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Abstract
The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)
framework is presented for addressing the optimization of bi-level mixed-integer nonlinear
programming problems. In this framework, bi-level optimization problems are approximated
as single-level optimization problems by collecting samples of the upper-level objective and
solving the lower-level problem to global optimality at those sampling points. This process
is done through the integration of the DOMINO framework with a grey-box optimization
solver to perform design of experiments on the upper-level objective, and to consecutively
approximate and optimize bi-level mixed-integer nonlinear programming problems that are
challenging to solve using exact methods. The performance of DOMINO is assessed through
solving numerous bi-level benchmark problems, a land allocation problem in Food-Energy-
Water Nexus, and through employing different data-driven optimization methodologies,
including both local and global methods. Although this data-driven approach cannot pro-
vide a theoretical guarantee to global optimality, we present an algorithmic advancement
that can guarantee feasibility to large-scale bi-level optimization problems when the lower-
level problem is solved to global optimality at convergence.
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1 Introduction

Multi-level programming is a class ofmathematical optimizationwith hierarchical structures,
where one optimization problem is constrained by other optimization problems. It arises in
the presence of multiple decision makers, where each of them is concerned with optimizing
its own objective function. As a result, multi-level programming problems are encountered in
many different application areas, including supply chain planning [4,36], scheduling [5,8,49],
government policy decision [16], price setting problems [33,46] and economics [72], and
other multi-stage decision making problems [6,50].

This manuscript presents a data-driven framework for the solution of bi-level mixed-
integer nonlinear problems with the general mathematical form shown in Eq. 1. The
considered class of problems contain two optimization levels with F(x, y) and f (x, y)
representing the objective functions of the upper and lower-level problems, respectively. The
upper-level problem (ULP) is constrained by the inequality G(x, y), whereas the lower-level
problem (LLP) is constrained both by the inequality g(x, y) and the equality constraint
h( y), where y is a vector of continuous and/or integer variables strictly controlled by the
LLP, and x is a vector of continuous variables strictly controlled by the ULP. It is worth
noting here that the developed framework cannot address bi-level problems with upper-level
integer variables, although lower-level integer variables can appear in the ULP.

min
x

F(x, y)

s.t. G(x, y) ≤ 0
y ∈ argmin

y
{ f (x, y) : g(x, y) ≤ 0, h( y) = 0}

[x1, ..., xn] ∈ R
n

[y1, ..., ym] ∈ R
m, [ym+1, ..., yk] ∈ Z

k−m

(1)

This hierarchical structure can be viewed as a Stackelberg game [71,74] where the upper-
level objective will lead and decide on the decision variables x, and the lower-level decision
maker will then follow the leader by reacting accordingly, choosing the optimal values for y
to optimize its own objective function. Previously, the solutions of bi-level and multi-level
programmingproblemshavebeen studied extensively usingbranch andboundalgorithms [15,
34,35,44,56] and multi-parametric optimization techniques [7,9–11,28,31,32,64]. Although
the aforementioned studies represent important theoretical advances for retrieving either ε-
optimal or exact solutions of bi-level andmulti-level optimization problems, the primary goal
of thiswork is to tackle problemswhere the deterministic solution strategies cannot be applied
due to the highly nonlinear nonconvex nature of many two-level large-scale optimization
problems (i.e. problems that contain high number of variables and/or constraints).

To this end, many studies have focused on implementing evolutionary algorithms (i.e.,
genetic and meta-heuristic algorithms) and trust-region approaches to solve problems with
multiple nested layers as presented in the detailed review by Sinha et al. [73]. Although
evolutionary algorithms are very-well established and can be applicable to bi-level optimiza-
tion problems, these methodologies typically require a large number of function evaluations
for convergence, which come with a significant computational burden. Furthermore, evolu-
tionary algorithms are generally implemented to unconstrained or box-constrained problems
which limit their applicability to many real-life, constrained optimization problems. Exten-
sions of evolutionary algorithms are proposed in the literature for handling constraints using
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aggregated approaches, through penalty functions [27,39] or Augmented Lagrangian tech-
niques [70].

In fact, several novel genetic and evolutionary algorithms have been presented for the
solution of integer linear bi-level problems [37,63] but both of these studies cannot guaran-
tee global optimality or feasibility. Further advances to genetic algorithms have also been
presented for the solution of mixed-integer nonlinear bi-level problems in the last decade
[2,38]. However, the study by Hecheng and Yuping [38] is not applicable to bi-level pro-
gramming problems with general nonlinear lower-level problems. In addition, similar to the
integer linear algorithms, these nonlinear genetic algorithms [2,38] cannot also guarantee
global optimality or feasibility. As an alternative approach to evolutionary algorithms, Sinha
et al. [73] suggested building a local single-level approximation of the bi-level problem using
Artificial Neural Networks (ANNs). The authors briefly discuss how local surrogate mod-
eling efforts can be a useful tool for solving bi-level optimization problems. However, the
challenges associated with training an ANN, such as the hyperparameter optimization, deci-
sions on the architecture of the network, and the number of samples required for training are
not addressed. Therefore, new algorithmic approaches are necessary for solving nonlinear
nonconvex bi-level mixed-integer optimization problems with improved constraint handling
capabilities and maximum computational efficiency.

Hence, in this work, a new data-driven optimization framework is proposed to allevi-
ate the aforementioned challenges as well as to bridge the gaps in solving a special class
of bi-level programming problems, as shown in Eq. 1. To this end, the Data-driven Opti-
mization of bi-level Mixed-Integer NOnlinear problems (DOMINO) algorithm is presented
where this approach reformulates bi-level optimization problems into single-level approx-
imations through collecting samples on the upper-level objective, while the lower-level is
solved to global optimality at these sampling points. This data-driven approach enables the
collected input-output information to be utilized by a grey-box optimization solver, where the
upper-level objective is solved to optimality via a derivative-free optimization methodology.
Through this work, the aim is to:

– Establish a powerful computational algorithm for solving large-scale bi-level mixed-
integer nonlinear programming (B-MINLP) problems of the form provided in Eq. 1,
which are difficult to solve using deterministic algorithms,

– Test the framework on an extensive list of bi-level optimization benchmark problems,
– Assess the performance of different grey-box solvers on the benchmark problems,
– Utilize the framework for the optimization of a large scale bi-level engineering problem.

This paper is structured as follows. In Sect. 2, a background on constrained grey-box
optimization and the DOMINO framework are presented in detail. Furthermore, in Sect. 3,
the results for an extensive set of benchmark studies are presented alongside the results of a
large-scale case study of land allocation in Food-Energy-Water Nexus problem. Finally, the
concluding remarks are provided in Sect. 4.

2 Grey-box optimization and the DOMINO framework

2.1 Grey-box optimization

Grey-box problems are typically encountered in systems that lack closed-form equations or
in systems that are defined by high-fidelity models, which may contain a large set of par-
tial differential equations. In such problems, the system of interest is usually subject to; (a)
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noise, computational expense and highly nonconvex behavior; and (b) partial availability
of the derivatives of the objective function and the constraints as a function of the decision
variables. Hence, the direct use of deterministic global optimization methods is challenging
and/or restrictive for grey-box systems where the problem characteristics are generally pro-
vided in the form of input-output data. A grey-box optimization problem is mathematically
defined in Eq. 2, where the analytical form of the objective function f (x) and the constraints
gunknown(x) as a function of the decision variables is unavailable, whereas the inequalities
defined by gknown(x)may be presentwith an explicitly knownmathematical form (i.e. known
constraints).

min
x

f (x)

s.t . gunknown(x) ≤ 0
gknown(x) ≤ 0
xi ∈ [x Li , xUi ] i = 1, . . . , n
x ∈ R

n

(2)

This class of problems is tackled using data-driven or derivative-free optimization (DFO)
techniques where the derivative information of the original formulation is not utilized to get
the optimal solution [25].A typicalDFOprocedure startswith an initial design of experiments
on the decision variables x, which provides a set of pre-determined locations for evaluating
the system and collecting the corresponding outputs (objective function value and constraint
violations) from the simulated high-fidelitymodel. This input-output data will further be used
by the data-driven optimizer to find the true optimumof the originalmodel either through (a) a
purely sample-based methodology; or (b) a hybrid methodology that integrates samples with
simple, approximatemodels (surrogatemodels).Many algorithmic advances have beenmade
in the last decade for data-driven grey-box optimization of both box-constrained problems
[42,58] and general constrained problems [14,21,29] including, the ARGONAUT framework
[18,20,23], the ALAMO framework [26,77] and the SO-MI algorithm [57]. Further details
on DFO and other algorithmic advances in this field can be found in several recent and
valuable review articles and surveys, including a review by Kolda et al. [45] on sample-
based methods, by Rios and Sahinidis [67] on box-constrained DFO and comparison of
software implementations, by Boukouvala et al. [22] on constrained DFO and by Bhosekar
and Ierapetritou [19] and Vu et al. [76] on surrogate-based DFO.

Although grey-box optimization has been predominantly applied to single-level optimiza-
tion problems, for both constrained and unconstrained problems, we have recently shown
that these methods can be extended towards solving constrainedmulti-objective optimization
problems [17]. In this work, we are extending our capabilities that had been established pre-
viously for the global optimization of nonlinear nonconvex constrained grey-box problems
[18,20,23] towards solving bi-level optimization problems. Our data-driven methodology
provides an efficient and consistentway for approximating constrained bi-levelmixed-integer
nonlinear nonconvex optimization problems, which are challenging to solve using determin-
istic techniques and/or evolutionary algorithms.

2.2 DOMINO framework

The Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO)
framework solves the constrained bi-level mixed-integer nonlinear nonconvex optimization
problems following a similar procedure as a generic grey-box optimization algorithm, where
the novelty of the work underlies in approximating the bi-level problem into a single-level
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Fig. 1 Algorithmic flowchart of the DOMINO framework. DOMINO is integrated with a DFO algorithm
and a deterministic global optimizer for solving bi-level programming problems. The LLP is solved to global
optimality at each iteration for a given vector of upper-level decision variables, x (input data). The objective
function and the constraint violations (output data) that contain at least one upper-level variable are enumerated
using the optimal solution y∗ and the corresponding input upper-level decision variables x. This input-output
data is later passed to a DFO subroutine to retrieve a candidate solution of the bi-level programming problem

grey-box optimization problem. A general overview of the algorithm is provided in Fig. 1.
Given a bi-level programming problem, the first step to DOMINO framework is to pass the
dimensionality information of the ULP (i.e. number of upper-level decision variables, n, and
their respective bounds) along with any known constraints (i.e. constraints that are explicitly
and solely imposed on the upper-level decision variables) to the design of experiments, if
the data-driven optimizer can explicitly handle this information. In the absence of such a
capability, the known constraints are directly handled as grey-box constraints.

The dimensionality information of the ULP is further processed by the data-driven opti-
mizer to identify an initial starting point or an initial design of experiments at random. The
choice of starting with a random initial point or a random design of experiments strictly
depends on the type of grey-box solver that is incorporated in the framework. Typically,
local black/grey-box solvers, such as a direct search algorithm [3], start with random single
initial point whereas global approaches like ARGONAUT [20,23] create a random space-
filling maximin Latin Hypercube Design within the provided bounds. Then, at each of these
pre-determined candidate locations of x, the corresponding optimal value of the LLP, y∗, is
determined using either a local solver such as CPLEX [40], or global MINLP solvers such as
ANTIGONE [51–53] and BARON [75], depending on the problem type. CPLEX is imple-
mented for linear (LP), mixed-integer linear (MILP), quadratically constrained (QCP), and
mixed-integer quadratically constrained (MIQCP) programming problems, whereas BARON
and ANTIGONE are implemented to general nonlinear (NLP) and mixed-integer nonlinear
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(MINLP) programming problems at the lower-level. Thus, the LLP is solved deterministi-
cally to global optimality at each iteration at the given upper-level sampling points. Later,
the optimal solution of the LLP, y∗, and the pre-determined sampling points will be used to
enumerate the upper-level objective, F(x, y∗), and the constraint violations of both levels,
G(x, y∗) and g(x, y∗). This input-output data will be further passed onto the derivative-free
optimization stage to retrieve a candidate solution of the original bi-level programming prob-
lem once the DFO convergence criteria are met. If this returned solution violates any of the
grey-box constraints, the algorithm is restarted to explore a feasible solution, starting with
a new initial point/design. If all constraints are satisfied but the LLP is only locally optimal
or feasible, then the algorithm will terminate without identifying a feasible solution to the
bi-level programming problem. If the solution satisfies all grey-box constraints, and the LLP
is globally optimal at the given solution, the solution is a guaranteed feasible point for the
original bi-level programming problem.

DOMINO is a flexible algorithm where any type of data-driven optimizer (i.e. local ver-
sus global or sample-based versus model-based algorithms) and deterministic solver (i.e.
CPLEX, ANTIGONE, BARON) can be incorporated depending on the problem definition.
This flexibility allows DOMINO to benefit from the advantages of different approaches and
does not impose a strict form on the single-level approximation of different bi-level opti-
mization problems. The most important properties of the DOMINO framework are listed as
remarks below.

Remark 1 The proposed framework is tailored to handle special classes of bi-level optimiza-
tion problems that are given in the form of Eq. 1.

Remark 2 DOMINO cannot guarantee ε-global optimality to the upper-level objective.
Although commercially available optimization solvers such as CPLEX, ANTIGONE
[51–53], and BARON [75] are incorporated within the framework for the deterministic
optimization of the LLP, the ULP is treated as a grey-box, where the explicit analytical
formulation and the convexity of the problem is assumed to be unknown.

Remark 3 Feasibility of the bi-level programming problem is guaranteed at convergence if
and only if a feasible solution for the ULP is identified by DOMINO and the lower-level
converges to a globally optimal solution at the given upper-level solution. The feasibil-
ity guarantee is achieved by formulating all the upper-level variable-containing constraints,
G(x, y) and g(x, y), as black/grey-box constraints where their respective violations are
tracked throughout the DFO procedure. As the LLP is solved to global optimality determin-
istically at every iteration, the constraints with only lower-level variables (i.e. h( y) = 0), are
satisfied for a feasible solution of an ULP. In addition, the lower-level feasibility is verified
through an a posteriori analysis for the returned bi-level solution.

Remark 4 DOMINO framework can handle awide range of dimensionality, including several
hundred variables, and constraints in both upper and lower-level problems, and provide
feasible near-optimal solutions to varying bi-level programming problem types.

Remark 5 When the optimal solution of the LLP is not unique for the vector of optimal upper-
level variables, the decision maker can take a pessimistic decision, an optimistic decision
or any decision in between. Although many other bi-level approaches can guarantee and
characterize the solution type as pessimistic or optimistic, the proposed framework is not
able to provide this characterization.
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Table 1 Descriptions and the convergence criteria of data-driven algorithms tested in this study

Algorithm name Description

NOMAD Local optimization based on pattern method (search, poll and update).
Convergence criteria: maximum number of samples reached, mesh size tolerance
reached [48].

COBYLA Constraint handling via progressive barrier approach. Local optimization using
linear approximations for the objective and constraints by interpolation at the
vertices of a simplex. Convergence criteria: maximum number of samples
reached, minimum trust region radius is exceeded/reached, an optimization step
causes a relative change in the decision variables less than the set tolerance
[41,66].

ARGONAUT Global optimization using surrogate model identification for the objective and
constraints. Convergence criteria: maximum number of samples reached, no
improvement of the incumbent solution over a consecutive set of iterations, all
unknown functions are modeled with high accuracy (i.e. very low
cross-validation mean squared error) and the incumbent solution is feasible [20].

ISRES Global optimization via evolutionary method; couples mutation rule and
differential variation. Constraint handling via stochastic ranking. Convergence
criteria: maximum number of samples reached, an optimization step causes a
relative change in the decision variables less than the set tolerance [41].

Remark 6 DOMINO does not impose any extra criterion for convergence or re-sampling.
These decisions solely depend on the data-driven optimizer that is integrated within the
DOMINO framework and vary from one data-driven methodology to another.

In our previous study [12], we have tested the basic idea of the data-driven approach using
a single data-driven optimizer for solving a B-MINLP problem in Food-Energy-Water Nexus
considerations. In this work, we are further demonstrating the properties of the framework
that are listed here on an extended class of benchmark problems and improve the number
of problems solved to global optimality. We extended the framework to include an array
of data-driven optimizers, which are presented in the following section. In addition, we are
providing the full formulation of the Food-Energy-Water Nexus case study, its reformulation
to B-MILP problem using Big-M constraints, as well as its detailed computational study with
DOMINO in Sect. 3.2.

3 Computational studies

The proposed data-driven methodology for solving bi-level optimization problems is tested
on a challenging set of 100 test problems and a land allocation case study. In thiswork,wehave
identified 4 different constrained data-driven optimization strategies that can be implemented
in the DOMINO framework: (1) Nonlinear Optimization by Mesh Adaptive Direct search
(NOMAD) [47]; (2) Constrained Optimization BYLinear Approximations (COBYLA) [66];
(3) AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems
(ARGONAUT) [18,20,23]; and (4) ImprovedStochasticRankingEvolutionStrategy (ISRES)
[68]. The selection of these solvers is based on their ability to perform constrained optimiza-
tion on black/grey-box problems as well as their difference in solution methodology, where
both local (NOMAD and COBYLA) and global (ARGONAUT and ISRES) optimization
strategies are investigated. Each algorithm is briefly described in Table 1. These DFO solvers
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are available and/or implemented in R statistical software. ARGONAUT is implemented in
R, the NLopt implementation of ISRES and COBYLA [41] is available in “nloptr” package
in R, and the NOMAD software is available at [1]. All the tested case studies are modeled in
GAMS and interfaced through R, where the input-output data collection on each grey-box
problem is performed via text files.

All benchmark problems and high-dimensional case studies are executed 10 times on a
High-Performance Computing (HPC) machine at Texas A&M High-Performance Research
Computing facility using Ada IBM/Lenovo Intel Xeon E5-2670 v2 (Ivy Bridge-EP) HPC
Cluster operated with Linux (CentOS 6). COBYLA, ISRES and NOMAD algorithms are
executed using 1 node (1 core per node with 64 GB RAM), whereas the ARGONAUT
algorithm is executed as a parallel job, using 1 node (20 cores per node with 64 GB RAM)
on the supercomputer. Furthermore, for a fair comparison of results, the starting points of
COBYLA, ISRES, andNOMADare randomly generated, as well as the starting initial design
of experiments for ARGONAUT is randomly determined for each run. In addition, all data-
driven solvers are tested and implemented at their default setting provided from [1,41], with
the exception of ARGONAUT. By default, ARGONAUT sets the number of initial sampling
points to 10k + 1 for k ≤ 20 and to 251 when k > 20, where k is the dimensionality of
the problem (i.e. number of inputs). Since for k ≤ 2, the number of initial samples is not
sufficient to reveal the input-output relationship for both levels in a bi-level programming
problem, the number of initial points to be collected is increased to 40k + 1. For problems
with dimensionality 2 < k ≤ 20 and k > 20, the default values are implemented.

3.1 Benchmark studies

The comprehensive test set fromMitsos and Barton [55] (Errata: from Paulavicius et al. [65]),
as well as individual bi-level programming problems fromEdmunds andBard [30], Sahin and
Ciric [69], Gümüş and Floudas [35], Colson [24], Mitsos [54], Kleniati and Adjiman [43],
Woldemariam andKassa [78], andNie et al. [59] are used for assessing the performance of the
DOMINO framework and for comparing the performance of different data-driven optimizers
in finding the true global solution of the bi-level programming problems. In addition to this
set, we have randomly generated 61 benchmark studies using the bi-level random problem
generator inB-POP toolbox [7] and solved to global optimality,where the formulation of these
are provided in the SupplementaryMaterial. The selection of the benchmark problems aim to
cover various different types of bi-level optimization problems with varying dimensionalities
in both upper and lower-level problems. Especially for the problems generated by B-POP,
we have limited ourselves to dimensionalities that this solver can handle, so as to establish
a basis for comparison and to be able to assess the performance of DOMINO accurately
throughout the benchmark problems.

The dimensionality of each problem and their corresponding properties are provided in
Tables 2, 3 and 4, where n represents the number of upper-level continuous variables, m
and k − m represents the lower-level dimensionality (continuous and integer, respectively)
and ngreyg represents the number of grey-box constraints for each problem. The number of
grey-box constraints shown here is the sum of the number of the upper-level constraints
and the lower-level constraints that include at least one upper-level variable in its mathe-
matical form. This criterion is imposed since the LLP is solved deterministically within the
framework, where the optimal solution already satisfies the constraints with only lower-level
decision variables. This allows us to eliminate redundant model building or point search in
the optimization phase, which speeds up the computational time required for convergence
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Table 2 Dimensionality of continuous bi-level linear benchmark problems tested with DOMINO

Problem ID [Source] Label Problem type (upper–lower) n m k − m ngreyg nyg

1 [69] sc_1 LP-LP 1 2 0 3 0

2 [7] LPLP1 LP-LP 2 2 0 2 0

3 [7] LPLP2 LP-LP 2 2 0 5 2

4 [7] LPLP3 LP-LP 5 5 0 2 0

5 [7] LPLP4 LP-LP 10 10 0 4 0

6 [7] LPLP5 LP-LP 20 500 0 350 0

7 [7] LPLP6 LP-LP 20 20 0 4 0

8 [7] LPLP7 LP-LP 20 30 0 5 0

9 [7] LPLP8 LP-LP 20 50 0 7 0

10 [7] LPLP9 LP-LP 20 80 0 7 0

11 [7] LPLP10 LP-LP 40 150 0 10 0

12 [7] LPLP11 LP-LP 50 200 0 20 0

13 [7] LPLP12 LP-LP 80 90 0 3 0

14 [7] LPLP13 LP-LP 200 200 0 200 0

Table 3 Dimensionality of continuous bi-level nonlinear benchmark problems tested with DOMINO

Problem ID [Source] Label Problem type (upper–lower) n m k − m ngreyg nyg

15 [55] mb_1_1_06 LP-QP 1 1 0 0 0

16 [7] LPQP1 LP-QP 30 60 0 10 0

17 [55] mb_1_1_16 QP-QP 1 1 0 2 0

18 [78] wk_2015_01 QP-QP 1 1 0 2 0

19 [35] gf_4 QP-QP 1 1 0 3 0

20 [69] sc_2 QP-QP 1 1 0 3 0

21 [35] gf_2 NLP-QP 1 2 0 2 0

22 [55] mb_2_3_02 NLP-QP 2 3 0 1∗ 2

23 [55] mb_1_1_03 LP-NLP 1 1 0 0 0

24 [55] mb_1_1_04 LP-NLP 1 1 0 0 0

25 [55] mb_1_1_05 LP-NLP 1 1 0 0 0

26 [55] mb_1_1_08 LP-NLP 1 1 0 0 0

27 [55] mb_1_1_09 LP-NLP 1 1 0 0 0

28 [55] mb_1_1_12 LP-NLP 1 1 0 0 0

29 [55] mb_1_1_01 LP-NLP 1 1 0 0 2

30 [55] mb_1_1_02 LP-NLP 1 1 0 1 0

31 [35] gf_5 LP-NLP 1 2 0 1 1

32 [35] gf_3 LP-NLP 2 3 0 2 1

33 [55] mb_1_1_07 QP-NLP 1 1 0 0 0

34 [55] mb_1_1_10 QP-NLP 1 1 0 0 0

35 [55] mb_1_1_11 QP-NLP 1 1 0 0 0

36 [55] mb_1_1_13 QP-NLP 1 1 0 0 0

37 [55] mb_1_1_14 QP-NLP 1 1 0 0 0
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Table 3 continued

Problem ID [Source] Label Problem type (upper–lower) n m k − m ngreyg nyg

38 [55] mb_1_1_17 QP-NLP 1 1 0 0 0

39 [55] mb_1_1_15 QP-NLP 1 1 0 1 0

40 [35] gf_1 QP-NLP 1 1 0 2 0

41 [24] c_2002_01 NLP-NLP 1 1 0 2 0

42 [24] c_2002_03 NLP-NLP 1 1 0 2 0

43 [24] c_2002_05 NLP-NLP 1 2 0 2 0

44 [59] nwj_2017_02 NLP-NLP 2 3 0 1 2

45 [55] mb_2_3_01 NLP-NLP 2 3 0 3 2

46 [78] wk_2015_04 NLP-NLP 2 4 0 4 0

47 [78] wk_2015_06 NLP-NLP 4 4 0 4 0

48 [43] ka_2014_02 NLP-NLP 5 5 0 4 0

49 [55] mb_5_5_01 NLP-NLP 5 5 0 4 2

50 [55] mb_5_5_02 NLP-NLP 5 5 0 4 2

* This constraint is handled as “known” in ARGONAUT runs and as a grey-box constraint for other solvers

for all data-driven algorithms. In addition, we perform an a posteriori analysis on the LLP
to ensure feasibility of the unmodeled constraints at convergence. The number of constraints
with only the lower-level decision variables, hence not presented as grey-box constraints, are
also provided in Tables 2, 3 and 4 under nyg .

The performance of each solver within DOMINO is assessed based on its efficiency and
consistency in identifying the true global optimum of the benchmark studies over multiple
repetitive runs. The accuracy and the consistency of each algorithm is evaluated by calculating
the normalized mean absolute error (% MAE = 100 · |(Fbest − Fglobal)/Fglobal |) of the best
found solution with respect to the true global optimum and the standard deviation of this
error over 10 runs, respectively. In the benchmark problems with Fglobal = 0, the percent
absolute error (% MAE = 100 · |Fbest − Fglobal |) is calculated. It is important to note that
100% MAE is assigned for runs that returned an infeasible solution (constraint violation
≥ 10−6 and/or lower-level is not globally optimal (lower-level absolute optimality gap > 0
for LP, QP, MILP, MIQP-type lower-level problems and lower-level absolute optimality
gap ≥ 10−6 for NLP and INLP-type lower-level problems) and their respective standard
deviation of error is not calculated. Furthermore, the efficiency of the framework is evaluated
based on the average elapsed time it takes for each solver to converge and based on the
total number of function evaluations (i.e. samples) collected at convergence. The results for
continuous linear, continuous nonlinear, mixed-integer linear and mixed-integer nonlinear
bi-level programming problems are discussed in Sects. 3.1.1, 3.1.2 and 3.1.3, respectively.

3.1.1 Results for bi-level linear programming problems

The results of the bi-level linear benchmark problems are reported in Table 5. The overall
performance of all grey-box solvers, tested as a part of theDOMINO framework, indicate that
they return consistent feasible solutions with low errors to the bi-level linear programming
(B-LP) problems. Specifically, we observe that NOMAD, as a local sample-based grey-
box optimization solver, outperforms the rest of the solvers in B-LP problems. Only in the
benchmark problem with the highest number of upper-level variables, NOMAD returns an

123



Journal of Global Optimization (2020) 78:1–36 11

Table 4 Dimensionality of bi-level mixed-integer benchmark problems tested with DOMINO

Problem ID [Source] Label Problem type (upper–lower) n m k − m ngreyg nyg

51 [54] am_1_0_0_1_01 LP-ILP 1 0 1 0 0

52 [7] LPMILP1 LP-MILP 10 10 10 4 0

53 [7] LPMILP2 LP-MILP 10 10 10 4 0

54 [7] LPMILP3 LP-MILP 20 20 10 2 0

55 [7] LPMILP4 LP-MILP 30 30 30 4 0

56 [7] QPMILP1 QP-MILP 5 5 5 4 1

57 [7] QPMILP2 QP-MILP 10 5 5 5 0

58 [7] QPMILP3 QP-MILP 10 10 6 3 0

59 [7] QPMILP4 QP-MILP 20 10 5 2 3

60 [7] QPMILP5 QP-MILP 22 12 7 5 0

61 [7] QPMILP6 QP-MILP 25 20 15 3 0

62 [7] QPMILP7 QP-MILP 25 25 10 6 0

63 [7] QPMILP8 QP-MILP 30 120 120 120 0

64 [7] QPMILP9 QP-MILP 30 200 200 250 0

65 [7] NLPMILP1 NLP-MILP 5 8 6 9 1

66 [7] NLPMILP2 NLP-MILP 10 10 10 10 0

67 [7] NLPMILP3 NLP-MILP 15 15 15 14 1

68 [7] NLPMILP4 NLP-MILP 20 20 20 20 0

69 [7] NLPMILP5 NLP-MILP 25 30 30 30 0

70 [7] NLPMILP6 NLP-MILP 25 50 50 50 0

71 [7] NLPMILP7 NLP-MILP 30 70 70 70 0

72 [7] NLPMILP8 NLP-MILP 30 100 100 100 0

73 [7] NLPMILP9 NLP-MILP 30 200 200 200 0

74 [7] LPMIQP1 LP-MIQP 7 7 6 1 0

75 [7] LPMIQP2 LP-MIQP 7 7 6 1 0

76 [7] LPMIQP3 LP-MIQP 10 7 6 1 0

77 [7] LPMIQP4 LP-MIQP 10 7 6 1 0

78 [7] LPMIQP5 LP-MIQP 10 10 6 1 0

79 [7] LPMIQP6 LP-MIQP 10 13 6 1 0

80 [7] LPMIQP7 LP-MIQP 10 13 6 1 0

81 [7] LPMIQP8 LP-MIQP 12 13 6 1 0

82 [30] eb_1 QP-IQP 1 0 1 3 0

83 [7] QPMIQP1 QP-MIQP 5 20 10 1 0

84 [7] QPMIQP2 QP-MIQP 6 5 2 3 0

85 [7] QPMIQP3 QP-MIQP 6 5 3 4 0

86 [7] QPMIQP4 QP-MIQP 6 5 5 4 0

87 [7] QPMIQP5 QP-MIQP 10 3 3 3 0

88 [7] QPMIQP6 QP-MIQP 10 30 7 1 0

89 [7] QPMIQP7 QP-MIQP 10 40 7 1 0

90 [7] NLPMIQP1 NLP-MIQP 5 5 2 0 3

91 [7] NLPMIQP2 NLP-MIQP 7 5 3 3 0

92 [7] NLPMIQP3 NLP-MIQP 9 6 3 2 0
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Table 4 continued

Problem ID [Source] Label Problem type (upper–lower) n m k − m ngreyg nyg

93 [7] NLPMIQP4 NLP-MIQP 11 7 5 2 0

94 [7] NLPMIQP5 NLP-MIQP 12 10 10 1 0

95 [7] NLPMIQP6 NLP-MIQP 12 11 10 0 1

96 [7] NLPMIQP7 NLP-MIQP 12 11 5 1 0

97 [7] NLPMIQP8 NLP-MIQP 12 12 6 1 0

98 [7] NLPMIQP9 NLP-MIQP 13 9 8 1 0

99 [7] NLPMIQP10 NLP-MIQP 15 15 4 1 0

100 [69] sc_3 NLP-INLP 2 0 2 0 1

Table 5 Average % MAE and average standard deviation of % MAE for the bi-level linear programming
problems. No infeasibility is reported by any of the grey-box solvers for this set of bi-level linear programming
problems

Problem Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

1 0.0000 16.1538 0.0007 0.0001 0.0000 26.0102 0.0007 0.0001

2 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0032

3 0.0000 8.0448 0.0000 0.0001 0.0000 10.3858 0.0000 0.0001

4 0.0000 0.0388 0.0000 0.0000 0.0000 0.1225 0.0000 0.0000

5 0.1044 6.4958 11.2746 0.0000 0.0960 8.8862 6.9450 0.0000

6 0.0000 4.6180 16.1528 0.0287 0.0000 9.3016 14.1927 0.0119

7 0.2804 6.4321 1.3349 0.1767 0.1462 4.6339 0.6668 0.0427

8 0.0000 0.0000 0.0000 0.1018 0.0000 0.0000 0.0000 0.0336

9 0.0000 0.0000 0.0000 0.0830 0.0000 0.0000 0.0000 0.0107

10 0.0000 0.0000 0.0000 0.1493 0.0000 0.0000 0.0000 0.0283

11 0.0000 0.0000 0.0000 1.4393 0.0000 0.0000 0.0000 0.1732

12 0.0000 0.0000 0.0000 1.8667 0.0000 0.0000 0.0000 0.1101

13 0.0001 0.0584 0.0664 30.2788 0.0004 0.1838 0.0975 1.3798

14 6.9641 0.0000 0.0779 57.6624 1.4234 0.0000 0.2463 1.0838

objective value with more than 5% average MAE. A similar trend is also observed in the
ISRES algorithm, where at higher upper-level dimensionality benchmarks (i.e. 80 and 200
upper-level variables) the algorithm converges with high % MAE. One possible reason for
this behavior in sample-based methodologies is reported in Fig. 2b, where both NOMAD
and ISRES algorithms converge and return the incumbent solution after hitting the maximum
number of samples allowed (i.e. 105 samples) in all computational studies.Hence, by allowing
these algorithms to collect more samples at high-dimensional B-LP problems, it is possible
to get more consistent solutions with lower errors. Specifically, in problem 5 (“LPLP4”),
we observe that the ISRES algorithm hits the maximum number of samples even though a
solution with 0.0000 average % MAE and 0.0000 average standard deviation of % MAE is
found. This is due to the fact that the tolerance set for the criterion that defines the convergence
with respect to the relative change in the decision variables is not met. Another optimization
step taken by ISRESwill result in a relative change in the decision variables that is greater than
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Fig. 2 a Average elapsed time for solving bi-level linear programming problems; b Average total number of
samples collected by each solver in bi-level linear programming problems

10−6. Hence for this specific case, ISRES algorithm terminates by reaching the maximum
number of samples allowed. On the other hand, we observe that model-based algorithms,
such as COBYLA and ARGONAUT, can provide consistent near-optimal solutions to these
high-dimensional B-LPs. However in certain benchmark problems, thesemethodologiesmay
return solutions with higher % MAE, where also a higher variability is observed among 10
repetitive runs of these test problems.

In addition to the solution accuracy of each grey-box solver tested as a part of theDOMINO
framework, we compare the computational performance of each methodology with respect
to the total elapsed time for convergence and the average number of samples collected at
convergence (Fig. 2). The overall computational performance of all solvers, shown in Fig.
2a, b, indicates that the computational requirements for the DOMINO increases as the ULP
dimensionality increases. This is an expected result since the computational efficiency of all
grey-box solvers will highly depend on the number of decision variables and the grey-box
constraints handled by these algorithms. Although the overall trend shows an increase in
computational expense with increasing upper-level dimensionality, Fig. 2a shows that the
total elapsed time for DOMINO is comparable when using NOMAD, COBYLA or ARG-
ONAUT algorithms as the preferred grey-box solvers within the framework. On the contrary,
the elapsed computational time for the ISRES algorithm is at least an order of magnitude
higher for most of the B-LP benchmark problems when compared to other solvers. This is
mainly because the solution strategy of the ISRES algorithm dictates significantly higher
number of samples for convergence for all B-LP problems, where this in return increases the
computational requirements for DOMINO, as shown in Fig. 2b. It is also important to note
that the computational time for solving the LLP in B-LP benchmark problems is minimal.
On average, the amount of time required to solve the LLP took 0.013-0.065 seconds per
sample. For example, for the ARGONAUT algorithm, we observe that the total sampling
time (i.e. total time spent to solve the LLP for a given B-LP benchmark problem) accounted
for less than 9% of the total elapsed time spent for convergence. For this grey-box solver, the
parameter estimation and the surrogate model optimization stages accounted for at least 59%
of the total elapsed time, showing that the grey-box optimization stage was computationally
much more expensive than solving the LLP at different sampling points.

The overall results demonstrate that NOMAD, as a sample-based local grey-box solver, is
more favorable to be incorporated in the DOMINO framework for solving B-LP problems.
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NOMAD is shown to achieve highly consistent solution accuracy with good computational
efficiency compared to other methodologies. In spite of that, it is important to note that the
incumbent solution obtained at convergence from all algorithms in the DOMINO framework
are guaranteed feasible solutions to the B-LP problems, as all constraints, including the
optimality of the LLP, are satisfied.

3.1.2 Results for continuous nonlinear bi-level programming problems

In addition to the B-LPs, we have also extensively tested the DOMINO framework with
continuous bi-level nonlinear programming (B-NLP) problems. The results of this compu-
tational study are provided in Table 6. The overall results show that in B-NLP problems, the
global methodologies outperform local solution strategies. Global grey-box solvers, namely
ARGONAUT and ISRES, solve more benchmark problems with lower % MAE and with
lower standard deviations of this error. ISRES solves 30 benchmark problems with less than
5% MAE and ARGONAUT solves 28 in the same error range out of the 36 benchmark
problems tested. This number drops to 23 and 14 for NOMAD and COBYLA, respectively.
Especially, the deteriorating performance of COBYLA is somewhat expected since this algo-
rithm uses linear approximations for the objective function and constraints. In many of these
B-NLP case studies, the linear approximations constructed by COBYLA are not sufficient to
capture the nonlinear relationship in the input-output data. Hence, DOMINO is more prone
to converging to suboptimal solutions in B-NLP benchmark problems when COBYLA is
preferred over other solvers.

Furthermore, Table 6 provides a more detailed overview on DOMINO’s accuracy and
consistency in solving many challenging B-NLP problems. In the LP-QP test problems, we
observe that for problem 16 (“LPQP1”) NOMAD, COBYLA and ARGONAUT converge
consistently to the true global solutionovermultiple repetitive runs,whereas ISRESconverges
to a near-optimal solution with less than 5% MAE. For benchmark 15 (“mb_1_1_06”), we
observe thatDOMINO returns feasible solutionswith high%MAE regardless of the grey-box
solver of choice. The underlying reason for this inferior performance by DOMINO is due to
the fact that the problem is degenerate. The optimal solution to the bi-level problem exists at
x = 0, where all points for y ∈ [−1, 1] are trivially optimal [55]. However, for −1 ≤ x < 0
the unique global solution exists at y = −1 and for 0 < x ≤ 1 the unique global minimum is
at y = x2. Hence, the data-driven algorithms tend to go to either unique optimal solution at
the lower-level (y = −1 or y = x2) due to the deterministic optimization step taken by the
DOMINO at provided sampling points for x . As a result, higher deviations are observed in
DOMINO solutions compared to the true global solution. It is also important to note that for
this class of bi-level benchmark problems, all grey-box solvers provide guaranteed feasible
solutions as the LLP returns the global optimum and a feasible solution to the grey-box
problem is identified at convergence (Remark 3).

In the QP-QP problem set, the results indicate that global solvers can provide consistent
near-optimal solutions to these benchmark problems. Especially, ISRES algorithm consis-
tently converges to the true optimal solution in 3 out of 4 QP-QP benchmark problems.
However, local methodologies (NOMAD and COBYLA) converge to suboptimal solutions
with high variability. Moreover, it is important to note that NOMAD’s standard deviation of
the %MAE for problem 17 (“mb_1_1_16”) is not reported since this algorithm has returned
an infeasible solution in 1 of the 10 random runs. In this case, the lower-level optimality is
satisfied, however, one of the grey-box constraints is violated. In addition, it is important
to highlight that a better solution for the problem 18 (“wk_2015_01”) is identified by the
DOMINO framework. Different decision variables are identified at the LLPwith an improved
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Table 6 Average %MAE and average standard deviation of %MAE for continuous nonlinear bi-level bench-
mark problems

Problem Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

LP-QP

15 90.0046 70.0139 100.0000 30.0175 31.6081 48.2822 0.0000 48.2929

16 0.0000 0.0000 0.0000 4.1468 0.0000 0.0000 0.0000 0.6435

QP-QP

17 89.6785 56.8518 3.3533 0.0314 – 101.4962 3.0133 0.0007

18† 0.0000 0.0000 0.8891 0.0001 0.0000 0.0000 1.2213 0.0001

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 78.4000 0.0077 0.0000 0.0000 28.6713 0.0161 0.0000

NLP-QP

21 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0005

22 17.2004 59.1898 15.8680 6.3927 13.2570 32.6424 9.8335 3.0217

LP-NLP

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 FS* FS* FS* FS* 32.9404 32.2749 0.0000 0.1002

25 0.0141 0.0252 0.5802 0.0141 0.0000 0.0352 0.4652 0.0000

26 0.0000 10.0001 0.0000 0.0001 0.0000 31.6227 0.0000 0.0002

27 0.0000 5.0002 0.0000 0.0002 0.0000 15.8114 0.0000 0.0004

28 31.4656 FS* 0.1973 0.0293 47.3844 121.6939 0.3698 0.0000

29 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

31 0.0009 10.0007 0.8179 0.0007 0.0000 – 1.4561 0.0003

32 14.5205 29.9388 12.8843 0.0000 – – 5.8265 0.0000

QP-NLP

33 0.0000 90.0002 1.4847 0.0000 0.0000 144.9136 1.1691 0.0001

34 0.0000 0.0000 0.0035 0.0000 0.0000 0.0000 0.0069 0.0000

35 40.0000 20.0000 0.0000 0.0024 51.6398 42.1637 0.0000 0.0068

36 54.0004 FS* 2.6282 0.0005 88.4684 140.8542 2.1959 0.0003

37 0.0024 0.0024 0.0165 0.0024 0.0000 0.0000 0.0214 0.0000

38 83.3109 83.3109 83.3109 83.3109 0.0000 0.0000 0.0000 0.0000

39 0.0024 0.0024 0.0326 0.0024 0.0000 0.0000 0.0625 0.0000

40 1.1953 1.4353 0.0001 0.0000 1.2599 1.2353 0.0002 0.0000

NLP-NLP

41 1.1490 1.1490 1.1490 1.1490 0.0000 0.0000 0.0000 0.0000

42 0.0000 20.0000 0.0000 0.0007 0.0000 – 0.0000 0.0008

43 0.0084 10.9125 0.0867 0.0084 0.0000 9.3847 0.1319 0.0000

44 9.9140 79.9494 5.8744 0.7041 19.5323 – 4.5579 0.0774

45 27.3509 37.5217 0.1481 0.0004 35.3098 40.7806 0.4682 0.0006

46‡ 56.6928 62.3959 FS* 64.7918 39.1217 – – 34.1483

47§ FS* FS* FS* FS* – – – –
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Table 6 continued

Problem Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

48 0.0000 16.0616 0.0054 2.8125 0.0000 – 0.0172 4.5286

49 0.0025 40.0776 4.0394 0.0025 0.0000 43.6221 2.0734 0.0000

50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Number of infeasible solutions reported out of 10 runs: by NOMAD for problem 17 (“mb_1_1_16”) is 1, for
problem 32 (“gf_3”) is 1, for problem 47 (“wk_2015_06”) is 4; by COBYLA for problem 31 (“gf_5”) is 1,
for problem 32 (“gf_3”) is 1, for problem 42 (“c_2002_03”) is 2, for problem 44 (“nwj_2017_02”) is 1, for
problem 46 (“wk_2015_04”) is 3, for problem 47 (“wk_2015_06”) is 9, problem 48 (“ka_2014_02”) is 1; by
ARGONAUT for for problem 46 (“wk_2015_04”) is 1, for problem 47 (“wk_2015_06”) is 1; by ISRES for
problem 47 (“wk_2015_06”) is 8
*Feasible solution with more than 100% MAE on average is returned at convergence
† % MAE calculated with respect to the best solution found by DOMINO (Fbest = 99.9955)
‡ % MAE calculated with respect to the best solution found by DOMINO (Fbest = 0)
§ % MAE calculated with respect to the best solution found by DOMINO (Fbest = 4.5078 · 10−6)

objective function value compared to the ones reported by Woldemariam and Kassa [78].
Thus, the solution reported by this study [78] does not meet the optimality condition of the
lower-level where the overall solution becomes infeasible for this B-NLP problem. The best
found solution by DOMINO is reported in the Appendix.

In theNLP-QPproblem set, a similar trend is observedwhere global solvers outperform the
local grey-box solution strategies. For problem 22 (“mb_2_3_02”), the global optimization
step taken at the lower-level returned the optimal solution to all repetitive runs of the 4 grey-
box solvers tested as a part of the DOMINO framework. However, due to the nonconvexity at
the upper-level, we observe that the local solvers converge to suboptimal solutions and yield
higher%MAEvalueswith higher deviations.Hence,weobserve that the global exploration of
candidate sampling points by ARGONAUT and ISRES leads to improved solution accuracy
in this challenging B-NLP problem.

Similarly, in theLP-NLPproblem set, the overall performance ofARGONAUTand ISRES
show that these solvers are more favorable to be incorporated into the DOMINO framework
for solving B-NLP problems, as they provide highly consistent and accurate solutions to
these case studies. In several benchmark problems, we observe that NOMAD and COBYLA
return highly variable solutions with a high%MAE. Especially for problems 31 (“gf_5”) and
32 (“gf_3”), COBYLA returns 1 infeasible solution out of 10 repetitive runs of these bi-level
problems. In case of the NOMAD algorithm, an infeasible solution is returned for problem
32 (“gf_3”). In addition, it is important to note that, for problem 24 (“mb_1_1_04”) all grey-
box solvers provide feasible solutions with more than 100% MAE with respect to the true
global solution. In this case, we observe that the upper-level objective consists of the lower-
level variable, y, and the inner objective is parametrized in x . As a result, our data-driven
approach can detect the unique global minimum for the inner objective, which is y∗ = 0.5
for x > 0 and y∗ = 1 for x < 0. However, none of the data-driven solvers can pinpoint the
unique optimal solution of this bi-level problem at x = 0 where any y ∈ [−0.8, 1] is trivially
optimal. The main reason behind this issue is that the LLP is degenerate and the piecewise
nature of the input-output data hinders the information collected at the sampling stage. Even
though various points are sampled, with different x values, the corresponding upper-level
objective is either 0.5 or 1. As a result, the solvers terminate the optimization procedure
after several consecutive iterations, since there is no improvement to the best found objective
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as new sampling points are added. Hence, DOMINO fails to pinpoint the unique optimal
solution to this benchmark problem.

Furthermore, in the QP-NLP problem set, the global grey-box solvers continue to provide
optimal or near-optimal solutions consistently to many B-NLPs of this type. However, in
problem 38 (“mb_1_1_17”), we recognize that all solvers consistently converge to the same
suboptimal solution. The main reason for this is that the LLP has two global minima with the
objective function value of zero and y = 1 + 0.1x ± 0.5

√
2 + 2x . By default, the negative

counterpart is used for computing y, whereas the optimal solution reported in Mitsos and
Barton [55] uses the positive counterpart for the inner problem. Hence, all the grey-box
solvers converge to the same suboptimal solution and the results reported in Table 6 reflect
the errors based on the negative counterpart of y. However, if we strictly constrain y to the
positive counterpart, then all the grey-box solvers will identify a near-optimal solution with
0.0161 average %MAE and 0.0000 average standard deviation of %MAE. This observation
is also consistent with Remark 5, whereDOMINOcannot characterize pessimistic, optimistic
and other types of decisions in the presence of multiple optima at the lower-level.

Finally for the NLP-NLP type bi-level problems, we observe that global solvers return
consistent feasible near-optimal solutions whereas the local solvers are prone to converging
to suboptimal solutions in a portion these nonconvex B-NLPs. This difference is also sup-
ported by the standard deviation values of the%MAE provided in Table 6, where high values
of the deviation indicates that in a portion of the repeated test runs, these local solvers can
find a feasible near-optimal solution, whereas in the rest they converge to feasible subop-
timal solutions that are distant to the true global solution. However, it is important to state
that, COBYLA struggles to find feasible solutions in 50% of the NLP-NLP type bench-
mark problems. As this algorithm uses linear approximations, using the COBYLA algorithm
within the DOMINO framework is not favorable for solving nonconvex nonlinear bi-level
programming problems. We also observe that ARGONAUT returns an infeasible result for
problems 46 (“wk_2015_04”) and 47 (“wk_2015_06”), whereas NOMAD and ISRES return
infeasible solutions to problem 47 (“wk_2015_06”). Both of these case studies are particu-
larly challenging since they contain the absolute value function, where the derivative of the
objective/constraints is discontinuous. Nonetheless, it is important to note that, for both of
these benchmark problems, out of 10 random runs for each solver, a better objective function
value is found than the solution reported in Woldemariam and Kassa [78]. This is possible
since the lower-level optimality in this study [78] was not satisfied at the provided optimal
solution, hencemaking the reported solution an infeasible point for both of these bi-level pro-
gramming problems. The best found solutions by DOMINO for these benchmark problems
are reported in the Appendix.

Computational performance of DOMINO is also provided in Fig. 3. As expected, the
elapsed time for local solvers is significantly less than the global ones (Fig. 3a). Specifically,
ISRES stands out as the most computationally demanding methodology both in the time
required to retrieve the optimal solution as well as the total number of samples required
for convergence, where in many instances it hits the maximum number of function evalua-
tions (105 samples) allowed for the algorithm, as shown in Fig. 3b. This occurrence is due
to the evolutionary nature of this method, as ISRES requires too many samples for con-
vergence, even for the lower dimensional and relatively simpler benchmark problems. This
is followed by the ARGONAUT algorithm where in certain benchmark problems the time
required for convergence is higher, where in others the overall performance is comparable to
local methodologies. The computation time required to solve the continuous nonlinear lower-
level problems is minimal similar to the B-LP benchmark problems with the exception of
problem 47 (“wk_2015_06”). On average, the computational expense for solving the lower-

123



18 Journal of Global Optimization (2020) 78:1–36

20 25 30 35 40 45 50

Problem ID

100

101

102

103

104

105

E
la

p
se

d
 T

im
e 

(s
)

NOMAD COBYLA ARGONAUT ISRES(a)

15 20 25 30 35 40 45 50

Problem ID

101

102

103

104

105

T
o

ta
l N

u
m

b
er

 o
f 

S
am

p
le

s

NOMAD COBYLA ARGONAUT ISRES(b)

Fig. 3 a Average elapsed time for solving continuous bi-level nonlinear programming problems; b Average
total number of samples collected by each solver in continuous bi-level nonlinear programming problems

level varies between 0.0171-5.5514 seconds and the overall contribution of sampling to the
total elapsed time varies between 0.03-18.9%. Specifically, in problem 47 (“wk_2015_06”),
the average computational time required to solve the LLP is 88.789 seconds with an overall
contribution of 50.9% in total elapsed time. As this problem is more challenging to optimize
due to the discontinuous derivatives at the lower-level, we observe a higher contribution from
the sampling phase to the overall DFO procedure than the grey-box optimization phase. On
the contrary, for the other B-NLP problems, the grey-box optimization phase (i.e. surro-
gate model building and its respective optimization) is the most computationally demanding
step in ARGONAUT’s solutions. As for the sampling requirements, ARGONAUT collects
fewer samples than the ISRES algorithm, since ARGONAUT is a model-based grey-box
solver. The overall results show that COBYLA is the most computationally efficient method-
ology; however, this solver was unable to provide consistent feasible solutions to several
B-NLP benchmark problems. Although the ARGONAUT and ISRES are computationally
more expensive to execute, it is possible to retrieve optimal or near-optimal solutions more
consistently through using these global data-driven solvers inDOMINO forB-NLPproblems.

3.1.3 Results for bi-level mixed-integer programming problems

The results for the bi-level mixed-integer programming problems are summarized in Table 7.
For this class of problems, we observe that sample-based grey-box solvers outperformmodel-
based methodologies. DOMINO can identify optimal or near-optimal solutions consistently
to various types of bi-levelmixed-integer programming problemswhen usingNOMADas the
grey-box solver of choice. NOMAD almost perfectly returns solutions with low errors where
only in 1 benchmark problem this algorithm returns a suboptimal feasible solution. Likewise,
the ISRES algorithm is very successful in finding near-optimal solutions, but struggles in
findingnear-optimal solutions in higher dimensional benchmarkproblems. It is also important
to highlight that NOMAD, ARGONAUT and ISRES identify feasible solutions in all of the
bi-level mixed-integer programming problems tested. However, COBYLA fails to identify a
feasible solution in 1 of the 10 repetitive runs of benchmark 57 (“QPMILP2”).

Furthermore, the computational performance of DOMINO in solving bi-level mixed-
integer programming problems is summarized in Fig. 4. Figure 4a shows that ISRES requires
an order of magnitude higher time for convergence compared to other algorithms, and
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Table 7 Average % MAE and average standard deviation of % MAE for bi-level mixed-integer benchmark
problems. Infeasible solutions reported: by COBYLA for problem 57 (“QPMILP2”) in 1 out of 10 runs

Problem Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

LP-MILP

51 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0018

52 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

53 0.3050 0.0000 0.8756 0.0000 0.8052 0.0000 1.3089 0.0000

54 0.0000 1.7135 8.3347 0.2276 0.0000 3.7096 5.2589 0.0846

55 0.0000 0.0004 0.0000 2.8790 0.0000 0.0011 0.0000 0.5561

QP-MILP

56 0.0000 0.0028 0.0365 0.0000 0.0000 0.0088 0.1151 0.0000

57 0.0074 28.4286 2.3668 0.0002 0.0042 – 1.7631 0.0002

58 0.0000 18.9344 0.0000 0.0000 0.0000 57.5193 0.0000 0.0000

59 0.0000 FS* FS* FS* 0.0000 > 105 791.0469 > 103

60 0.0000 FS* 7.9741 2.5208 0.0000 220.4544 2.5821 1.3129

61 0.0000 FS* 55.6621 50.5639 0.0000 > 103 49.1259 27.5322

62 0.0000 2.8949 0.4577 0.5772 0.0000 5.3286 0.2089 0.1691

63 0.0000 FS* FS* 36.5575 0.0000 364.1700 188.6630 5.9444

64 0.0000 26.7727 FS* 8.9426 0.0000 23.3885 116.9957 2.1176

NLP-MILP

65 0.0000 27.5060 0.7382 0.0000 0.0000 44.6080 1.8132 0.0000

66 0.4039 0.4038 4.6050 0.4038 0.0000 0.0001 7.3684 0.0001

67 0.0000 1.2185 1.8888 0.0087 0.0000 3.8531 1.6111 0.0037

68 0.0026 6.9802 23.7610 0.5531 0.0049 10.8381 22.8133 0.1229

69 0.0000 23.3259 5.6201 0.5171 0.0001 32.5728 7.8602 0.2278

70 0.0039 0.2861 2.2180 0.8578 0.0079 0.9044 1.8165 0.1276

71 0.0006 0.0115 0.7633 1.1059 0.0016 0.0358 0.6795 0.1253

72 0.0023 1.7054 3.9910 1.1129 0.0074 3.2354 4.6783 0.1573

73 0.0030 1.3933 1.7064 1.1861 0.0068 1.3013 1.8636 0.1718

LP-MIQP

74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

76 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

77 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

79 0.1192 0.0000 0.0000 0.0000 0.3770 0.0000 0.0000 0.0000

80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

81 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0008

QP-MIQP

82 37.5000 25.0001 2.3111 0.0003 60.3807 52.7046 1.7433 0.0003

83 0.0000 3.7386 0.0000 0.0000 0.0000 11.6915 0.0000 0.0000

84 0.0000 13.5220 0.6207 0.0000 0.0000 36.4485 1.5634 0.0000
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Table 7 continued

Problem Average % MAE Average Standard Deviation of % MAE

ID NOMAD COBYLA ARGONAUT ISRES NOMAD COBYLA ARGONAUT ISRES

85 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

87 0.0000 6.9291 3.6101 0.0000 0.0000 21.9079 7.8285 0.0000

88 0.0000 FS* 0.3254 0.0000 0.0000 > 104 0.5022 0.0000

89 0.0000 FS* 0.0015 0.0000 0.0000 945.6580 0.0047 0.0000

NLP-MIQP

90 0.0000 0.0000 0.2280 0.0000 0.0000 0.0000 0.2448 0.0000

91 0.0000 0.0055 0.0000 0.0000 0.0000 0.0056 0.0001 0.0000

92 0.0006 0.0024 0.6045 0.0004 0.0018 0.0021 0.8118 0.0007

93 0.1603 9.7658 0.8294 0.0774 0.3379 30.3412 0.7244 0.2442

94 0.0000 0.0076 28.2385 0.0004 0.0000 0.0184 16.3438 0.0006

95 0.0002 0.0126 0.4367 0.0007 0.0006 0.0393 0.3314 0.0009

96 0.0000 0.0000 0.0014 0.0004 0.0001 0.0000 0.0041 0.0004

97 0.0050 0.0022 1.5956 0.0072 0.0087 0.0046 4.7409 0.0053

98 0.0044 0.0131 1.0333 0.0074 0.0135 0.0180 1.5260 0.0142

99 0.0002 0.9624 2.1801 0.0071 0.0007 3.0432 2.2069 0.0022

NLP-INLP

100 2.5628 32.4959 0.0000 0.0000 8.1043 52.6317 0.0000 0.0000

*Feasible solution with more than 100% MAE on average is returned at convergence
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Fig. 4 a Average elapsed time for solving bi-level mixed-integer programming problems; b Average total
number of samples collected by each solver in bi-level mixed-integer programming problems

converges prematurely by hitting the maximum number of samples allowed in almost all
tested case studies (Fig. 4b). Moreover, it is important to note that for many of the bi-level
mixed-integer benchmark problems both model-based methodologies (COBYLA and ARG-
ONAUT) are recorded to have higher computational expense. Like in the other classes of
bi-level programming problems, we observe that the computation time to deterministically
solve the LLP is small, between 0.016-0.067 seconds on average per sample. The overall
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contribution of solving the LLP deterministically to the total elapsed computation time was
at most 15%, where the rest of the computational expense was sourced majorly from the
grey-box optimization phase in the ARGONAUT results. Overall, NOMAD is computation-
ally efficient both in terms of the computational time required for convergence as well as in
terms of the total number of samples collected throughout the data-driven optimization step.
Although in Fig. 4b, ARGONAUT is shown to be the most sample efficient algorithm, the
errors reported in Table 7 indicate that ARGONAUT converges to a suboptimal feasible solu-
tion in high-dimensional problems, hindering the overall performance ofDOMINO in finding
the globally optimal solution to bi-level mixed-integer programming problems. The overall
results show that NOMAD is more favorable to be incorporated in the DOMINO frame-
work for solving bi-level mixed-integer programming problems. In the following section,
the DOMINO framework is tested on a larger bi-level MINLP case study, which considers a
land allocation problem under Food-Energy-Water Nexus considerations.

3.2 Land allocation problem in food-energy-water nexus

The sustainable development of an agricultural farming area is of critical importance for
maintaining the interconnected elements, namely food, energy and water, that depend on
the same land resources. Hence, the actions taken towards allocating land resources will
essentially affect food production, which requires energy, in the form of fertilizers, and water
for irrigation. On the other hand, clean water production requires energy (i.e. operating a
filtration system) and energy can be produced through agriculture as biofuels. This inter-
connected relationship between these key resources is referred to as the Food-Energy-Water
Nexus (FEW-N) and has recently gained a lot of attention for land use optimization in areas
with resource scarcity [60–62].

While the government regulatorswould like tominimize the stress on the nexus in the long-
term,many companies allocating andprocessing the land are concernedwith short-termgoals,
such as maximizing profit. Thus, a formidable challenge exists in the optimization of the land
allocation problem, where multiple stakeholders, each concerned with optimizing their own
objective functions, are acting upon the optimal decision-making process.We have previously
developed a hierarchical FEW-Napproach to tackle this issue and to facilitate decisionmaking
under competition for these key resources while promoting the sustainable development of
the land [12]. In this Section, we will be addressing the data-driven optimization of the land
allocation problem through the DOMINO framework.

The land allocation case study consists of two players: the government regulators and
the agricultural developer. The goal of the agricultural developer is to maximize its profit
whereas the government that regulates this piece of land aims to minimize the stress on the
FEW-N, by offering subsidies to the agricultural producer or land developer. Hence, this can
be viewed as a Stackelberg game where the government regulators will lead, making the first
move by assigning the subsidies, whereas the agricultural producer will follow the leader by
reacting accordingly, taking optimal actions towards maximizing its own profit. This leads
to the following hierarchical optimization problem [12],

min Stress on FEW Nexus

s.t. Government ′s Budget
max Developer ′s Prof i t

s.t. Land Properties
Land Process Models

(3)
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Fig. 5 a Optimal FEW-N metric returned by DOMINO when coupled with local and global grey-box solvers;
b Optimal nexus solution represented as the area of a triangle (Best solution found by ARGONAUT and
NOMAD algorithms in DOMINO, fbest = 1.2258); c Boxplot of total amount of subsidies offered by the
government for the solution of FEW-N land allocation problem over 10 runs

where the agricultural developer will invest on a piece of land to maximize its profit through
a careful consideration of land properties, subsidies offered by the government and land
process models at the lower-level. On the other hand, at the upper-level, the government
agency that regulates this land will focus on sustainable development through minimizing
the FEW-N stress, with respect to their allowed budget.

The detailed land allocationmodel (please seeAppendix for themodel equations) is devel-
oped in GAMS and the lower-level problem is an MILP problem with 1,721 equations, 216
discrete variables and 772 continuous variables. The upper-level is an NLP problem con-
sisting of 5 continuous variables with 165 grey-box constraints from the Big-M formulation
(Eqs. 22, 24). This large-scale bi-level NLP-MILP optimization problem is solved using the
DOMINO framework and the performance of the 4 data-driven solvers are compared in the
following section.

3.2.1 Computational results of the FEW-N case study

The results of the hierarchical land allocation problem are summarized in Figs. 5 and 6. The
boxplot results in Fig. 5a show that the DOMINO framework, when coupled with a global
solver, consistently returns the same objective value over multiple repetitive runs, whereas
some variability is observed in the solutions returned when the framework is coupled with
local data-driven solvers. This result clearly indicates that the hierarchical FEW-N land
allocation problem is nonconvex and global optimization is necessary to find a superior
solution. The maximum value for the FEW-N metric for this case study is identified by two
algorithms, namely NOMAD and ARGONAUT. In addition, Fig. 5b, c shows the globally
optimal FEW-N metric found by the DOMINO framework and the distribution of the total
amount of subsidies offered by the government for each solver over 10 runs, respectively.
The radar plot in Fig. 5b shows that the globally optimal solution can capture the food and
water dimensions of the nexus almost perfectly (99.5% in food and 99% in water) with a
small trade-off in the energy dimension (93%).

In addition, the boxplot in Fig. 5c shows that all solvers are subject to some variabil-
ity in finding the optimal set of decisions for the government regulators’ objective. More
specifically, the variability within the results of two global solvers, which returned consistent
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(a)

(b)

Fig. 6 a Optimal land allocation returned by ARGONAUT; b Optimal land allocation returned by NOMAD.
Both solutions are equally optimal with the FEW-N metric value of 1.2258

objective function values as shown in Fig. 5a, is a clear indication of the multiplicity of solu-
tions that exists in the problem. For the same optimal FEW-Nmetric value ( fbest = 1.2258),
NOMAD allocates a total of $58.1M with a breakdown of $0M for livestock grazing and
solar energy, $7.6M for wind energy, $37.8M and $12.7M for fruit and vegetable production,
respectively. On the other hand, for the same optimal FEW-N metric value, ARGONAUT
allocates a total of $115.2Mwith a breakdown of $0M for livestock grazing and solar energy,
$15.2M for wind energy and $50M for both fruit and vegetable production. A clear difference
between the solutions provided by these two algorithms is more apparent at the lower-level
objective function value, where the solution provided by NOMAD enables the agricultural
developer to have $3.47B profit, whereas this number increases by $500M to $3.97B profit
with the ARGONAUT solution. This difference in profit values is captured in the optimal
allocation results that are provided in Fig. 6, where the allocation patterns for the same nexus
solution differ as the subsidies offered by the government is lowered. Figures 6a, b show
that the optimal allocation pattern for the land is exactly the same for the spring, summer
and autumn seasons for both NOMAD and ARGONAUT, where a mix of wind energy and
fruit production is preferred on the land. However, in winter, the optimal allocation for plot
7 changes to vegetable production for the ARGONAUT solution, while others remain the
same. In the case of the NOMAD solution, the allocation pattern for plot 3 in winter changes
from wind energy and fruit production to wind energy and vegetable production. Overall,
both configurations are equally optimal and are sufficient to minimize the nexus stress, where
the government will decide whether to subsidize the agricultural processes with a higher or
a lower amount depending on their available budget and preferences.

The computational performance of each solver within the DOMINO framework for the
FEW-N case study is also compared (Table 8). The average elapsed time and the average
number of samples collected at convergence indicates that COBYLA is computationally very
efficient. However, COBYLA was unable to locate the best solution found by NOMAD and
ARGONAUT algorithms for the FEW-N problem, which is undesirable to a decision maker.
NOMAD stands out as a grey-box solver of choice for this problem as this is the second
most efficient algorithm that was able to locate the global solution. As mentioned earlier in
this section, the optimal solution provided by NOMAD is more favorable for the government
regulator as the total amount of subsidy offered is minimal. On the other hand, the solution
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Table 8 Computational performance of DOMINO with different grey-box solvers for the land allocation
problem. The results are averaged over 10 runs

Solver Average elapsed time (s) Average total number of Samples

NOMAD 138.6 283.9

COBYLA 23.6 67.1

ARGONAUT 1.2 × 104 247.4

ISRES 3.3 × 104 105

offered by ARGONAUT is equally optimal with respect to the NOMAD solution, and favors
the agricultural developer at the lower-level as this solution provides an additional $500M
in their profit. However, ARGONAUT being a global model-based grey-box solver makes
it more computationally demanding for this problem with respect to the elapsed time for
convergence, since ARGONAUT explicitly constructs individual surrogate formulations for
the 165 unknown grey-box constraints in this case study. In terms of sampling requirements,
as shown in Table 8, we observe that NOMAD andARGONAUT are comparable as they both
collect about equal number of samples on average over 10 repetitive runs. Finally, as observed
in the results of many benchmark problems that are provided in Sect. 3.1, ISRES reaches the
maximumnumber of samples allowed for the algorithm in all repetitive runs, which also leads
to a more demanding computational time for the execution of this algorithm. Overall, the
results of the benchmark studies and the large-scale land allocation problem demonstrate that
the DOMINO framework serves as an effective methodology for solving many large-scale
bi-level MINLPs.

4 Conclusion

In this work, the DOMINO framework is presented as an algorithmic advancement for solv-
ing bi-level mixed-integer nonlinear programming (B-MINLP) problems with guaranteed
feasibility when the lower-level problem is solved to global optimality at convergence. A
novel data-driven approach is followed to approximate a bi-level optimization problem into
a single-level problem, where the upper-level decision variables are used to simulate the
optimality of the lower-level problem. The resulting input-output data is further sent to a
data-driven optimizer to retrieve the optimal solution to the bi-level problem, where the
DOMINO framework is flexible to house any type of data-driven/grey-box optimizer. The
accuracy, consistency and the computational performance ofDOMINO is extensively investi-
gated on a large set of benchmark problems consisting of bi-level linear, continuous nonlinear
and mixed-integer programming problems. In addition, the effect of the data-driven solver
on DOMINO’s performance is investigated by incorporating a local sample-based, local
model-based, global sample-based, and global model-based methodologies. Furthermore,
the performance of the DOMINO framework is tested on a large-scale bi-level mixed-integer
nonlinear case study in Food-Energy-Water Nexus (FEW-N). The results of the benchmark
studies show that the DOMINO framework can identify the true global solution or a near-
optimal solution for an extensive set of challenging bi-level optimization problems.Moreover,
the results of the FEW-N case study demonstrate that DOMINO can handle large-scale bi-
level mixed-integer nonlinear programming problems and provide superior feasible solutions
consistently over multiple repetitive runs. Hence, DOMINO serves as a powerful computa-
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tional algorithm for solving large-scale B-MINLPs which are traditionally difficult to solve
using exact techniques. In the future, the algorithm is going to be compared with other data-
driven bi-level optimizationmethodologies available in the literature. Furthermore, a rigorous
upper-level equality constraint handling schemewill be investigated for bi-level optimization
with DOMINO.
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Appendix

Best found solutions for benchmark problems 18, 46 and 47

Problem 18 (“wk_2015_01”):
x∗ = 9.999776, y∗ = 9.9998, fbest = 4.5443471 · 10−7, Fbest = 99.9955201008.
Lower Level Relative Gap: 0 (Retrieved from CPLEX version 12.8.0.0)

Problem 46 (“wk_2015_04”):
x∗
1 = 0, x∗

2 = 0, y∗
1 = 0, y∗

2 = 0, y∗
3 = 0, y∗

4 = 0, fbest = 0, Fbest = 0.
Lower Level Relative Gap: 1 · 10−9 (Retrieved from ANTIGONE version 1.1)

Problem 47 (“wk_2015_06”):
x∗
1 = 0.000984369218350, x∗

2 = −0.001021751016379, x∗
3 = 1.663984077237546,

x∗
4 = −0.076938496530056, y∗

1 = −1.0187598163, y∗
2 = 1.0574476104, y∗

3 =
−0.0004531744, y∗

4 = 0, fbest = −5, Fbest = 0.0000045078.
Lower Level Relative Gap: 1.76 · 10−7 (Retrieved from BARON version 18.11.12)

Notation for the food-energy-water nexus case study

e efficiency
energy energy

max maximum
min minimum

prof i t profit
total total
trans transportation
H2O water

List of land processes considered in the food-energy-water nexus case study

Energy Land Processes

1. Solar Energy
2. Wind Energy
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Agricultural Processes

3. Fruit Production
4. Vegetable Production
5. Livestock Grazing

Agricultural developer’s problem

The chosen land allocation problem considers a piece of land which will be processed by an
agricultural developer over 4 seasons in a climate similar to that of Texas, U.S. and is divided
into 8 equal (1 km2) plots. The nomenclature for this problem is provided in Table 9. On
each piece of land, a subset of agricultural and energy land processes can occur, where fruit
production, vegetable production, and livestock grazing are representatives of agricultural
processes defined by the subset TA, whereas solar energy and wind energy are representatives
of energy land processes, defined by the subset TE . Two important properties regarding these
subsets are given in Eqs. 4 and 5.

TA ∪ TE = TL (4)

TA ∩ TE = ∅ (5)

The agricultural producer will be subject to various constraints regarding the properties
of the land, the properties of the agricultural and energy production processes while making
an optimal decision towards its own objective. First, the land characteristics will affect the
selection of any process that can occur in each land plot. If good soil is not available in a
plot section, agricultural processes are restricted to not to take place in that land section for
all seasons. If the adequate sun is not available in a plot section, solar energy will not be
implemented in that land section for all seasons. Finally, if a plot section does not have access
to the adequate amount of wind, wind energy production will not be implemented in that
land section for all seasons. These characteristics are summarized in Table 10. Based on this
information, constraints regarding water transportation can be defined for the problem such
as water must be transported to the land if there is no water on a plot and an agricultural
process is selected to occur on that plot:

ytrans,H2O
i, j,k ≤ yi, j,k + yH20

j ∀i ∈ TA, j, k (6)

No water will be transported, if water is already available on the plot:

ytrans,H2O
i, j,k ≤ 1 − yH20

j ∀i ∈ TA, j, k (7)

No water should be transported, if there is no water on the plot and no agricultural process
is selected to occur on that plot:

ytrans,H2O
i, j,k ≥ yi, j,k − yH20

j ∀i ∈ TA, j, k (8)

In addition to the land properties, there are other constraints that further influence the
selection of land processes and restrict the feasible space for this case study. The constraints
regarding the selection of land processes is imposed such that at least one land process must
be allocated on each plot.

∑

i∈I
yi, j,k ≥ 1 ∀ j, k (9)
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Table 9 Nomenclature for the Food-Energy-Water Nexus case study

Type Name Description

Indices i ∈ {1, 2, ..., I } Land processes (card(i) = 5)

j ∈ {1, 2, ..., J } Land plot square number (card( j) = 8)

k ∈ {1, 2, ..., K } Seasons in a Texas-type climate (card(k) = 4)

Sets TL Land use types

TA ⊂ TL Agriculture land use type (card(TA) = 3)

TE ⊂ TL Energy land use type (card(TE ) = 2)

Binary Variables yi, j ,k Activates the i th process that occurs on the j th plot in the kth

season

y
H20
j Activates water availability on the j th plot

y
trans,H2O
i, j ,k Activates water transportation that is required for the i th process on

the j th plot in the kth season, where i ∈ TA

Parameters Pe
i,k Efficiency multiplier of the i th land process in the kth season

P prof i t
i,k Profit multiplier of the i th land process for the kth season, where

i ∈ TE

D
H2O
k Multiplier of minimum water required for the kth season

C
trans,H2O
k Water transportation cost multiplier for the kth season

L
H2O
i Lower bound on water transportation and consumption for the i th

land process in kg, where i ∈ TA

U
H2O
i Upper bound on water transportation and consumption for the i th

land process in kg, where i ∈ TA

Lenergyi Lower bound on energy consumption for the i th land process in
kWh, where i ∈ TA

Uenergy
i Upper bound on energy consumption for the i th land process in

kWh, where i ∈ TA

Menergy
i Metric ton of yield per kWh energy consumed for the i th land

process, where i ∈ TA

M
H2O
i Metric ton of yield per kg of water consumption in the i th land

process, where i ∈ TA

M prof i t
i Profit made from the i th land process per unit energy produced in

k$/kWh when i ∈ TE and profit made from i th land process per
unit yield obtained in k$/ton when i ∈ TA

Bi Government budget allocated for supporting the i th land process
type in k$

BM Big-M parameter

Continuous Variables EPi, j ,k Energy produced by the i th land process type on the j th plot
during the kth season in kWh, where i ∈ TE

ECi, j ,k Energy consumed by the i th land process type on the j th plot
during the kth season in kWh, where i ∈ TA

Wi, j ,k Water consumed from an existing source by the i th land process
type on the j th plot during the kth season in kg, where i ∈ TA

Wtrans
i, j ,k Water consumed from a transported source by the i th land process

type on the j th plot during the kth season in kg, where i ∈ TA
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Table 9 continued

Type Name Description

Yi, j,k Yield produced by the i th land process type on the j th plot during
the kth season in metric tonnes, where i ∈ TA

G prof i t
i, j,k Profit gained by the i th land process type on the j th plot during the

kth season in k$

Si Subsidies offered by the government for using the i th land process

Śi, j,k Variable introduced in the Big-M formulation for replacing the
bilinear term Si · yi, j ,k

Etotal Total energy gained from the land in kWh

Y total Total yield gained from the land in metric tonnes

Wtotal Total water consumed on the land in kg

Gprof i t,total Total profit gained from the land in k$

Table 10 Land properties for the
case study. These limit the
processes that can occur on each
plot over 4 seasons, defined by
the binary variable yi, j,k . The
water availability is defined by

the binary variable y
H20
j . 1

indicates existence and 0
indicates absence of that property

Land properties for all seasons (∀k) Land plot number ( j)

1 2 3 4 5 6 7 8

Good Soil (yi, j ,k ∀i ∈ TA) 1 1 1 1 0 0 1 1

Adequate Sun (y1, j ,k ) 0 0 1 1 1 1 1 1

Adequate Wind (y2, j ,k ) 1 1 1 1 1 1 0 0

Water Available (yH20
j ) 0 0 0 0 1 1 0 1

Furthermore, it is not practical to have solar panels and agricultural production on the same
plot. Thus, at most one out of solar energy, fruit, vegetables and livestock can be allocated
in one plot:

∑

i 
=2,i∈TL
yi, j,k ≤ 1 ∀ j, k (10)

Wind energywill occupyminimal space on the land plot, compared to solar energy production
systems, hence both wind energy and either fruit or vegetable production can be allocated on
the same plot:

4∑

i=2

yi, j,k ≤ 2 ∀ j, k (11)

Moreover, only one energy process is allowed on a plot:

∑

i∈TE
yi, j,k ≤ 1 ∀ j, k (12)

If an energy process is selected in a plot, the type of energy production will stay the same
throughout the year, since it is too expensive to move equipment over seasons:

yi, j,k+1 ≥ yi, j,k ∀i ∈ TE , j, k ≤ card(k) − 1 (13)
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Second, the seasonal differences must be considered, as these can impact the energy
demand, water transportation cost, water availability for irrigation and efficiency of energy
production processes. For example, in seasons with rainfall, such as winter, spring and fall,
the transportation cost for water will be less and less water will be required for irrigation.
On the other hand, the solar systems will have lower efficiency due to the reduced amount
of sunshine throughout these seasons. A similar analysis is also done for the summer, where
there is going to be greater demand for energy and water, and higher transportation costs for
water will be in effect. However, the solar systemswill have greater efficiency since there will
be plenty of sunshine during summer. Hence, both spatial and time scenarios are considered
and their respective parameters are included in themodel equations (for the parameters please
see Tables 11–14).

The land processes will be quantified on the amount of energy produced or agricultural
yield, if an energy or an agricultural process is selected, respectively. It is important to note
that, if an energy process is selected for a given plot in a given season, a fixed amount of
energy can be produced from these technologies:

EP1, j,k = Pe
1,k · 50 · y1, j,k ∀ j, k

E P2, j,k = Pe
2,k · 1000 · y2, j,k ∀ j, k

(14)

Likewise, the yield for agricultural processes can be calculated as a function of water and
energy consumption. The parameter Pe

i,k is used to take in consideration the changes in
efficiency of land processes over different seasons.

Yi, j,k = Pe
i,k

(
Menergy

i · ECi, j,k + MH2O
i · Wi, j,k

) ∀i ∈ TA, j, k (15)

The amount of energy consumption and water consumption (from an already existing source)
by agricultural processes, which are used to calculate the yield in Eq. 15, are bounded. Note
that the lower bound on the water consumption depends on seasonal effects (dry seasons
versus seasons with rainfall), hence multiplied by its respective parameter, DH2O

k .

Lenergy
i · yi, j,k ≤ ECi, j,k ≤ Uenergy

i · yi, j,k ∀i ∈ TA, j, k

DH2O
k · LH2O

i · yi, j,k ≤ Wi, j,k ≤ UH2O
i · yi, j,k ∀i ∈ TA, j, k

(16)

In addition to the box-constraints, it is important to supply adequate amount of water
to each plot in each season for the agricultural land processes. Thus, the amount of water
consumption (source-based and transportation-based) is set to be at least 200 times greater
than the energy consumption in each plot and in each season:

∑

i∈TA
Wi, j,k + DH2O

k ·
∑

i∈TA
W trans

i, j,k ≥ 200 ·
∑

i∈TA
ECi, j,k ∀ j, k (17)

The amount of water transported for agricultural processes is also bounded and affected by
the seasonal differences:

DH2O
k · LH2O

i · ytrans,H2O
i, j,k ≤ Wtrans

i, j,k ≤ UH2O
i · ytrans,H2O

i, j,k ∀i ∈ TA, j, k (18)

As described previously in Sect. 3.2, the objective of the agricultural developer is to
maximize its profit. The profit calculation for all land processes includes the money made
from energy production and the yield from the agricultural processes, if an energy or an
agricultural process is selected, respectively. For energy producing land processes profit is
given as:

Gprof i t
i, j,k = Mprof i t

i · P prof i t
i,k · EPi, j,k + Śi, j,k ∀i ∈ TE , j, k (19)
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For agricultural processes, the profit is given as:

Gprof i t
i, j,k = Mprof i t

i · Yi, j,k + Śi, j,k ∀i ∈ TA, j, k (20)

The profit calculations also considers the relevant subsidies (Śi, j,k) offered by the government
agencies for developing different processes on the land, where these subsidies should only
be considered in the profit when their respective land process is activated.

Śi, j,k = Si · yi, j,k ∀i, j, k (21)

To avoid this bilinear term that appears in the profit equation, the variable Śi, j,k and its Big-M
formulation is introduced in Eqs. 21–24, where BM is the Big-M parameter.

Si ≤ BM ·
∑

j

∑

k

yi, j,k ∀i (22)

Śi, j,k ≤ BM · yi, j,k ∀i, j, k (23)

Śi, j,k ≤ Si ∀i, j, k (24)

Moreover, the agricultural developer is interested in maximizing the total profit, which
is a function of the total energy production, total yield from agricultural production and
total water consumption. The total energy, Etotal , is defined as the difference between total
energy produced from energy land processes and total energy consumed by the agricultural
processes in all plots throughout the 4 seasons.

Etotal =
∑

i∈TE

∑

j

∑

k

E Pi, j,k −
∑

i∈TA

∑

j

∑

k

ECi, j,k (25)

Similarly, the total yield, Y total , is the summation of yield of all agricultural processes over
all plots and 4 seasons.

Y total =
∑

i∈TA

∑

j

∑

k

Yi, j,k (26)

The total water consumption, Wtotal , includes both the amount of water consumed from a
natural source (i.e. water already existing as in the land properties, given in Table 10) and from
a transported source. The transported total water also considers seasonal demand, defined by
the parameter DH2O

k .

Wtotal =
∑

i∈TA

∑

j

∑

k

Wi, j,k +
∑

k

DH2O
k

∑

i∈TA

∑

j

W trans
i, j,k (27)

The total profit, Gprof i t,total , is calculated by subtracting the total water transportation cost
throughout all plots, all seasons and all agricultural land processes from the cumulative profit
from all land processes. The cost of water transportation is assumed to be $10/kg of water.
In addition, the cost of transportation is impacted by seasonal differences, as explained
previously, hence the formulation includes the CH2O,trans

k parameter to account for such
effects. The objective function of the LLP is given as:

Gprof i t,total =
∑

i

∑

j

∑

k

G prof i t
i, j,k − 0.01 ·

∑

k

CH2O,trans
k

∑

i∈TA

∑

j

W trans
i, j,k (28)
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Fig. 7 FEW-N metric represented
as the area of a triangle. Shaded
area demonstrates an example
solution to FEW-N

Finally, the continuous variables defined in Eqs. 25–28 are bounded and their respective
values are obtained through minimizing and maximizing each variable as the sole objective
to the land allocation problem.

0 ≤ Wtotal ≤ 2.46 · 109
0 ≤ Y total ≤ 13860
0 ≤ Etotal ≤ 21945
Gprof i t,total ≥ 0

(29)

The variables defined in Eqs. 25–28 as well as their respective bounds, provided in Eq. 29,
are used to enumerate the upper-level objective function of the government regulators. The
ULP is discussed in detail in the following section.

Government regulators’problem

As shown in Eq. 3, the objective of the government regulators is to minimize the nexus stress.
However, the mathematical quantification of the nexus, which will take in consideration of
the trade-offs between food, energy and water, has not yet been fully established. Recently,
Avraamidou et al. [13] has introduced a methodology to develop a FEW-N metric, which
brings relevant decision elements and their respective quantification together through rth

order averaging. In this work, we adopt this idea through a similar methodology where a
single geometric metric, i.e. the area of a triangle, is used to represent the FEW-N metric
as the government regulators’ objective. An illustration of the FEW-N metric is provided in
Fig. 7.

In Fig. 7, the corners of the triangle represent the scaled quantities of each FEW-N element,
where their respective values lie between 0 and 1. In this case, a value of 1 represents the best
possible scenario and 0 represents the worst. The objective of the government regulators is
to maximize the best possible scenario for each element, namely minimizing the total water
consumed and maximizing the total energy and food produced, which essentially translates
into maximizing the area of the triangle. The explicit formulation of this objective is provided
in Eq. 30.

FEWmetric =
[
Etotal − Emin

Emax − Emin
·
(
1 − Wtotal − Wmin

Wmax − Wmin

)
+ Etotal − Emin

Emax − Emin
· Y

total − Ymin

Ymax − Ymin

+
(
1 − Wtotal − Wmin

Wmax − Wmin

)
· Y

total − Ymin

Ymax − Ymin

]
· sin120

◦

2
(30)
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Table 11 Parameter values for Pe
i,k

i k

1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)

1 (solar energy) 0.85 0.70 0.90 1.00

2 (wind energy) 0.90 1.00 0.90 0.80

3 (fruit production) 1.00 0.85 1.00 1.00

4 (vegetable production) 1.00 0.85 1.00 1.00

5 (livestock grazing) 1.00 0.85 1.00 1.00

Table 12 Parameter values for P prof i t
i,k

i k

1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)

1 (solar energy) 1.00 1.20 1.00 1.20

2 (wind energy) 1.00 1.20 1.00 1.20

Note that Etotal , Y total , and Wtotal is obtained through solving the agricultural producer’s
problem, explicitly defined in Eqs. 25–27, respectively.

In this case study, the government is offering subsidies (Si ) to the land developers for each
nexus element, as much as their budget (Bi ) allows.

0 ≤ Si ≤ Bi ∀i (31)

These subsidies further motivate the land owner to properly allocate and utilize the land to
maximize their own profit (Eqs. 19–20). The upper bound on the total governmental budget
is set to be $250M where this is allocated equally among all land processes. Essentially, the
goal of the government agency is to decide on the amount of subsidies to be offered to the
agricultural producer in such away that the objective function defined in Eq. 30 ismaximized.

Parameters

Parameter values are tabulated in Tables 11–14, where 4 seasons (autumn, winter, spring, and
summer) are considered for the FEW-N case study with production starting in autumn and
ending after summer. These parameters are used asmultipliers to capture seasonal differences
among technological efficiencies, water demand and transportation costs. The efficiency of
the solar energy production process is lower in autumn and winter whereas it is higher in
the summer. Likewise, the efficiency of agricultural processes is lower in winter as shown in
Table 11.

The profit from energy production during winter and summer should be higher since there
would be higher demand for energy in very cold and hot weathers. Hence, higher multipliers
are assigned for both energy production land processes, which are summarized in Table 12.

Table 13 summarizes the multipliers for the minimum amount of water required as well
as the cost of transporting water over 4 seasons. Both the required amount of water and the
cost of transportation is expected to be higher in summertime due to elevated temperatures
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Table 13 Parameter values for DH2O
k and Ctrans,H2O

k

k 1 (Autumn) 2 (Winter) 3 (Spring) 4 (Summer)

D
H2O
k 1.00 0.70 1.00 1.20

C
H2O,trans
k 1.00 1.00 1.00 1.30

Table 14 Parameter values for LH2O
i , UH2O

i , Lenergyi , Uenergy
i , Menergy

i , MH2O
i and Mprof i t

i

i 1 (solar energy) 2 (wind energy) 3 (fruit production) 4 (vegetable
production)

5 (livestock
grazing)

L
H2O
i – – 100 100 104

U
H2O
i – – 106 106 108

Lenergyi – – 5 5 5

Uenergy
i – – 50 50 100

Menergy
i – – 10 10 1

M
H2O
i – – 10−4 15-4 40-4

Mprof i t
i 100 100 2 1.3 5

and higher demand for water in agricultural production. Finally, Table 14 summarizes other
parameters used in the FEW-N case study.

References

1. Abramson, M.A., Audet, C., Couture, G., Dennis, Jr. J.E., Le Digabel, S., Tribes, C.: The NOMAD
project. https://www.gerad.ca/nomad/ (2015). Accessed 16 Jan 2018

2. Arroyo, J.M., Fernández, F.J.: A genetic algorithm approach for the analysis of electric grid interdiction
with line switching. In: 2009 15th International Conference on Intelligent System Applications to Power
Systems, pp 1–6. IEEE (2009)

3. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17(1), 188–217 (2006)

4. Avraamidou, S., Pistikopoulos, E.N.: A multiparametric mixed-integer bi-level optimization strategy for
supply chain planning under demand uncertainty. IFAC PapersOnLine 50(1), 10178–10183 (2017)

5. Avraamidou, S., Pistikopoulos, E.N.: A novel algorithm for the global solution of mixed-integer bi-level
multi-follower problems and its application to planning scheduling integration. In: 2018 EuropeanControl
Conference (ECC), pp 1056–1061 (2018)

6. Avraamidou, S., Pistikopoulos, E.N.: Adjustable robust optimization through multi-parametric program-
ming. Optim. Lett. (2019). https://doi.org/10.1007/s11590-019-01438-5

7. Avraamidou, S., Pistikopoulos, E.N.: B-POP: bi-level parametric optimization toolbox. Comput. Chem.
Eng. 122, 193–202 (2019)

8. Avraamidou, S., Pistikopoulos, E.N.: A bi-level formulation and solution method for the integration of
process design and scheduling. In: Muñoz S.G., Laird C.D., Realff M.J. (eds.) Proceedings of the 9th
International Conference on Foundations of Computer-Aided Process Design, Computer Aided Chemical
Engineering, vol. 47, pp. 17–22. Elsevier (2019)

9. Avraamidou, S., Pistikopoulos, E.N.: A global optimization algorithm for the solution of tri-level mixed-
integer quadratic programming problems. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019:
Optimization of Complex Systems: Theory,Models, Algorithms andApplications, pp. 579–588. Springer,
Cham (2019d)

123

https://www.gerad.ca/nomad/
https://doi.org/10.1007/s11590-019-01438-5


34 Journal of Global Optimization (2020) 78:1–36

10. Avraamidou, S., Pistikopoulos, E.N.: Multi-parametric global optimization approach for tri-level mixed-
integer linear optimization problems. J. Glob. Optim. 74(3), 443–465 (2019e)

11. Avraamidou, S., Pistikopoulos, E.N.: Amulti-parametric optimization approach for bilevel mixed-integer
linear and quadratic programming problems. Comput. Chem. Eng. 125, 98–113 (2019f)

12. Avraamidou, S., Beykal, B., Pistikopoulos, I.P.E., Pistikopoulos, E.N.: A hierarchical food-energy-water
nexus (FEW-N) decision-making approach for land use optimization. In: Eden M.R., Ierapetritou M.G.,
Towler G.P. (eds.) 13th International Symposium on Process Systems Engineering (PSE 2018), Computer
Aided Chemical Engineering, vol. 44, pp. 1885–1890. Elsevier (2018)

13. Avraamidou, S., Milhorn, A., Sarwar, O., Pistikopoulos, E.N.: Towards a quantitative food-energy-water
nexusmetric to facilitate decisionmaking in process systems: A case study on a dairy production plant. In:
Friedl A., Klemes J.J., Radl S., Varbanov P.S., Wallek T. (eds.) 28th European Symposium on Computer
AidedProcessEngineering,ComputerAidedChemical Engineering, vol. 43, pp. 391–396. Elsevier (2018)

14. Bajaj, I., Iyer, S.S., Hasan, M.F.: A trust region-based two phase algorithm for constrained black-box and
grey-box optimization with infeasible initial point. Comput. Chem. Eng. 116, 306–321 (2018)

15. Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM J.
Sci. Stat. Comput. 11(2), 281–292 (1990)

16. Bard, J.F., Plummer, J., Sourie, J.C.: Determining tax credits for converting nonfood crops to biofuels:
An application of bilevel programming. In: Migdalas, A., Pardalos, P.M., Värbrand, P. (eds.) Multilevel
Optimization: Algorithms and Applications, pp. 23–50. Springer, Boston, MA (1998)

17. Beykal, B., Boukouvala, F., Floudas, C.A., Pistikopoulos, E.N.: Optimal design of energy systems using
constrained grey-box multi-objective optimization. Comput. Chem. Eng. 116, 488–502 (2018a)

18. Beykal, B., Boukouvala, F., Floudas, C.A., Sorek, N., Zalavadia, H., Gildin, E.: Global optimization of
grey-box computational systems using surrogate functions and application to highly constrained oil-field
operations. Comput. Chem. Eng. 114, 99–110 (2018b)

19. Bhosekar, A., Ierapetritou, M.: Advances in surrogate based modeling, feasibility analysis, and optimiza-
tion: a review. Comput. Chem. Eng. 108, 250–267 (2018)

20. Boukouvala, F., Floudas, C.A.: ARGONAUT: algorithms for global optimization of constrained grey-box
computational problems. Optim. Lett. 11(5), 895–913 (2017)

21. Boukouvala, F., Ierapetritou,M.G.:Derivative-free optimization for expensive constrained problems using
a novel expected improvement objective function. AIChE J. 60(7), 2462–2474 (2014)

22. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear
programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252, 701–
727 (2016)

23. Boukouvala, F., Hasan, M.M.F., Floudas, C.A.: Global optimization of general constrained grey-box
models: new method and its application to constrained pdes for pressure swing adsorption. J. Glob.
Optim. 67(1–2), 3–42 (2017)

24. Colson, B.: BIPA(bilevel programming with approximation methods)(software guide and test problems).
Cahiers du GERAD https://www.gerad.ca/en/papers/G-2002-37/view (2002). Accessed 16 Jan 2018

25. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Society for
Industrial and Applied Mathematics, Philadelphia (2009)

26. Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization.
AIChE J. 60(6), 2211–2227 (2014)

27. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech.
Eng. 186(2–4), 311–338 (2000)

28. Domínguez, L.F., Pistikopoulos, E.N.: Multiparametric programming based algorithms for pure integer
and mixed-integer bilevel programming problems. Comput. Chem. Eng. 34(12), 2097–2106 (2010)

29. Eason, J.P., Biegler, L.T.: A trust region filter method for glass box/black box optimization. AIChE J.
62(9), 3124–3136 (2016)

30. Edmunds, T.A., Bard, J.F.: An algorithm for the mixed-integer nonlinear bilevel programming problem.
Ann. Oper. Res. 34(1), 149–162 (1992)

31. Faísca, N.P., Dua, V., Rustem, B., Saraiva, P.M., Pistikopoulos, E.N.: Parametric global optimisation for
bilevel programming. J. Glob. Optim. 38(4), 609–623 (2007)

32. Faísca, N.P., Saraiva, P.M., Rustem, B., Pistikopoulos, E.N.: A multi-parametric programming approach
for multilevel hierarchical and decentralised optimisation problems. Comput. Manag. Sci. 6(4), 377–397
(2009)

33. Fampa, M., Barroso, L.A., Candal, D., Simonetti, L.: Bilevel optimization applied to strategic pricing in
competitive electricity markets. Comput. Optim. Appl. 39(2), 121–142 (2008)

34. Garcia-Herreros, P., Zhang, L., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E.: Mixed-integer bilevel
optimization for capacity planning with rational markets. Comput. Chem. Eng. 86, 33–47 (2016)

123

https://www.gerad.ca/en/papers/G-2002-37/view


Journal of Global Optimization (2020) 78:1–36 35
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