the asymmetry on the model parameters. In Sec. III,
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we investigate the model where the singlets responsible for

baryogenesis couple to SM quarks and two new QCD-

charged scalars, providing a comprehensive study of the

parameters giving rise to successful baryogenesis and DM.

In Sec. IV, we study themore constrainedmodel with only a

single new scalar. Finally, we discuss these models’

experimental signatures and prospects for discovery in

Sec. V.

We now discuss connections between our work and

earlier studies of ARS leptogenesis and freeze-in DM. In

minimal extensions of the SM, the only renormalizable

coupling of singlet fermions χ is via the neutrino portal,

giving rise to the ARS mechanism. In the context of ARS

leptogenesis, the χ particles are RHNs that lie in the GeV

mass range. Because the RHNs are low in mass relative to

the electroweak scale, they can potentially be produced in

intensity frontier and other collider experiments [20]. ARS

leptogenesis therefore provides a well-motivated, testable

mechanism for both the generation of neutrino masses as

well as baryogenesis. Consequently, this mechanism for

baryogenesis and its discovery prospects have been well

studied in the literature [21–48]. Indeed, the first dedicated

searches for GeV-scale RHNs have now been performed at

the ATLAS, CMS, and LHCb experiments at the Large

Hadron Collider [49–52]. Baryogenesis from freeze-in is

also possible in models without oscillations, in which the

relevant CP-violating phases for baryogenesis originate

from the interference of tree and loop diagrams in scattering

processes [53–55].

Models of freeze-in are inherently sensitive to other

couplings of the sterile states to the SM. This is well known

in the case of freeze-in models of DM, where the largest

coupling of the hidden particle tends to dominate its

cosmology and phenomenology [56–60] (for a recent

review, see Ref. [61]). While there have been a few studies

of freeze-in baryogenesis where there exist new fields

beyond the minimal ARS model [29,62–64], there has

not to our knowledge been a comprehensive attempt to

study of the parametric regimes and signatures associated

with nonminimal scenarios.

II. MECHANISM OF FREEZE-IN BARYOGENESIS

A. Qualitative overview of freeze-in baryogenesis

The mechanism of baryogenesis via singlet oscillations,

which is most studied as a mechanism for low-scale

leptogenesis [17,18], generates an asymmetry through

the out-of-equilibrium production of singlets and their

subsequent annihilation; this differs from conventional

leptogenesis, which generates an asymmetry through the

singlets’ decay. We now review the mechanism of baryo-

genesis via singlet oscillations, highlighting certain aspects

of the parametric dependence of the asymmetry.

In this section we focus on the minimal case, with

exactly two massive Majorana singlets, χI . We couple χI to

a SM field, ψα, and a set of scalars, Φi, which have the

same SM gauge quantum numbers as ψα:

L ⊃ −
MI

2
χ̄cIχI − ðFi

αIψ̄αχIΦi þ H:c:Þ: ð2Þ

The standard Type-I see-saw mechanism is realized if the χI
fields are the RH neutrinos, ψα are the left-handed lepton

doublets, and there is a singleΦwhich is the SMHiggs field.

However, different SM fermions ψα and scalars Φi can

realize baryogenesis as well; in that case, theΦi must be new

scalars.We have expressed theYukawa couplings,FαI , in the

basis where the χI Majorana masses are diagonal.

As we will soon see, baryogenesis favors a low mass

scale for the χI , and in fact we are mainly interested in

scenarios with MI ≲MeV. The χ masses are essential for

inducing χ oscillations, but we can otherwise neglect them

throughout the baryon-asymmetry calculation, and we take

all χ interactions to respect the Uð1Þχ−Φ symmetry realized

in the massless-χ limit. Note that we label the singlet states

so thatΦ decays produce χ̄ particles andΦ� decays produce
χ particles.

1

Consider first the case with a single scalar,Φ. In order for

the singlets not to come into equilibrium, their Yukawa

couplings must be very small, jFαIj ≪ 1. As in most freeze-

in scenarios, we assume that at initial times nχI ¼ 0. The

decay Φ → ψαχ̄ produces an interaction-basis state of χ

fields which is a coherent superposition of χI mass

eigenstates. Because the χ scattering is out of equilibrium,

each interaction-basis particle propagates coherently,
2
with

the mass eigenstates χI acquiring phases e−iϕI , where

ϕI ¼
R

EIdt. At some later time, the χ fields annihilate

with a potentially different SM fermion flavor ψβ intoΦ via

the inverse-decay process ψβχ̄ → Φ. The net process is

ψβΦ → ψαΦ, with coherent contributions from the propa-

gation of both χI particles; see Fig. 1. The matrix element

for this process is proportional to

MðψβΦ → ψαΦÞ ∝ Fα1F
�
β1e

−iϕ1 þ Fα2F
�
β2e

−iϕ2 : ð3Þ

The matrix element for the CP-conjugate process has

F → F�, with propagation phases unchanged. The result

is a CP-violating asymmetry

ΔΓαβ ≡ jMðψβΦ → ψαΦÞj2 − jMðψ̄βΦ
�
→ ψ̄αΦ

�Þj2 ð4Þ

∝ ImðF�
α1F

�
β2Fβ1Fα2Þ sinðϕ2 − ϕ1Þ ð5Þ

1
The corresponding helicity assignments depend on the

identity of the active fermions. For ψ ¼ QL, the χI have positive
helicity and the χ̄I have negative helicity; for ψ ¼ uR the opposite
is true; etc.

2
The mass splittings among χI states that we consider are

sufficiently small that there is negligible decoherence in the
production process.
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¼ ImðF�
α1F

�
β2Fβ1Fα2Þ sin

�
Z

tid

td

dtðE2 − E1Þ
�

: ð6Þ

This factor appears in the contribution to the rate of

asymmetry generation at inverse-decay time tid, due to χ

particles produced with a particular momentum at decay

time td.

1. Generation of nonzero asymmetry

Equation (6), which applies in the single-Φ case, implies

that OðF4Þ asymmetries can arise within individual ψα

flavors. At this order, however, we do not get an overall

asymmetry in SM particles relative to antiparticles.

Summing over active flavors gives

X

α;β

ΔΓαβ ∝ Im½ðF†FÞ
12
ðF†FÞ

21
� ¼ 0; ð7Þ

confirming that the total ψ asymmetry vanishes at OðF4Þ.
An overall asymmetry is possible at higher order in F;

for example, if the ψ are leptons and the flavor asymmetries

in e, μ, and τ are destroyed at different rates, then a total

asymmetry results at OðF6Þ [18]. If the ψ are quarks, the

flavors are brought into equilibrium with one another

through their couplings to the SM Higgs, and there are

no asymmetries in individual flavors even at OðF4Þ;
nevertheless, a source for the total asymmetry still results

atOðF6Þ if the number of χI is greater than or equal to three

[65]. We discuss this further in Sec. IV B.

To show that the total ψ asymmetry vanishes atOðF4Þ in
the single-scalar case, we assumed that the relevant

interaction rates depend on the active fermion flavor only

though the couplings FαI . Thermal mass effects can

invalidate this assumption. These effects are of higher

order in some coupling, but they can be important for the

top quark in particular, as we show in Sec. IVA.

Now we turn to the case with two scalars, Φ1

and Φ2. Remarkably, in this situation a total ψ asymmetry

results at OðF4Þ! The reason is that we now have

two sets of Yukawa couplings, F1
αI and F2

αI , and since

Im½ðF1†F1Þ
12
ðF2†F2Þ

21
� ≠ 0, an asymmetry can be gener-

ated. In fact, the underlying mechanism works even if only a

single active flavor of ψ has couplings to χI and Φi.

We perform a direct calculation of the asymmetry in

Sec. II B and show that it is indeed nonzero, but here we

provide a qualitative understanding of how the mechanism

works. TakeMΦ2
≫ MΦ1

for concreteness, and consider two

possible net processes initiated by Φ2 decay: (1) the feebly

interacting χ̄ state produced in the decay may not participate

in any subsequent scattering, so that the net process is

Φ2 → ψχ̄, or (2) the χ̄ state may later scatter to produce aΦ1

particle, so that the net process may be summarized asΦ2 →

Φ1 (with one ψ emitted into the plasma and one ψ absorbed

from it). The first net process induces equal and opposite

changes to the total Φ and ψ abundances, while the second

has no effect on these total abundances.

The point is that CP violation can lead to a difference

between the fraction of decaying Φ2 particles that partici-

pate in Φ2 → ψχ̄ (as opposed to Φ2 → Φ1) and the fraction

of decaying Φ
�
2
particles that participate in Φ

�
2
→ ψ̄χ (as

opposed toΦ�
2
→ Φ

�
1
). Consequently, a ψ asymmetry arises

at OðF4Þ.
One may worry that this asymmetry is canceled when

one includes processes initiated by Φ1 decay, with the roles

ofΦ1 andΦ2 reversed. However, because the number ofΦ2

particles produced at lower temperatures is Boltzmann

suppressed, the net process Φ1 → Φ2 typically completes

at high temperatures T ∼MΦ2
. In effect, the processes

Φ1 → Φ2 and Φ2 → Φ1 are active during different cosmo-

logical time periods, and so the numbers of Φ particles

involved in them are unrelated.

Moreover, it is possible that the timescale for χ oscillations

tohave an effect is comparable to theHubble timeatT ∼MΦ1
,

butmuch longer than theHubble timeatT ∼MΦ2
. In this case,

CP violation is negligible in Φ1 → Φ2, which therefore

cannot cancel an asymmetry produced by Φ2 → Φ1.

Note that it is crucial that the decay and the inverse decay

happen at different times, and that Hubble expansion

changes the particle kinematics during the interval between

those times. This gives rise to the necessary differences in

the thermal suppressions that apply at the decay and inverse-

decay times. If the Universe were not expanding and instead

in a state of exact equilibrium, then any Boltzmann

suppressions would affect Φ1 → Φ2 and Φ2 → Φ1 proc-

esses equally, leading to a vanishing asymmetry. Indeed, we

have checked that in the limit of zero Hubble expansion, or

alternatively when MΦ1
¼ MΦ2

such that both fields have

the same thermal distribution, the net asymmetry is exactly

zero at OðF4Þ.

FIG. 1. Feynman diagram illustrating the process of χI pro-

duction, propagation, and annihilation. First, the scalar Φ decays

into the SM quark ψα and χ̄I ; the χ̄I field propagates and then

annihilates with another SM field ψβ to reconstitute Φ. The net

reaction is ψβΦ → ψαΦ. In general, since χI is out of equilibrium,

the full process is a coherent sum over intermediate χI states.
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2. χ oscillations and Hubble expansion

Having outlined the conditions for obtaining a nonvanish-

ing total asymmetry in SM states, we now discuss the

parametrics of the requisite χ oscillations. Taking the χ

production time to be much earlier than the inverse-decay

time t, we can approximate the oscillation factor in Eq. (6) as

sin

�Z

t

0

dt0ðE2 − E1Þ
�

≃ sin

�Z

t

0

dt0
ΔM2

21

2pðt0Þ

�

ð8Þ

≃ sin

�

ΔM2

21

6pðtÞHðtÞ

�

; ð9Þ

where HðtÞ is the Hubble expansion rate at time t,

ΔM2

21
¼ M2

2
−M2

1
, and we have assumed that the χ fields

are highly relativistic, Ei ≈ pþM2
i =2p.

Because both p and H decrease with Hubble expansion,

the phase factor oscillates at a frequency that increases with

time. Assuming that p ∼ T, we thus find that at times for

which ΔM2

21
=T ≪ H, the argument of the sine function is

very small and so is the asymmetry production rate.

Conversely, for ΔM2

21
=T ≫ H, the asymmetry production

rate undergoes rapid oscillations that time-average to zero.

The bulk of the asymmetry is thus created when

ΔM2

21
=T ∼H, which corresponds to Tosc∼ ðΔM2

21
MPlÞ1=3.

We are then led to expect the dependence

asymmetry ∝ ðΔM2

21
Þ−2=3; ð10Þ

or something roughly similar, based on the assumption

that the final asymmetry should scale approximately as

1=HðToscÞ.
This estimate ignores the fact that asymmetry generation

is suppressed below some temperature Tcutoff . If ΔM
2

21
is

too small, the oscillations develop too late to produce a

significant asymmetry. Regardless of the identity of ψα, a

nonzero final baryon asymmetry requires that the ψ asym-

metry is processed by sphaleron transitions that are only

active in the unbroken electroweak phase at T ≳ Tew. So

Tcutoff is in general at least as high asTew. If theψα are quarks,

then we need the oscillations to begin even earlier, because

collider constraints require themasses ofQCD-chargedΦi to

be ≳1 TeV. For Tosc ≪ MΦ1
, Φ1 inverse decays are highly

suppressed at what would otherwise have been the time of

maximal asymmetry generation. In amodelwith heavyBSM

scalars, then, we have Tcutoff ∼MΦ1
.

The general point is that to avoid suppression of the

asymmetry, we need Tosc ≳ Tcutoff , with the asymmetry

maximized when the two temperatures are comparable.

According to the very rough estimates given above (which

we will refine in our subsequent calculations), this corre-

sponds to a χ mass-squared splitting of ΔM2

21
∼ keV2 for

Tcutoff ¼ Tew. Thus, freeze-in baryogenesis naturally favors

light χ fields, Mχ ∼ keV. However, an asymmetry can still

be obtained for heavier χ fields, provided they are highly

degenerate. In the ARS scenario, Mχ ∼ GeV whereas the

mass splitting M2 −M1 is often eV or smaller (although

there are exceptional cases with nondegenerate spectra

[27]). In any case, the preference for small singlet masses

makes the χ states kinematically accessible at laboratory

experiments.

For Tosc ≫ Tew, χ oscillations have time to become rapid

before sphaleron decoupling, and in this regime one finds

that the standard ARS model does indeed exhibit the

scaling of Eq. (10); see Eq. (99) below. More generally,

the exact dependence on ΔM2

21
in the rapid-oscillation

regime is slightly model-dependent. For example, in the

decoupled-Φ2 regime, the two-scalar scenarios of Sec. II B

lead to a final asymmetry that scales as ðΔM2

21
Þ−1 for

Tosc ≫ MΦ1
; see Eqs. (48), (50), and (51).

3. Survival of the asymmetry

In subsequent sections, we will focus on scenarios in

which the only nongauge interactions of Φi are those of

Eq. (2), and with hΦii ¼ 0. Then all Φi interactions

conserve both B and L, with Φi carrying the same charges

as ψα. Thus, it seems that when theΦi decay (as they must),

all asymmetries are destroyed! This, however, ignores two

important effects. The first is that SM spectator effects

(including B- and L-violating sphaleron processes) distrib-

ute the ψα asymmetry into all SM fermions, causing the B
and L stored in SM fermions to differ in magnitude from

those stored in the Φi. The second is that the connection

between quark and lepton asymmetries is broken after the

electroweak phase transition (when B and L become

separately conserved). If one of the Φi states does not

decay entirely until after the electroweak phase transition,

then although its eventual decays cancel the B − L asym-

metry that had been stored in SM fermions, equal and

opposite B and L asymmetries survive.

These arguments suggest that the lifetime of the lightest

scalar Φi should be at least comparable to the inverse

Hubble scale at Tew. By an interesting numerical coinci-

dence, HðTewÞ−1 ∼ 1 cm, and hence one of the Φi states is

typically long lived on collider scales. Since the Φi carry

SM gauge charges, they can be produced at colliders and

give rise to long-lived particle signatures (see Sec. V).

B. Calculation of the OðF4Þ asymmetry

in two-scalar scenarios

In this section we perform a detailed calculation of the

OðF4Þ baryon asymmetry for the two-χ, two-Φ case: I ¼ 1,

2 and i ¼ 1, 2 in Eq. (2). Our final expression for theOðF4Þ
asymmetry, as expressed in Eqs. (30) and (31), is applicable

for any choice of the SM fermions ψα, including couplings

to all three generations of active flavors. One can think of

these two-scalar models as a proxy for more general

scenarios in which a coherent background of oscillating

DM particles (of unspecified origin) participates in inverse
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decays of BSM particles carrying SM charges. The

“decoupled-Φ2” results presented in Sec. III are particularly

relevant from that perspective. Those results also apply for

arbitrary ψα, but we do assume MΦ1
≫ Tew to arrive at the

simplified final expressions of Eqs. (48) and (49).

Although the results of this section are broadly appli-

cable, we will refer to the ψα as quarks to align with our

focus in later sections, which present numerical results for

the particular case in which the ψα fields are right-handed

up-type quarks, with Φ1 and Φ2 carrying charges

ð3; 1; 2=3Þ under the SUð3Þc × SUð2Þw × Uð1ÞY SM gauge

group. We focus on QCD-charged scenarios because the

parameters for viable baryogenesis and the model phe-

nomenology are very different from the well-studied ARS

leptogenesis scenario where the ψα are leptons. One can

conceive of various scenarios in which a multiplet of SM-

singlet DM particles couples feebly to a SM field and BSM

fields. We leave study of some of these alternatives to

future work.

To streamline our discussion and derivation, we couple

only a single flavor of SM fermion, “Q,” to Φi and χI , so

that our Lagrangian becomes

L ⊃ −
MI

2
χ̄cIχI − ðF1

I Q̄Φ1χI − F2
I Q̄Φ2χI þ H:c:Þ: ð11Þ

However, we will express our final results so that they

apply equally well to the three-active-flavor case. We

impose a Z2 symmetry under which Φ1, Φ2, and χI have

charge −1 and the SM fields all have charge þ1. In this

case, the χI states are also stable DM candidates, and the

neutrino-portal coupling L̄αHχI is forbidden.

We adopt a perturbative approach to the calculation of

the baryon asymmetry, both for physical clarity and

because the requirement of χ as a viable DM candidate

mandates that we are in the weak-washout regime. Strong

washout effects do become important when we study

single-scalar models without the DM constraint in

Sec. IV B 2, and there we adopt a fully numerical treatment

of the relevant system of quantum kinetic equations.

Our perturbative calculation uses Maxwell-Boltzmann

statistics throughout. It also neglects thermal contributions

to the Φi and Q masses, along with the production and

scattering of χ from 2 ↔ 2 processes. These effects are

most important at T ≫ MΦi
, while decays and inverse

decays predominantly occur at T ∼MΦi
. Thus, neglecting

thermal masses is not expected to have a huge effect. The

principal exception is if χ oscillations occur at T ≫ MΦi
, in

which case the result presented here will underestimate the

production and scattering rates.

With these simplifications, our final expressions for the

baryon asymmetry appear below in Eqs. (30) and (31). We

show in Appendix A 1 that generalizing these expressions

to include thermal masses has only a modest quantitative

impact. We further find in Appendix A 3 that results based

on Eqs. (30) and (31) match rather well with what we get by

numerically solving the quantum kinetic equations for the χ

and χ̄ density matrices, taking into account thermal masses,

quantum statistics, and back-reaction/washout effects.

The calculation proceeds in four steps: first, a coherently

propagating population of χI states is produced from the

decay of the heavier scalar Φ2. Second, some part of this

population subsequently rescatters into Φ1. Third, we

account for the phases from the coherent propagation

and compute the difference in rates between χ̄Q → Φ1

and χQ̄ → Φ
�
1
, which leads to a baryon asymmetry.

3

Fourth, we evolve the asymmetry down to the electroweak

phase transition temperature, Tew, to determine the size of

the ultimate baryon asymmetry.

1. Step 1: χ production

The important χ̄ (χ) production mode is from Φ2 → Qχ̄

(Φ�
2
→ Q̄χ); the χ population from Φ1 decay can be found

by simply interchanging F2
↔ F1 in this calculation. We

wish to calculate the spectrum of χ̄ particles present at a

dimensionless time z≡ Tew=T corresponding to temper-

ature T, since the χ momentum affects the oscillation phase

according to Eq. (8); we must consider contributions from

Φ2 decays that occur at any z2 ≡ Tew=TΦ2decay
< z. The

energy of a χ̄ particle produced at time z2 is not preserved
by the Hubble expansion; however, since χ is relativistic

throughout the asymmetry generation process, Eχ̄ ≈ pχ̄ ,

and the comoving energy y≡ Eχ̄=T is constant with respect

to time.

The differential χ̄ production in time dt2 due to decays of

Φ2 particles having momenta in some window d3pΦ2
is

dY χ̄ ¼ 1

sðz2Þ
MΦ2

EΦ2

ΓΦ2

gΦ

ð2πÞ3 f
eq
Φ2
ðEΦ2

Þd3pΦ2
dt2; ð12Þ

where Y χ̄ ≡ nχ̄=s is the comoving number density of χ̄

particles, s is the entropy density, gΦ is the number of Φ2

degrees of freedom (gΦ ¼ 6 ifQ ¼ QL and gΦ ¼ 3 forQ ¼
uR or Q ¼ dR), and we have included a time dilation factor

to account for the fact that the plasma-frame decay rate of

Φ2 is slower than its rest-frame decay rate. We may express

d3pΦ2
as EΦ2

jpΦ2
jdEΦ2

dϕd cos θ, where cos θ is the angle

between the Φ2 momentum in the plasma frame and the χ̄

momentum in the Φ2 rest frame. Assuming Maxwell-

Boltzmann statistics for Φ2 and integrating over ϕ, we

then have

3
In our full expression for the baryon asymmetry, we also track

the asymmetry resulting from the opposite process where χ
particles are initially produced from Φ1 decay and rescatter into
Φ2. However, we focus on only one of these processes for now, as
it is straightforward to obtain the other by interchanging
Φ1 ↔ Φ2.
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dY χ̄ ¼ MΦ2

sðz2Þ
ΓΦ2

gΦ

4π2
e−EΦ2

z2=Tew jpΦ2
jd cos θdEΦ2

dt2:

Neglecting the thermal mass for Q, we find y ¼
z2ðEΦ2

þ jpΦ2
j cos θÞ=ð2TewÞ, which restricts EΦ2

≥ Eχ̄þ
M2

Φ2
=4Eχ̄ . Finally, we change variables from ðcos θ; t2Þ to

ðy; z2Þ, and we integrate over EΦ2
to obtain

dY χ̄ ¼ 45gΦ

4π4g�

MΦ2
ΓΦ2

M0

T3
ew

e−ye
−M2

Φ2
z2
2
=ð4T2

ewyÞz2
2
dydz2; ð13Þ

where M0 ≈MPl=ð1.66
ffiffiffiffiffi

g�
p Þ ≈ 7 × 1017 GeV is defined so

that the Hubble expansion rate is H ¼ T2=M0, and g� is the
effective number of relativistic degrees of freedom. We thus

have an expression for the (comoving) number density of χ̄

particles with a particular comoving energy y produced at

time z2.
In addition to being relevant for the baryon asymmetry,

this abundance of χ þ χ̄ particles can also account for the

observed abundance of DM. Assuming that the Yukawa

coupling is sufficiently small that χ is not brought into

equilibrium, Eq. (13) gives the leading result for the χ þ χ̄

abundance in perturbation theory. Integrating over all y and
z2 gives the summed abundance of all χ and χ̄ particles

produced by Φ
ð�Þ
i decays (i ¼ 1, 2):

Y
χþχ̄
i ¼ 135gΦ

4π3g�

�

Tew

MΦi

�

2
�

ΓΦi

Hew

�

; ð14Þ

where Hew is the Hubble expansion rate at sphaleron

decoupling.

2. Step 2: Inverse decay

In Eq. (13), we have calculated the abundance of χ̄ with
comoving energy y and production time z2. This abundance
then leads to the inverse decay process χ̄Q → Φ1, which
changes the abundance of the field Φ1. Note that there is
also a process χ̄Q → Φ2, but according to the arguments of

Sec. II A, this cannot lead to an asymmetry at OðF4Þ. We
also emphasize that any primordial process that populates a
coherent superposition of χ1 and χ2 states can lead to an
asymmetry from Steps 2–4 outlined here, independent of
their origin.
We calculate the number of χ̄Q → Φ1 inverse decays that

occur between times z1 and z1 þ dz1, where as usual,
z1 ≡ Tew=T1. The Boltzmann equations specify that the
inverse decay rate is the same as the decay rate, but
with the substitution of the distribution functions as

f
eq
Φ1
ðEΦ1

Þ → fχ̄f
eq
Q ðEQÞ. The limits of the phase-space

integrals are otherwise unchanged. We already know the
decay rate as a function offΦ1

ðEΦ1
Þ:we simply takeEq. (12),

substituteΦ2 → Φ1, and make the substitution f
eq
Φ1
ðEΦ1

Þ →
fχ̄f

eq
Q ðEQÞ. Furthermore, conservationof energydictates that

EQ ¼ EΦ1
− Eχ̄ ¼ EΦ1

− yT, and thus assumingBoltzmann

statistics,

f
eq
Q ðEQÞ ¼ eyf

eq
Φ1
ðEΦ1

Þ: ð15Þ

Substituting and integrating overEΦ1
gives a similar result to

before:

dYΦ1 ¼ 45gΦ

4π4g�

MΦ1
ΓΦ1

M0

T3
ew

e
−M2

Φ1
z2
1
=ð4T2

ewyÞz2
1
dydz1fχ̄ :

Finally, we have that

dY χ̄

dy
¼ 45

4π4g�
y2fχ̄ ; ð16Þ

and so

dYΦ1 ¼ gΦMΦ1
ΓΦ1

M0

T3
ew

ð17Þ

e
−M2

Φ1
z1=ð4T2

ewyÞ z
2

1

y2
dz1dY

χ̄ : ð18Þ

We can readily substitute the result from Eq. (13), or the

distribution fχ̄ from any other out-of-equilibrium χ̄ produc-

tion process. To obtain the abundance of Φ�
1
from the CP-

conjugate process, we replace F → F�.

3. Step 3: Oscillations and asymmetry

The results of Steps 1 and 2 are valid for the single-χ

case. We now modify those results to apply when linear

combinations of χ mass eigenstates propagate coherently

between the points of χ production and χ annihilation.

Our single-χ result has

dYΦ1 ∝ ΓΦ1
ΓΦ2

∝ jF1j2jF2j2; ð19Þ

where F1 and F2 are the couplings to Φ1 and Φ2,

respectively. Consistent with the arguments of Sec. II A,

we replace

jF1j2jF2j2 → jF2

1
F1

1

�e−iϕ1 þ F2

2
F1

2

�e−iϕ2 j2 ð20Þ

for the two-χ case. That is, we sum coherently over the

production and inverse decay processes mediated by differ-

ent χI mass eigenstates. The phases are calculated from the

time of Φ2 decay to the time of Φ1 inverse decay, and the

physical phase is the difference
4

4
Ournotation is slightly confusing because there are two types of

scalarΦ1;2, aswell as two types of fermion χ1;2. The phasesϕ1;2 and
energies E1;2 refer to the propagation of the χ1;2 mass eigenstates,
while the times t1;2 refer to decay/inverse-decay of Φ1;2.
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ϕ2 − ϕ1 ¼
Z

t1

t2

dtðE2 − E1Þ ð21Þ

≈

Z

t1

t2

dt
ΔM2

21

2yT
ð22Þ

¼ ΔM2

21
M0

6T3
ew

z3
1
− z3

2

y
: ð23Þ

The coherent oscillation phase thus depends on the comov-

ing energy of the propagating singlet (y), as well as the

times of production (z2) and scattering (z1).
Combining this with the result of Eq. (17), we find

dYΦ1 − dYΦ
�
1 ∝ 4ImðF1

1
F2

1

�F2

2
F1

2

�Þ

× sin

�

ΔM2

21
M0

6T3
ew

z3
1
− z3

2

y

�

: ð24Þ

Finally, an analogous calculation gives an asymmetry inΦ2

from the process Φ1 → Qχ̄, χ̄Q → Φ2; the result is found

by simply interchanging the Φ index 1 ↔ 2 in all of our

results so far.

For an asymmetry to be generated, χ production,

propagation, and annihilation must all be coherent proc-

esses [66]. Given the relatively large Φ −Φ
� annihilation

rate to gluons, ΓΦ;col ≳ 10 GeV, the overall energy uncer-

tainty in Φ decays and inverse decays is many orders of

magnitude larger than the energy splitting between χ mass

eigenstates, ΔE ∼ ΔM2

E
. Therefore, we do not expect coher-

ence loss in χ production or annihilation to be an issue.

Propagation decoherence seems more likely to be impor-

tant. In the wave-packet picture, the group velocities of the

constituent χ mass eigenstates differ by Δv ∼ ΔM2=E2.

Approximating the spatial spread in the χ wave packet to be

σx ∼ Γ
−1
Φ;col, the requirement that the spatial separation

between the two mass eigenstates remains less than σx
leads to a coherence time of tcoh ∼ E2=ðΓΦ;colΔM

2Þ. This
coherence time is longer than the time for oscillations to

develop, tosc ∼ E=ΔM2, provided that ΓΦ;col ≲ E is satis-

fied. The scale of the χ energy E is set by the larger of MΦ

and the temperature T. We therefore expect ΓΦ;col to be

perturbatively smaller than E, which would imply that χ

coherence survives long enough for oscillations to have an

effect. While these rough, qualitative considerations are

reassuring, a more careful study of decoherence in this

framework is certainly merited.

4. Step 4: From Φ asymmetry to baryon asymmetry

The interactions of Eq. (11) conserve baryon number,

with B ¼ 1=3 assigned to Φi. Taking only those inter-

actions into account, we get equal and opposite baryon

asymmetries in Φ and Q, and no final asymmetry survives

once the Φ particles decay to Qχ̄.

Spectator processes among the other SM quarks and
leptons can, however, prevent this destruction from happen-
ing and directly connect the phenomenology of Φ1;2 to the
baryon asymmetry. The rate of asymmetry production inΦ is
equal and opposite to the that inQ; however, the asymmetry
inQ is quickly distributed amongst all SMquark, lepton, and
Higgs species via sphalerons and SM Yukawa interactions.
By contrast, theΦ asymmetry is not distributed amongst any
other particles. Thus, the baryon asymmetries stored in the
SM andΦ sectors have different magnitudes when spectator
processes are taken into account.
To make this quantitative, we solve a system of equations

relating SM chemical potentials and abundances in equi-
librium [67], with the hypercharge and B − L conservation
equations modified to include the Φi abundances. In this
way we can relate asymmetries to the B − L asymmetry in
the SM sector:

δYΦ1 þ δYΦ2 ¼ KΦYB−L;SM ð25Þ

YB ¼ KBYB−L;SM: ð26Þ

Here YB is the total baryon asymmetry, including that
stored in Φ1;2, but we exclude the Φ asymmetries in

calculating YB−L;SM. Conservation of B − L leads directly

to KΦ ¼ −3, while the value of KB depends on the gauge
charges of Q: we find KB ¼ −54=79 for Q ¼ QL, −63=79
for Q ¼ uR, and −45=79 for Q ¼ dR.

5

Taking the sphaleron-decoupling temperature to beTew ¼
131.7 GeV [68], we work in the approximation that electro-

weak-symmetric conditions apply for z ¼ Tew=T < 1, tran-

sitioning abruptly to B conservation for z > 1. The final

baryon asymmetry is then KB=KΦðδYΦ1 þ δYΦ2Þz¼1
. We

estimate that this instantaneous-transition approximation

introduces an error of at most ∼15% in the final baryon

asymmetry, based on the broken-phase equilibrium value for

YB=YB−L;SM.We adopt amore careful treatment of sphaleron

decoupling only for Sec. IV B 2, in the context of a strong

washout scenario that features potentially rapid variations in

the Φ asymmetry at z ∼ 1.

The ultimate baryon asymmetry depends on the Φ1;2

asymmetries at sphaleron decoupling, which are in turn

proportional to the fraction of Φ1;2 particles that survive

until z ¼ 1. For each scalar, we therefore dress the con-

tribution to its asymmetry from inverse decays at z1 with

the survival factor

SΦi
ðz1Þ ¼ exp

�

−

Z

tew

t1

dthΓΦi
i
�

; ð27Þ

where hΓΦi
i is the thermally averaged decay width.

Neglecting thermal masses and adopting Maxwell-

Boltzmann statistics, we get

5
For the leptonic cases, we have KΦ ¼ 1, along with KB ¼

25=79 for LL and KB ¼ 22=79 for eR.
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SΦi
ðz1Þ ¼ exp

�

−
ΓΦi

Hew

Z

1

z1

dzz
K1ð

MΦi

Tew
zÞ

K2ð
MΦi

Tew
zÞ

�

; ð28Þ

whereKi are modified Bessel functions of the second kind.

Washout from Φi decay can also be taken into account by

solving the quantum kinetic equations including both

source and washout terms, as done in Appendix A 3.

The survival of a substantial fraction of Φi scalars down

to the electroweak scale suggests that ΓΦi
≲Hew for at least

one of the scalars. This leads to the conclusion that the

decay length of one of the scalars satisfies cτΦ ≳ 1 cm.

This is interesting from a phenomenological perspective,

since this is precisely the set of decay lengths that lead to

long-lived particle signatures at colliders. The freeze-in

baryogenesis mechanism therefore provides a very explicit

link between the baryon asymmetry, the Hubble expansion

rate at the electroweak phase transition time, and collider

signatures. We explore collider signatures in more detail

in Sec. V.

5. Final result

Putting together the results from the four steps of our

calculation, we find the baryon asymmetry today equals the

asymmetry at the time of the electroweak phase transition:

YB ¼ 45g2
Φ

256g�π
6

KB

KΦ

M2

Φ1
M2

Φ2
M2

0

T6
ew

× ImðF1

1
F2

1

�F2

2
F1

2

�ÞðI12 − I21Þ; ð29Þ

Iij ¼
Z

∞

0

dy
e−y

y2

Z

1

0

dz1z
2

1
SΦi

ðz1Þe−αiz
2

1
=y

×

Z

z1

0

dz2z
2

2
e−αjz

2

2
=y sin

�

βosc

y
ðz3

1
− z3

2
Þ
�

; ð30Þ

where αi ¼ ðMΦi
=2TewÞ2 and βosc ¼ M0ΔM

2

21
=6T3

ew.

Again, we have neglected thermal masses throughout.

To make more transparent the connections between the

baryon asymmetry and physical properties of the new states

such as masses and decay widths, we reparametrize the

asymmetry as follows:

YB ¼ 45g2
Φ

4π4g�

KB

KΦ

J

�

MΦ1

Tew

��

MΦ2

Tew

�

×

�

ΓΦ1

Hew

��

ΓΦ2

Hew

�

ðI12 − I21Þ; ð31Þ

where we have used

ΓΦi
¼ Tr½Fi†Fi�

16π
MΦi

; ð32Þ

and defined the Jarlskog-like invariant J by

4ImðF1

1
F2

1

�F2

2
F1

2

�Þ ¼ JTr½F1†F1�Tr½F2†F2�:

This invariant can be parametrized in terms of six mixing

angles,

J ¼ sin 2θ1 sin 2θ2 cos ρ1 cos ρ2 sinðϕ2 − ϕ1Þ; ð33Þ

where

cos θi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFi†FiÞ
11

TrðFi†FiÞ

s

; ð34Þ

cos ρi ¼
jðFi†FiÞ

12
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFi†FiÞ
11
ðFi†FiÞ

22

p ; ð35Þ

ϕi ¼ argðFi†FiÞ
12
; ð36Þ

with 0 ≤ ðθi; ρiÞ ≤ π=2. Our derivation assumed couplings

to a single quark flavor, in which case we should regard F1

and F2 as χ-space row vectors in the above equations,

consistent with the index placement in Eq. (2). However,

Eqs. (31)–(36) apply equally well in the three-flavor case,

Fi
I → Fi

αI . The θi angles parametrize the relative strength of

the coupling to χ1 vs χ2, while the ρi angles parametrize the

degree to which the couplings to χ1 and χ2 are aligned in

quark-flavor space; for a single quark flavor, cos ρi ¼ 1.

Finally, the ϕi give the relative phases.

Our final result is consistent with our arguments from

Sec. II A. In particular, we can specialize to the case of a

single scalar by making MΦ1
¼ MΦ2

and F1 ¼ F2 (and

including only the I12 term); in this case, the asymmetry

vanishes at this order in perturbation theory, recovering

the standard ARS result. In Sec. IV, we return to the single-

scalar scenario, showing that asymmetries can arise at

OðF4y2t Þ and at OðF6Þ in the model where Φ couples to

quarks, although even the OðF6Þ asymmetry has a different

parametric dependence than in ARS leptogenesis, due to the

equilibration among quark flavors in the SM. We also note

that, if we takeMΦ1
¼ MΦ2

and neglect washout effects, we

get I12 − I21 ¼ 0, in accordance with our arguments in

Sec. II A that the asymmetry should vanish in this limit.

In the absence of washout, our result is independent of a

possible cross-quartic coupling, λ12ðΦ†

1
Φ2Þ2 þ H:c: In that

limit, Φ1Φ
�
2
↔ Φ

�
1
Φ2 scattering does not affect the final

baryon asymmetry, which is determined by the total Φ

asymmetry at sphaleron decoupling. However, those scat-

terings can impact decay-washout effects (which our

perturbative result encodes in the SΦi
functions). To arrive

at Eq. (31), we assumed that the Φ1=Φ
ð�Þ
1

and Φ2=Φ
ð�Þ
2

asymmetries evolve independently. In many cases of

interest, for example if the χ oscillations necessary for

asymmetry generation begin at temperatures well below

MΦ2
, this assumption is valid. Moreover, when Φ1Φ

�
2
↔

Φ
�
1
Φ2 scattering does affect the final asymmetry it does not
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generally reduce it dramatically in viable parameter

regions. For simplicity, we therefore neglect Φ1Φ
�
2
↔

Φ
�
1
Φ2 scattering.

We conclude by noting that a nonzero baryon asymmetry

can still be obtained in the limit MΦ2
≫ MΦ1

. In this case,

from the perspective of the low-energy effective theory,

there exists a primordial coherent χ background that

interacts once to generate a baryon asymmetry. We there-

fore see that our two-scalar model readily generalizes to

any scenario where a nonthermal coherent χ ensemble is

produced in the early Universe. This could include, for

example, production from inflaton decays, or from the

decays of some other particle with different quantum

numbers than Φ1. Thus, freeze-in baryogenesis can occur

through any one of a large number of mechanisms of χ

production in the Universe, provided there is a weak-scale

state to allow late time χ scattering.
6

Starting with an assumed primordial χ background, one

can use the interaction

L ⊃ −FαIL̄αHχI þ H:c: ð37Þ

to generate the baryon asymmetry via χL̄ → H. That is,

rather than introduceΦi at all, one can exploit the neutrino-

portal coupling, forbidden in our Z2-symmetric models.

This takes us to a version of the ARS scenario in which we

allow an unspecified source of χ production, presumably

broadening the viable parameter space. In this scenario,

however, X-ray constraints on χ → νγ rule out the DM

being composed of those χ mass eigenstates that participate

directly in the asymmetry generation. In the models with

Φi, a sufficiently small neutrino-portal coupling can leave

our DM abundance and baryon asymmetry calculations

unaltered while still having potentially observable conse-

quences, as discussed in Sec. V B.

III. BARYOGENESIS AND DARK MATTER WITH

TWO SCALARS

In this section, we explore the parameters for which the

freeze-in baryogenesis model of Sec. II B can simultane-

ously account for the baryon asymmetry and DM, finding a

generic preference for masses ≲5 TeV and lifetimes cτ ≳
0.1 cm for the lightest scalar Φ1.

Given fixed values of the other parameters, we can use

Eqs. (14) and (31) to calculate the DM abundance and YB

as functions of ðΓΦ1
;ΓΦ2

Þ, or equivalently, ðcτΦ1
; cτΦ2

Þ.
Figure 2(a) shows results for benchmark parameters

MΦ1
¼ 2 TeV, MΦ2

¼ 4 TeV, M1 ≪ M2 ¼ 20 keV, and

θ1 ¼ θ2 ¼ π=4. The maximum possible baryon asymmetry

consistent with these inputs, ðYBÞmax, is realized by

choosing the other angles to give J ¼ 1 (as discussed

below, the DM abundance depends on θ1 and θ2, but not on

the other parameters determining J ).

Figure 2(a) shows that, for these inputs, a YB of around

twenty times the observed value is possible, without

overproducing DM. Furthermore, to avoid overproduction

of DM, both Φ particles must be long-lived on collider

scales, and the χ, χ̄ abundances must remain well below

equilibrium values, ensuring the validity of our perturbative

calculation.

As already emphasized, MΦ2
can be much larger than

MΦ1
without suppressing the magnitude of the baryon

asymmetry, provided the abundance of χ produced in Φ2

decays, Y
χþχ̄
2

, is held fixed by increasing the couplings to

Φ2. This is evident in Fig. 2(b), which shows contours of

baryon asymmetry and χ=χ̄ energy density in the

ðcτΦ1
; Y

χþχ̄
2

Þ plane for various MΦ2
.

For the case with approximately degenerate scalars

(MΦ2
¼ 2.1 TeV), the results are sensitive to our

assumption of no Φ1Φ
�
2
↔ Φ

�
1
Φ2 scattering. We see two

ðYBÞmax contours for that scenario, corresponding to

whether the Φ=Φ� asymmetry at sphaleron decoupling is

stored dominantly in Φ1 (with J ¼ 1) or Φ2 (with

J ¼ −1). The asymmetry is almost entirely in Φ1 in the

viable parameter space consistent with the DM constraint.

We now provide additional details underlying all of the

results of this section, including Fig. 2. First, in calculating

the baryon asymmetry, we replace the survival function in

Eq. (31) with its z1 ¼ 0 value, SΦi
ð0Þ, which can then be

taken outside the integrals in Eq. (30). That is, we

approximate Φ production to be at the time of reheating

for the purpose of estimating washout via Φ decay, while

still taking into account time dilation. Given that asym-

metry production by χ scattering dominantly occurs at

temperatures well above Tew, this is a reasonable approach.

We show in Appendix A that more careful treatments give

similar results (see Fig. 14).

Regarding the DM constraint, we adopt a Z2-symmetric

model, so that both χ mass eigenstates are stable on

cosmological time scales. We therefore require
7

ρχþχ̄

s
≤
ρcdm

s
¼ 4.32 × 10−10 GeV: ð39Þ

We are particularly interested in the case where this bound

is saturated and the χ particles make up all of the DM.

6
In the context of electroweak baryogenesis models, asym-

metry generation by Majorana fermion DM scattering has been
considered for example in [69], where (unlike here) a chemical
potential is first generated in a dark sector and subsequently
transferred to the SM sector.

7
Following Ref. [70], we take Ωcdmh

2 ¼ 0.1186 and
ΩBh

2 ¼ 0.02226. This gives

ρcdm

s
¼
�

Ωcdmh
2

ΩBh
2

�

mNYB ¼ 4.32 × 10−10 GeV ð38Þ

for YB ¼ 8.65 × 10−11 and a nucleon mass mN ¼ 0.938 GeV.
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The total χ þ χ̄ abundance from the decay of the scalar

Φi, Y
χþχ̄
i , is given by Eq. (14). Since the mixing angles θi

defined in Eq. (34) parametrize the relative couplings of Φi

to the two χ mass eigenstates, we find

ρχþχ̄

s
¼ M̄

ðΦ1Þ
χ Y

χþχ̄
1

þ M̄
ðΦ2Þ
χ Y

χþχ̄
2

; ð40Þ

where

M̄
ðΦiÞ
χ ¼ cos2 θiM1 þ sin2 θiM2 ð41Þ

is the average mass of χ and χ̄ particles produced in Φ
ð�Þ
i

decays, weighted by abundance.

To simplify our analysis we focus first on the case in

which the χ masses are hierarchical,

M2 ≫ M1; ð42Þ

to an extent that we can neglect M1 entirely. We consider

the implications of having larger M1 toward the end of this

Section. For the remaining parameters, taking χ1 to be

effectively massless maximizes the space that gives the

correct baryon asymmetry consistent with the DM con-

straint of Eq. (39). In this hierarchical regime we take

ΔM2

21
≃M2

2
ð43Þ

and

M̄
ðΦiÞ
χ ≃ sin2 θiM2; ð44Þ

giving

M2ðsin2 θ1Yχþχ̄
1

þ sin2 θ2Y
χþχ̄
2

Þ ≤ ρcdm

s
ð45Þ

as our DM constraint. For the parameters adopted in

Fig. 2(a), this translates roughly to Yχþχ̄ ≤ 4 × 10−5,

consistent with our earlier claim that the DM constraint

requires the χ particles to remain well out of equilibrium.

A. The decoupled-Φ2 regime

Figure 2(b) shows that, while the baryon asymmetry is

reduced as MΦ2
approaches MΦ1

, the masses need to be

close to get a strong suppression. Because we get quali-

tatively similar results for MΦ2
≫ MΦ1

as for modest

hierarchies, MΦ2
≳ 2MΦ1

, we work in the “decoupled-

Φ2” regime for the remainder of this section. In this regime,

the generation of the asymmetry can be factorized into the

production of a χ abundance, which oscillates and then

scatters into Φ1 at a much later time.

More precisely, we adopt an approximate expression for

YB that applies when

MΦ2
≫ MΦ1

≫ Tew ð46Þ

(a) (b)

FIG. 2. For the inputs indicated, contours of ðYBÞmax (blue) and ρχþχ̄ (red), expressed in the left plot as ratios relative to the observed

values. In (a),MΦ2
is held fixed, and the region in which a large enough baryon asymmetry can be achieved without overproducing DM

is shaded; (b) compares contours for various MΦ2
as a function of the lifetime of Φ1 and the total χ þ χ̄ abundance produced in the

decays ofΦ2, Y
χþχ̄
2

. For both plots, the baryon asymmetry is maximized for jJ j ¼ 1, and we take theΦ quantum numbers to be those of

uR. For the DM contours we assume M2

2
≃ ΔM2

21
and neglect the energy density stored in the lighter χ mass eigenstate.
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and

ΔM2

21
M0

M3

Φ2

≪ 1 ð47Þ

are both satisfied. When Eq. (47) is satisfied, χ oscillations

develop at temperatures T ≪ MΦ2
. We can then ignore the

term with I21 in Eq. (31), because inverse decays of Φ2 are

highly Boltzmann-suppressed by the time oscillations

begin. Given that the Φ
ð�Þ
2

population annihilates away at

high temperatures, we can furthermore take t ¼ 0 at the

moment of χ production, when calculating the oscillation

effect. In the I12 integral of Eq. (30), this amounts to

neglecting the term with z2 in the sine function. Finally,

Eq. (46) allows us to extend the z1 and z2 integrations in

Eq. (30) to infinity, because Boltzmann suppressions of the

Φ2 decay and Φ1 inverse decay rates effectively cut off the

integrals at lower values of z1 and z2 in any case. Using

Eq. (14), we can then approximate Eq. (31) by

YB≃
8gΦKBJ

3π1=2KΦ

Y
χþχ̄
2

�

Tew

MΦ1

�

2
�

ΓΦ1

Hew

�

SΦ1
ð0ÞĨ12ðβ̃oscÞ; ð48Þ

with

Ĩ12ðβ̃oscÞ ¼
Z

∞

0

dyye−y
Z

∞

0

dxx1=2e−x

× sin ½β̃oscx3=2y1=2� ð49Þ

and

β̃osc ¼
4ΔM2

21
M0

3M3

Φ1

: ð50Þ

Figure 3 shows a plot of Ĩ12ðβ̃oscÞ. The asymptotic

behavior is

Ĩ12ðβ̃oscÞ ≃
� ð3 ffiffiffi

π
p

=2Þβ̃osc β̃osc ≪ 1;
ffiffiffi

π
p

=ð3β̃oscÞ β̃osc ≫ 1;
ð51Þ

and the maximum value ðĨ12Þmax ≃ 0.364 is attained for

β̃osc ≃ 0.385, corresponding to

�
ffiffiffiffiffiffiffiffiffiffiffiffi

ΔM2

21

q
	

max Ĩ12
≃ 20 keV ×

�

MΦ1

TeV

�

3=2

: ð52Þ

Increasing or decreasing
ffiffiffiffiffiffiffiffiffiffiffiffi

ΔM2

21

p

by an order of magnitude

from this value shifts β̃osc by two orders of magnitude and

suppresses Ĩ12 by a factor of roughly ∼3 × 10−2.

B. Numerical results in the decoupled-Φ2 regime

To get a sense of where the model’s most promising

parameter space lies, we perform two random scans over

the couplings and masses that determine ρχþχ̄ and YB in the

decoupled-Φ2 regime, using Eqs. (14), (40), (44), and (48).

The shaded regions in Fig. 4 show the preferred Φ1

parameter space that emerges.

We now explain how these scans were performed. First,

we impose an upper bound on Y
χþχ̄
2

. Because the Sakharov

conditions require a departure from equilibrium [19], at

least some linear combination of χ states must be out of

equilibrium at the time of inverse decay into Φ1.

Baryogenesis can still occur if a linear combination of χ

states does come into equilibrium. For example, it is

possible that Φ
ð�Þ
2

decays thermalize some linear combi-

nation of χ1 and χ2 (and the associated CP-conjugate state),
in which case the total abundance of χ and χ̄ particles left

over afterΦ2 annihilation approaches the equilibrium value

for a single mass eigenstate,

Y
χþχ̄
eq ¼ 135ζð3Þ

4π4g�
≃ 4 × 10−3: ð53Þ

We impose this value as our upper bound on Y
χþχ̄
2

,

Y
χþχ̄
2

< 4 × 10−3; ð54Þ

even though one can imagine viable scenarios in which

a larger-than-equilibrium abundance is produced at high

temperatures.
8

We also require

M2 > 10 keV; ð55Þ

FIG. 3. The function Ĩ12ðβ̃oscÞ appearing in Eq. (48), which

gives the baryon asymmetry in the decoupled-Φ2 regime.

8
For example, if the background of χ=χ̄ particles is produced

nonthermally by a source that couples to a single linear
combination of χ1 and χ2, the orthogonal linear combination
of χ1 and χ2 could remain out of equilibrium given a sufficiently
long oscillation timescale.
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to approximately satisfy structure-formation constraints

(for example, the authors of Ref. [71] argue that Lyman-

α constrains Mχ ≳ 12 keV provided χ þ χ̄ production

occurs at electroweak temperatures).

Taking three active flavors, we start with randomly

generated F1 and F2 coupling matrices and a randomly

generated MΦ1
> 1 TeV (with a flat prior in the logarithm

of MΦ1
). In all cases, we take MΦ2

≫ MΦ1
. We include

points in Fig. 4 if we can find a rescaling of the F2 matrix

and a value for M2

2
¼ ΔM2

21
that give the observed DM

density and baryon asymmetry, subject to the constraints

Y
χ
2
< 4 × 10−3 and M2 > 10 keV. Figures 4(a) and 4(b)

differ only in how the initial Fi couplings are generated.

Figure 4(a) is based on the “overall-scale” scan: overall

scales of the coupling matrices F1 and F2 are randomized

with flat priors in the logarithms of those scales, the

magnitude of each individual coupling Fi
αI is obtained

by multiplying the appropriate overall scale by a random

number in the range [0, 1], and each coupling is finally

assigned a random complex phase.

Figure 4(b) is based on the “uncorrelated-couplings”

scan: absolute values of couplings Fi
αI are independently

randomized with flat priors in the logarithms of those

absolute values, and each coupling is then assigned a

random complex phase.

To different degrees, both scans prefer MΦ1
to be in the

∼1 − few TeV range, making this a promising scenario with

respect to collider searches. The uncorrelated-couplings scan

tends to produce larger hierarchies among coupling matrix

elements, making small Φ branching ratios to χ2 less rare

and avoiding overproduction of DM. This produces a

broader distribution in ðMΦ1
; cτΦ1

Þ space.
To interpret the numerical scan results, we also analyti-

cally identify viable regions in the ðMΦ1
; cτÞ plane under

(a) (b)

FIG. 4. The shading shows relative frequencies for points that give the correct baryon asymmetry and DM abundance in two different

random scans over couplings and masses, as described in the text. In the “overall-scale” scan of (a), the magnitude of each F1
αI is

generated by multiplying a log-distributed overall scale by a random number in the range [0, 1], and similarly for each F2
αI . In the

“uncorrelated-couplings” scan of (b) the magnitudes of each Fi
αI are taken to be log-distributed and fully uncorrelated. The contours

(identical for the two plots) enclose regions in the ðMΦ1
; cτÞ plane that can give a large enough baryon asymmetry while satisfying the

DM constraint of Eq. (45), under three different coupling assumptions. We take the Φ quantum numbers to be those of uR.

FIG. 5. The maximum baryon asymmetry consistent with the

DM constraint of Eq. (45), as a function of MΦ1
and M2, in two

different coupling scenarios. We assumeM2

2
≃ ΔM2

21
and neglect

the energy density stored in the lighter χ mass eigenstate. For this

particular plot, we have not imposed structure formation con-

straints relevant for M2 ≲ 10 keV. We take the Φ quantum

numbers to be those of uR.
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FIG. 6. Results of repeating the two scans of Fig. 4 with M1=M2 ¼ 1=2 (top), M1=M2 ¼ 1=10 (middle), and M1=M2 ¼ 1=100
(bottom). For points with 0 < M1 < 10 keV, we restrict the χ1 energy density to be no larger than 1=3 of the total DM energy density to

evade structure-formation constraints [72,73].
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specific coupling assumptions. We marginalize over the

other, unspecified parameters to find the maximum baryon

asymmetry subject to the DM constraint; for further details

see Appendix B.

If we set Y
χþχ̄
2

at what we take to be its maximum

allowed value, thereby saturating Eq. (54), the observed

baryon asymmetry can be attained for points within the

blue contour of Fig. 4. For this maximum value of Y
χþχ̄
2

, we

avoid overproduction of DM only for θ2 ≲ 0.1, correspond-

ing to a Φ2 that decays preferentially to the massless χ1, as

opposed to χ2.

We can alternatively adopt fixed values for the mixing

angles θ1 and θ2. Allowed regions lie within the red contour

of Fig. 4 for θ1 ¼ θ2 ¼ π=4 (in which case Φ1 and Φ2 both

decay to χ1 and χ2 with equal probabilities) and within the

green contour for θ1 ¼ θ2 ¼ 1=10 (in which caseΦ1 andΦ2

both decay predominantly to χ1). The M2 > 10 keV con-

straint has a significant impact on the θ1 ¼ θ2 ¼ π=4 para-

meter space, cutting out a region with smallerMΦ1
and cτΦ1

where the model would predict an overabundance of DM.

In Fig. 4(a), the bulk of the scan points are enclosedwithin

the red, equal-mixing contour, consistent with the fact that

the overall-scale scan leads to more anarchic coupling

structures and consequently large mixing angles among all

states.

We also see in Fig. 4 that the viable parameter space is

restricted to MΦ1
≲ 6 TeV and cτΦ1

≳ 4 mm if Φ decays

produce χ1 and χ2 in equal abundance (red contour), but

that the allowed values expand to MΦ1
≲ 35 TeV and into

the sub-mm decay regime if Φ decays mainly produce very

light χ1 particles (blue contour). In Fig. 5 we find that the

corresponding ranges for the χ2 mass are M2 ≲ 150 keV

and M2 ≲ 4 MeV, respectively.

In Figs. 4 and 5 we take χ1 to be effectively massless by

equating M2

2
¼ ΔM2

21
and neglecting the energy density

stored in the lighter χ mass eigenstate. As shown in Fig. 6,

the viable ðMΦ1
; cτΦ1

Þ space shrinks further if we adopt

different assumptions for M1. As a result, the prospects for

testing the model become even more promising.

The bound MΦ1
≲ 35 TeV applies when Φ1;2 have the

same quantum numbers as uR, but the results are roughly

the same in the QL and dR cases. While the upper end of

this mass range is likely to be inaccessible even at a

100 TeV collider [74], it is at the very least a firm upper

bound in the two-scalar model. As the scan results suggest,

saturating this upper bound requires a special alignment of

parameters, while more generic parameters typically prefer

values of MΦ1
that are more accessible at colliders.

Finally, if we consider the baryon asymmetry alone and

abandon the DM constraint of Eq. (45), Eq. (48) places a

very weak upper bound on the mass of the lighter scalar,

MΦ1
≲ 570 TeV

�

gΦKB

KΦ

�

1=2
�

Y
χþχ̄
2

4 × 10−3

�

1=2

: ð56Þ

If we impose the bound of Eq. (54), the two trailing factors

are order-one or smaller.

IV. BARYOGENESIS AND DARK MATTER WITH

A SINGLE SCALAR

Having thoroughly explored the parameter space giving

rise to baryogenesis and DM in a model with two scalars,

we now return to the more ARS-like scenario with a single

scalar. We consider the same model as Sec. II B, but now

including only a single scalar, Φ, with couplings to all

quark generations:

L ⊃ −
MI

2
χ̄cIχI − ðFαIQ̄αΦχI þ H:c:Þ: ð57Þ

As argued in Sec. II A, the baryon asymmetry is expected to

be smaller with only a single scalar, and indeed we show in

this section that the viable parameter space for baryogenesis

and DM is much more constrained than in Sec. III. This is

due to the fact that the baryon asymmetry arises at higher

order in perturbation theory, either OðF4y2t Þ or OðF6Þ,
where yt is the SM top quark Yukawa coupling.

We start by discussing why the OðF4Þ asymmetry

vanishes if we neglect SM Yukawa couplings. Generating

an asymmetry relies on processes such asΦ → Qαχ̄; Qβχ̄ →

Φ differing in rate
9
from the equivalent processes for Φ̄. To

determine the total asymmetry, we must sum over all quark

flavors α, β, which we can organize into a sum over pairs of

processes with the two quark flavors switched, such as the

pair consisting of the “(1,2)” process Φ → Q1χ̄; χ̄Q2 → Φ

and the “(2,1)” processΦ → Q2χ̄; χ̄Q1 → Φ. In the absence

of SM Yukawa couplings, flavor dependence enters only

through the FαI Yukawas themselves. The (1,2) and (2,1)

rates are then related by F ↔ F�, and their sum is thus

symmetric under F ↔ F�, guaranteeing a vanishing asym-

metry once we include the CP-conjugate processes.
SM Yukawa couplings spoil this cancellation. Most

significantly, the large top Yukawa coupling produces

flavor nonuniversality in the quark thermal masses, leaving,

for example, less available phase space for (inverse) decays

involving tR than for those involving uR. Thermal mass

effects are more important at high temperatures, and so

flavor dependence of the kinematics tends to be more of an

issue in the decays than in the inverse decays (thermal-mass

effects are unimportant for inverse decays that occur at

T ≪ MΦ, for example). Within the pairΦ → tRχ̄; uRχ̄ → Φ

and Φ → uRχ̄; tRχ̄ → Φ, the ðtR; uRÞ process is therefore

kinematically suppressed relative to ðuR; tRÞ, and the two

rates are no longer related by F ↔ F�. This source of

asymmetry is consistent with CPT which, due to the

expansion of the Universe, only relates equal-time rates

9
We take the “rate” for Φ → Qαχ̄; Qβ χ̄ → Φ to mean the

contribution to the Qβ χ̄ → Φ rate at some fixed inverse-decay

time, due to χ̄ particles that were produced in association withQα.
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for processes that can be approximated as instantaneous.

Since the resulting asymmetry vanishes in the flavor-

universal limit yt → 0, we find the resulting asymmetry

is OðF4y2t Þ.
Note that an asymmetry at this order requires more than

just flavor-non-universal quark or lepton masses. It requires

flavor-non-universal temperature dependence of the Φ-

decay reaction densities, which arises in our scenario due to

the large tree-level Φ mass.

Indeed, the asymmetry vanishes if we can express the

Φ → Qαχ̄ reaction densities as γαðTÞ ¼ γ̃αfðTÞ, where γ̃α
are flavor-dependent constants and fðTÞ is the same for

every flavor. In that case the rates for Φ → Qαχ̄I; Qβχ̄I →

Φ and Φ → Qβχ̄I; Qαχ̄I → Φ share the common factor

fðT1ÞfðT2Þ, where T2 and T1 are the decay and inverse-

decay temperatures, respectively. As for the case with

flavor-universal quark masses, the two rates differ only

by F ↔ F�, and the asymmetry vanishes at this order.

This is of particular relevance to ARS leptogenesis,

where Φ is the SM Higgs. In this case, no fields have

significant tree-level masses in the unbroken phase, all

reaction densities must scale like γαðTÞ ¼ γ̃αT
4 from

dimensional analysis, and consequently the OðF4Þ asym-

metry vanishes even in the presence of a τ thermal mass.

This is not quite true at T ∼ Tew, since at this point the

Higgs tree-level mass is relevant, and so a small effect may

be observed there. The OðF4y2t Þ asymmetry we find in our

model therefore crucially depends on the tree-levelΦmass,

and the asymmetry generation at this order is highly

suppressed for T ≫ MΦ.

In the rest of this section, we consider two separate,

equally motivated cases: in the first, the top quark couples

appreciably to χ and Φ, and an asymmetry is generated

according to the flavor-non-universal mechanism described

above. In the second, the top quark does not couple

appreciably to χ and Φ, in which case the smallness of

the light-quark Yukawa couplings leads to the dominant

asymmetry production occurring instead at OðF6Þ.

A. Top-mass-induced asymmetry

Here we consider in detail the single-scalar scenario in

which the asymmetry arises atOðF4y2t Þ, adopting couplings
to uR-type quarks for concreteness. We treat thermal masses

as described for the two-scalar case in Appendix A 1, with

further details given below. That is, we use Eqs. (A2) and

(A4), except that for the top quark we include a Yukawa

contribution [75]:

M̄2
uR;3

¼
�

1

3
g2
3
þ 1

9
g2
1
þ 1

4
y2t

�

T2: ð58Þ

This expression is based on the finite-temperature quark

dispersion relation in the high-momentum regime. Here and

below, bars over masses indicate that thermal contributions

are included.

Our results for this scenario, with the ρχþχ̄ ¼ ρcdm con-

straint in place, are summarized in Fig. 7. As described

below, the angle θ parametrizes the relative overall strength

ofΦ’s couplings to χ1 (taken to bemassless) versus χ2 (taken

to have M2 > 10 keV). In Fig. 7(a) we take θ ¼ π=4,
corresponding to equal-strength couplings to χ1 and χ2.

We see that there exists parameter space in which a realistic

baryon asymmetry and DM abundance can simultaneously

be realized, with MΦ ≲ 2.5 TeV and M2 ≲ 60 keV.

(a)

(b)

0.0001

0.0010

0.0100

0.1000

1.0000

FIG. 7. Results for the single-scalar scenario with top-mass-induced asymmetry. For both plots, we take M1 ¼ 0 and impose

ρχþχ̄ ¼ ρcdm. In (a), we take θ ¼ π=4 and show the maximum possible baryon asymmetry for various values of MΦ and M2. In (b),

ðMΦ; cτÞ points for which the maximum possible baryon asymmetry is equal to ðYBÞobs lie on the contours shown. We include θ among

the adjustable parameters for the black contours, whereas we fix θ at the indicated values for the others. As described in the text, the

shading shows relative frequencies for points that give YB ≥ ðYBÞobs in a random scan over couplings and masses. For the solid (dashed)

contours of both plots we take Aself ¼ 0 (1=3) in calculating the scalar thermal mass; see Eq. (A1).
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Figure 7(b) shows the viable ðMΦ; cτÞ parameter space.

For the black contours we maximize YB with respect to all

other parameters including θ, while for the other contours

we consider fixed values of θ.

As we did for the two-scalar scenario, we also perform a

random scan for a rough, qualitative determination of the

preferred parameter space, also shown in Fig. 7(b). We start

with randomly generatedMΦ1
> 1 TeV andM2 > 10 keV

(with flat priors in the logarithms of these masses). Taking

three active flavors, we generate a random coupling texture

by assigning each Fi
αI a random number in the range [0, 1]

multiplied by a random complex phase. This texture for F

determines sin θ (along with all other relevant mixing

angles and phases), allowing the overall scale of F, and

therefore ΓΦ, to be determined by the ρχþχ̄ ¼ ρcdm require-

ment. We keep points with YB ≥ ðYBÞobs.
Taken together, the results of Fig. 7 show that the viable

parameter space is significantly more limited than for the

two-scalar case, making the prospects for conclusively

testing this scenario at colliders particularly favorable.

While the contours of Fig. 7(a) show that it is in principle

possible for the Φ mass to be as large as ∼4 TeV, the scan

suggest that generic patterns of couplings prefer smaller

masses, MΦ ≲ 2 TeV. For this scenario, Φ must couple

both to the top quark and at least one flavor of light quark.

Production of ΦΦ
� at colliders would lead to various final

states involving isolated jets from Φ → qχ̄ and/or top

quarks from Φ → tχ̄.
A caveat regarding Fig. 7 is that, unlike for the two-

scalar scenario, the baryon asymmetry arises here as an

intrinsically thermal-mass-related effect. We have adopted

a rather crude quasiparticle approximation to obtain our

results; for example, our use of the high-momentum limit

of the quark dispersion relation might be called into

question given the relatively large coefficients appearing

in Eq. (58). However, even when we adopt the low-

momentum dispersion relation (thereby reducing quark

thermal masses-squared by a factor of two), the model can

still satisfy the DM and baryon asymmetry constraints. A

more refined finite-temperature field theory calculation

might give a more robust determination of the viable

parameter space.

We now provide additional details on our calculation

of the OðF4y2t Þ asymmetry. Following our treatment of the

two-scalar case in Appendix A 1, we define the flavor-

dependent functions

ραðzÞ ¼ 1 −
M̄2

Qα
ðzÞ

M̄2
Φ
ðzÞ ð59Þ

along with

τðzÞ≡ M̄ΦðzÞ
MΦðzÞ

: ð60Þ

By retracing the steps of the perturbative calculation of

Sec. II B, but with a single scalar, and with temperature-

dependent masses included, we find that the baryon asym-

metry can be expressed as

YB ¼ 45g2
Φ

4π4g�

KB

KΦ

M4

Φ

T2
ewH

2
ew

X

γ;δ

4Im½Fγ1Fγ2
�Fδ2Fδ1

��
ð16πÞ2

×

Z

∞

0

dy
e−y

y2

Z

1

0

dzSΦðzÞz2τ2ðzÞργðzÞe
−
1−ργ ðzÞ
ργ ðzÞ y

× e−α
z2

y
τ2ðzÞργðzÞ

Z

z

0

dz0z02τ2ðz0Þρδðz0Þe
−
1−ρδðz0Þ
ρδðz0Þ

y

× e−α
z02
y
τ2ðz0Þρδðz0Þ sin

�

βosc

�

z3 − z03

y

��

; ð61Þ

where the survival function SΦðzÞ can be obtained from

Eq. (A10), with the substitutions MΦi
→ MΦ, τi → τ, and

ΓΦi
ρ2i →

X

γ

ðFF†ÞγγMΦρ
2
γ

16π
: ð62Þ

Applying the same substitutions in Eq. (A11) gives the DM

abundance.

As a consistency check on our calculations, we can

compare Eq. (61) with the contribution to YB coming from

Φ
ð�Þ
2

decay followed by Φ
ð�Þ
1

production, in the two-scalar

case with flavor-universal thermal masses. The two-scalar

result is given by Eqs. (31) and (A9), with only the I12 term
included. We reproduce those expressions by starting with

the single-scalar YB of Eq. (61) and making the appropriate

substitutions:M4
Φ
→M2

Φ1
M2

Φ2
,SΦðzÞ→SΦ1

ðzÞ, τðzÞ→τ1ðzÞ,
τðz0Þ → τ2ðz0Þ, ργðzÞ → ρ1ðzÞ, and ρδðz0Þ → ρ2ðz0Þ.
If we neglect the z-dependence in the survival function

by taking SΦðzÞ → SΦð0Þ, Eq. (61) can be simplified

somewhat by exploiting the z ↔ z0 symmetry of the

integrand. We find

YB ≃
45g2

Φ

4π4g�

KB

KΦ

M4

Φ

T2
ewH

2
ew

SΦð0Þ
X

γ<δ

4Im½Fγ1Fγ2
�Fδ2Fδ1

��
ð16πÞ2

×

Z

∞

0

dy
e−y

y2
Im½HγðyÞH�

δðyÞ�; ð63Þ

where

HγðyÞ ¼
Z

1

0

dzz2τ2ðzÞργðzÞe
−
1−ργ ðzÞ
ργ ðzÞ y

× e−α
z2

y
τ2ðzÞργðzÞeiβosc

z3

y : ð64Þ

Because we take into account only third-generation

Yukawa couplings, the symmetry between the first two

quark generations allows us to rewrite the baryon asym-

metry as

BARYOGENESIS AND DARK MATTER FROM FREEZE-IN PHYS. REV. D 101, 115023 (2020)

115023-17



YB ≃
45g2

Φ

16π4g�

KB

KΦ

J̃

�

MΦ

Tew

�

2
�

ΓΦ

Hew

�

2

SΦð0Þ

×

Z

∞

0

dy
e−y

y2
Im½H12ðyÞH�

3
ðyÞ�; ð65Þ

where we neglect Yukawa coupling contributions to ther-

mal masses in H12, and where

J̃ ¼ sin2 2θ sin 2ρ1 sin 2ρ2 cos
2 γ sinðϕ3 − ϕ12Þ; ð66Þ

with

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
11

TrðF†FÞ

s

; ð67Þ

cos ρI ¼
jF3Ij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞII
p ; ð68Þ

cos γ ¼ j
P

α¼1;2F
�
α1Fα2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

α¼1;2jFα1j2
P

β¼1;2jFβ2j2
q ; ð69Þ

ϕ12 ¼ arg

�

X

α¼1;2

F�
α1Fα2

�

; ð70Þ

ϕ3 ¼ argðF�
31
F32Þ: ð71Þ

The angles θ, ρI , and γ all lie in the first quadrant.

Analogously to the two-scalar case, θ parametrizes the

relative overall strength of the χ1 couplings compared to

those of χ2. Each ρI angle reflects the coupling strength of

χI to the third-generation quark, relative to overall χI
coupling strength. The angle γ parametrizes the degree

of alignment between the couplings of χ1 and χ2 within the

first two generations. Finally, ϕ12 and ϕ3 are relative phases

between the couplings of χ1 and χ2 to the first two

generations and to the third generation, respectively.

Figure 7 is based on the YB expression of Eq. (65) and

the DM abundance of Eq. (A11), modified for the single-

scalar scenario as described above. For θ ≪ 1 and

M1 ≪ M2, both ρχþχ̄ and YB are approximately propor-

tional to θ2. This differs from the two-scalar model, where

YB ∼ θ1 for small θ1. In Fig. 7(b), the viable ðMΦ; cτÞ
parameter space is consequently not enhanced much by

suppressing the χ1 couplings relative to those of χ2, in

contrast with the two-scalar scenario.

B. Asymmetry with flavor-universal masses

We now turn to the scenario where the top quark has a

vanishing coupling to χI, F3I ¼ 0. In this case, the

asymmetry can arise only at OðF6Þ, which is the same

order as ARS leptogenesis. There are crucial differences

between the model in Eq. (57) and the conventional ARS

model. In the absence of neutrino masses, B=3 − Lα is

conserved for all three lepton flavors in the SM, while

different quark flavors come into chemical equilibrium at

temperatures T ≫ Tew. The dominant source for the

asymmetry in ARS leptogenesis relies on the accumulation

of asymmetries in individual lepton flavors, even though

the total asymmetry sums to zero; these flavor asymmetries

are then converted to a total lepton asymmetry by washout

processes. For quarks, however, all flavors have equal

chemical potentials, and the flavor asymmetries are there-

fore driven to zero by SM scattering processes. The

standard ARS results therefore do not hold in the case

where the χ fields couple predominantly to quarks.

As recently pointed out in Ref. [65], however, there

exists an additional source term for the baryon asymmetry

at OðF6Þ, and it is nonzero even for vanishing initial quark

flavor chemical potentials. When SM-Yukawa effects in the

reaction densities are negligible, this is the dominant source

for the baryon asymmetry in the case of QCD-charged Φ.

Here we perform a systematic study of its effects.

The source in question requires three or more χ fields.

We find that the asymmetry it produces is sufficient to

account for the observed baryon asymmetry over a rela-

tively restricted part of parameter space. In particular, we

find that MΦ ≲ 2.5 TeV to obtain the observed baryon

asymmetry. The model therefore faces strong constraints

from collider probes of Φ, and the bulk of the parameter

space can be tested with current experiments.

To study the OðF6Þ asymmetry, we turn to kinetic

equations that give the evolution of density matrices for

the various particle abundances; see Refs. [65,76] and

references therein. We continue to focus on rates for

processes that conserve Uð1Þχ−Φ, since violations of this

symmetry include Majorana mass insertions that are

subdominant at high temperature given the small masses

for χ in our model [18]. We are thus led to the single-scalar

versions of Eqs. (A42), (A43), and (A46), the kinetic

equations presented in Appendix A 3 for the two-scalar

case. As we explain there, these are momentum-integrated

equations that assume a thermal ansatz for the χ momentum

distribution. This treatment of the momentum dependence

simplifies the analytic calculation of theOðF6Þ asymmetry,

and the two-scalar results of Appendix A 2 suggest it

should give correct YB values to within a factor of two. We

refer the reader to Appendix A 3 for notational background

and other details regarding the kinetic equations.

We assume there are no preexisting asymmetries and

solve the equations iteratively assuming small coupling F.
Given our assumption of flavor-universal quark chemical

potentials, there is no asymmetry at OðF4Þ, and conse-

quently the asymmetry at OðF6Þ does not depend on

washout terms. Eq. (A42) then becomes

dY
χ
IJ

d ln z
¼ −

1

2
fγ̃0; Yχ − Y

χ
eqg; ð72Þ
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where, as described in Appendix A 3 and specifically

Eq. (A31), γ̃0 is a dimensionless reaction-density matrix

for χ production, defined in the interaction picture. Y
χ
IJ is

proportional to the density matrix for χ, containing infor-

mation on both the abundance and phases for the coherent χ

states. It is convenient to define the dimensionless function

γ̄ðzÞ, obtained from the γ̃0 reaction density of Eq. (A31) by

stripping off the ðF†FÞIJ and oscillation factors:

½γ̃0ðzÞ�IJ ¼ ðF†FÞIJeiΔM
2

IJ
z3=3μ2osc γ̄ðzÞ; ð73Þ

where

μ2osc ¼
2T3

ew

M0




T

Eχ

�

−1

¼ 36ζð3ÞT3
ew

π2M0

≃ ð3.75 keVÞ2: ð74Þ

The total χ − χ̄ asymmetry, δYχ , is found by taking the

trace of the difference in χ and χ̄ density matrices:

δYχ ¼ Tr½Yχ − Y χ̄ �. The Uð1Þχ−Φ symmetry guarantees

that δYχ is the same as δYΦ ≡ YΦ − YΦ
�
. Following the

discussion for the two-scalar case leading to Eqs. (25) and

(26), the final baryon asymmetry can therefore be calcu-

lated as

YB ¼ KB

KΦ

δYχðz ¼ 1Þ: ð75Þ

Starting with the initial condition Yχ ¼ Y χ̄ ¼ 0, we can

obtain at OðF2Þ the χ abundances

Y
χ
IJðzÞ ¼ ðF†FÞIJYχ

eq

Z

z

0

dz1

z1
γ̄ðz1ÞeiΔM

2

IJz
3

1
=3μ2osc : ð76Þ

Because Y χ̄ is obtained by switching F ↔ F�, it is clear

that no asymmetry arises at OðF2Þ, and straightforward to

show that none arises at OðF4Þ either.
We determine the OðF6Þ contribution to the baryon

asymmetry by computing the χ asymmetry iteratively using

Eq. (72) three times. In this way we calculate the asym-

metry to be

δYχðzÞ ¼ Y
χ
eq

4

Z

z

0

dz3

z3

Z

z3

0

dz2

z2

Z

z2

0

dz1

z1

× Tr½fγ̃ðz3Þ; fγ̃ðz2Þ; γ̃ðz1Þgg − ðF → F�Þ�: ð77Þ

Because of the cyclic property of trace, the integrand is

fully symmetric under any permutation of the variables of

integration. We can thus use the following identity for

symmetric integrands, S:

Z

z

0

dz3

Z

z3

0

dz2

Z

z2

0

dz1Sðz1; z2; z3Þ

¼ 1

3!

Z

z

0

Z

z

0

Z

z

0

dz3dz2dz1Sðz1; z2; z3Þ; ð78Þ

which permits us to factorize our integral into a product of

three integrals. With appropriate use of the symmetry of the

integrand and relabelling of variables of integration, we get

δYχðzÞ ¼ iY
χ
eq

3

Z

z

0

Z

z

0

Z

z

0

dz3

z3

dz2

z2

dz1

z1
γ̄ðz1Þγ̄ðz2Þγ̄ðz3Þ

×
X

I;J;K

eiðΔM
2

IJ
z3
1
þΔM2

JK
z3
2
þΔM2

KI
z3
3
Þ=3μ2osc

× Im½ðF†FÞIJðF†FÞJKðF†FÞKI�: ð79Þ

The summed quantity is nonzero for I ≠ J ≠ K; thus, we

need three χ particles to get a nonzero asymmetry (in

agreement with the finding of Ref. [65]). We assume for

simplicity that there are precisely three χ fields. We must

then sum separately over even and odd cyclic permutations

of f1; 2; 3g. The permutations within each equivalence

class are identical due to the symmetry of the integrand

under permutations of fz1; z2; z3g, while interchanging

even and odd permutations is equivalent to complex

conjugating both the oscillation factor and F. We thus

obtain our final expression for the χ asymmetry:

δYχðzÞ ¼ −2Y
χ
eqIm½ðF†FÞ

12
ðF†FÞ

23
ðF†FÞ

31
�

× Im½f̃12ðzÞf̃23ðzÞf̃31ðzÞ�; ð80Þ

where

f̃IJðzÞ ¼
Z

z

0

dz0

z0
γ̄ðz0ÞeiΔM2

IJ
z03=3μ2osc : ð81Þ

Because MΦ ≫ Tew in our QCD-triplet Φ model, the

production of the baryon asymmetry is dominated by

interactions that occur when the Φ mass is dominated

by its tree-level value, rather than by the thermal correc-

tions typical in the conventional ARS scenario. Thus, for

our subsequent numerical work we neglect all thermal

masses, which leads to the following expression for the

dimensionless reaction density γ̄ðzÞ:

γ̄ðzÞ ¼ gΦM
2
Φ
T2
ew

32π3Y
χ
eqsewHew

z3
Z

∞

0

du

eu þ 1

×

Z

∞

M2

Φ
z2=ð4uT2

ewÞ
dw

�

1

ew þ 1
þ 1

euþw − 1

�

: ð82Þ

In our final expression for the baryon asymmetry, we

include the effects of Φ decays prior to the electroweak

phase transition on the asymmetry through the inclusion of

a survival factor analogous to Eq. (28). Note that the

survival factor actually modifies the integrand so that it is

no longer symmetric with respect to interchange of z3 with
z1 or z2. This makes the calculation considerably more

complicated. However, because the asymmetry is predomi-

nantly produced at T ≳ 1 TeV and the greatest sensitivity
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of the survival factor is to decays at Tew ≪ 1 TeV, we can

to a good approximation assume the asymmetry is pro-

duced very early on and take SΦð0Þ as our survival factor,
calculated using Eq. (28). This reestablishes the symmetry

of the integrand, and the baryon asymmetry is consequently

YBðzÞ ≃ −
2KB

KΦ

Y
χ
eqIm½ðF†FÞ

12
ðF†FÞ

23
ðF†FÞ

31
�

× SΦð0ÞIm½f̃12ðzÞf̃23ðzÞf̃31ðzÞ�: ð83Þ

Below, we compare this perturbative result to a fully

numerical solution to the kinetic equations and find good

agreement in the weak-washout regime; see Fig. (9).

1. Baryon asymmetry and dark matter

We now proceed to study the parameter space over which

the baryon asymmetry can be obtained. We also investigate

whether this parameter space is consistent with obtaining

the correct abundance of DM, finding that it is unlikely that

χ can have the correct DM abundance if we impose the

observed baryon asymmetry.

Aswewill show in Sec.V, themost constraining aspects of

the model with a QCD-charged scalar are the direct limits

from colliders, MΦ ≳ 1 TeV. As a result, the dominant

epoch of χ production and inverse decay is T ∼ 1 TeV, with

a corresponding optimal mass splitting ofΔM2 ∼ ð10 keVÞ2
corresponding to oscillations at T ∼MΦ. This leads to an

upper bound on the asymmetry for fixed F.
Since the baryon asymmetry arises at OðF6Þ in the case

of a single scalar, the baryon asymmetry is much smaller

than in Sec. II B for the same Yukawa couplings.

Alternatively, the Yukawa couplings must be larger to

accommodate the observed baryon asymmetry, leading to

the overproduction of χ in this scenario relative to the DM

abundance. This overproduction can satisfy cosmological

constraints on Neff if χ decays to lighter species, but this is

incompatible with χ being the DM.

To set up our numerical studies, we parametrize the

coupling factor of Eq. (83) in a manner analogous to what

we did for the two-scalar model in Eq. (33),

4Im½ðF†FÞ
12
ðF†FÞ

23
ðF†FÞ

31
� ¼ J ½TrðF†FÞ�3; ð84Þ

where J is a Jarlskog-like invariant. In Appendix C, we

show that J ≤ 1=27. However, the optimal choice for the

baryon asymmetry may lead to an overproduction of DM.

To demonstrate this, we introduce the angle

cos θ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
11

TrF†F

r

; ð85Þ

which is analogous to the θi angles of the two-scalar model

and describes how strongly Φ is coupled to χ1 relative to

the two heavier species. Similarly, a related quantity,

cos θ2 ¼
1

sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
22

TrF†F

r

; ð86Þ

specifies the coupling of Φ to χ2 relative to its coupling to

χ3. As shown in Appendix C,

J ∝ cos2 θ1 sin
4 θ1 sin

2ð2θ2Þ; ð87Þ

which is maximized for cos θ1 ¼ 1=
ffiffiffi

3
p

and θ2 ¼ π=4.
However, the DM abundance depends on

ρχþχ̄ ∝ M1 cos
2 θ1 þM2 sin

2 θ1 cos
2 θ2

þM3 sin
2 θ1 sin

2 θ2: ð88Þ

IfM1 → 0, then it may be preferable to have θ1 ≪ 1, which

suppresses the baryon asymmetry but also prevents an

overabundance of DM. For our numerical studies, we fix

θ2 ¼ π=4 but scan over all possible values of θ1 to uncover

the largest possible parameter space consistent with both

the observed baryon asymmetry and DM abundance. For a

complete description of the other parameters in J and their

optimal values, see Appendix C.

Since ΓΦ ¼ TrðF†FÞMΦ=16π, it is possible to express

the asymmetry in terms of MΦ, ΓΦ (or, equivalently, cτΦ),

and the mass splittings ΔM2
IJ. To simplify the numerical

study, we parametrize the χ masses and splittings through a

single parameter, Mχ : M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ .

This minimizes the DM abundance while keeping an equal

mass splitting between states.

We now investigate the possibility that the χ fields con-

stitute the DM. In this case, we fix the values of MΦ, Mχ ,

and J as described above; requiring the χ abundances as

calculated in Eq. (76) to match the observed DM abun-

dance dictates the value of TrðF†FÞ, which in turn can be

used to calculate the baryon asymmetry. This is the

maximum baryon asymmetry subject to the requirement

of obtaining the DM abundance, since the baryon asym-

metry can always be made smaller with smaller values of

the CP-violating phases in J .

We show in Fig. 8 our results for a scalar mass of

MΦ ¼ 1 TeV.We see that, even for the favorable parameters

we have chosen, themaximumpossible baryon asymmetry is

YB ≈ 6 × 10−11, below the observed value. Since MΦ ≳

1 TeV from current collider constraints (see Sec. V), we

conclude that simultaneously accounting for DM and the

baryon asymmetry is impossible, or at least very difficult, in

this particular scenario. The lack of viable parameter space is

directly linked to the fact that the asymmetry arises atOðF6Þ
with a single scalar while the DM abundance is still

established at OðF2Þ, a serious obstacle to simultaneously

satisfying both observed abundances.

In examining our results, we have found that the largest

baryon asymmetry consistent with the DM abundance is

associated with large mixing angles θ1 ∼ 1. This is in
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contrast with our findings in the two-scalar model, where

there was a larger parameter space associated with small

mixings. Since we now have two massive χ states, and Φ

must couple to all three of them to generate a baryon

asymmetry, it is difficult to get an appreciable asymmetry

without significantly populating the heavier states.

Additionally, according to Eq. (87) the baryon asymmetry

for small mixing angles is proportional to θ4
1
, which is a

significant suppression. Indeed, as we show in the next

section, it is difficult to obtain the observed baryon

asymmetry even for maximal mixing and removing all

constraints from DM.

2. Baryon asymmetry without dark matter

Above, we found that imposing the requirement that χ

constitute the DM yields a baryon asymmetry that is too

small. Alternatively, obtaining the correct baryon asym-

metry leads to an overabundance of χ. This is not

necessarily a problem: since the χ hidden sector is relatively

poorly constrained, it is possible that there exist additional

states to which the heavier χ fields could decay. For

example, we could imagine a model with a new massless

singlet scalar φ such that χ2;3 → χ1φ prior to recombina-

tion. Because all of the χ fields have subthermal number

densities and they are produced at T ∼ TeV, such a scenario

is safely within cosmological limits from the effective

number of neutrinos (Neff) provided χ1 is sufficiently light.

While it may be possible for χ or some other hidden

sectors fields to be DM in this scenario, the details depend

sensitively on the content and structure of the hidden

sectors. Because of the loss of predictive power with

respect to the DM abundance in this scenario, we instead

take a different approach: we simply assume that the χ

fields decay to (nearly) massless particles that are safe from

cosmological limits, and abandon the requirement of

obtaining the DM density. We then explore which param-

eters can still give rise to the baryon asymmetry based on

the production and oscillations of χ.

As in Sec. II B, the baryon asymmetry depends on

several physical parameters: the mass of the scalar, MΦ;

the Yukawa couplings, or alternatively the Φ lifetime

cτΦ ¼ 1=ΓΦ; the mass splittings, ΔM2
IJ, and the CP phases

as encoded in J . Because we wish to explore the most

expansive parameter space that gives rise to the observed

baryon asymmetry, we set J to its maximal single-scalar

value of 1=27 (see Appendix C). Once again, we para-

metrize the χ masses and splittings through a single

parameter, Mχ : M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ .

Up until now, we have employed a perturbative analysis

as outlined in Sec. II, which is valid in the out-of-

equilibrium, weak-washout regime. The requirement that

χ constitute the DM situates us safely within the perturba-

tive regime. Once we relax this assumption, however, it is

possible that χ attains a near-equilibrium abundance and

baryogenesis can still occur. For example, if χ decouples at

T ≳ 100 GeV, then each Weyl fermion only contributes

0.05 to Neff [77]. As a result, we must consider the

possibility that the χ particles come close to equilibrium.

It is perhaps surprising that the strong-washout regime

would be relevant at all for baryogenesis, since the asym-

metry appears to be exponentially damped. However, if the

CP-violating source and washout terms are both large, then

the asymmetry can reach a quasi-steady-state solution where

dYB=dz ¼ 0 due to a cancellation between source and

washout terms: if the kinetic equations have the form

dYB=dz ¼ SðzÞ −WðzÞYB, we see that a quasi-steady-state

solution is obtained with YB ¼ SðzÞ=WðzÞ. In this case, the
asymmetry is not exponentially suppressed.

To generate a sizable asymmetry in the strong washout

regime, we need a large source of CP-violation down to

T ∼ Tew; since the production rate of Φ is suppressed by

e−MΦ=Tew , this suggests that MΦ cannot be too much larger

than the electroweak scale for the strong washout regime to

be relevant. Furthermore, we must have Yχ ≠ Y
eq
χ . For the

optimal benchmark outlined in Appendix C with J ¼
1=27, F†F has a zero eigenvalue, meaning that there is a

linear combination of χ states that does not interact with Φ.

This is valid until oscillations become important, in which

case the final χ state is brought into equilibrium. For

sufficiently small Mχ , this can lead to an appreciable CP-

violating rate even at T ∼ Tew.

There is one final effect we must consider: sphaleron

decoupling. In the strong-washout regime, the baryon

asymmetry is being continually generated and destroyed

at T ∼ Tew and so the final baryon asymmetry depends

sensitively on the effects of sphaleron decoupling. In other

words, it is perhaps too simplistic to assume that sphaleron

decoupling is instantaneous at Tew ≈ 130 GeV. To go

beyond this instantaneous approximation, we follow

Ref. [43]; since there are no new chiral states that couple

FIG. 8. For θ2 ¼ π=4, MΦ ¼ 1 TeV, and equally-spaced χ

masses M1 ¼ 0, M2 ¼ Mχ , and M3 ¼ 2Mχ , the maximum

baryon asymmetry that can be obtained in the single-scalar

scenario of Sec. IV B when we impose the requirement that

the total χ abundance match the observed DM abundance. The

observed baryon asymmetry is indicated with a dashed red line.
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to sphalerons in our model, the rates relating baryon and

lepton number are the same as in the SM. The effect is a

gradual decoupling of sphalerons as we approach Tew.

Putting all of these effects together, we solve the kinetic

equations with a thermal ansatz for the χ energies to

compute the baryon asymmetry, including washout and

back-reaction terms. To illustrate the parameter space for

which strong washout is relevant, we compare the full

solution of the kinetic equations with that of our perturba-

tive analysis in Fig. 9. We show results for both the optimal

benchmark couplings from Appendix C, as well as for a

modified benchmark (also outlined in Appendix C) which

leads to an earlier equilibration time of all χ interaction

eigenstates. Any area to the left of the indicated contours

can give rise to the observed baryon asymmetry. The

asymmetry in the strong-washout limit is still relevant,

but is much reduced relative to the optimal benchmark.

We show in Fig. 10 the contours giving rise to the

observed baryon asymmetry for different χ masses using

the solution to the full kinetic equations. We show results

for both the optimal CP-violating parameters and the

modified benchmark (see Appendix C). We see that it is

possible to obtain the observed baryon asymmetry for

Mϕ ≲ 2.5 TeV depending on the Φ lifetime. It is evident

that the strong-washout limit is relevant for a wide range of

χ masses. We also observe interesting features in the shapes

of the contours, which are due to the presence of a

multitude of important time scales in the asymmetry

generation process, including three oscillation times cor-

responding to the ΔM2
IJ, as well as the time scale of the

decays and inverse decays of Φ. While we have attempted

to characterize the precise shapes of the oscillations in the

contours in Fig. 10, we have been unable to find a simple

explanation due to the irreducible complexity of the four

different time scales. However, we have checked that our

solutions are robust against variations of the methods of

performing the numerical integration, as well as under

small variations of the initial conditions and parameters,

suggesting that our solutions are physically correct.

For cτΦ < 0.01 cm, the only phenomenologically dis-

tinguishable feature of the model is the value of MΦ: the

Φ − χ −Q couplings are sufficiently small as to be difficult

to probe directly, and Φ now decays promptly in a collider

experiment, which removes the main experimental conse-

quence of the nonzero lifetime. Therefore, we truncate

Fig. 10 at cτΦ ¼ 0.01 cm, and for shorter lifetimes present

instead the maximum value of MΦ that can give rise to the

baryon asymmetry with cτΦ < 0.01 cm. The maximum

MΦ values are found via a scan over the cτΦ −MΦ

parameter space, and to remove jaggedness associated with

the granularity of the scan we perform a running average.

We show the maximum value of MΦ consistent with the

baryon asymmetry for different values ofMχ in Fig. 11. We

see that the maximum value of MΦ is obtained for

Mχ ∼ 10–20 keV, such that oscillations regularly occur

at the sphaleron decoupling temperature but are not too fast.

We also see that the modified benchmark permits a smaller

range for MΦ at cτΦ < 0.01 cm, which is consistent with

Fig. 9.

To summarize the results of the analysis with a single

QCD-triplet scalar, neglecting flavor-dependence in the

quark thermal masses, we find that obtaining the observed

baryon asymmetry is possible but is apparently incompat-

ible with χ being DM candidates. The parameter space for a

FIG. 9. For the single-scalar model with no DM constraint, comparison of parameters giving rise to the observed baryon asymmetry

based on (blue, dashed) perturbative analysis, and (purple, solid) solution of kinetic equations. The χ masses areM1 ¼ 0,M2 ¼ 5 keV,

M3 ¼ 10 keV. (Left) Couplings correspond to optimal CP-violating parameters from Appendix C. (Right) Couplings correspond to the

modified benchmark from Appendix C.
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baryon asymmetry is quite limited, with the scalar having a

mass MΦ ≲ 2.5 TeV, with lifetimes ranging from prompt

to the centimeter scale. This gives the model excellent

prospects for discovery or exclusion in the high-luminosity

phase of the LHC.

3. Comparison of asymmetry with ARS leptogenesis

We conclude this section by comparing two potential

OðF6Þ contributions to the baryon asymmetry: (1) the

standard ARS contribution involving flavor-dependent

washout, and (2) the contribution studied above and

identified in Ref. [65], which survives when the active

fermions have flavor-universal chemical potentials, i.e., the

relevant one in the QCD-triplet scalar case.

To make this comparison we need to go beyond the

kinetic equations developed in Appendix A 3, which

assume flavor-universal chemical potentials for the active

fermions. We instead consider

dY
χ
IJ

d ln z
¼ −

1

2

�

X

α

γ̃α; Y
χ − Y

χ
eq

�

; ð89Þ

dδYα

d ln z
¼ Tr½γ̃αYχ − γ̃�αY

χ̄ � − δYα

�

Y
χ
eq

Yα
eq

�

Trγ̃wα ; ð90Þ

where δYα is the asymmetry in the SM fermion flavor α;

because of rapid scattering, we do not have to keep track of

oscillations or preserve off-diagonal components of the δYα

density matrix. Note that we now include a flavor-specific

washout reaction density γ̃wα along with γ̃0α, the flavor-

specific version of the reaction density considered earlier.

In place of Eq. (73), we can write these χ-space matrices as

γ̃0;wα ðzÞIJ ≡ F�
αIFαJe

iΔM2

IJ
z3=3μ2osc γ̄0;wðzÞ; ð91Þ

where γ̄0ðzÞ and γ̄wðzÞ are dimensionless and flavor-

universal functions of temperature.

The standard analytic results for ARS assume that the

scattering processes for χ production are dominated by

2 ↔ 2 processes and decays of the SM Higgs where the

dominant contribution to the Higgs mass comes from

thermal processes. In this case, all reaction densities are

by dimensional analysis proportional to T4, and because the

FIG. 10. Comparison of parameters giving rise to the observed

baryon asymmetry for cτ > 0.01 cm, based on a full solution of

kinetic equations for (top) the optimal CP-violating parameters;

(bottom) the modified benchmark, both from Appendix C. The χ

masses are M1 ¼ 0, M2 ¼ Mχ , M3 ¼ 2Mχ with: (purple) 5 keV,

(black) 30 keV, (red) 50 keV, (blue) 80 keV.

FIG. 11. Maximum value of MΦ that allows successful gen-

eration of the baryon asymmetry in the strong washout limit

(cτΦ < 0.01 cm) as a function of Mχ . The χ masses are M1 ¼ 0,

M2 ¼ Mχ ,M3 ¼ 2Mχ . The CP-violating parameters are (red) the

optimal benchmark, and (blue) the modified benchmark de-

scribed in Appendix C. It is evident that Φ must be lighter than

approximately 2.5 TeV.
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barred reaction densities are obtained from these by

stripping off the coupling factors and dividing by

Y
χ
eqsðzÞHðzÞ, we have

γ̄0;wðzÞ ¼ α0;wχ T4
ew

Y
χ
eqsewHew

z; ð92Þ

where α0χ and αwχ are dimensionless constants. To make a

meaningful comparison we use this form for the reaction

densities to calculate both OðF6Þ contributions.

Conventional ARS contribution.—At OðF4Þ, the χ abun-

dance leads to an asymmetry in SM fermions due to a

difference in χ and χ̄ rates for flavor α:

δYαðzÞ ¼
Z

z

0

dz2

z2
Tr½γ̃0αðz2ÞYχðz2Þ − γ̃0αðz2ÞY χ̄ðz2Þ�

¼ 4

X

I<J

Im½FαJF
�
αIðF†FÞJI�

Z

z

0

dz2

z2

Z

z2

0

dz1

z1

× γ̄0ðz1Þγ̄0ðz2Þ sin
�

ΔM2
JIðz32 − z3

1
Þ

3μ2osc

�

Y
eq
χ : ð93Þ

However, as argued in Sec. II A, the total asymmetry is zero

because

δYχ ¼ −
X

α

δYα ∝
X

α

½FαIF
�
αJðF†FÞIJ� ¼ 0: ð94Þ

A total asymmetry arises at OðF6Þ because

d

d ln z

X

α

δYα ¼ −

�

Y
χ
eq

Yα
eq

�

X

α

δYαTrγ̃wα : ð95Þ

Integrating to zew ¼ 1, we obtain

δYχ ¼
X

α

Z

1

0

�

Y
χ
eq

Yα
eq

�

dz

z
δYαðzÞTrγ̃wα ðzÞ ð96Þ

¼
X

α

ðFF†Þαα
�

Y
χ
eq

Yα
eq

�
Z

1

0

dz

z
δYαðzÞγ̄wðzÞ: ð97Þ

Thanks to Eq. (92), the analytic results simplify signifi-

cantly because the factors of z cancel in the integrals and we
have, restricting ourselves to only two χ particles,

Z

z

0

dz2

Z

z2

0

dz1 sin

�

ΔM2

21
ðz3

2
−z3

1
Þ

3μ2osc

�

≈1.4

�

μ2osc

ΔM2

21

�

2=3

ð98Þ

for ΔM2

21
=3μ2oscz

3 ≫ 1 (i.e., many oscillations prior to time

z) [76]. We then have

δYχ ¼ 5.6αwχ ðα0χÞ2T12
ew

ðYχ
eqsewHewÞ3

�

μ2osc

ΔM2

21

�

2=3

Y
χ
eq

×
X

α

Y
χ
eq

Yα
eq

ðFF†ÞααIm½Fα1F
�
α2ðF†FÞ

12
�; ð99Þ

which agrees with Eq. (A8) of Ref. [76] for the case where

χ is coupled to SM leptons.

Contribution without flavor-dependent washout.—We now

compare the ARS result with what we get when we evaluate

Eqs. (80) and (81), plugging in Eq. (92) as the barred

reaction density. Defining βIJ ≡ ΔM2
IJ=3μ

2
osc, and taking

the limit of many oscillations (z3βIJ ≫ 1), we find

f̃IJðzÞ →
α0χT

4
ew

Y
χ
eqsewHew

eiπ=6
Γð4=3Þ
β
1=3
IJ

; ð100Þ

where we have selected mass orderings such that βIJ > 0 to

simplify the phases. This gives us

δYχ ≈ 2.1
ðα0χÞ3T12

ewY
χ
eqμ

2
oscIm½ðF†FÞ

12
ðF†FÞ

23
ðF†FÞ

31
�

ðYχ
eqsewHewÞ3ðΔM2

21
ΔM2

32
ΔM2

31
Þ1=3 :

Beyond Oð1Þ factors, the relative factor of α0χ=αwχ , and the

fact that this contribution relies on a distinct combination of

Yukawa couplings from the ARS asymmetry in Eq. (99), we

find that the new contribution suffers from a ðμ2osc=ΔM2Þ1=3
suppression

10
relative to the ARS contribution; otherwise,

the asymmetries from the two terms are comparable.

V. SIGNALS OF FREEZE-IN BARYOGENESIS

A. Collider signatures

The models proposed in this paper have very specific

phenomenological signatures that follow naturally from the

observed baryon asymmetry. They arise from the existence

of one or more QCD-triplet scalars, Φ, with lifetimes often

governed by

ΓΦ ≲Hew ∼ cm−1: ð101Þ

Connections between the baryon asymmetry, particle life-

time and the Hubble expansion rate at the electroweak scale

arise in other models as well [78–81], but in our case the

connection between the decay rate of the scalar and Hew is

particularly direct.

Particles which travel macroscopic distances before

decaying give rise to spectacular signatures at colliders.

Because the only truly long-lived particles (LLPs) in the

SM have masses ≲5 GeV, the decay of a TeV-scale LLP

has no irreducible backgrounds. However, such decays may

10
This is a suppression because μ2osc < ΔM2; otherwise, the

assumption of many oscillations prior to the electroweak phase
transition is not satisfied and these results do not hold.
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not be reconstructed using standard algorithms, and the

backgrounds are challenging to characterize. Searching for

LLPs has therefore been identified as a primary opportunity

for the discovery of new particles, and a large community

of theorists and LHC experimentalists are working on new

ways of looking for LLPs [82].
11

Several earlier studies have noted that freeze-in DM

models can give rise to LLP signatures [60,85–95]. In

particular, Ref. [90] has done a careful study of models that

are accessible at the LHC. However, general freeze-in DM

models do not necessarily predict states that are accessible

at colliders: the BSM particles may be very heavy while

still giving rise to the observed DM abundance. By

contrast, when we require both DM and baryogenesis in

a freeze-in model, the parameter space shrinks considerably

in both mass and lifetime: very long lifetimes yield an

insufficient abundance of baryons, while very short life-

times lead to excessive washout and overproduction of DM.

Furthermore, Φ masses well above the TeV scale suppress

the baryon asymmetry, and so our model largely predicts

new scalars that are accessible at current or future colliders

and with lifetimes in the 1–100 cm range.

The primary prediction of our model is the existence of

one or more scalars Φ, which carry QCD charge and have

proper lifetimes ranging from promptly decaying to

10 meters. These particles subsequently decay to a SM

quark and an invisible χ state. This leads to several distinct

signatures depending on the decay location, including:

(1) One or more heavy quasistable charged particles

resulting fromΦ being bound inside a hadronic final

state prior to its decay. These states leave tracks with

unusual ionization or timing properties that can be

distinguished from SM particle tracks;

(2) One or two displaced hadronic vertices or jets,

accompanied by missing transverse momentum;

(3) A pair of prompt jets plus missing transverse

momentum, in the case where the Φ decay occurs

sufficiently rapidly that its decay point cannot be

reliably distinguished from the interaction point.

Top quarks may be produced inΦ decays, in which case the

signatures only become more striking, with a sizable

fraction of events having final-state leptons. In the sin-

gle-scalar scenario of Sec. IVA, for example, Φ decays

would yield a mixture of light quarks and tops. Below we

focus on light-quark signatures, under the assumption that

top couplings lead to even stronger constraints.

1. Heavy stable charged particles

The most relevant search for heavy stable charged

particles (HSCPs) is from ATLAS [96]. This search uses

36 fb−1 of data at 13 TeV. The analysis makes use of

the distinctive ionization signature in the inner tracker of

slow-moving, massive LLPs; as a result, this search is

sensitive to shorter-lifetime LLPs than other HSCP

searches. The analysis also provides limits on the scalar

mass as a function of cτ. In the case of a scalar with the

same charges as uR, the search excludes LLPs with

cτ ≳ 10 cm, with the most stringent constraint of

1375 GeV for Φ that traverses the entire detector.

2. Displaced and delayed jets

There are many different searches for high-mass particles

decaying to displaced and delayed jets targeting decays in

different parts of the detector and in different kinematic

regimes [97–101]. Most relevant for us are searches most

sensitive to LLP lifetimes cτ ≲ 1 m, since these are the

parameters that are largely uncovered by the HSCP

searches.

There are two powerful searches that are readily reinter-

preted for ourmodel. The first is a search byCMS for delayed

jets [101]with 137 fb−1 of data at 13TeV. This search ismost

sensitive to heavy LLPs with cτ ∼ 0.1–1 m m, since the

propagation of the slow LLP over an appreciable time leads

to a significant delay for the resulting jets [102]. The CMS

search includes limits on a benchmark model with LLPs that

decay to a gluon plus an invisible particle; this is very similar

to our model where the LLP decays to a quark plus an

invisible particle. We assume there is no appreciable change

in the signal efficiency for the quark scenario, and interpret

their cross-section limits as a function of LLP mass and

lifetime in terms of our signal. The best constraints are for

MΦ ≲ 1.6 TeV for lifetimes of 20 cm, and we truncate the

sensitivity atMΦ ¼ 1 TeV since that is as low as Ref. [101]

goes in their search.

The second search is a CMS search for displaced jets

[98] based on 35.9 fb−1 of data at 13 TeV. This search relies

on a trigger requiring at least two displaced jets, meaning

jets that contain less than three prompt tracks and at least

one displaced track. Displaced tracks associated with each

jet pair in the event are used to construct secondary vertices,

which must have a track mass larger than 4 GeV. While the

parton produced in Φ decays is massless, QCD gives a

mass associated with the resulting jets, allowing for this

selection to be passed. Importantly, the vertex recon-

struction does not require tracks from both jets in a pair

to be assigned to the vertex; as a result, displaced jets

arising from separate decays (in our case, from the two

Φ → jχ decays) can still pass the selections, which gives

sensitivity to our model. Ref. [98] gives cross-section limits

for a model where the LLP decays to a gluon and a

massless, invisible particle. This is not exactly the same as

our model, which gives a quark in the LLP decay, and so we

suspect there may be a slightly lower sensitivity to the

quark model because the jet mass is smaller. Nevertheless,

we expect comparable limits for the two cases, and in the

absence of more information for reinterpretation we assume

the limits are the same for gluon and quark decays for the

11
For other reviews of theoretical motivations for LLPs and

existing experimental searches, see Refs. [83,84].
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purpose of our analysis. CMS presents limits on two LLP

masses: 950 GeV and 2400 GeV. The 950 GeV is most

appropriate for our model, and so we reinterpret the cross

section limits in terms of limits on MΦ as a function of cτ.
The strongest limit is for cτ ∼ 2 cm, with constraints on

MΦ ≳ 1.6 TeV, although there exist constraints on MΦ ≳

0.8 TeV for lifetimes ranging from 0.1–1000 cm.

Other searches, including an ATLAS displaced vertex

search [97], are expected to yield comparable results.

ATLAS does not provide an interpretation in terms of a

jet plus missing momentum LLP decay, and so it is more

involved to reinterpret that search; furthermore, given that

the cross section limits in Ref. [97] are comparable to those

from the searches we have used, we expect the results to be

qualitatively similar.

3. Prompt jets and ET

Finally, in the short lifetime limit there exist stringent

constraints on Φ → jχ from searches for jets and missing

transverse momentum. The most stringent constraint comes

from searches for squarks: if Φ decays predominantly to

light-flavor quarks, then MΦ ≳ 1.13 TeV, while the con-

straints are slightly stronger if it decays to tops

(MΦ ≳ 1.175 TeV) or bottoms (MΦ ≳ 1.25 TeV) [103].

Strictly speaking, these limits only apply in the limit of

prompt decays (cτ ≲ 10 μm). If Φ has a longer lifetime, the

sensitivity is expected to degrade, but provided it decayswell

before the calorimeter the jets should still be reconstructed.

Recently, there have been more efforts to reinterpret

prompt searches in terms of LLP models in order to

determine precisely at what lifetimes prompt searches fail,

and to identify any possible gaps between prompt and long-

lived searches [82,104–108]. None of these studies are

directly applicable to the Φ → jþ ET signature in our

model; however, several reinterpret prompt searches for

gluinos decaying to 2jþ ET. Since we expect the lifetime

dependence of the jet reconstruction efficiency to be

roughly independent of the number of jets in the final

state, we use the results of Ref. [107] to derive a ratio

between the excluded prompt cross section and the

excluded cross section at a finite lifetime cτ. We then

assume this ratio is the same for our signature, and use this

to reinterpret the prompt squark limits of Ref. [103] for

finite lifetimes. While this is only an approximate pro-

cedure, we expect that it gives the correct qualitative

behavior of the limits for Φ → qχ decays.

4. Summary of collider constraints and prospects

We summarize the existing collider constraints in

Fig. 12. It is evident that nearly all the parameter space

with MΦ ≤ 1 TeV is ruled out, with the possible exception

of a small sliver around cτ ¼ 10 cm. However, it is likely

that the delayed jet search has some sensitivity below

1 TeV, which would close most of the sliver. It is evident

that a combination of prompt and long-lived searches

currently gives excellent sensitivity to the freeze-in baryo-

genesismodelwith a newQCD-charged scalar. The search of

Ref. [103] is new and, as understanding of the detectors

improves, we expect sensitivity could get even better,

allowing excellent prospects for discovery. At
ffiffiffi

s
p ¼

14 TeV, the high-luminosity phase of the LHC should have

more than 10 signal events forMΦ ≲ 2.5 TeV, and this is the

upper mass limit of possible sensitivity at the LHC for high-

efficiency, low-background searches.

While our reinterpretations of existing searches show

good sensitivity to Φ → qχ, most of the existing searches

do not directly give results in terms of our simplified model.

It may be true, for example, that the smaller mass of the

quark-initiated jet could reduce sensitivity relative to a

model with gluons. We therefore suggest that the exper-

imental collaborations explicitly include a quark þET

model in their LLP studies, since it is theoretically well

motivated and it may be that variants of the existing search

strategies could be used to improve signal efficiency for the

quark model. It would also facilitate reinterpretation and

give a more accurate understanding of how much of the

model space is covered by current and planned collider

searches.

B. Z2-violating signals

So far, we have assumed that the only coupling of Φ to

the SM is via the operator(s) in Eq. (2). This is true if there

exists a Z2 symmetry under whichΦ and χ are charged and

the SM fields are uncharged. However, one can also

imagine a scenario without such a symmetry: in this case,

baryon-number-violating terms such as

λijΦ
�dci d

c
j þ H:c: ð102Þ

are allowed, depending on the Φ quantum numbers (here

we have switched to Weyl-spinor notation). Unless the λij

FIG. 12. Summary of existing collider constraints from (purple)

heavy stable charged particle searches; (blue) delayed jet

searches; (red) displaced jet searches; (brown) searches for

prompt decays to jets and ET. Details are provided in the text.
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couplings are tiny (that is, not much larger than the FIα

couplings responsible for the baryon asymmetry and DM

production), this term would lead to rapid Φ → jj decay,

leaving prompt signatures in colliders. Because the term

violates baryon number, it would also potentially lead to a

larger asymmetry that does not depend on spectator effects

in the manner of the Z2-symmetric models.

However, such operators lead to proton decay via off-

shell Φ-mediated processes, such as p → πþχ. This leads
to extremely strong constraints on λ: indeed, we have

checked that even if Φ couples exclusively to heavy-flavor

quarks at tree-level, there are couplings to light-flavor

quarks induced at loop level that violate proton decay

constraints unless jλj ≪ jFj. Therefore, our preliminary

investigation finds that Z2-violating couplings of Φ to

quarks are constrained to be so small that, if present, they

are unlikely to dramatically alter the phenomenology.

Another potentially important Z2-violating term is the

neutrino-portal coupling

L ⊃ yL̄Hχ þ H:c: ð103Þ

This coupling leads to decays χ → 3ν and, more impor-

tantly, χ → γν, giving rise to X-ray line signatures with

Eγ ¼ Mχ=2 if χ is the DM. This could, for example, explain

a possible feature in X-ray data at Eγ ≃ 3.5 keV (first noted

in Refs. [109,110]), although there is conflicting evidence

(or lack thereof) for the existence of this line in different

galaxies and clusters. The coupling y could easily be large

enough to account for any X-ray lines that are observed,

while being small enough to not otherwise disrupt how our

mechanism works. In particular, since χ is produced at

temperatures well above the electroweak scale, it is

produced colder than conventional sterile neutrinos via

the Dodelson-Widrow mechanism, although a 3.5 keV X-

ray line would still be in tension with structure formation

constraints that require Mχ ≳ 10 keV [71].

VI. CONCLUSIONS

Early-Universe oscillations of DM particles, χ, may have

played a central role in generating the baryon asymmetry.

In this paper we studied models in which these oscillations

lead to asymmetric rates for χ̄q → Φ and χq̄ → Φ
�, where

Φ is a a QCD-triplet scalar. Exploration of the phenom-

enology for different BSM-particle spins and SM charges is

a work in progress. Together, these various scenarios

constitute a rich array of testable low-scale baryogenesis

models, which simultaneously explain the DM and baryon

abundances and generically predict new long-lived states at

colliders.

We considered separately the minimal case, with a single

χ interaction term, and scenarios in which there are

multiple, distinct ways of producing and annihilating χ

particles. The presence of multiple channels tends to greatly

enhance the baryon asymmetry. For concreteness, we

demonstrated this enhancement in a model with two

QCD-charged scalars, both with couplings to χ. Alter-

natively, a primordial out-of-equilibrium abundance of χ

from inflation or dynamics in the very early Universe is

sufficient to realize the enhancement.

Along with sub-MeV χ masses, viable parameter points

for DM and baryogenesis typically haveMΦ ∼ 1–fewTeV,

and cτΦ ≳ 1 cm, leading to striking signatures at colliders.

The DM constraint pushes us into the weak-washout

regime, where the asymmetry calculation is analytically

tractable and physically transparent. Independent of DM

considerations, the baryon asymmetry in the weak-washout

regime is strongly suppressed for Φ lifetimes much less

than the Hubble time at sphaleron decoupling, because it

depends on the Φ=Φ� asymmetry at that time. This

provides a concrete link between cosmological time scales

and long-lived particle searches at colliders.
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APPENDIX A: COMPARISON OF

CALCULATIONAL SCHEMES FOR

THE TWO-SCALAR MODEL

In this appendix we compare various methods of

calculating YB and ρχþχ̄ with the simplified perturbative

calculation from Sec. II B. We first consider two modified

perturbative calculations, one that includes thermal masses

(Sec. A 1), and a second that adopts a thermal ansatz for the

χ momentum distribution (Sec. A 2). We then use that

thermal ansatz to go beyond the perturbative framework

(Sec. A 3). We write down and numerically solve an

appropriate system of kinetic equations that incorporates

back-reaction and washout effects, thermal masses, and

quantum statistics. We find that the discrepancies when

compared with the “minimal” YB and ρχþχ̄ calculations of

Sec. II B are typically smaller than ∼50%, corresponding to

modest differences in the viable parameter regions for

baryogenesis and DM.
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1. Thermal mass effects

We approximate quark thermal mass contributions based

on the finite-temperature quark dispersion relation in the

high-momentum regime. Using bars where thermal effects

are included, we therefore take

M̄2
Φi

¼ M2
Φi

þ ðAg þ Ai
selfÞT2; ðA1Þ

M̄2

Q ¼ AgT
2; ðA2Þ

where the gauge contributions, identical for Φi and Q, are

given by [75]

Q ¼ QL∶ Ag ¼
1

3
g2
3
þ 3

16
g2
2
þ 1

144
g2
1
; ðA3Þ

Q ¼ uR∶ Ag ¼
1

3
g2
3
þ 1

9
g2
1
; ðA4Þ

Q ¼ dR∶ Ag ¼
1

3
g2
3
þ 1

36
g2
1
: ðA5Þ

In our analysis of two-scalar models, we neglect contri-

butions to M̄Q from SM Yukawa couplings, leaving a more

careful treatment of the top quark for future work. The

coefficient Ai
self allows us to consider the effects of extra

contributions to M̄Φi
coming from scalar self-interactions.

We incorporate thermal mass effects in our YB and ρχþχ̄

calculations with the help of the dimensionless functions

τiðzÞ ¼
M̄Φi

ðzÞ
MΦi

; ðA6Þ

and

ρiðzÞ ¼ 1 −
M̄2

QðzÞ
M̄2

Φi
ðzÞ : ðA7Þ

Neglecting thermal masses amounts to taking τi → 1 and,

given that we neglect Yukawa contributions to Q masses,

ρi → 1. For the Φi decay widths, these definitions imply

Γ̄Φi
ðzÞ ¼ τiðzÞρ2i ðzÞΓΦi

: ðA8Þ

Using these functions, the final baryon asymmetry can still

be represented by Eq. (31), except with a modified

expression for Iij:

Iij ¼
Z

∞

0

dy
e−y

y2

Z

1

0

dzSΦi
ðzÞz2τ2i ðzÞρiðzÞe

−
1−ρiðzÞ
ρiðzÞ

y

× e−αi
z2

y
τ2
i
ðzÞρiðzÞ

Z

z

0

dz0z02τ2jðz0Þρjðz0Þe
−
1−ρjðz0Þ
ρjðz0Þ

y

× e−αj
z02
y
τ2
j
ðz0Þρjðz0Þ sin

�

βosc

�

z3 − z03

y

��

; ðA9Þ

and with the survival function now given as

SΦi
ðzÞ ¼ exp

�

−
ΓΦi

Hew

Z

1

z

dz0z0τiðz0Þρ2i ðz0Þ

×
K1ð

MΦi

Tew
τiðz0Þz0Þ

K2ð
MΦi

Tew
τiðz0Þz0Þ

�

: ðA10Þ

We choose to preserve the definition αi ¼ ðMΦi
=2TewÞ2,

which involves the zero-temperature scalar masses. The

summed abundance of χ and χ̄ particles from Φ
ð�Þ
i decays,

given by Eq. (14) in the absence of thermal masses,

becomes

Y
χþχ̄
i ¼ 45gΦ

2π4g�

�

ΓΦi

Hew

��

MΦi

Tew

�

2

×

Z

∞

0

dzz3τ3i ðzÞρ2i ðzÞK1

�

MΦi

Tew

τiðzÞz
�

: ðA11Þ

For a particular choice of inputs, Fig. 13(a) shows that

including thermal masses slightly shifts the parameter

space allowed by the baryon asymmetry and DM con-

straints. The ρχþχ̄ and YB contours move together some-

what, and in fact the range of viable Φ1 masses is not

significantly affected when we include thermal masses.

To make the plots of Fig. 14, we decoupleΦ2 and choose

a value for the χ abundance left behind from Φ2 decays.

Using ðYBÞM̄→M to denote the asymmetry neglecting

thermal masses and taking SΦi
ðzÞ → SΦi

ð0Þ, and using

ðYBÞM̄ to denote the asymmetry with thermal masses and

the full z-dependence in SΦ1
ðzÞ, the blue contours of

Fig. 14(a) show the fractional difference

2 ×
ðYBÞM̄→M − ðYBÞM̄
ðYBÞM̄→M þ ðYBÞM̄

: ðA12Þ

For the inputs chosen in Fig. 14, neglecting thermal masses

overestimates YB by roughly 25%. For smaller Φ1 life-

times, ΓΦ1
=Hew ≳ 1, the SΦ1

ðzÞ → SΦ1
ð0Þ approximation

significantly overestimates washout of the asymmetry byΦ

decays, partially compensating for the effect of neglecting

thermal masses. Figure 14(b) shows that the fractional

difference is somewhat smaller for the ratio YB=ρ
χþχ̄ than

for YB alone. In general, we find that the minimal

perturbative calculation of Sec. II B typically agrees with

a perturbative calculation incorporating thermal masses at
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the 50% level or better, for those parameter regions that are

viable for baryogenesis and DM.

2. A thermal ansatz for the χ momentum distribution

In Appendix A 3, we will compare our perturbative

calculations of YB and ρχþχ̄ to numerical solutions of

quantum kinetic equations derived using a thermal ansatz

for the χ and χ̄ momentum distributions. Here we imple-

ment the thermal ansatz in the perturbative context to

isolate its impact. We start with Eq. (13) from our

perturbative calculation, where we found the energy spec-

trum of χ particles produced by Φj decays at z0 to be

proportional to

e−ye
−M2

Φj
z0=ð4T2

ewyÞ; ðA13Þ

where y ¼ Eχ=T. We replace this spectrum with a

Maxwellian one,

e−ye
−M2

Φj
z0=ð4T2

ewyÞ
→

MΦj
z0

2Tew

K1

�

MΦj
z0

Tew

�

y2e−y; ðA14Þ

where the y-independent factors are determined by the

requirement that the integrals over y be the same. We also

replace the χ energy dependence in the oscillation factor

with a thermal average,

sin

�

βosc

�

z3 − z03

y

��

→ sin

�

βosc




T

Eχ

�

ðz3 − z03Þ
�

; ðA15Þ

with




T

Eχ

�

¼
� π2

18ζð3Þ ≃ 0.456 ðFDÞ;
1=2 ðMBÞ:

ðA16Þ

After making the replacements in Eqs. (A14)–(A15), we

carry out the y integration in Eq. (30) to obtain

YB ¼ 45g2
Φ

8π6g�

KB

KΦ

J

�

n
χ
eqðTÞ
T3

�

−1
�

MΦ1

Tew

�

2
�

MΦ2

Tew

�

2

×

�

ΓΦ1

Hew

��

ΓΦ2

Hew

�

ðI12 − I21Þ; ðA17Þ

where the equilibrium χ abundance factor is for a single

mass eigenstate and helicity,

�

n
χ
eqðTÞ
T3

�

−1

¼
� ð4π2Þ=ð3ζð3ÞÞ ≃ 10.9 ðFDÞ
π2 ðMBÞ;

ðA18Þ

and where in this version of Iij, only the integrations overΦ

production and decay times remain:

(a) (b)

FIG. 13. Variations on our perturbative calculations of YB and ρχþχ̄ . In both plots, we adopt Maxwell-Boltzmann statistics and replace

the survival function by its z ¼ 0 value: SΦi
ðzÞ → SΦi

ð0Þ. The solid contours reproduce our earlier results, see Fig. 2(a). In (a), The

dashed contours show the effect of including thermal mass contributions, with Aself ¼ 0. (Turning on a moderate scalar self-coupling of

Aself ¼ 1=3 barely changes the plot.) In (b) we adopt a thermal ansatz for the χ momentum distribution, leading to Eqs. (A17) and (A19).

We use the Maxwell-Boltzmann expressions for hT=Eχi and n
χ
eq in Eqs. (A16) and (A18); switching to the Fermi-Dirac ones again

produces an almost unnoticeable shift.
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Iij ¼
Z

1

0

dzSΦi
ðzÞz3K1

�

MΦi

Tew

z

�

×

Z

z

0

dz0z03K1

�

MΦj

Tew

z0
�

sin

�

βosc




T

Eχ

�

ðz3 − z03Þ
�

;

ðA19Þ

with SΦi
ðzÞ given in Eq. (28). Strictly speaking, Eq. (A17)

applies for the case of Maxwell-Boltzmann statistics, but

we provide Fermi-Dirac expressions for certain quantities

for reference. We can also obtain Eqs. (A17) and (A19) by

perturbatively solving the kinetic equations presented in the

following section, once we neglect thermal masses and

adopt Maxwell-Boltzmann statistics.

For a particular set of inputs, Fig. 13(b) compares the

results of the “direct” calculation of Sec. II B with those

based on Eqs. (A17) and (A19). As with thermal mass

effects, the thermal ansatz only modestly impacts the

preferred parameter space.

When

MΦ2
≫ MΦ1

≫ Tew ðA20Þ

and

ΔM2

21
M0

M3

Φ2

≪ 1 ðA21Þ

apply, we can follow the same steps that led to Eq. (48) to

approximate the thermal-ansatz results of Eqs. (A17)

and (A19) by

YB≃
gΦKBJ

4π2KΦ

Y
χþχ̄
2

�

n
χ
eqðTÞ
T3

�

−1
�

Tew

MΦ1

�

2
�

ΓΦ1

Hew

�

×SΦ1
ð0Þ
Z

∞

0

dxx3K1ðxÞsin
�

β̃osc

8




T

Eχ

�

x3
�

: ðA22Þ

The ratio of the thermal-ansatz-based YB of Eq. (A22) and

the “direct” YB of Eq. (48) depends on the single dimen-

sionless parameter β̃osc ¼ 4ΔM2

21
M0=3M

3

Φ1
. Figure 15

shows that the numerical discrepancy between the two

expressions is less than ∼50%.

3. Numerical solution of kinetic equations

To write down the kinetic equations for the two-scalar

model we follow Refs. [65,76]. We avoid having to track

(a) (b)

FIG. 14. Comparison of the “minimal” perturbative calculation of Sec. II B with more refined estimates of YB and ρχþχ̄ . Here we

decouple Φ2 and set the combined χ þ χ̄ abundance left behind from Φ2 decays to be Y
χþχ̄
2

¼ 3 × 10−5, and we take J ¼ 1. The blue

contours show the effect of modifying the perturbative calculation to incorporate thermal masses and the full z dependence in the

survival function SΦ1
ðzÞ. The red contours compare the minimal calculation with numerical solution of the kinetic equations presented in

Appendix A 3; in the numerical calculation we use quantum statistics, include thermal masses, and adopt a thermal ansatz for the χ

momentum distribution. We show the fractional difference in YB in (a) and the fractional difference in YB=ρ
χþχ̄ in (b). For the parameters

chosen, ρχþχ̄ ¼ ρcdm is realized for cτ ≃ 6 cm and ðYBÞmax > ðYBÞobs is realized for cτ ≲ 130 cm.

FIG. 15. Comparison of the approximate YB expressions of

Eqs. (A22) and (48), obtained with and without the thermal

ansatz for the χ momentum distribution.
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momentum-dependent quantities by adopting a thermal

ansatz for the momentum dependence of the χ number-

density matrix,

n
χ
IJðpÞ ¼

n
χ
IJ

n
χ
eq

f
χ
eqðpÞ; ðA23Þ

and similarly for χ̄. Doing so leaves us with the simpler task

of solving momentum-integrated kinetic equations. The χ

and χ̄ number densities are given by the traces of n
χ
IJ and

n
χ̄
IJ, respectively.

We neglect χ masses except in oscillations. An unbroken

Uð1Þχ−Φ symmetry under which only χ and Φi are charged

(oppositely) then simplifies the analysis. Here we are

motivated by DM considerations, which lead us to focus

on parameter regions with Mχ ∼ 10–100 keV.

Our main goal is to compare our perturbative calculation

from Sec. II B with numerical integration of kinetic

equations that incorporate washout effects and quantum

statistics. To that end we make further simplifying approx-

imations that might be abandoned in future work. We adopt

the flavor-universal Q masses given in Eqs. (A3)–(A5),

thereby ignoring top-Yukawa-related effects. The 1 ↔ 2

processes Φi ↔ Qχ are therefore kinematically allowed at

all temperatures. We neglect 2 ↔ 2 processes, which we

expect to be subdominant, as we found thermal-mass

effects to be. Finally, we assume that quark flavor mixing

is sufficiently rapid to ensure that theQ chemical potentials

are flavor universal.

With these assumptions, the reaction densities entering

into the kinetic equations can be summarized by the matrix

expression

½γX;i�IJ ¼ gΦðFi†FiÞIJðM̄2
Φi

− M̄2
QÞ
Z

dΠΦi
FΦ

X;iðk;p;qÞ;

ðA24Þ

where the equilibrium distribution functions enter through

F 0;iðk;p;qÞ ¼ FΦ1;iðk;p;qÞ ¼ ½1 − f
Q
eqðpÞ�fΦi

eq ðqÞ
FQ1;iðk;p;qÞ ¼ f

Q
eqðpÞfΦi

eq ðqÞ
FQ2;iðk;p;qÞ ¼ f

χ
eqðkÞfQeqðpÞ

FΦ2;iðk;p;qÞ ¼ f
χ
eqðkÞfΦi

eq ðqÞ: ðA25Þ

In Eq. (A24), the indices i ¼ 1, 2 and I; J ¼ 1, 2 reference

Φ and χ flavors, respectively, while X indicates whether the

associated contributions to dnχ=dt and dnχ̄=dt survive in

the absence of asymmetries (“0”), are driven by a Qα − Q̄α

asymmetry (“Q1” and “Q2”), or are driven by a Φi −Φ
�
i

asymmetry (“Φ1” and “Φ2”).

The phase space factor in Eq. (A24) is

dΠΦi
¼ d3k

ð2πÞ3
1

2EχðkÞ
d3p

ð2πÞ3
1

2EQðpÞ

×
d3q

ð2πÞ3
1

2EΦi
ðqÞ ð2πÞ

4δ4ðq − p − kÞ; ðA26Þ

with EχðkÞ ¼ jkj, EQðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jpj2 þ M̄2
Q

q

, and EΦi
ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jqj2 þ M̄2

Φi

q

. Carrying out all integrations besides those

over EΦi
and Eχ gives

½γX;i�IJ ¼
gΦðFi†FiÞIJðM̄2

Φi
− M̄2

QÞ
32π3

×

Z

∞

M̄Φi

dEΦi

Z

Eþ
χ

E−
χ

dEχF
Φ

X;iðk;p;qÞ; ðA27Þ

where

E�
χ ¼

M̄2
Φi

− M̄2
Q

2M̄Φi

 

EΦi

M̄Φi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

EΦi

M̄Φi

�

2

− 1

s !

: ðA28Þ

In Eq. (A27) it is to be understood that FΦ

X;iðk;p;qÞ
depends on its arguments only through the associated

energies, with EQ ¼ EΦi
− Eχ . For example,

FΦ

0;iðk;p;qÞ →
�

eðEΦi
−EχÞ=T

eðEΦi
−EχÞ=T þ 1

��

1

eEΦi
=T − 1

�

: ðA29Þ

We present the kinetic equations in terms of dimension-

less interaction-picture quantities

Yχ ¼ U†nχU

s
Y χ̄ðzÞ ¼ U†nχ̄U

s
ðA30Þ

and

γ̃ ¼ U†γU

Y
χ
eqsH

γ̃� ¼ U†γ�U

Y
χ
eqsH

; ðA31Þ

where s ¼ 2π2g�T
3=45 is the entropy density, H ¼ T2=M0

is the Hubble parameter, Y
χ
eq is the equilibrium abundance

for a single mass eigenstate, and oscillation effects are

encoded in the diagonal matrix

UðzÞIJ ¼ exp

�

−i




T

Eχ

�

M2
IM0

6T3
ew

z3
�

δIJ: ðA32Þ

The thermal average hT=Eχi is given in Eq. (A16). Note

that for γ̃� we complex-conjugate the couplings appearing

in γ but not the U matrices. For the case of two χ mass

eigenstates, we can apply an inconsequential overall phase

to rewrite Eq. (A32) as
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UðzÞ ¼ diag

�

1; exp

�

−iβosc




T

Eχ

�

z3
��

; ðA33Þ

where we define βosc ¼ ΔM2

21
M0=ð6T3

ewÞ as before.
For Φi and Q we similarly define Y ¼ n=s, along with

the asymmetries

δYQ ¼ YQ − YQ̄ ðA34Þ

δYΦi ¼ YΦi − YΦ
�
i : ðA35Þ

We define these quantities and their equilibrium counter-

parts Y
Φi
eq and Y

Q
eq to include a sum over gauge degrees of

freedom (but not, for Q, a sum over flavor degrees of

freedom), while Y
χ
eq is the equilibrium abundance for a

single mass eigenstate (and a single helicity: χ or χ̄,

not both).

As is typically done, we linearize in Q chemical

potentials,

fQðp;�μQÞ
f
Q
eqðpÞ

≃ 1� δYQ

2Y
Q
eq

: ðA36Þ

However, a Φi −Φ
�
i asymmetry can leave Φi or Φ

�
i

particles around after Φi −Φ
�
i annihilations have effec-

tively completed, in which case μΦi
≪ T is not satisfied and

it is not appropriate to linearize in μΦi
. We assume that

Φi −Φ
�
i annihilations keep these particles in chemical

equilibrium even for temperatures T ≪ MΦi
.

In the T ≪ MΦi
regime Maxwell-Boltzmann statistics

should apply, giving

fΦiðq;�μΦi
Þ

f
Φi
eq ðqÞ

¼ e�μΦi
=T ; ðA37Þ

which leads to

fΦiðq;�μΦi
Þ

f
Φi
eq ðqÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

δfΦiðqÞ
2f

Φi
eq ðqÞ

�

2

s

� δfΦiðqÞ
2f

Φi
eq ðqÞ

; ðA38Þ

where δfΦiðqÞ≡ fΦiðq; μΦi
Þ − fΦiðq;−μΦi

Þ. For the sce-

narios we study, Eq. (A38) is a good approximation even

when Maxwell-Boltzmann statistics does not apply. For

T ≳MΦi , it is safe to assume μΦi
≪ T and

δfΦi ðqÞ
2f

Φi
eq ðqÞ

≪ 1, and

Eq. (A38) approximately reproduces what one gets by

linearizing the full quantum-statistics distribution in μΦi
,

fΦiðq;�μΦi
Þ ¼ f

Φi
eq ðqÞ �

δfΦiðqÞ
2

: ðA39Þ

Following our treatment of fQ, we neglect momentum

dependence in the ratio
δfΦi ðqÞ
2f

Φi
eq ðqÞ

, giving

fΦiðq;�μΦi
Þ

f
Φi
eq ðqÞ

¼ 1þ G

�

� δYΦi

2Y
Φi
eq

�

; ðA40Þ

where we define the function

GðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

þ x − 1: ðA41Þ

Having established our notation, we now give the kinetic

equations describing the evolution of the Yχ and Y χ̄

matrices:

dY
χ
IJ

dlnz
¼
X

i

�

−
1

2
fγ̃0;i;Yχ−Y

χ
eqg

þ δYQ

2YQ
eq

�

γ̃Q1;iY
χ
eqþ

1

2
fγ̃Q2;i;Y

χg
�

þG

�

−
δYΦi

2Y
Φi
eq

��

γ̃Φ1;iY
χ
eq−

1

2
fγ̃Φ2;i;Y

χg
��

IJ

ðA42Þ

and

dY
χ̄
IJ

d lnz
¼
X

i

�

−
1

2
fγ̃�

0;i;Y
χ̄ −Y

χ
eqg

−
δYQ

2Y
Q
eq

�

γ̃�Q1;iY
χ
eqþ

1

2
fγ̃�Q2;i;Y

χ̄g
�

þG

�

δYΦi

2Y
Φi
eq

��

γ̃�
Φ1;iY

χ
eq−

1

2
fγ̃�

Φ2;i;Y
χ̄g
��

IJ

: ðA43Þ

In any interaction involving Φ
ð�Þ
i , the Uð1Þχ−Φ symmetry

requires that the changes in theΦi,Φ
�
i , χ, and χ̄ populations

are related by

ΔNΦi − ΔNΦ
�
i ¼ ΔNχ − ΔN χ̄ ; ðA44Þ

whichmeans that the evolution of δYΦi can be determined by

dδYΦi

d ln z
¼ Tr

�

dY
χ
IJ

d ln z
−
dY

χ̄
IJ

d ln z

�

i

; ðA45Þ

where on the right-hand-side we only include contributions

from interactions involving Φ
ð�Þ
i . We therefore get

dδYΦi

d ln z
¼ −Tr½γ̃0;iYχ − γ̃�

0;iY
χ̄ � þ Y

χ
eq

δYQ

Y
Q
eq

Tr½γ̃Q1;i�

þ δYQ

2YQ
eq

Tr½γ̃Q2;iY
χ þ γ̃�Q2;iY

χ̄ � − Y
χ
eq

δYΦi

Y
Φi
eq

Tr½γ̃Φ1;i�

− G

�

−
δYΦi

2Y
Φi
eq

�

Tr½γ̃Φ2;iY
χ � þ G

�

δYΦi

2Y
Φi
eq

�

Tr½γ̃�
Φ2;iY

χ̄ �:

ðA46Þ
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Aswe did in Sec. II B, we neglectΦ1Φ
�
2
↔ Φ

�
1
Φ2 scattering.

The viability of the model does not depend on this

simplification.

In Sec. II B we expressed the Φ and baryon number

asymmetries in terms of the B − L asymmetry stored in

Standard Model particles. Here we also need to do that for

the Q asymmetry:

δYΦ1 þ δYΦ2 ¼ KΦYB−L;SM ðA47Þ

YB ¼ KBYB−L;SM ðA48Þ

δYQ ¼ KQYB−L;SM; ðA49Þ

withKB¼ð−54=79;−63=79;−45=79Þ andKQ ¼ ð25=158;
31=79; 40=79Þ for Q ¼ ðQL; uR; dRÞ, and with KΦ ¼ −3.

We replace δYQ
→ ðKQ=KΦÞðδYΦ1 þ δYΦ2Þ in Eqs. (A42),

(A43), and (A46) and numerically solve them to determine

the final baryon asymmetry as YB ¼ ðKB=KΦÞðδYΦ1þ
δYΦ2Þ, evaluated at sphaleron decoupling.

The red contours of Fig. 14 compare the minimal

perturbative calculation of Sec. II B with numerical sol-

ution of the kinetic equations just introduced, incorporating

thermal masses and quantum statistics. For the chosen

parameters, the fractional differences tend to be smaller

than when comparing with the refined perturbative calcu-

lation (blue contours), because the thermal ansatz increases

YB somewhat, partially compensating for the effect of

including thermal masses, which decreases the asymmetry.

To conclude this discussion, we note that we can

reproduce Eqs. (A17) and (A19) as an approximate, per-

turbative solution to Eqs. (A42), (A43), and (A46). We first

use Eqs. (A42) and (A43) at to obtain leading order (order-

F2) expressions for Y
χ
IJðzÞ and Y

χ̄
IJðzÞ. We use these

expressions in Eq. (A46) to determine the leading-order

expression for δYΦi. More precisely, we solve exactly the

differential equation obtained from Eq. (A46) by replacing

Yχ and Y χ̄ with their order-F2 expressions and neglecting

all reaction densities besides γ̃0;i and γ̃Φ1;i, which is equal to

γ̃0;i and takes into account Φi decays. We adopt Maxwell-

Boltzmann statistics by taking

F 0;iðk;p;qÞ ¼ FΦ1;iðk;p;qÞ → f
Φi
eq ðqÞ → e−EΦi

ðqÞ=T

ðA50Þ

in Eq. (A27), giving

½γ0;i�IJ ¼ ½γΦ1;i�IJ ¼
gΦðF†FÞIJM̄3

Φi
Tew

32π3z

× ð1 − M̄2

Φi
=M̄2

QÞ2K1

�

M̄Φi
z

Tew

�

: ðA51Þ

If we further neglect thermal masses, this procedure finally

reproduces Eqs. (A17) and (A19).

APPENDIX B: CONSTRAINED MAXIMIZATION

OF YB IN THE DECOUPLED-Φ2 REGIME

In this appendix we describe how we obtain the contours

of Fig. 4. We use a routine that finds the maximum YB for

given ðMΦ1
;ΓΦ1

Þ values, consistent with the observed DM

abundance and with the relevant additional constraint (fixed

Y
χþχ̄
2

, or fixed θ1 and θ2). We start by setting the mixing

angles and phases ρi andϕi to optimal values, so that theCP-
violating factor in Eq. (33) becomes J ¼ sin 2θ1 sin 2θ2.

WithMΦ1
and ΓΦ1

fixed, YB then depends on four quantities:

θ1, θ2, Y
χþχ̄
2

, and M2.

For the blue, Y
χþχ̄
2

¼ 4 × 10−3 contour of Fig. 4, we start

by turning Eq. (45) into an equality and using it to solve for

θ2 in terms ofM2 and θ1, with Y
χþχ̄
1

determined by Eq. (14).

The baryon asymmetry of Eq. (48) then depends on the

remaining two free quantities, θ1 and M2, through the

factor

sin 2θ1 sin 2θ2Ĩ12ðβ̃oscÞ; ðB1Þ

which we maximize numerically to get optimal values of θ1
andM2, subject to the constraintM2 > 10 keV. In this way

we determine the maximum baryon asymmetry for the

given ðMΦ1
;ΓΦ1

Þ point. For points on the blue contours of

Fig. 4, this maximum YB equals the observed baryon

asymmetry.

The green and red contours of Fig. 4 have fixed values of

θ1 and θ2, so only Y
χþχ̄
2

and M2 need to be optimized. In

this case we use Eq. (45) to solve for Y
χþχ̄
2

in terms of the

other parameters, and then we numerically maximize

Y
χþχ̄
2

Ĩ12ðβ̃oscÞ ðB2Þ

with respect to M2.

We can understand the Y
χþχ̄
2

¼ 4 × 10−3 contour of

Fig. 4 qualitatively by considering two separate regimes

in turn. We first work under the assumption that the Φ1

couplings are too small for Φ1 decays to contribute

significantly to the DM energy density, which therefore

must originate almost entirely fromΦ2 decays. In that case,

the parameter θ1, which determines the relative coupling of

Φ
ð�Þ
1

to χ1 vs χ2, effectively drops out of the DM constraint.

It only enters into the baryon asymmetry calculation via the

CP-violating factor J . In this case, the baryon asymmetry

is maximized when the sin 2θ1 factor in Eq. (33) is

maximal. After we also choose optimal values for ρi and

ϕi we are left with J ¼ sin 2θ2.

Having fixed θ1 ¼ π=4, maximizing YB for arbitrary

ðMΦ1
;ΓΦ1

Þ is straightforward. We saturate Eq. (45) to

determine θ2 in terms of M2, and then all that remains is to
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determine an optimal value of M2. Here we use our

working assumption that the DM density comes predomi-

nantly from Φ
ð�Þ
2

decays, which means that Eq. (45) gives

θ2 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρcdm=s

M2Y
χþχ̄
2

s

: ðB3Þ

The small angle approximation for θ2 is justified given that

we consider Y
χþχ̄
2

¼ 4 × 10−3 and M2 > 10 keV. In this

approximation, the dependence of YB on M2 is then

contained in the factors

β̃
−1=4
osc Ĩ12ðβ̃oscÞ; ðB4Þ

which is maximized for

M2 ¼ ð16.2 keVÞ ×
�

MΦ1

TeV

�

3=2

: ðB5Þ

With all parameters besides ðMΦ1
;ΓΦ1

Þ finally determined,

we show the points that give the observed baryon asym-

metry in the green contour in Fig. 16.

Now consider the opposite regime, in which the cou-

plings of Φ1 are so large that the DM constraint requires

θ1 ≪ 1. In that case, the small angle approximation applies

for both θ1 and θ2, and it is not difficult to show that the

maximum baryon asymmetry is realized when Φ1 and Φ2

decays contribute equally to the DM energy density. So,

we take

sin2 θ1 ¼
ρcdm=s

2M2Y
χþχ̄
1

sin2 θ2 ¼
ρcdm=s

2M2Y
χþχ̄
2

; ðB6Þ

and because the baryon asymmetry depends on the factor

sin 2θ1 sin 2θ2, which scales approximately as 1=M2, we

obtain an optimal value of M2 by maximizing

β̃
−1=2
osc Ĩ12ðβ̃oscÞ; ðB7Þ

which leads to

M2 ¼ ð12.9 keVÞ ×
�

MΦ1

TeV

�

3=2

: ðB8Þ

For these inputs, the points that give the observed baryon

asymmetry lie on the red contour in Fig. 16. Taken together,

the two contours we obtain by considering the opposite

extremes θ1 ¼ π=4 and θ1 ≪ 1 reproduce almost all of the

ðYBÞmax ¼ ðYBÞobs contour for Yχþχ̄
2

¼ 4 × 10−3.

APPENDIX C: MIXING ANGLES AND PHASES

IN THE SINGLE-SCALAR MODEL

The single-scalar model is characterized by a single

matrix, FαI , which gives the Yukawa couplings between

each SM quark flavor α and χ mass eigenstate I. The matrix

F†F enters into the expression for the baryon asymmetry,

and it can be parametrized as follows (by analogy with the

two-scalar case in Sec. II B):

cos θ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
11

TrF†F

r

; ðC1Þ

cos θ2 ¼
1

sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
22

TrF†F

r

; ðC2Þ

cos ρ1 ¼
jðF†FÞ

12
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
11
ðF†FÞ

22

p ; ðC3Þ

cos ρ2 ¼
jðF†FÞ

23
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
22
ðF†FÞ

33

p ; ðC4Þ

cos ρ3 ¼
jðF†FÞ

13
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF†FÞ
11
ðF†FÞ

33

p ; ðC5Þ

ϕ1 ¼ argðF†FÞ
12
; ðC6Þ

ϕ2 ¼ argðF†FÞ
23
; ðC7Þ

ϕ3 ¼ argðF†FÞ
31
: ðC8Þ

In this case, we can compute the Jarlskog-like invariant in

Eq. (84) as

FIG. 16. Contours of ðYBÞmax ¼ ðYBÞobs for Yχþχ̄
2

¼ 4 × 10−3.

For the blue, solid contour we impose the DM constraint of

Eq. (45) and require M2 > 10 keV (this reproduces the contour

from Fig. 4). As described in the text, the other contours impose

additional constraints. Green, dashed: we set θ1 ¼ π=4 and

use Eq. (B5) to determineM2. Red, dot-dashed: we use Eqs. (B6)

and (B8) to determine θ1, θ2, and M2.
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J ¼ cos ρ1 cos ρ2 cos ρ3 cos
2 θ1 sin

4 θ1 ðC9Þ

sin2ð2θ2Þ sinðϕ1 þ ϕ2 þ ϕ3Þ: ðC10Þ

However, unlike in the case of two scalars, these are not

completely independent parameters: the reason is that there

may not always exist a matrix F corresponding to that set of

parameters. For example, it is possible to have cos ρi ¼ 1

for all ρi, but in this case the sum of the phases

ϕ1 þ ϕ2 þ ϕ3 ¼ 0! Thus, J is not optimized by requiring

maximal mixing angles, since in that case the effect of the

phases vanishes.

Rather than do a systematic study of the mixing angles

and phases, we instead construct only the optimal value of

J , which allows us to map out the largest possible space of

baryogenesis for the other parameters (such as particle

masses and decay widths). Since J is independent of basis,

we can construct the optimal J through a judicious choice

of basis.

First, we think of FαI as a collection of 3 three-vectors in

active quark flavor space, Fα1, Fα2, and Fα3. ðF†FÞIJ,
which appears in the expression for J , can therefore be

seen as a dot product of pairs of these vectors. J is also

independent of the overall magnitudes of the three-vectors

and how the magnitudes are distributed amongst the three

vectors, and so we take each to have unit norm. We can

always choose a flavor basis where the coupling of χ1 is

exclusively to a single flavor (which we take to be α ¼ 3),

in which case Fα1 ¼ ð0; 0; 1Þ. Similarly, the freedom to

choose a basis and rephase the quark fields allows us to

write Fα2 ¼ ð0; cosφ; sinφÞ. Finally, there is no advantage

to having F13 ≠ 0, since its contribution to any dot product

is necessarily zero, and the optimal CP-violation comes

from a maximal relative phase between F23 and F33 (any

phase that is the same between the two entries contributes

only to the overall normalization factor and is irrelevant),

while the imaginary part of the dot product is maximized if

jF22j ¼ jF23j ¼ jF32j ¼ jF33j ¼ 1=
ffiffiffi

2
p

. The Yukawa tex-

ture for our benchmark case is thus

FαI ¼

0

B

B

@

0 0 0

0
1
ffiffi

2
p i

ffiffi

2
p

1
1
ffiffi

2
p 1

ffiffi

2
p

1

C

C

A

: ðC11Þ

It is straightforward to check that this set of Yukawa

couplings corresponds to ρ1 ¼ ρ2 ¼ ρ3 ¼ ϕ1 þ ϕ2 þ ϕ3 ¼
θ2 ¼ π=4, and cos θ1 ¼ 1=

ffiffiffi

3
p

. The corresponding value of

J ¼ 1=27, which we use in Sec. IV.

Because this texture of Yukawa couplings has a zero

eigenvalue of F†F, it has special properties with respect to

the equilibration of the χI states. We therefore consider a

second benchmark for the single-scalar study. We modify

the F11 coupling to give three nonzero eigenvalues of F
†F.

The modified benchmark Yukawa texture is

FαI ¼

0

B

B

@

1 0 0

0
1
ffiffi

2
p i

ffiffi

2
p

1
1
ffiffi

2
p 1

ffiffi

2
p

1

C

C

A

: ðC12Þ
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