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ARTICLE INFO ABSTRACT

Keywords: Recent models suggest emotion generation, perception, and regulation rely on multiple, interacting large-scale
fMRI brain networks. Despite the wealth of research in this field, the exact functional nature and different topological

NeurOiTﬂging features of these neural networks remain elusive. Here, we addressed both using a well-established data-driven
Is‘eappra"sal meta-analytic grouping approach. We applied k-means clustering to a large set of previously published ex-
D?iijiiiin periments investigating emotion regulation (independent of strategy, goal and stimulus type) to segregate the

results of these experiments into large-scale networks. To elucidate the functional nature of these distinct net-
works, we used functional decoding of metadata terms (i.e. task-level descriptions and behavioral domains). We
identified four large-scale brain networks. The first two were related to regulation and functionally characterized
by a stronger focus on response inhibition or executive control versus appraisal or language processing. In
contrast, the second two networks were primarily related to emotion generation, appraisal, and physiological
processes. We discuss how our findings corroborate and inform contemporary models of emotion regulation and

Emotion regulation strategies

thereby significantly add to the literature.

1. Introduction

Experiencing emotions is part of our daily life. Sometimes, these
emotions can be intense, and we need to control them. Emotion reg-
ulation (ER) describes our ability to effectively manage emotional ex-
periences, regardless of whether we need to down-regulate negative
emotions or would like to up-regulate positive ones. Effective ER has
been associated with a number of positive outcomes such as an increase
in general well-being, performance at work and personal and profes-
sional relations, and most importantly, it supports our mental and
physical health (Eftekhari et al., 2009; Gross and John, 2003; Gross and
Muifloz, 1995). In contrast, deficits in ER are observed in severe psy-
chological disorders such as depression and anxiety (Kring and Sloan,
2010; Sloan et al., 2017). Consequently, understanding the neural un-
derpinnings of ER, has become one of the most popular topics in af-
fective neuroscience throughout the last two decades.

A very influential perspective in emotion theories is related to ap-
praisal (Aldao and Tull, 2015; Sander et al., 2005; Scherer, 1984).

Emotions arise in a person-situation context that draws attention to the
emotional event. This attention binding implies a particular saliency of
the event for the individual and in consequence leads to coordinated
multi-system response tendencies (Gross, 1998). This multi-system re-
sponses have been proposed to rely on interacting, hierarchical neural
systems that support the generation, perception and regulation of
emotions (Smith and Lane, 2015). Along the emotion-generative pro-
cess, different ER strategies have been distinguished such as distraction,
reappraisal, and suppression (Gross, 2002; Webb et al., 2012). Dis-
traction and reappraisal represent antecedent-focused strategies and
aim to influence the generation and perception of an emotion before the
emotion response tendencies have become fully activated. Distraction is
a process in which selective attention is used to limit the extent to
which the emotionally evocative aspects of an event or stimulus are
attended and appraised, while reappraisal helps to alter the emotional
impact of a stimulus/situation by e.g., reinterpretation, detachment, or
perspective taking. (e.g., Kanske et al., 2011). In contrast, suppression
represents a response-focused strategy and aims to alter the emotional
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impact of a stimulus or event after a response tendency has already
been generated and produces decreased expressive behaviour. Typi-
cally, suppression is used to inhibit behaviors associated with emotional
responding with little or no change in ongoing emotion experience, for
example, by modifying the facial expression (e.g., Goldin et al., 2008).

To investigate the regulation and also perception of emotions, a
standard approach has evolved over the past two decades (Morawetz
et al., 2017). An emotional stimulus — usually an aversive image - is
presented and participants are either asked to down-regulate their
emotions (regulation condition) by using a specific ER strategy (e.g.,
distraction (e.g., Kanske et al., 2011; Dorfel et al., 2014), reappraisal
(e.g., Ochsner et al., 2004a,b; Silvers et al., 2015a), or suppression (e.g.,
Lévesque et al., 2003; Goldin et al., 2009)) or to look at the image and
let themselves respond naturally (emotional viewing or perception
condition; which is distinct from a neutral picture control condition).
Using this approach, emotion generative processes can be dissociated
from emotion regulatory processes (Gross et al., 2011) by contrasting
the different conditions (McRae et al., 2012b; Ochsner et al., 2009; Otto
et al.,, 2014). Emotion generation is investigated by the contrast of
perception versus regulation condition or by emotional viewing versus
neutral viewing, while emotion regulatory processes are targeted by
contrasting the regulation versus control condition.

Previous studies linked emotion generation to an increase in brain
activation of subcortical regions such as the amygdala (McRae et al.,
2012b; Ochsner et al., 2009), while the control aspect of ER has pri-
marily been linked to an increase in prefrontal cortex activation and a
decrease in amygdala response (Banks et al., 2007; Johnstone et al.,
2007; Urry et al., 2006). This has been interpreted in terms of dual
opposing systems. However, recent models of emotion processing are
incompatible with the notion of two systems and suggest that there are
multiple neural circuits underlying emotion processing and ER (Barrett,
2017; Barrett and Satpute, 2013; Pessoa, 2008; Smith and Lane, 2015),
which also supports the idea of the interacting linkage between emo-
tion-generative and emotion-regulatory processes (Kappas, 2011;
Thompson, 2011). However, this view commonly suggests that multiple
neural systems interact in emotion perception and generation, which
are modulated by and themselves influence regulatory systems. In
terms of neural implementation, it is suggested that these systems rely
on large-scale networks (Barrett, 2017; Bressler and Menon, 2010;
Riedel et al., 2018; Sripada et al., 2014).

Several meta-analyses (Buhle et al., 2014; Frank et al., 2014; Kohn
et al., 2014; Messina et al., 2015; Morawetz et al., 2017) summarized
the findings of the ER literature and identified brain regions con-
sistently activated during ER. These included lateral prefrontal cortex
(dorsolateral and ventrolateral prefrontal cortices, DLPFC and VLPFC),
somatosensory cortex (supplementary motor area, SMA), insula,
amygdala, parietal and temporal regions. Multiple neural models of ER
(e.g., Dixon et al., 2017; Etkin et al., 2015; Ochsner et al., 2012; Phillips
et al., 2008; Silvers and Guassi Moreira, 2019; Smith and Lane, 2015)
identified functional roles for each of these regions in various aspects of
emotion perception, generation and regulation using reverse inference
(i.e. infer the engagement of specific mental processes from patterns of
activation) (Poldrack, 2011, 2006). Yet, these neural models of ER lack
a data-driven, quantitative assessment of the psychological functions
most likely underlying emotion-generative and emotion-regulatory
processes.

Though conventional coordinate-based meta-analytic approaches
(Eickhoff et al., 2009, 2012; Eickhoff et al., 2016a,b; Laird et al.,
2005a,b; Turkeltaub et al., 2002) have been able to overcome the
sensitivity limitations associated with individual fMRI studies, they
have at least two important limitations with regard to their inter-
pretation. First, conventional meta-analyses focus on regional con-
tributions of brain regions during a specific task using a specific con-
trast. In ER this would be most commonly a comparison of reappraisal
to down-regulate negative emotions in response to pictures from the
International Affective Picture System [IAPS (Bradley and Lang, 2007)]
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to a control condition in which participants are asked to view the af-
fective stimuli. While such an approach targets the specific aspect of
regulation, it is not sensitive to the broader interactive process of ER
embedded in a hierarchical organization of emotion perception, gen-
eration and regulation. Thus, it cannot inform the large-scale network-
level perspective of emotion processing (Barrett, 2017; Bressler and
Menon, 2010; Riedel et al., 2018; Sripada et al., 2014). Second, due to
inferential limitations of conventional meta-analyses (Poldrack and
Yarkoni, 2016) the specificity of brain-cognition associations i.e. the
psychological processes underlying ER cannot be quantified. Therefore,
we lack a model of psychological processes involved in ER that also
maps systematically onto large-scale networks.

By using an established meta-analytic clustering technique
(Bottenhorn et al., 2017; Flannery et al., 2020; Laird et al., 2015; Riedel
et al.,, 2018) in the present study, we aimed to overcome firstly the
limitation of not being able to segregate multicomponent processes and
associated neural networks by tapping into subtle differences in the
implementation of fairly standardized emotion regulation tasks and
different strategies across a large body of studies. In the present study,
we adopted a preferably broad conceptualization of cognitive control of
emotions and included a variety of emotion regulation strategies (i.e.,
distraction, reappraisal, suppression) in combination with different
regulation goals (i.e. up-regulation and down-regulation) and emotion
induction methods (i.e. pictures, film clips, faces, reward, pain, and
scripts) to determine and group over general neural circuits underlying
emotion generation, perception and regulation processes. With this we
want to answer the following key issues in the field of ER: First, which
distributed brain areas operating in large-scale networks support
emotion perception/generation and which underlie emotion regula-
tion? Second, which psychological processes are associated with dif-
ferent large-scale networks activated during ER?

To address the first issue, we attempted to identify and characterize
multiple neural circuits underlying emotion generation, perception, and
regulation processes, leveraging an established meta-analytic clustering
technique (Bottenhorn et al., 2017; Flannery et al., 2020; Laird et al.,
2015; Riedel et al., 2018). In contrast to more traditional coordinate-
based meta-analyses, which focus mostly on assessing convergence of
one contrast (e.g., task > control condition) per study, the clustering
method allows to investigate all possible contrasts (i.e. regulation
task > emotional baseline; emotional baseline > regulation task; emo-
tional baseline > neutral baseline; neutral baseline > emotional base-
line; regulation task > neutral baseline; neutral baseline > regulation
task) and determine in a data-driven fashion, which regions/networks
of convergent activity can be identified across all contrasts and whether
the resultant regions/networks are driven by certain contrasts. Using
this technique, we parsed clusters of co-activation patterns reported
across emotion regulation studies to detect large-scale brain-networks
underlying different forms of emotion regulation. This clustering
method should highlight discrete sub-networks related to differences in
implementation of the tasks and regulation strategies across studies. To
answer the second question, we quantified not only which kind of tasks
tend to consistently produce activity in the clusters related to ER, but
also which processes are associated with activity in a certain network.
To characterize the functional associations of the resulting networks we
used functional decoding of metadata terms (i.e. task-level descriptions
and behavioral domains).

On the basis of existing neural models (Etkin et al., 2015; Ochsner
et al., 2012; Phillips et al., 2008; Silvers and Guassi Moreira, 2019;
Smith and Lane, 2015), we expected to determine at least three distinct
whole-brain networks: The first network was hypothesized to be im-
plicated in the top-down control of emotions and based upon fronto-
parietal regions. The second one was anticipated to be involved in the
perception and generation of emotions with the amygdala, striatum and
anterior insula as key regions. A third network was expected to serve as
a link between the first two networks with temporal, parietal, and
medial prefrontal regions adopting an intermediary role. In addition,
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we anticipated that numerous cognitive and affective processes will be
associated with and important to ER. Previous research suggested that
multiple cognitive processes like selective attention, working memory,
response selection and inhibition, and conflict monitoring play a key
role in ER. Similarly, motivational or affective aspects have been
identified to influence ER, such as attribution of mental states, encoding
of reward and arousal value of a stimulus, representation of body states
related to emotions and representation of perceptual and semantic
features (Ochsner et al., 2012). Additionally, recent theoretical ac-
counts highlight other potential processes to be fundamentally involved
in ER such as memory control (Engen and Anderson, 2018), language
(Messina et al., 2015) and homeostasis/interoception (Barrett, 2017,
Smith and Lane, 2015).

Collectively, the aims of the current study were threefold. We aimed
to (1) provide a relatively broad and unbiased perspective on the neural
mechanisms supporting ER by elucidating the topographically distinct
brain networks that support the perception, generation and regulation
of emotions and provide consensus specification of precise a priori re-
gions-of-interest for future studies; (2) relate the determined clusters of
co-activation patterns during emotion-generative and emotion-reg-
ulatory processes to brain-networks underlying prominent psycholo-
gical functions and evaluate their specificity in relation to ER; and (3)
assess the accumulated evidence of existing neural ER models, inform
and extend their psychological conceptualization, and promote the
development of new hypotheses.

2. Methods
2.1. Literature search and annotation

We examined previously published meta-analyses on emotion reg-
ulation, which included 93 studies from peer-reviewed journals (as of
October 15th, 2015) and conducted an additional literature search
using PubMed (www.pubmed.com) (by July 31st, 2017). We used the
same combination of keywords as in the previous study (Morawetz
et al.,, 2017): “emotion regulation”, “affective regulation”, “implicit
emotion regulation”, “explicit emotion regulation”, “interpersonal
emotion regulation”, “extrinsic emotion regulation, “intrinsic emotion
regulation”, “reappraisal”, “suppression”, “distraction”, “detachment”,
“labelling”, “affective labelling”, “reinterpretation”, “rumination”,
“fMRI”, “neuroimaging”, “functional magnetic resonance imaging”, or
“functional MRI”. This search revealed 85 studies. In the case that a
study did not report the contrast of interest for this meta-analysis, the
corresponding authors were contacted and asked to provide more in-
formation on their data. In the following the term “experiment” refers
to any single contrast analysis, while the term “study” refers to a sci-
entific publication, usually reporting several contrasts, i.e. experiments
(Laird et al., 2011).

The inclusion criteria for articles were the following:

(1) We only included data from studies of healthy adults with no prior
report of neurological, medical, or psychiatric disorders in the
current meta-analysis, while results of patients or specific sub-group
effects (e.g., sex differences) were not included. Articles including
patients were only selected if they reported results for a control
group separately, and only the latter group was included here.

(2) Only neuroimaging studies, which used whole-brain fMRI and re-
ported coordinates for brain activation or deactivation in standard
anatomical reference space (Talairach/Tournoux; Montreal
Neurological Institute (MNI)) were considered. To address pro-
blems caused by different coordinates used in different studies,
coordinates originally published in Talairach space were converted
to MNI space using the algorithm implemented in GingerALE 2.3.5
(Laird et al., 2010, 2009; Lancaster et al., 2007).
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(3) Only studies reporting whole brain analyses were included, while
studies based on partial coverage or employing only region-of-in-
terest analyses were excluded.

This search and the employed inclusion/exclusion criteria led to a
total inclusion of 107 studies from peer-reviewed journals by July 31st,
2017 (385 experiments, 3204 participants) (Supplementary material,
Table S1).

Each experiment was manually coded by two authors (CM & NK)
with terms that described the experimental design with respect to
contrast (e.g., regulation task > emotional baseline, emotional base-
line > neutral baseline, etc.), stimulus type utilized (e.g., pictures, film
clips, etc.), emotion regulation strategy (e.g., distraction, reappraisal),
goal of the strategy (e.g., increase, decrease), valence of the stimuli
(e.g., positive, negative), tactics of the strategy (reappraisal tactics ac-
cording to McRae (McRae et al., 2012a) such as e.g. detachment, per-
spective taking, reality change etc.). The exact details on the manual
annotations can be found in 2.3 Functional decoding of meta-analytic
groupings. These terms described the aspects of the stimuli and beha-
viors associated with each individual experimental contrast, thus fo-
cusing on the tasks of each modelled experimental contrast, and not the
intended psychological construct underlying the original study report.

2.2. Analyses

The analysis followed a six-step approach, which has been estab-
lished in previous studies (Laird et al., 2015; Riedel et al., 2018)
(Fig. 1).

2.2.1. Generation of modelled activation (MA) maps (analysis step 1)

After identification of relevant studies and contrasts, reported three-
dimensional coordinates in stereotactic space (%, y, z) of each study
(only whole-brain statistical analysis) were extracted. This analysis step
was not limited to specific experimental contrasts, which means that all
experimental contrasts reported in a study were used in our analyses.
More specifically, we included all possible combinations of task con-
trasts such as [regulation task > emotional baseline], [emotional
baseline > neutral baseline], and [regulation task > neutral baseline]
and vice versa. By implementing such an approach, we are able to
determine in a purely data-driven way how distinct the resulting meta-
analytic groupings (MAGs) are in terms of contributing statistical con-
trasts. Note, although, the resulting MAGs are spatially distinct and
appear to correspond with dissociable psychological processes, different
statistical contrasts can contribute to one MAG. In addition, this means
that multiple contrasts from the same study are treated independently,
such that each contrast has the opportunity to be classified into dif-
ferent clusters. This is especially important in the given context, such
that different experimental manipulations within the same study pro-
duce distinct regions of brain activation. This is consistent with func-
tional segregation and the flexible and complex nature of the experi-
mental design, demonstrating that the manipulation of different
contrasts can identify distinct networks that likely cooperate to suc-
cessfully perform a complex task such as the cognitive control of
emotions. Based on the coordinates of 385 experiments, probabilistic
modelled activation (MA) maps were calculated from the foci reported
in each individual contrast. To account for spatial uncertainty due to
brain template and between-subject variance, the foci of each in-
dividual contrast were modelled as Gaussian kernels, with full width at
half maximum determined by the number of subjects in each experi-
ment (Eickhoff et al., 2009). The per-contrast FWHM varies by study
sample size and in the present study ranged from 8.5215 mm to
10.0026 mm.
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Fig. 1. Data extraction and k-means clustering analysis workflow, steps 1 through 6. Coordinates meeting inclusion criteria were reconstructed into activation maps
(step 1). Each map was then collapsed to a one dimensional, experiment x voxel, vector. Pearson’s correlations between every pair of experiment vectors generated an
experiment x experiment cross correlation matrix (step 2). k-means clustering analysis grouped experiments based on 7 different model orders (2-8) (step 3). Four
different metrics were used to determine the optimal clustering solution (step 4). Next, an activation likelihood estimation (ALE) meta-analysis (Pciuster-level < 0.05;
Pvoxel-level < 0.001) was run for each resulting meta-analytic grouping (MAG) to compute an ALE image of statistical correspondence (step 5). Finally, behavioural

profiles were generated based on the BrainMap database (step 6).

2.2.2. Computation of correlation matrix (analysis step 2)

The resulting MA maps were concatenated into a one-dimensional
array of n experiments by p voxels. In other words, each MA map of
each experiment was represented in a vector. All vectors of all MA maps
were concatenated into one matrix the size of experiments n and p
voxels. Based on this matrix, a n x n symmetric cross-correlation (CC)
matrix was calculated. The resultant Pearson correlation coefficient (r)
between each pair of MA maps represented the similarity of spatial
topography of MA maps between every possible pair of experiments.

2.2.3. k-means clustering analysis (analysis step 3)

In this step, k-means clustering analysis was performed on the CC
matrix to determine MA maps with a similar activation pattern and
parse them into meta-analytic groupings (MAGs). The k-means clus-
tering procedure was performed in Matlab (Mathworks, R2013b for
Linux), which grouped experiments by pairwise similarity, calculating
correlation distance by 1 minus the correlation between MA maps (from
the aforementioned correlation matrix) and finding the “best” grouping
by minimizing the sum of correlation distances within each cluster. This
approach begins by choosing K arbitrary maps as representative cen-
troids for each of the K clusters and assigning experiments to each
cluster based on the closest (most similar) centroid. This process con-
tinued iteratively until a stable solution was reached.

Solutions were investigated for a range of K = 2-8 clusters. Once
the clustering analysis was complete for all K, we compared each so-
lution with the neighboring solutions and assessed for improvement
across parcellation schemes by using four metrics describing cluster
separation and stability (Bzdok et al., 2015; Eickhoff et al., 2016a,b).
This allowed us to objectively select the number of clusters that most
optimally divided the dataset. The first metric, average cluster silhouette
across clustering solutions, assessed how similar an experimental con-
trast’s MA map is to other MA maps in its own cluster compared to MA
maps in other clusters. A higher silhouette value indicates that greater
separation is ideal and that each experiment fits well into its cluster,
with lower misclassification likelihood of fringe experiments into
neighboring clusters. Stability is indicated by a higher silhouette value
compared to the K — 1 solution (primary criterion) or whose silhouette
coefficient is at least not decreased compared to the previous K — 1
solution (secondary criterion). Second, we considered the consistency of
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experiment assignment by comparing the ratio of the minimum number
of experiments consistently assigned to a cluster relative to the mean
number of experiments consistently assigned to that cluster. In this
case, only ratios above 0.5, in which at least half of the experiments
were consistently assigned, were considered viable solutions. Third, the
variation of information was quantified, which compared the entropy of
clusters with the mutual information shared between them for each
solution K and its K — 1 and K + 1 neighbors. A large increase from K
to K + 1 (primary criterion) or decrease in variation of information
from K — 1 to K (secondary criterion), a local minimum in the plot of
variation of information across K, indicated a decrease in overlap be-
tween solutions and, thus, stability of solution K. In this case, “large” is
defined, too, in relative terms, with the largest decrease indicating
greatest stability of the solutions considered. Finally, we computed a
hierarchy index for each solution, which assessed how clusters split from
the K — 1 to K solution to form the additional cluster. A lower hier-
archy index indicated that clusters present in K stemmed from fewer of
the clusters present in K — 1, another indication of stability in group-
ings demonstrated by a hierarchy index lower than the median across
all possible solutions and/or a local minimum across values of K. An
optimal clustering solution is one that demonstrated minimal overlap
between clusters (i.e., high silhouette value), while exhibiting relative
stability in comparison with the previous and next solutions (i.e.,
consistency > 0.5, a local minimum in variation of information, and
lower hierarchy index than previous).

2.2.4. Generation of activation-likelihood estimation (ALE) meta-analysis
images (analysis step 4)

Following the application of a suitable clustering solution, con-
vergent activation patterns within the MAGs were examined. To iden-
tify meta-analytic networks of activation across grouped experiments,
we used the revised version (Eickhoff et al., 2012, 2009) of the acti-
vation likelihood estimation (ALE) algorithm for coordinate-based
quantitative meta-analyses of neuroimaging results (Laird et al., 2005a;
Turkeltaub et al., 2002). This algorithm aims to identify topo-
graphically overlapping clusters of activation across experiments within
a single MAG that are significantly higher than expected compared to
random spatial associations. The combination of all MA maps from all
experiments was calculated to extract a voxel-wise ALE score that
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Fig. 2. k-means clustering solutions. A Average silhouette metric. B Consistency of assigned experiments metric. C Information metric. D Hierarchy index metric.

represented the convergence of results across experiments at each
particular location in the brain. In order to distinguish ‘true’ con-
vergence between studies from random convergence (i.e., noise), ALE
scores were further compared to an empirical null-distribution, which
represents a random spatial association between experiments (Eickhoff
et al.,, 2012) and in which the same number of activation foci was
randomly relocated and restricted by a gray matter probability map
(Evans et al., 1994). In line with recent guidelines based on massive
ALE simulations (EEickhoff et al., 2016a,b), ALE images were thre-
sholded at a cluster-level corrected FWE threshold of pcuster-level < -05
(cluster-forming threshold at voxel-level pyoxerievel < -001) (Eickhoff
et al., 2012) as this represents the most appropriate method for statis-
tical inference (Simon B Eickhoff et al., 2016a). For the anatomical
labelling of the meta-analytic data probabilistic cytoarchitectonic maps
provided in the SPM Anatomy Toolbox (Eickhoff, 2007; Eickhoff et al.,
2006, 2005) were used. For visualization purposes, we used MRIcroGL
(http://www.mccauslandcenter.sc.edu/mricrogl/home).

2.3. Functional decoding of meta-analytic groupings

2.3.1. Automatic BrainMap annotations

The functional characterization of the MAGs was based on the
‘Behavioral Domain (BD)’ and ‘Paradigm Class (PC)’ metadata cate-
gories available for each neuroimaging experiment included in the

386

BrainMap database (Fox et al., 2005; Fox and Lancaster, 2002; Laird
et al., 2009, 2005b). Behavioral domains include the main categories
cognition, action, perception, emotion, and interoception, as well as
their related sub-categories. Paradigm classes categorize the specific
task employed (Turner and Laird, 2011) (see http://brainmap.org/
scribe/ for the complete BrainMap taxonomy).

First, for each of the four MAGs the individual functional profile was
determined by using the forward inference approach. This means,
contrary to inferring mental function from brain activity (“reverse in-
ference”), here we create a comprehensive mapping between data-de-
rived taxonomic labels representing psychological states from the
BrainMap database and the MAG’s topography. Thus, forward inference
is defined as the probability of observing activity in a brain region given
knowledge of the psychological process. A MAG’s functional profile was
determined by identifying taxonomic labels, for which the probability
of finding activation in the respective cluster was significantly higher
than the overall chance (across the entire database) of finding activa-
tion in that particular cluster. Significance was established using a bi-
nomial test (p < .05, corrected for multiple comparisons using
Bonferroni’s method (Nickl-Jockschat et al., 2012; Rottschy et al.,
2012)). That is, we tested whether the conditional probability of acti-
vation given a particular label [P(Activation|Task)] was higher than the
baseline probability of activating the region in question per se [P(Ac-
tivation)]. Significance (at p < .05, corrected for multiple comparisons
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using Bonferroni’s method) was then assessed by means of a chi-square
test.

2.3.2. Manual annotations

Our manual annotations utilized a list of nine metadata categories,
which captured salient features of the experimental design. We were
especially interested in which terms contributed most to each MAG and
thus, calculated the frequency of occurrence within each MAG. This
highlighted, which terms described the largest number of experiments
per MAG. To evaluate the relative contribution of each term per MAG,
we controlled for the base rate by dividing each term’s per-MAG count
by the total of all contributing experiments per MAG. Thus, the results
indicate the percentage of contribution of each term to the MAG.

Our manual annotation classified the included studies in terms of
‘task’ (i.e., regulation or reactivity), ‘contrast’ (i.e., regulation task >
emotional baseline, emotional baseline > neutral baseline, regulation
task > regulation task, regulation task > neutral baseline as well as
reverse contrasts), ‘strategy’ (i.e., distraction, reappraisal, suppression),
‘regulation goal’ (i.e., decrease, maintain, increase), ‘valence’ of the
stimuli (i.e., negative, positive, neutral), ‘stimulus source’ (e.g., visual,
auditory, electrophysiological/physiological, verbal), ‘stimulus cate-
gory’ (e.g., picture, film clips, other), ‘stimuli’ (e.g., IAPS, faces, pain,
film, etc.), ‘tactics’ (e.g., detachment, perspective taking, etc.) and
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‘gender of participants’ (i.e., female, male, both, difference). We were
especially interested which terms contributed to each MAG and thus,
calculated the frequency of occurrence within each MAG. To evaluate
the relative contribution of each term per MAG, we controlled for the
base rate by dividing each term’s per-MAG count by the total of all
contributing experiments per MAG. Thus, the results indicate the per-
centage of contribution of each term to the MAG. Of note, as tactics
could not be determined for each study, related results are not reported.

3. Results
3.1. Large-scale brain networks in emotion regulation

Meta-analytic (MA) maps were created for each contrast and then
clustered to identify groups with similar activation topographies. For
completeness, the k-means clustering solutions for K = 2-8 clusters
were quantitatively evaluated across four metrics to identify an optimal
solution (Fig. 2). When considering the average silhouette metric
(Fig. 2A), values generally increased as K increased with the largest
increase from K = 3 to 4. With respect to the consistency of assigned
experiments metric (Fig. 2B), all of the solutions K = 2-6 met the
stability requirement whereby the minimum number of experiments
included in any iteration of the solution was at least 50 % of the mean

Fig. 3. Large-scale meta-analytic networks. Four meta-analytic groupings (MAGs) were identified. A MAG1 (indicated in blue) consisted of bilateral DLPFC and IPL,
right insula, cingulate gyrus, precuneus, and SMA. B MAG2 (indicated in green) involved the bilateral VLPFC, left TPJ and middle temporal gyrus, SMA and left
DLPFC. C MAGS3 (indicated in purple) was based on bilateral amygdala and fusiform gyrus, left parahippocampal gyrus, PAG and VMPFC. D MAG#4 (indicated in red)
consisted of left SPL, bilateral postcentral gyrus, left insula, PAG, precuneus and PCC.

387



C. Morawetz, et al.

Neuroscience and Biobehavioral Reviews 116 (2020) 382-395

Table 1
MNI coordinates of ALE-derived meta-analytic groupings.

Meta-analytic Side Region BA Volume Coordinates

grouping X y z

1 L Superior Frontal Gyrus 8 11704 0 24 50
R Middle Frontal Gyrus 8 11024 40 24 42
R Inferior Parietal Lobule 40 9968 58 —52 38
L Inferior Parietal Lobule 40 6216 —58 -50 44
L Middle Frontal Gyrus 10 4664 -36 52 -2
L Middle Frontal Gyrus 6 4288 —42 14 48
R Middle Frontal Gyrus 11 2792 42 46 -8
R Insula 13 2000 36 16 6
R Cingulate Gyrus 23 1336 2 —-22 30
R Precuneus 7 944 10 —64 36

2 L Inferior Frontal Gyrus 47 19464 —46 24 -8
L Superior Frontal Gyrus 6 16592 -4 10 62
R Inferior Frontal Gyrus 47 6856 50 28 -8
L Superior Temporal Gyrus 39 6704 —46 —52 28
L Middle Temporal Gyrus 5024 —-54 -34 -2
L Middle Frontal Gyrus 6 4568 —44 6 50
L Superior Frontal Gyrus 9 3080 -30 48 26
L Caudate * 1960 -16 10 12
R Tuber * 1640 36 —60 -30

3 L Amygdala * 8640 —22 -4 -16
R Amygdala 6512 24 -4 -18
R Fusiform Gyrus 37 4776 40 —46 -18
R Thalamus * 3528 6 —-26 0
L Fusiform Gyrus 37 1256 -38 —54 -14
L Parahippocampal Gyrus 27 1216 —-22 —-28 -4
B Medial Frontal Gyrus 10 1016 0 54 -10
L Inferior Occipital Gyrus 19 912 —42 -76 -6

4 L Postcentral Gyrus 2 4160 —58 —-22 32
L Insula 13 3752 —44 —4 10
L Superior Parietal Lobule 7 2240 -28 —-52 56
R Postcentral Gyrus 2 1736 62 —22 30
L Cuneus 18 1224 -10 -76 22
L Middle Occipital Gyrus 19 1152 —48 -74 2
R Thalamus * 1024 10 —-26 -4
R Precuneus 19 832 28 —60 38
R Posterior Cingulate 30 832 16 —56 16

Note. MAGs 1-4 were subjected to cluster-level FWE thresholding (pcluster-level < .05).
Peak cluster coordinates associated with each ALE map corresponding to the MAG are reported.

Side: L = left, R = right, B = bilateral.

number of experiments included across iterations. Solutions where K =
7, 8 resulted in clusters of experiments with smaller than half of the
average number of experiments across clusters. The variation of in-
formation metric (Fig. 2C), suggested the stability of 4- and 6-cluster
solutions as parameter value decreases were observed when moving
from K = 3to4and K = 5 to 6, respectively, combined with parameter
increases when moving from K = 4 to 5 and K = 6 to 7, respectively,
indicating that 4- and 6-cluster solutions demonstrate relative stability.
The hierarchy index metric (Fig. 2D) further corroborated a 4-cluster
solution, as it contained a hierarchy index quantity less than the median
value across all possible solutions. Because of agreement across these
metrics, we chose to proceed with the K = 4 solution.

3.2. Spatial topographies of best clustering solution

Based on agreement across the clustering metrics, ALE maps for
each of the meta-analytic groupings (MAGs) for the four cluster solution
were generated. Details on the four MAGs such as which studies and
contrasts contributed to each MAG can be found in the Supplementary
Material in Table S2.

The first MAG involved regions of convergent activation in the left
superior frontal gyrus/dorsolateral prefrontal cortex (SFG/DLPFC), bi-
lateral inferior parietal lobe (IPL), supplementary motor area (SMA)
right insula, cingulate gyrus and precuneus (Table 1, Fig. 3A, MAG1
indicated in blue). The second MAG revealed convergent activation in
bilateral inferior frontal gyrus/ventrolateral prefrontal cortex (IFG/
VLPFC), left superior temporal gyrus/temporo-parietal junction (STG/
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TPJ), left middle temporal gyrus (MTG), left middle frontal gyrus
(MFG), SMA and left caudate (Table 1, Fig. 3B, MAG2 indicated in
green). Significant convergence in the third MAG was observed in bi-
lateral amygdala, fusiform gyrus, left parahippocampal gyrus, medial
frontal gyrus/ventromedial prefrontal cortex (VMPFC), periaqueductal
grey (PAG) and inferior occipital gyrus (Table 1, Fig. 3C, MAG3 in-
dicated in purple). Finally, the fourth MAG demonstrated convergent
activation in bilateral postcentral gyrus, the left insula, the left superior
parietal lobe (SPL), cuneus and precuneus, posterior cingulate cortex
(PCC) and PAG (Table 1, Fig. 3D, MAG4 indicated in red).

3.3. Functional decoding of the four MAGs

To determine the functional and behavioral profiles of the spatially
different MAGs, we used forward inference analyses. Fig. 4 illustrates
BrainMap metadata terms with an above chance likelihood of reporting
activity within areas of the MAGs. These unique metadata terms asso-
ciated with individual MAGs help to interpret the cognitive, affective
and perceptual processes specifically related to each MAG.

MAG] consisted mainly of a fronto-parietal network including the
DLPFC, which was associated with the cognition and action domain in
the forward and reverse inference analyses of the metadata terms
(Fig. 4). Within this MAG, paradigms involved in working memory,
explicit memory, reasoning and inhibition were significantly re-
presented.

MAG2 exhibited convergent activation in a left-lateralized pre-
frontal network including the VLPFC, which was primarily linked to the
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Fig. 4. Functional fingerprints associated with the four MAGs for A the cognition and action domain and B the perception and emotion domain. Each MAG was
profiled to determine which psychological processes best predicted its activation. Displayed are terms significantly associated with the four MAGs (pFDR-cor-
rected < 0.05). Significance is indicated next to each psychological concept by color-coded dots corresponding to each MAG.

cognition domain according to the analysis of metadata terms (Fig. 4).
Paradigms related to language processes were significantly represented
within this MAG.

MAGS3 consisted of subcortical regions such as bilateral amygdala
and left parahippocampus, bilateral fusiform gyrus, the VMPFC as well
as the PAG. The analysis of metadata terms clearly indicated a focus on
the emotion and memory domains (Fig. 4).

MAG4 was based on convergent activation in the insula, left SPL,
PAG, precuneus and PCC, which was associated with the action, per-
ception and interoception domain (Fig. 4). This activation pattern has
been related to studies investigating motion, pain, somesthesis, and
interoception.
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3.4. Task-related analysis

In addition to these unique metadata terms, we were interested in
the characteristics of the MAGs, i.e., which tasks, strategies, regulation
goals, stimulus (valence, stimulus type) and sample features (e.g.,
gender) contributed the most to each MAG. Thus, we used the manual
annotations assigned to each experiment to calculate the proportion of
term occurrence for each MAG. The detailed results for all terms are
reported in Table 2. Term frequency for task, strategy, regulation goal,
valence, source of emotional input, stimulus category and gender are
illustrated in Fig. 5. The joint evaluation of the metadata terms and the
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Table 2

Manual functional decoding results across meta-analytic groupings (MAGS).
Term MAG1 MAG2 MAG3 MAG4

n % n % n % n %

Task
Regulation 86 91 111 93 24 28 36 42
Reactivity 8 9 8 7 63 72 49 58
Contrast
Regulation Task > Emotional Baseline 64 68 89 75 10 11 20 24
Emotional Baseline > Regulation Task 4 4 2 2 36 41 32 38
Regulation Task > Regulation Task 17 18 11 9 7 8 7 8
Regulation Task > Neutral Baseline 4 4 10 8 6 7 4 5
Neutral Baseline > Regulation Task 2 2 0 0 3 3 1 1
Emotional Baseline > Neutral Baseline 2 2 5 4 23 26 8 9
Neutral Baseline > Emotional Baseline 0 0 0 0 1 1 8 9
Other (mixed contrasts) 1 1 2 2 1 1 5 6
Strategy
Reappraisal 65 69 97 82 19 22 28 33
Distraction 4 4 4 3 2 2 2 2
Suppression 7 7 1 1 0 0 2 2
Control (Maintain) 9 8 7 63 72 49 58
Other (e.g., Reappraisal > Distraction) 10 11 9 8 3 3 4 5
Goal
Decrease 78 83 67 56 15 17 22 26
Increase 1 1 20 17 5 6 8 9
Maintain 8 9 8 7 63 72 49 58
Other (e.g., Increase > Decrease) 7 7 24 20 4 5 6 7
Valence
Negative 63 67 106 89 70 80 66 78
Positive 8 9 7 6 6 7 2 2
Neutral 4 4 0 0 2 2 7 8
Mixed (e.g., Negative + Neutral) 19 20 6 5 9 10 10 12
Source
Visual 91 97 112 94 80 93 76 89
Verbal 1 1 3 3 5 6 4 5
Electrophysiological /Physiological 2 2 3 3 1 1 3 4
Other (e.g., visual + verbal) 0 0 1 1 0 0 2 2
Stimulus category
Picture 78 83 88 74 74 85 61 72
Film 10 11 16 13 6 7 10 12
Film + Picture 1 1 4 3 0 0 0 0
Other (e.g., scripts, money/reward, pain) 5 5 11 9 7 8 14 16
Gender
Female 31 34 30 26 28 33 16 19
Male 0 0 2 2 0 0 2 2
Both (female and male) 58 64 85 73 55 65 63 75
Difference (e.g., female > male) 2 2 0 0 1 1 3 4

Note. N = total number of term frequency. % The relative contributions of each manually derived metadata term (i.e., term frequencies) were
computed for all MAGs, controlling for the base rate by dividing each term's per-MAG count by the total number of experiments in each MAG.

manual annotations allowed the generation of functional and beha-
vioral profiles for each MAG.

For MAG], the analysis of task indicated an emphasis on task in-
structions related to emotion regulation, i.e., 91 % of the experiments
that contributed to MAG1 were linked to the regulation phase (mainly
contrasting emotion regulation > emotional baseline [68 %] or con-
trasting two regulation conditions with each other [18 %]) (Table 2,
Fig. 5A). The experiments that contributed most to the first MAG im-
plemented reappraisal as regulation strategy [69 %] with the goal to
down-regulate [83 %] negative emotions [67 %] in response to emo-
tional pictures [83 %] and film clips [11 %].

In MAG2, the examination of task contribution yielded a clear as-
sociation with the emotion regulation phase with 93 % (mainly im-
plementing the contrast of emotion regulation > emotional baseline
[75 %]) (Table 2, Fig. 5B). Similar to MAG1, the second MAG was
mostly driven by reappraisal [82 %] with the goal to down-regulate [56
%] and also up-regulate [17 %] negative emotions [89 %] in response
to pictures [74 %] and film clips [13 %]. Together, these findings in-
dicate that the first and second MAG are linked to the regulation of
emotional responses by using reappraisal.

In contrast to the first two MAGs, we found that 72 % of the
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experiments tested for the reverse condition, namely, for emotional
reactivity i.e. emotion perception/generation in MAG3 (mainly con-
trasting the emotional baseline > emotion regulation [41 %] and
emotional baseline > neutral baseline [26 %]) (Table 2, Fig. 5C). Thus,
most experiments implemented a task design with the control condition
as strategy [72 %] in order to maintain [72 %] the emotional response
when viewing negative [80 %] pictures [85 %]. This suggests that the
third MAG is primarily involved in memory-related emotion processing
and emotion generation.

MAG4 provides the most strongly mixed terms compared to the
other MAGs (Table 2, Fig. 5D). The tasks that contribute to this MAG
are related to the regulation phase [42 %] as well as emotional re-
activity [58 %]. Thus, MAG4 is based on contrasts of emotion regula-
tion > emotional baseline [24 %] and vice versa [38 %]. This also re-
lates to the task designs implementing both, the reappraisal [33 %] as
well as the control condition [58 %] with the goal to decrease [26 %] or
maintain [58 %] the negative emotional responses [78 %]. Interest-
ingly, the experiments contributing to MAG4 implement a more diverse
range of stimuli such as pictures [72 %], film clips [12 %] and other
stimuli [16 %] (i.e. electrophysiological stimulation, money/reward,
faces, sentences, scripts, memories and pain). Thus, the fourth MAG
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Fig. 5. Distribution of manual annotations/specific metadata terms, which captured salient features of the experimental design across MAGs (A - D). These per-
centages represent the proportion of terms within each metadata category present in each MAG.

Task (yellow): regulation (contrasts: [regulation task > emotional baseline]; [regulation task > regulation task]; [regulation task > neutral baseline]), reactivity
(contrasts: [emotional baseline > regulation task]; [neutral baseline > regulation task]; [emotional baseline > neutral baseline]; [neutral baseline > emotional
baseline]).

Strategy (green): Reappraisal, Distraction, Suppression, Control (Maintain), Other strategies (contrasts: [Reappraisal > Distraction]; [Distraction > Reappraisal];
[Suppression > Reappraisal]; [Reappraisal > Suppression]; [Reappraisal + Distraction + Suppression]; [Reappraisal + Distraction]).

Goal (blue): Decrease, Increase, Maintain, Other goal (contrasts: [Decrease > Increase]; [Increase > Decrease]; [Decrease + Increase]).

Valence (violet): Negative (Neg), Positive (Pos), Neutral (Neu), Mixed ([Neg + Neul, [Neg + Pos], [Neg + Pos + Neul).

Source of input (pink): Visual, Verbal, Physiological, Other source ([Visual + Verbal]; conditioned stimulus).

Stimulus category (red): Picture, Film, Film + Picture, Other stimuli (scripts; money/reward; pain; faces/sentences; sentences/memories; e-shock).

Gender of the participants (orange): Female, Male, Both (female and male), Difference (contrasts: [female > male]; [male > female]).

seems to be involved in the perception of the emotional stimulus during et al., 2003). The preconception is that women are more emotional than
the emotion generative process, and potentially also during the reg- men. Thus, early studies on emotion regulation only tested women
ulation of emotional responses. (e.g., Eippert et al., 2007; Goldin et al., 2008; Kim and Hamann, 2007;

Gender differences in emotional responding constitute one of the Ochsner et al., 2004a,b, 2002) and few studies tested for gender dif-
most robust stereotypes (Hess et al., 2000; Plant et al., 2000; Timmers ferences (e.g., Mak et al., 2009; McRae et al., 2008). Therefore, in
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Fig. 6. Illustration of the association between the determined MAGs and the distinguishable levels of hierarchical regulatory control (adapted from Smith & Lane

(Smith and Lane, 2015)).

addition, to the above-described characteristics of the MAGs, we ex-
amined whether the gender of the participants represents a key-con-
tributing feature in the constitution of the MAGs. The experiments
contributing to MAG1 and MAG3 show similar distributions for gender
with 34 % and 33 % of the experiments only using a female sample and
64 % and 65 % of the experiments using a mixed sample (i.e. male and
female participants), respectively. 73 % and 75 % of the experiments
contributing to MAG2 and MAG4 were based on mixed samples, re-
spectively, while the remaining 26 % and 19 % were allocated to ex-
periments focusing on a female sample. Taken together, these findings
suggest that the observed patterns of convergent activity within the
MAGs might be independent of gender.

4. Discussion

In this study, we identified large-scale neural networks underlying
emotion generation, perception and regulation based on convergent
brain activation patterns reported during ER via data mining of 385
experiments from 107 published papers. We present empirical evidence
for the idea of a multi-component view of ER supported by large-scale
brain networks. We not only define the spatial topology of these net-
works but also present an empirically based qualitative label for the
associated psychological processes. Using a meta-analytic k-means
clustering approach and functional decoding analyses (Bottenhorn
et al., 2017; Flannery et al., 2020; Laird et al., 2015; Riedel et al., 2018)
we identified four distinct networks and associated psychological pro-
cesses. Taken together, we observed two cortical networks that are
mainly implicated in regulation (MAG1 and MAG?2), one subcortical
network that is associated with emotion perception and generation
(MAG3), and one network that is linked to both, emotion regulatory
processes as well as emotional reactivity (MAG4). The behavioral pro-
files associated with the distributed large-scale networks give rise to the
assumption that these brain networks play different roles within the ER
process. Overall, a convergent pattern for an experimental design to
study emotion regulation emerged across the four networks. The ob-
served MAGs were mainly based on experiments using reappraisal to
down-regulate emotions in response to negative pictures. This re-
presents a standard approach in emotion regulation research, which
implies the advantage of a very homogenous set of data, but at the same
time limits the possibility to determine differences between regulation
strategies, regulation goals, stimulus type and features (Morawetz et al.,
2017). Our results yield new insight into the multicomponent process of
ER and provide a coherent framework for studying the functional ar-
chitecture of ER.

The first two networks consisted of mostly lateralized cortical brain
regions. These brain regions are nearly exclusively linked to the cog-
nition domain in the BrainMap database. Based on the behavioral
profile and network topology, we assume these two networks support
mainly the regulatory process important for the reappraisal of negative
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stimuli to down-regulate their negative impact. Interestingly, the two
regulatory networks are dissociated along a dorsal-ventral gradient,
which has been discussed in the ER literature previously (Morawetz
et al., 2016; Ochsner et al., 2012; Ochsner and Gross, 2005). The lateral
dorsal PFC network (MAG1) is associated with working memory and
response inhibition, while the lateral ventral PFC network (MAG?2) is
implicated in language processing. Such an association between to-
pology and function has been previously proposed (Aron et al., 2004;
Gazzaley and D’Esposito, 2007; Messina et al., 2015; Miller and Cohen,
2001; Ochsner et al., 2012; Thompson-Schill et al., 2005; Wager and
Smith, 2003) and our results nicely corroborate some of these previous
hypotheses.

Conversely, the other two networks include mainly subcortical
brain regions and are most strongly linked to the perception and
emotion domain in the BrainMap database. MAG3, the network in-
cluding the amygdala, parahippocampus and VMPFC, is strongly asso-
ciated with the perception of different emotional qualia and therefore
seems to play a central role in emotional reactivity and the generation
of emotional responses and potentially also the appraisal of emotional
stimuli. MAG4 is implicated in emotion generation as well as regula-
tion, yet represents the perception of internal sensations and thus is
linked to interoception, body awareness, sensory predictions and
somesthesis more strongly. Thus, MAG4 might serve as a hub that plays
an intermediary role in reappraisal and integrates information from the
prefrontal networks (MAG1 and MAG2) as well as the subcortical net-
work (MAG3) in order to generate emotional responses on the one
hand, and regulate these responses on the other hand. This is in ac-
cordance with the recently proposed model of constructed emotions
which assumes that interoception is at the core of the brain’s internal
model (Barrett, 2017). MAG3 and MAG#4 overlap in one region, the
PAG, which might serve as a hub that is critical for regulating the flow
and integration of information between the two networks. The PAG
represents a highly connected brain region with connections to the
descending limbic system and to the ascending sensory system, thus
being involved not only in emotion processing but also in the integra-
tion of emotional aspects of homeostatic regulation via the automatic
nervous system (Linnman et al., 2012).

Our findings map well onto the six-level regulation hierarchy pro-
posed by Smith & Lane (Smith and Lane, 2015) to regulate emotions
(Fig. 6). This model suggests a large-scale brain network organization in
six levels which support emotion regulation. Our results nicely match
four of these hierarchical levels and their respective psychological
processes. Due to limitations of spatial resolution of whole-brain fMRI,
SNR in brainstem regions and potentially also limits of temporal re-
solution of the HRF, we are not able to determine the lowest levels of
body state- and behavioral-regulation at the somatic and visceral level
(first level) as well as homeostatic regulatory control based on the
subnuclei of the brainstem (second level) in our study. However, the
third level of regulatory control that involves discrete body state
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representations and perception of relevant stimuli partly matches to
MAG#4. One main region that appears to play a significant role within
this regulation stage is the PAG, which we find in MAG3 and MAG4.
Note, however, that the hypothalamus was not part of MAG4, which
plays a significant role in addition to the PAG. The fourth level of
regulation is generally associated with fast, automatic appraisal me-
chanisms. The amygdala is important for detecting and evaluating an
emotional stimulus in a relevant situation (Adolphs, 2010, 2002) and
for computing the salience of the stimulus (Ray and Zald, 2012). As the
amygdala features strongly in MAG3 we attribute fourth-level regula-
tion processes to this large-scale brain network. The fifth level of reg-
ulation integrates the interoceptive perceptual representations, assesses
the current internal emotional state, and tracks the actual physiological
changes (Craig, 2003; Stern et al., 2017; Wiens, 2005) in the insula
(MAG4). Furthermore, it has been suggested that the VMPFC (MAG3)
represents stable, high-level, contextually modulated appraisals,
thereby generating “affective meaning” (Smith and Lane, 2015). Fi-
nally, on the highest level of regulation - voluntary ER (level 6) - the
two cortical large-scale networks (MAG1 and MAG2) come into play. In
sum, we propose that the distinguishable levels of hierarchical reg-
ulatory control are based upon dissociable yet interacting large-scale
networks.

Our findings provide a coherent framework of multiple large-scale
networks involved in the generation and regulation of emotions. Firstly,
we present empirical evidence for organization in large-scale brain
networks that not only spatially corroborate previous assumptions but
also overlap with supposed association to psychological processes. Our
findings may inform future network-based imaging analyses.
Connectivity analyses between the cortical and subcortical networks
that we have identified, such as the prefrontal regions and structures
like the amygdala and PAG, may yield new insights into emotion reg-
ulation/dysregulation differences between populations (Nicholson
et al., 2017). Thus, these networks provide an a priori selection of brain
regions to model the causal direction of the effective connectivity be-
tween and within them. Specifically, the psychological profiles of each
network provide the opportunity to test whether and which psycholo-
gical processes can be trained to enhance ER ability. This could inform
existing training programs for ER and thus, could potentially have
particularly relevant applications in clinical work, such as for the in-
tervention of anxiety disorders and depression.

5. Conclusion

We present evidence for large-scale brain network organization in
emotion regulation that aligns well with the proposed regulation hier-
archy (Smith and Lane, 2015). Regulatory networks are dissociated
along a ventral-dorsal axis. They are functionally characterized by a
stronger focus on response inhibition or executive control versus ap-
praisal or language processing. The latter could be at the heart of re-
appraisal as prominent regulation technique. We identified one net-
work that mainly relates to emotion generation and appraisal, and one
network that is involved in basic physiological processes. Our findings
corroborate and inform contemporary models of emotion regulation
and thereby significantly add to the literature. We further provide be-
haviorally enriched large-scale brain network maps that can be used in
future studies to deepen the understanding of the neural mechanisms
supporting the generation and cognitive control of emotions.
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