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Abstract 

Due to population growth and economic prosperity, the demand for energy and potable water is rapidly 
increasing around the world. As the demand for energy and water increases, the need of decision-making 
strategies for power generating systems that exploit the Energy-Water Nexus (EW-N) is becoming more 
apparent. These decision-making strategies are complex and comprise of decisions related to: (i) the 
construction of new power plants and energy storage devices; (ii) the conversion of cooling technologies 
for existing power plants; and (iii) environmental impacts. Since the type of generating and cooling 
technology of a power plant directly affects its water usage, the decision-making strategies are intrinsically 
multi-objective. Therefore, a decision-making framework based upon the aforementioned concerns is 
essential for developing a power generating system that is able to meet the energy demands and sustainably 
utilize water. In this work, we present a novel EW-N superstructure-based representation and multi-
objective optimization framework for infrastructure planning and operational scheduling of power 
generating systems with renewable generators and large-scale energy storage devices. The EW-N problem 
is posed as a two-stage stochastic mixed-integer linear program that minimizes the capital expenditures, 
operational cost, and water usage of the system. The model includes planning decisions such as the ability 
to construct additional power plants, storage units, and convert the cooling technologies of existing power 
plants. The model also includes scheduling decisions which determine how much power each plant 
generates, how energy is allocated within the system, and when energy is stored and released from storage 
devices. The model is implemented into a case study within the Edwards Aquifer region of Texas for a 
centralized power generating utility and determines the optimal conversion, expansion and operational 
decisions for the utility given the current infrastructure of the system. 
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Introduction 

The Energy-Water Nexus (EW-N) has recently become 
a new focus of research within the Process Systems 
Engineering community (Avraamidou et al., 2018) (Nie et 
al, 2019). The relationships between these two elements of 
society are deeply interconnected. For instance, 15% of 
global water use is allocated towards energy and 8% of 
global energy use is allocated towards water (Garcia and 
You, 2016). 
 In recent years renewable power generators (wind and 
solar PV farms) have gained increased penetration within 
the market, both of which do not utilize water for energy 
production. For instance, the Electric Reliability Council of 
Texas (ERCOT), which manages the flow of power within 
the majority Texas, reports that 22% and 1% of its 
generation capacity in 2017 comes from wind farms and 
solar farms respectively (Energy Reliability Council of 
Texas, 2018b). Due to the increased penetration of 
renewable generators in the market, there is a need to 
alleviate the stresses brought on by their intrinsic 
intermittent nature. Large-scale energy storage devices have 
been proposed to capture and store energy, when there is an 
excess supply of energy or when energy prices are low, to 
be utilized at a later time (Zakeri and Syri, 2015).  
 In 2017 70% of the generation capacity of ERCOT was 
natural gas or coal fired power plants, both of which 
consume cooling water for their steam cycle (ERCOT, 
2018). Three predominant cooling technologies utilized in 
power plants “once-through”, “wet cooling”, and “dry 
cooling” systems (Stillwell et al, 2011). It been proposed to 
retrofit the cooling technologies of existing power plants 
that utilize “once-through” systems to either “wet-cooling” 
or “dry cooling” systems to reduce the amount of cooling 
water that these power plants consume (Loew et al., 2016).  

The goal of this work is to put forth a superstructure 
representation and two-stage stochastic mixed-integer 
optimization framework for infrastructure planning and 
operational scheduling of a power generating systems based 
upon EW-N connections. The presented superstructure 
allows for expansion of the current infrastructure, 
conversion of existing generators to reduce the amount of 
cooling water utilized, and the addition of large-scale 
energy storage devices as well as the day-to-day operational 
scheduling of the system. The goal of the aforementioned 
multi-objective framework is to reduce the capital cost, 
operational cost and water usage of the power generating 
system, while ensuring that the demand of energy from 
consumers is met.  

The framework is illustrated through the use of a case 
study for a power generating utility operating in the 
Edwards Aquifer region of Texas. The Edwards Aquifer 
region of Texas was chosen as the case study because it is 
an extremely water stressed region undergoing population 
rapid population growth due to the fact that San Antonio, 
TX, is a growing metropolitan hub (McCarl et al., 2018) and 
(Daher et al., 2019). 

This article is organized as follows. First in Section 2, 
the EW-N infrastructure planning and operational 
scheduling problem for a power generating system is 
presented. In Section 3, the optimization model of the EW-
N planning and scheduling problem is presented. In section 
4, the case of a power generating utility operating in the 
Edwards Aquifer is presented. In Section 5, the results of 
the case study are presented and discussed. In Section 6, the 
concluding remarks are given. 

EW-N Planning and Scheduling Problem 

The objective of the EW-N problem is to determine the 
optimal infrastructure expansion and operational decisions 
for a power generating utility operating in the Edwards 
Aqufier so that the capital cost, operational cost and water 
usage of the system is minimized, while at the same time 
ensuring the energy demands are met in each of the regions 
it operates in.  

The planning horizon, , is 20 years with 5-year time 
discretization and is uncertain with respect to energy 
demand. The scheduling problem for each planning period, 
is broken down into a set of representative weeks, . The 
scheduling horizon, , for each of these weeks is divided 
into 1-hour time discretization. For each representative 
week there is a solar irradiance, wind, and demand profile 
for each of the regions that the utility operates in. 

Without loss of generality, we are given a set, , of 
existing power plants owned and operated by the utility 
company as well as their respective cooling technologies 
for the applicable plants. The utility also has the ability to 
purchase additional renewable and nonrenewable power 
plants as well as energy storage devices, which are denoted 
by the sets  and  respectively. There is also a set, , of 
potentially converted power plants who have had their 
cooling technologies upgraded from a “once-through” 
system to a “wet-cooling” system. It is to be highlighted 
that it is assumed that “dry-cooling” systems are not 
applicable in this region due to the extremely hot and dry 
summers that are typical of this part of Texas. 

The capital cost, operational cost, and operational 
parameters are given for each power plant and storage 
device. The utility also has the ability to purchase additional 
power from other utilities if it does not have the generation 
capacity to meet its demands. 

Algebraic Model 

The optimization model is posed as a two-stage multi-
period stochastic mixed-integer linear program with two 
competing objectives. The first objective is to minimize the 
capital and operational cost of the system and the second 
objective is to minimize the water usage of the system. The 
uncertainty in the problem is respect to the growth in energy 
demand over the course of the planning horizon.  

There are planning constraints that allow for the 
construction of new power plants and new storage units as 
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well as the conversion of the cooling technologies of 
existing power plants. There are scheduling constraints that 
ensure each region meets its energy demand and does not 
utilize more water than it has been allocated. There are 
additional scheduling constraints for the operation of 
storage devices and power plants (Lara et al., 2018) 
(Gabrielli et al., 2018) (Zang et al, 2018). It is assumed that 
theses storage devices have generators to charge the device 
and to convert the stored energy back into electric power. 
There are also nonanticipatory constraints, which ensure the 
planning decisions that occur in the first period of the 
planning problem are identical for all scenarios.  

The capital cost, operational fixed cost, operational 
variable cost parameters are weighted to bring their cost to 
the present value as well as scaled as a function of their 
representative weeks.  

Objective Function 

The capital cost to construct additional power plants 
and energy storage devices is given by Eq. (1).  

 (1) 

 The capital cost to upgrade the cooling technologies of 
existing power plants is given by Eq. (2).  

 (2) 

 The fixed operational cost for each power plant and 
energy storage device in the system is given by Eq. (3). 

 

 
(3) 

 The variable operational cost for each power plant and 
storage device in the system is given by Eq. (4). 

 (4) 

 Equation (5) gives the cost to purchase additional 
power from another utility.  

 (5) 

 The total amount of water utilized by the power 
generating system is given by Eq. (6) 

 (6) 

Planning Constraints 

Equation (7) ensures that a power plant or storage unit 
must be built before it can become operational. 

 (7) 

 Equations (8) and (9) ensure that an upgraded plant 
cannot operate before it has been converted. 

 

 

(8) 

 

 

(9) 

Planning and Scheduling Constraints  
 Equation (10) links the capacity planning decisions to 
the operational scheduling decisions.  

 

 
(10) 

Scheduling Constraints  

Equation (11) ensures each region meets its power 
demands for the planning and scheduling horizon.  

 

 

 

(11) 

Equation (12) is the energy balance for each energy 
storage device utilized in power generating system.  

 

 
(12) 

The standard operational limits for each of the power 
plants, storage units, and generators in each storage unit for 
the system is given by Eq. (13) through Eq. (17). 

 

 
(13) 

 

 
(14) 

 

 
(15) 

 

 
(16) 

 

 
(17) 

The limits on water availability for each region that the 
utility operates in is given by Eq. (18) and Eq. (19).  

 

 

(18) 

 (19) 
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Nonanticipativity Constraints  

 Equation (20) and Eq. (21) enforce the 
nonanticipativity constraints in the planning problem.  

 
 

(20) 

 

 
(21) 

Optimization Problem 

 The multi-objective optimization problem is given the 
aforementioned objective functions as well as constraints 
and is formally defined as: 

 
(22) 

Case Study 

The developed EW-N optimization framework is  
implemented for a power generating utility system 
operating in the Edwards Aquifer region of Texas. It is 
assumed that the utility operates in 3 separate regions within 
the Edwards Aquifer. Each region that the utility operates 
in has different energy demand, wind speed, and solar 
irradiance profiles. We have made considerable additions to 
Lara’s model of the ERCOT power generating system, by 
allowing for uncertainties in the infrastructure planning 
problem, the conversion of existing power plants, the 
addition of energy storage devices to the system as well as 
exploiting the nexus connections between energy and water 
(Lara et al., 2018). 
 We utilize a set of 3 scenarios to represent the 
population growth and consequently growth in energy 
demand for each of the regions, , that the utility 
operates for the 20-year planning horizon. The nominal 
growth scenario for each region was found by utilizing the 
projected population from 2020-2070 that is generated by 
the Texas Water Development Board (TWDB) (Texas 
Water Development Board, 2017). We consider an 
overestimate and underestimate in population growth, 
which is 20% above and 20% below the nominal growth as 
given by (TWDB). These two additional population growth 
scenarios each have probability of transpiring of 10%. The 
set of population growth scenarios for each region were 
mapped into a set of energy demand scenarios, . 
 The scheduling problem for each planning period was 
divided into a set of scheduling problems, , so that each 
planning period would have a set of representative weeks. 
The representative weeks are distinguished by season, 
Summer and Winter. These representative weeks each have 
solar irradiance and wind speed profiles as well as energy 
demand profiles based upon the planning scenario, . 
 The data for the nominal energy demands for the 
representative weeks were found by utilizing ERCOTs 
historical online hourly load database (Energy Reliability 
Council of Texas, 2018a). The nominal demands for each 
of the representative weeks in their respective season were 
found by applying k-means clustering. 

 The solar irradiance and wind speed profiles for each 
of the representative weeks and region that the utility 
operates in were found in a similar manner by utilizing 
historical data from the National Renewable Energy 
Laborites (NRELs) online databases (National Renewable 
Energy Laborites, 2018a) (National Renewable Energy 
Laborites, 2018b). 

The capital expenditure cost, fixed operational cost and 
variable operational cost for the power plants were found 
from data in NRELs annual technology baseline report 
(Cole et al., 2018). The capital expenditure cost, fixed 
operational cost and variable operational cost for storage 
devices were taken from the comparison of energy storage 
systems by Zakeri and Syri (2015). 

The interest rate utilized to bring the monetary cost to 
the present value was taken to be 5% per year. It is assumed 
that it takes one planning period for a new power plant or 
energy storage unit to be constructed and one planning 
period for the cooling technology of a storage unit to be 
upgraded. 

The up-ramp and down-ramp limits of the NGCC and 
NGGT plants were taken from (Van den Bergh and 
Dalarue, 2015). The performance profiles for wind turbines 
were found via the technical data sheet for a General 
Electric 2.5MW-103 wind turbine (Wind Turbine Models 
General Electric GE 2.5 103).  

Table (1) gives the set of preexisting generators as well 
as their corresponding cooling technology, nameplate 
capacity, and region.  

Table 1. Preexisting Generators 

Gen. Tech Cool Tech Capacity Region 
NGGT NA 300 MW 2 
NGCC “once-through” 500 MW 2 
NGCC “wet-cooling” 500 MW 1 
NGCC “wet-cooling” 500 MW 3 

 
The utility is able to purchase the following potential 

plants in each of the regions: NGGT with a 300 MW 
capacity; NGCC with a “wet-cooling” technology and a 
capacity of 500 MW; solar farm with a capacity of 250 
MW; and wind farm with a capacity of 350 MW. The only 
two viable storage options in this region are batteries, with 
a power output of 4MW and capacity of 20MWh, and 
compressed air energy storage (CAES), with a power 
output of 300MW and capacity of 3000MWh. 

Results 

The algebraic model of the optimization problem was 
implemented using the Gurobi Python interface and 
consisted of 161,352 continuous variables, 193,956 binary 
variables, and 326,964 constraints. The program was 
solved on a machine with a 2.8 GHz Intel Core i7 processor 
and 16 GM of RAM utilizing Gurobi V8.1 (Gurobi, 2018) 
to an MIP optimality gap of 0.01%. For sake of example 
the objective function weights were both set to 0.5. 
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Figure 1.   Power Output from the Power Plants and Energy Storage Devices for a Sample Week in the Winter 

 

Figure 2.   Capacity of the Energy Storage Devices for a Sample Week in the Winter 

The results show that the power generating utility company 
should construct new wind farms, solar farms, and CAES 
devices in each of the regions it operates in during the first 
planning period. It was found no new nonrenewable power 
plants and battery storage farms should be constructed at 
any point in the planning horizon. It was also found the 
existing power plant with the “once-through” cooling 
technology should be shut down for all planning scenarios.  

Figure (1) illustrates the power output of the different 
types of generators and storages devices in the fourth 
planning period for a representative week in winter. It 
should be noted in the majority of the scheduling periods 
the power output of generators is greater than the demand, 
this is due to the fact there is energy losses due to 
transmission when electricity is transported from one region 
to another. Figure (2) illustrates the capacity of all the 
energy storage devices in the same representative week as 
Fig. (1).  

From inspection of Fig. (1) it clear that the utility relies 
heavily on renewable generators and utilizes a combination 
of energy storage devices and a NGCC plant to meet the 
demand when the generating capacity of renewable 
generators is insufficient to meet the energy demands.  
While the Fig (1) does not explicitly show it, the renewable 
generators are all operating at maximum capacity. This is 
typical for all of the representative weeks in the planning 
and scheduling horizons because such a decision-making 
strategy reduces the amount of water the power generating 
system utilizes. 

Conclusion 

In this work, we have presented an EW-N decision-
making strategy for power generating utility through the 
use of an optimization framework. The framework allows 
the uncertainties in the growth of energy demands, 
inclusion of large-storage devices to reduce the stress 
brought on by intermit renewable generators and to store 
excess power, the conversion of existing power plants, as 
well as exploits the nexus connections between energy and 
water. The framework was implemented for a power 
generating utility operating in the Edwards Aquifer and 
illustrates how to optimally exploit the nexus connections 
between energy and water. 
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Table 2.   Nomenclature 

Name Definition 

 Planning horizon 
 Planning period/s before a planning period 
 Planning period/s before a planning period plus 

additional period/s for construction 
 Scheduling horizon 
 Planning scenarios 

 Planning scenarios in the first time period 

 Scheduling scenarios 

 Cartesian product of  and   

 Regions the utility operates in  

 Existing power plants before conversion 

 Existing power plants after conversion 

 A power plant, , that was previously, 
, before it was converted 

 New power plants 

 New energy storage units 
 Generators for the new energy storage units 

 Generators for storage units in a region 
 Generators for a specific storage unit 

 Union of  and  
 Storage generators/units in a region 

 Fixed construction cost 

 Fixed cost to upgrade a power plant  

 Fixed operational cost  

 Fixed cost to shut down  

 Fixed cost to start up 

 Variable operational cost  

 Fixed cost for electricity  

 Energy demand for a region  

 Efficiency of a generator in a storage unit 

 “1” if the generator outputs energy from or “-1” if it 
inputs energy into a storage unit 

 Lower bound on the capacity  

 Upper bound on the capacity– the upper bound for 
renewable plants is scaled based upon the hour/week 

 Down ramp limit on the capacity  

 Up ramp limit on the capacity  

 Amount of water utilize for the unit 

 Amount of water availability in a region 

 Transmission loss  

 Binary variable that indicates if a plant, storage 
generators/units is built 

 Binary variable that indicates if the cooling 
technology of a power plant is upgraded 

 Binary variable that indicates if a plant, storage 
generator/unit operates in a planning period 

 Binary variable that indicates if a plant, storage 
generator/unit operates in a scheduling period 

 Binary variable that indicates if a plant, storage 
generator/unit shuts down 

 Binary variable that indicates if a plant, storage 
generator/unit starts up 

 Continuous variable (CV) that indicates the output 
of a plant or generator in a storage unit or the 
capacity of a storage unit  

 CV that indicates the amount of power purchased 

 CV that indicates the amount of water utilized 
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