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Abstract
This paper reports an adaptive sensor bias observer and attitude observer operating directly on SO(3) for true-
North gyrocompass systems that utilize six-degree of freedom inertial measurement units (IMUs) with three-axis
accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic
vehicles employ attitude estimation systems that employ micro-electromechanical systems (MEMS) magnetometers,
angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited
heading accuracy. Present day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and
thus cannot be used to estimate true-North geodetic heading. Relying on magnetic compasses can be problematic
for vehicles which operate in environments with magnetic anomalies and those requiring high accuracy navigation as
the limited accuracy (> 1◦ error) of magnetic compasses is typically the largest error source in underwater vehicle
navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and
soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs
on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope
(FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically
estimate the instrument’s time-varying true-North attitude (roll, pitch, and geodetic heading) in real-time while the
instrument is subject to a priori unknown rotations. This gyrocompass system is immune to magnetic anomalies and
does not require recalibration every time a new payload is added to or removed from the vehicle. Stability proofs for the
reported bias and attitude observers, preliminary simulations, and a full-scale vehicle trial are reported that suggest the
viability of the true-North gyrocompass system to provide dynamic real-time true-North heading, pitch, and roll utilizing
a comparatively low-cost FOG IMU.
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1 Introduction
This paper reports a novel algorithm for estimating true-
North attitude with real-time adaptive bias estimation of
a dynamic (rotating) inertial measurement unit (IMU)
without use of magnetometers or a priori knowledge
of the instrument’s attitude. Preliminary simulation and
experimental results of the reported true-North gyrocompass
system employing a low-cost fiber optic gyroscope (FOG)
IMU are reported.

The current paper differs from previous work (Spielvogel
and Whitcomb (2018)) by presenting a new formulation of
the sensor bias estimation which relies on fewer assumptions,
generalizing the attitude algorithm to be used with general
field vector measurements, presenting asymptotic stability
proofs for the proposed observers, and providing an approach
for choosing observer gains.

1.1 Background and Motivation
Accurate sensing and estimation of true-North geodetic
heading and local level (roll and pitch) referenced to the

local gravitational field (which we will refer to as true-North
attitude) are critical components of high-accuracy navigation
systems for a wide variety of robotic vehicles. The need
for accurate true-North attitude estimation is particularly
acute in the case of vehicles operating in global positioning
system (GPS)-denied environments (such as underwater) and
in magnetically compromised environments (such as near
ferromagnetic structures, buildings, or natural local magnetic
anomalies). Smaller and lower-cost vehicles represent an
additional challenge due to their limited sensor budget, small
physical size, and limited energy storage capacity.

Over the past decade the development of a new generation
of small low-cost underwater vehicles (UVs) has begun
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IMU Grade Accel. Type Accel. Bias Ang. Rate Sensor Ang. Drift Magnetometer Size, Weight, Power Cost
(A) High-End

FOG/RLG
Mass ∼ 1− 10µG Optical < 1◦/h N/A 5250 cm3 4.5kg 14W ∼$135K

(B) Low-Cost
FOG

MEMS ∼ 1mG Optical < 1◦/h N/A 650 cm3 0.7kg <5W ∼$19K

(C) MEMS MEMS ∼1 mG MEMS > 10◦/h 0.01 G 12 cm3 18g 0.4W ∼$2K
Table 1. Comparison of (A) Conventional Navigation-Grade FOG/RLG IMU, (B) Low-Cost FOG IMU, and (C) MEMS IMU
Specifications. (A-B) are two classes of IMUs suitable for true-North gyrocompasses, and (C) are MEMS IMUs which do not have
angular rate gyros sensitive enough to be used for true-North gyrocompass systems.

to enable oceanographic, environmental assessment, and
national security missions that were previously considered
impractical or infeasible (e.g. Clegg and Peterson (2003);
Clem et al. (2012); Packard et al. (2013); Steele et al. (2012);
Zhou et al. (2014)). This new generation of UVs often
employ low-cost navigation systems that presently limit
them to missions requiring only low-precision navigation of
O(1-100)m accuracy when submerged. High-end navigation
approaches, of O(0.1-10)m accuracy, traditionally require a
Doppler sonar, costing $20k-$50k USD, and a North-seeking
gyrocompass or inertial navigation system (INS), costing
$50k-$250k. These high-end navigation approaches are
largely incompatible with low-cost autonomous underwater
vehicles (AUVs) with target total vehicle cost of $50k-
$250k. Moreover, the high cost, large size, and high
power-consumption of commercially available optical true-
North seeking gyrocompasses is a principal barrier to the
widespread use of high accuracy navigation for smaller and
lower-cost UVs.

Most small low-cost UVs typically employ micro-
electro-mechanical systems (MEMS) IMUs comprised of 3-
axis MEMS magnetometers, gyros, and accelerometers to
estimate local magnetic heading, pitch, and roll, typically to
within several degrees of accuracy, but require careful soft-
iron and hard-iron calibration and compensation to achieve
these accuracies. Moreover, magnetic attitude sensors must
be recalibrated for soft-iron and hard-iron errors whenever
the vehicle’s physical configuration changes significantly
(i.e. sensors or other payloads added or removed, etc.), as
very frequently occurs on oceanographic marine vehicles.
Studies have shown that the accuracy of these magnetic
heading sensors can be a principal error source in overall
navigation solutions (Kinsey and Whitcomb (2004)).

Recently, a new class of lower-cost (∼$20k), compact,
and lower power FOG IMUs have become available — for
example the commercial-off-the-shelf (COTS) KVH 1775
FOG IMU (KVH Industries, Inc., Middletown, RI, USA)
— that provide sensor accuracies sufficient for estimation
of true-North heading, pitch, and roll. This is in contrast
to MEMS IMUs, which employ MEMS gyros that lack the
sensitivity necessary to detect Earth-rate, and hence true-
North heading, and thus rely on MEMS magnetometers to
sense magnetic heading.

1.2 True-North Versus Magnetic Heading
True-North heading estimation differs from that of magnetic
heading in that true-North is the direction towards the Earth’s
axis of rotation at the North Pole, while magnetic heading
measures the direction of the horizontal component of the
Earth’s local magnetic field, which differs dramatically from
true-North, often by many 10’s of degrees — a difference

termed local magnetic variation. The gyroscope sensors
(includes all MEMS IMUs) used in magnetic-North attitude
sensors typically lack the sensitivity (the magnitude of Earth
rate is orders of magnitude smaller than the magnitude of
MEMS angular rate gyro sensor noise) to detect the angular
rate of Earth (15◦/hr) and are commonly modeled as

wm(t) =���
�:0

wE(t) + wv(t) + wb + η(t) (1)

where wm(t) ∈ R3 is the measured angular rate vector in
instrument coordinates, wE(t) ∈ R3 is the angular rate of
the Earth (15◦/hr), wv(t) ∈ R3 is the angular rate of the
instrument with respect to the local North, East, Down frame,
wb ∈ R3 is a constant measurement bias, and η(t) ∈ R3 is
zero-mean Gaussian measurement noise. In contrast, true-
North gyrocompass systems use high-end gyroscopes, such
as three-axes FOGs or ring laser gyros (RLGs), which are
sensitive enough (‖wE(t)‖ & ‖η(t)‖) to measure Earth’s
angular rate and are typically modeled as

wm(t) = wE(t) + wv(t) + wb + η(t) (2)

where the terms are the same as in (1). Table 1 compares
these different classes of IMUs.

By fusing gyroscope and accelerometer measurements,
true-North gyrocompass systems generate an estimate for the
wE(t) component of the measured angular ratewm(t). Since
the Earth’s angular rate, wE(t), lies in the local North-down
plane, the estimated angular-rate of Earth (wE(t)) and the
estimated gravity vector can be fused to estimate the true-
North direction, roll, and pitch. We define the local North-
down plane to be the plane that intersects the origin of the
NED frame (defined in Section 3.1) and spans the North and
down directions.

1.3 Paper Organization
This paper is organized as follows: Section 2 provides
a literature review of attitude and sensor bias estimation.
Section 3 gives an overview of preliminaries. Section 4
reports the sensor bias and East vector observer and stability
proof. Section 5 presents the attitude observer and stability
proof. Section 6 introduces the Gyrocompass system.
Section 7 presents preliminary numerical simulations and
experimental results. Section 8 summarizes and concludes.

2 Literature Review
Because field sensors, such as angular rate gyros and
accelerometers, have significant sensor bias terms that
typically vary strongly with instrument temperature and
otherwise drift very slowly over time, it is necessary
to simultaneously estimate field sensor bias terms AND
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estimate attitude. Section 2.1 reviews relevant literature

on attitude estimation, and Section 2.2 reviews relevant

literature on IMU sensor bias estimation.

2.1 Attitude Estimation
The majority of the attitude estimation literature addresses

the case of magnetic heading attitude estimation using

MEMS IMUs (Crassidis et al. (2007); Guo et al. (2008);

Hamel and Mahony (2006); Metni et al. (2005, 2006);

Wu et al. (2015)). Mahony et al. (2008) report an attitude

nonlinear complementary filter on SO(3). A recent study

by Costanzi et al. (2016) explores utilizing a FOG for

attitude estimation under unknown magnetic disturbances.

These studies however, differ from the current paper as they

estimate magnetic-North heading, while the present paper

presents an estimator for true-North heading.

Martinelli (2012) reports a method for estimating roll

and pitch using a three-axis accelerometer and three-axis

gyroscope IMU and a monocular camera. This approach

however is impractical for many UV applications (e.g. when

there is poor visibility due to water turbidity, operating

in the mid-water, operating in a region with a featureless

bottom) and impossible for the many unmanned underwater

vehicles (UUVs) that are not equipped with cameras and

lights/strobes.

Previous studies by Spielvogel and Whitcomb (2015,

2017a) suggest the practical utility of a low-cost FOG

IMU as the primary sensor in a North-seeking gyrocompass

system. These studies assume that sensor biases have

been calculated and compensated for a priori and rely

on the differentiation of accelerometer measurements

for estimating true-North. Numerical simulation and

experimental evaluations are reported.

Batista et al. (2019) report a nonlinear attitude observer

based upon angular rate gyros and single body-fixed vector

measurements of a constant “inertial vector” (e.g. 3-axis

magnetometer) where the gyros and fixed-vector sensor

are all assumed to be bias-free. A numerical simulation

evaluation is reported.

Spielvogel and Whitcomb (2018) present a true-

North gyrocompass system which estimates true-North

attitude without the need to differentiate accelerometer

measurements and also addresses the problem of real time

bias estimation for both gyros and accelerometers. The

current paper differs from the previous attitude observer

by generalizing the algorithm to be used with general

field vector measurements and provides a local asymptotic

stability proof and observability analysis. Numerical

simulation and experimental evaluations are reported.

2.2 IMU Sensor Bias Estimation
Several methods for IMU measurement bias estimation

have been reported in recent years. Much of this literature,

though, focuses on magnetometer bias estimation (Alonso

and Shuster (2002b,a); Crassidis et al. (2005); Gambhir

(1975); Guo et al. (2008); Kok et al. (2012); Li and Li (2012);

Troni and Whitcomb (2013); Troni and Whitcomb (2019);

Spielvogel and Whitcomb (2018)).

Many papers report results for gyro sensor bias estimation.

However, most address MEMS gyro sensor bias estimation

Figure 1. The North-East-Down (NED) and instrument
coordinate frames are co-located.

in which the angular rate due to Earth’s rotation is ignored

in the gyro measurement model. They use a measurement

model similar to that of (1) and neglect the Earth rate term

because Earth rate is dynamically undetectable with MEMS

gyros.

George and Sukkarieh (2005) report an identifier for

accelerometer and gyroscope sensor bias. However, they

utilize GPS which is unavailable to submerged vehicles.

Scandaroli and Morin (2011) and Scandaroli et al. (2011)

also report a sensor bias estimator for 6-degrees of freedom

(DOF) IMUs utilizing computer vision. This method though

is dependent on the presence of a vision system, which

requires identification markers in the environment and a

camera system which is unavailable for many robotic

vehicles (e.g. many underwater vehicles).

Metni et al. (2005, 2006) and Pflimlin et al. (2007)

report nonlinear complementary filters for estimating attitude

and gyroscope sensor bias. While these estimators identify

angular-rate sensor bias, they do not address linear

acceleration sensor bias and do not distinguish the gyroscope

sensor bias from Earth’s angular velocity.

Spielvogel and Whitcomb (2017b) addresses the problem

of identifying and distinguishing the gyro bias from the

Earth-rate signal. However, this reported approach requires

knowledge of the instrument’s real-time attitude.

Spielvogel and Whitcomb (2018) reports an adaptive

sensor bias and north observer to be used in a true-North

gyrocompass system without a priori knowledge of the

instrument’s attitude. The present paper differs from this

previous work by presenting a new formulation of the sensor

bias estimation which relies on fewer assumptions, a proof

of asymptotic stability (instead of only stability), and an

approach for choosing observer gains.
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3 Preliminaries

3.1 Coordinate Frames
We define the following coordinate frames:

• Instrument Frame: A frame, denoted (i), fixed in the
IMU instrument.

• North-East-Down (NED) Frame: The North-East-
Down (NED) frame, denoted (N ), has its x-axis
pointing True-North, its y-axis pointing East, its z-axis
pointing down, and its origin co-located with that of
the instrument frame.

Figure 1 illustrates these two coordinate frames.

3.2 Notation and Definitions
For each vector, a leading superscript indicates the frame
of reference and a following subscript indicates the signal
source, thus Nwm is the measured instrument angular
velocity in the NED frame and iam is the measured
instrument linear acceleration in the instrument sensor frame.

For each rotation matrix a leading superscript and
subscript indicates the frames of reference. For example, Ni R
is the rotation from the instrument frame to the NED frame.

Definition: J is defined as a function that maps a 3× 1
vector to the corresponding 3× 3 skew-symmetric matrix,
J : R3 → so(3). For k ∈ R3,

J (k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 . (3)

We define its inverse J−1 : so(3)→ R3, such that ∀x ∈ R3,
J−1(J (x)) = x.

3.3 Mathematical Background
We will make use of the following mathematical facts:

Proposition: For Q(t) ∈ so(3), the rotation matrix R(t)
can be computed by Rodrigues Equation (Murray et al.
(1994))

R(t) = I3×3 + γ(t)Q(t) + κ(t)Q(t)2 (4)

where

γ(t) =
sin(‖q(t)‖)
‖q(t)‖

(5)

κ(t) =
1− cos(‖q(t)‖)
‖q(t)‖2

(6)

q(t) = J−1(Q(t)). (7)

Proposition: q̇(t) is related to Ṙ(t) by the mapping

RT (t)Ṙ(t) = J (A(q(t))q̇(t)) (8)

where A(q(t)) is the right Jacobian of R(t) = eJ (q(t)) with
respect to the angular position vector q(t) ∈ R3. A(q(t)):

A (q(t)) = I3×3 − φ(t)J (q(t)) + ψ(t)J 2 (q(t)) (9)

φ(t) =
1− cos (‖q(t)‖)
‖q(t)‖2

(10)

ψ(t) =
‖q(t)‖ − sin (‖q(t)‖)

‖q(t)‖3
(11)

and its inverse,

A−1(q(t)) = I3×3 + αJ (q(t)) + β(t)J 2(q(t)) (12)

where

α =
1

2
, (13)

β(t) =
1

‖q(t)‖2
− 1 + cos(‖q(t)‖)

2‖q(t)‖ sin(‖q(t)‖)
, (14)

are reported in Chirikjian (2011).
If A(q(t)) is invertible, (8) can be rearranged as

q̇(t) = A−1 (q(t))J−1
(
RT (t)Ṙ(t)

)
. (15)

Definition: Persistent Excitation (PE)) (Sastry and
Bodson (1989)) A matrix function W : R+ → Rm×n is
persistently exciting (PE) if there exist T, α1, α2 > 0 such
that ∀t ≥ 0:

α1Im ≥
∫ t+T

t

W(τ)WT (τ) dτ ≥ α2Im (16)

where Im ∈ Rm×m is the identity matrix.
Definition: Uniform Complete Observability (UCO)

(Sastry and Bodson (1989)) The system [A(t), C(t)] is
called uniformly completely observable (UCO) if there exist
strictly positive constants β1, β2, δ, such that, ∀t0 ≥ 0

β2I ≥ N(t0, δ) ≥ β1I (17)

where N(t0, δ) ∈ Rn×n is the observability grammian

N(t0, δ) =

∫ t0+δ

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0) dτ (18)

and Φ(t, t0) is the transition matrix for A(t) (Rugh (1996)).
Lemma 1 : The following lemma is a variation of Lemma

A.1 in (Besançon (2000)). Given a system of the following
form:

ẋ(t) = A(t)x(t) + f(t) (19)
y(t) = Cx(t) (20)

where x(t) ∈ Rn, and y(t) ∈ Rp such that

(i) limt→∞ ‖y(t)‖ = 0

(ii) limt→∞ ‖f(t)‖ = 0

(iii) [A(t), C] is UCO;

then limt→∞ ‖x(t)‖ = 0. Proof provided in Appendix 1.

3.4 Sensor Model
The sensor measurement models for angular rate and linear
acceleration are

iwe(t) = iwE(t) + iwv(t) + iwb (21)
iwm(t) = iwe(t) + iηw(t) (22)
iae(t) = iag(t) + iav(t) + iab (23)
iam(t) = iae(t) + iηa(t) (24)
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Figure 2. Histogram of the components of the vehicle
acceleration experience by the Johns Hopkins University (JHU)
remotely operated vehicle (ROV) during the vehicle trial. The
vehicle acceleration data is from the high-end PHINS INS on
the JHU ROV. As shown above, the vehicle experiences vehicle
accelerations which are orders of magnitude smaller than
gravity (<< 9.81 m/s2).

where iwm(t) ∈ R3 is the IMU measured angular-rate,
iwe(t) ∈ R3 is the biased noise-free angular-rate, iwE(t) ∈
R3 is the true angular velocity due to the rotation of the Earth,
iwv(t) ∈ R3 is the true angular velocity due to the rotation
of the instrument with respect to the NED frame, iwb ∈ R3

is the angular velocity sensor bias offset, iηw(t) ∈ R3 is the
zero-mean Gaussian angular velocity sensor noise, iam(t) ∈
R3 is the IMU measured linear acceleration, iae(t) ∈ R3

is the biased noise-free linear acceleration, iag(t) ∈ R3 is
the true linear acceleration due to gravity and the Earth’s
rotation, iav(t) is the instrument’s true linear acceleration
with respect to Earth, iab ∈ R3 is the linear accelerometer
sensor bias, and iηa(t) ∈ R3 is the zero-mean Gaussian
linear accelerometer sensor noise.

For many robotic vehicles, the gravitational field iag(t)
dominates the vehicle linear acceleration (iav(t)). Thus, it is
common to use the approximation

iae(t) ≈ iag(t) + iab (25)

as a low-frequency estimate of (23). This approximation,
(25), is used in (Costanzi et al. (2016); Mahony et al. (2008);
Pflimlin et al. (2007); Wu et al. (2015)). Figure 2 presents
the vehicle acceleration experienced by the JHU ROV in the
vehicle trial. From Figure 2, it is evident that the magnitude
of the vehicle accelerations experienced in the vehicle trial
are orders of magnitude smaller than the gravity vector.

Given (25), the sensor measurement model becomes

iwe(t) = iwE(t) + iwv(t) + iwb (26)
iwm(t) = iwe(t) + iηw(t) (27)
iae(t) = iag(t) + iab (28)
iam(t) = iae(t) + iηa(t). (29)

Section 7.6 shows the proposed algorithms perform well
in the experimental trial where the vehicle experienced
small vehicle accelerations (‖iav(t)‖ ≈ 0), thus empirically

justifying the neglection of the vehicle acceleration term
iav(t) in (25) for a slowly accelerating vehicle.

4 Sensor Bias and East Observer
This section reports the derivation and stability analysis of
an adaptive sensor bias and East vector observer for six-
DOF IMUs equipped with a three-axis accelerometer and
three-axis angular rate gyroscope. The field sensor biases
are assumed to be very slowly time varying, and hence we
model them as constant terms and update their estimates
continuously.

Note that to estimate true-North heading, the angular
rate gyroscope must be sensitive enough to detect Earth-
rate. The measurement noise of present-day angular rate
gyros in MEMS IMUs is orders of magnitude larger than
what is needed to detect the extremely minute signal
of the Earth’s rotation rate (15◦/hr), thus, MEMS IMUs
cannot be utilized to dynamically estimate directly true-
North heading. At present, true-North attitude can only
be successfully instrumented with high-end, angular-rate
gyros that employ RLG or FOG angular rate sensors, or
that employ large inertial-grade mechanical gyrocompasses.
Although high-end angular-rate gyros are necessary for
true-North gyrocompasses, the systems do not simply
employ a better IMU (more precise, without ferromagnetic
disturbances) to obtain more precise results using common
algorithms utilizing magnetic heading sensors, but rather
use the local gravity vector and Earth’s rotation axis for
estimating true-North attitude. This is impossible with an
IMU that is not sensitive enough to detect Earth’s rotation.

The present paper reports a system that successfully
estimates true-North attitude utilizing a new class of
compact, low-power, and lower cost FOG IMUs.

4.1 System Model
We consider the system model

Nag = N
i R(t)iag(t) (30)

Ne = N
i R(t)ie(t) (31)

where the “East” vector,

ie(t) = J
(
iwE(t)

)
iag(t), (32)

is defined as the cross product of the Earth’s rotation axis
with the local gravity vector. Note that the proposed observer
will not work well near polar regions where the local gravity
vector is close to collinear with the Earth’s rotation axis.

Since Nag and Ne are constant in the NED frame,
differentiating (30) and (31), rearranging terms, and
substituting (26) yields

iȧg(t) = −J
(
iwe(t)− iwb − iwE(t)

)
iag(t) (33)

iė(t) = −J
(
iwe(t)− iwb − iwE(t)

)
ie(t). (34)

From (28), we know that

iag(t) = iae(t)− iab (35)
iȧg(t) = iȧe(t)− iȧb

= iȧe(t). (36)
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Substituting (28), (32), and (36) into (33) and (34) results in

iȧe(t) = −J
(
iwe(t)− iwb

)
iag(t) + ie(t)

= −J
(
iwe(t)− iwb

) (
iae(t)− iab

)
+ ie(t). (37)

Since the cross products between sensor biases and
Earth-rate are orders of magnitude smaller than the other
signals, we make the approximations that J

(
iwb
)
iab ≈ 0

and J
(
iwb + iwE(t)

)
ie(t) ≈ 0. Note that for the KVH

FOG IMU used in the present paper, ‖J
(
iwb
)
iab‖

is order 10−7 and ‖J
(
iwb + iwE(t)

)
ie(t)‖ is order

10−7, while ‖J
(
iwe(t)

) (
iae(t)− iab

)
‖ is order ≥ 10−4,

‖J
(
iwb
)
iae(t)‖ is order 10−1, ‖ie(t)‖ is order 10−4, and

‖J
(
iwe(t)

)
ie(t)‖ is order ‖iwv(t)‖ ∗ 10−4.

The resulting plant is

iȧe(t) = −J
(
iwe(t)

) (
iae(t)− iab

)
+ J

(
iwb
)
iae(t) + ie(t) (38)

iė(t) = −J
(
iwe(t)

)
ie(t) (39)

iẇb = 0 (40)
iȧb = 0 (41)

y(t) = iae(t). (42)

4.2 Sensor Bias and East Observer

We propose the observer

i ˙̂ae(t) = −J
(
iwe(t)

) (
iâe(t)− iâb

)
+ J

(
iŵb
)
iâe(t) + iê(t)− ka∆a(t) (43)

i ˙̂e(t) = −J
(
iwe(t)

)
iê(t)− ke∆a(t) (44)

i ˙̂wb(t) = −kbwJ
(
iae(t)

)
∆a(t) (45)

i ˙̂ab(t) = kbaJ
(
iwe(t)

)
∆a(t) (46)

ŷ(t) = iâe(t) (47)

where ka, ke, kbw , and kba are constant positive scalar gains,
iâe(t), iê(t), iŵb(t), and iâb(t) are the estimates of iae(t),
ie(t), iwb, and iab respectively, and

∆a(t) = iâe(t)− iae(t) (48)

∆e(t) = iê(t)− ie(t) (49)

∆wb(t) = iŵb(t)− iwb (50)

∆ab(t) = iâb(t)− iab (51)
∆y(t) = ŷ(t)− y(t) (52)

are the corresponding error terms.

Note that in the proposed algorithm, the signals iwe(t) and
iae(t) are the only signals in the instrument frame needed for
the algorithm to work. Knowledge of Nag and NwE is not
needed.

4.3 Error System
The resulting error system is

∆ȧ(t) = −J
(
iwe(t)

)
∆a(t) + J

(
iwe(t)

)
∆ab(t)

+ J
(
iŵb(t)

)
∆a(t)− J

(
iae(t)

)
∆wb(t)

+ ∆e(t)− ka∆a(t) (53)

∆ė(t) = −J
(
iwe(t)

)
∆e(t)− ke∆a(t) (54)

∆ẇb(t) = −kbwJ
(
iae(t)

)
∆a(t) (55)

∆ȧb(t) = kbaJ
(
iwe(t)

)
∆a(t) (56)

∆y(t) = ∆a(t). (57)

4.4 Stability
Consider the Lyapunov function candidate

V =
1

2
∆aT (t)∆a(t) +

1

2ke
∆eT (t)∆e(t)

+
1

2kbw
∆wTb (t)∆wb(t) +

1

2kba
∆aTb (t)∆ab(t) (58)

where V is a smooth, positive definite, and radially
unbounded function by construction. Differentiating (58)
results in

V̇ = ∆aT (t)∆ȧ(t) +
1

ke
∆ėT (t)∆e(t)

+
1

kbw
∆ẇTb (t)∆wb(t) +

1

kba
∆ȧTb (t)∆ab(t)

=
(
−∆aT (t)J

(
iae(t)

)
+ ∆aT (t)J

(
iae(t)

))
∆wb(t)

+
(
∆aT (t)J

(
iwe(t)

)
−∆aT (t)J

(
iwe(t)

))
∆ab(t)

+
(
∆aT (t)−∆aT (t)

)
∆e(t)

+
1

ke
∆eT (t)J

(
iwe(t)

)
∆e(t)

+ ∆aT (t)J
(
iŵb(t)− iwe(t)

)
∆a(t)

− ka∆aT (t)∆a(t)

= −ka‖∆a(t)‖2

≤ 0. (59)

Since ka is a positive scalar, the time derivative of the
Lyapunov function is negative semidefinite and the observer
is globally stable.

Since (58) is radially unbounded, bounded below by 0,
and bounded above by its initial value, V (t0), due to (59),
we can conclude that ∆a(t), ∆e(t), ∆wb(t), and ∆ab(t)
are bounded. If we make the assumption that the signals
iae(t), iwe(t), iwb, and iab are bounded, then (53)-(57) are
bounded, and hence (48)-(51) are uniformly continuous.

For all t ≥ 0,

−
∫ t

t0

V̇ (τ) dτ =

∫ t

t0

ka‖∆a(τ)‖2 dτ

V (t0)− V (t) = ka

∫ t

t0

‖∆a(τ)‖2 dτ

V (t0) = ka

∫ t

t0

‖∆a(τ)‖2 dτ + V (t). (60)
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Since V (t) ≥ 0 ∀t > t0, (60) can be written as

ka

∫ t

t0

‖∆a(τ)‖2 dτ ≤ V (t0)(∫ t

t0

‖∆a(τ)‖2 dτ
)1/2

≤
(
V (t0)

ka

)1/2

. (61)

Hence, ∆a(t) ∈ L2 (Khalil (1996)).
Since ∆a(t) ∈ L2 ∩ L∞ and ∆ȧ(t) is bounded, from

Corollary 2.9 in (Narendra and Annaswamy (1989)), we
conclude that ∆a(t) is globally asymptotically stable at the
origin,

lim
t→∞

∆a(t) = 0. (62)

Note that we can rewrite the error system into the form

θ̇(t) = A(t)θ(t) + f(t) (63)
y(t) = Cθ(t) (64)

where

θ(t) =


∆a(t)
∆e(t)

∆wb(t)
∆ab(t)

 , (65)

A(t) =

[
0 g(t)
0 0

]
, (66)

g(t) =

[
I −J

(
iae(t)

)
J
(
iwe(t)

)
−J

(
iwe(t)

)
0 0

]
,

(67)

f(t) =


−J

(
iwe(t)− ŵb(t)

)
− kaI

−keI
−kbwJ

(
iae(t)

)
kbaJ

(
iwe(t)

)
∆a(t), (68)

C =
[
I 0 0 0

]
, (69)

and I ∈ R3×3 is the identity matrix. Since limt→∞∆a(t) =
0, we conclude that

(i) limt→∞ ‖y(t)‖ = 0

(ii) limt→∞ ‖f(t)‖ = 0

Thus, if [A(t), C] is UCO, from Lemma 1, we conclude the
error system is asymptotically stable and hence

lim
t→∞

‖θ(t)‖ = 0. (70)

We conclude that, if iae(t),
iwe(t),

iwb, and iab are
bounded and [A(t), C] is UCO, then the system is
asymptotically stable. Note that for underwater vehicles,
the signals iae(t), iwe(t), iwb, and iab are all bounded (see
Figure 9 for the sensor measurements from the numerical
simulations and vehicle trial), so convergence of the observer
is dependent on [A(t), C] being UCO. In our case, where
A(t) depends on the coupled exogenous signals iwe(t)
and iae(t), it is not obvious that Φ(t, t0) (the transition
matrix for A(t)) has a closed-form solution for non-trivial
iwe(t) and iae(t), and, in consequence, it is not clear

how to prove analytically that the observability grammian
N(t0, δ), defined in (18), satisfies (17). It is easy to verify
numerically that when iwe(t) and iae(t) are PE, [A(t), C]
is UCO. Conversely, it is also easy to verify numerically
that when iwe(t) and iae(t) are not PE, [A(t), C] is not
UCO. Appendix 2 reports numerical evaluations of the
observability grammian for the simulation data presented in
Section 7.

5 Attitude Observer
This section reports the derivation and stability analysis
of an attitude observer that estimates directly on SO(3).
The observer is inspired in part by the research of Mahony
et al. (2008) on nonlinear complementary filters on SO(3)
and research by Kinsey and Whitcomb (2007) on adaptive
identification on SO(3). The general terms x and z are
used because the observer is not limited to the problem
of true-North attitude estimation — it can also be applied
(for example) to magnetometer-IMU systems for attitude
estimation with respect to local magnetic-North.

5.1 Plant
Consider the plant

Nx = N
i R(t)ix(t) (71)

Nz = N
i R(t)iz(t) (72)

where ix(t) and iz(t) are orthogonal such that ixT (t)iz(t) =
0. The signals Nx ∈ R3, ix(t) ∈ R3, Nz ∈ R3, and iz(t) ∈
R3 are known and non-zero. The rotation matrix N

i R(t) ∈
SO(3) is unknown.

5.2 Identification Plant
Define N

i R̂(t) ∈ SO(3) to be the estimate of N
i R(t), and

N x̂,N ẑ ∈ R3 to be the estimated plant output

N x̂ = N
i R̂(t)ix(t) (73)

N ẑ = N
i R̂(t)iz(t), (74)

where ix(t), iz(t) are “field vectors”. In out particular
instance, the field vectors are iag(t), ie(t) respectively.

5.3 Parameter Error
The parameter error is defined as

R̃(t) = N
i R

T (t)Ni R̂(t). (75)

When N
i R̂(t) = N

i R(t), Ni R
T (t)Ni R̂(t) = I where I is the

3× 3 identity matrix.

5.4 Attitude Observer Update Law
We choose the update law

N
i

˙̂
R(t) = N

i R̂(t)J
(
x̃(t) + z̃(t) + iwe(t)− iwb

−Ni R̂T (t)NwE

)
. (76)

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 3. Block diagram of the gyrocompass system.

where the x̃(t) ∈ R
3 and z̃(t) ∈ R

3 are local field vector

error terms defined, respectively, as

x̃(t) = kx(t)J
(
ix(t)

)
N
i R̂T (t)Nx (77)

z̃(t) = kz(t)J
(
(I − P (t)) iz(t)

)
N
i R̂T (t)Nz (78)

where the projection matrix, P (t), and normalized vector
ix̄(t) are defined as

P (t) = ix̄(t)ix̄T (t), (79)

ix̄(t) = ix(t)
1

‖ix(t)‖ , (80)

and kx(t) and kz(t) are positive scalar gains.

5.5 Error System
The corresponding error system is

˙̃R(t) = N
i ṘT (t)Ni R̂(t) + N

i RT (t)Ni
˙̂
R(t)

= −J (
iwv(t)

)
R̃(t)

+ R̃(t)J (
x̃(t) + z̃(t) + iwe(t)− iwb

−N
i R̂T (t)NwE

)
. (81)

Using the property J (v)R = RJ (RT v) for v ∈ R
3 and R ∈

SO(3), (81) becomes

˙̃R(t) = R̃(t)J (
x̃(t) + z̃(t) + iwe(t)− iwb

−R̃T (t)iwE(t)− R̃T (t)iwv(t)
)

= R̃(t)J
(
x̃(t) + z̃(t) + iwEv(t)− R̃T (t)iwEv(t)

)
(82)

where

iwEv(t) =
iwE(t) +

iwv(t). (83)

5.6 Stability
Consider the Lyapunov function candidate

V =
1

2
q̃T (t)q̃(t) (84)

where V is a smooth, positive definite function by

construction and q̃(t) defined in (7). Note that in the

following stability proof, the fact J (v)v = 0 ∀v ∈ R
3, and

consequently qTA−1(q) = qT is used repeatedly.

Differentiating (84) yields

V̇ = q̃T (t) ˙̃q(t). (85)

Substituting (15) into (85) results in

V̇ = q̃T (t)
(
A−1 (q̃(t))J−1

(
R̃T (t) ˙̃R(t)

))
, (86)

and substituting (12) and (82) into (86) results in

V̇ = q̃T (t)
(
x̃(t) + z̃(t) + iwEv(t)− R̃T (t)iwEv(t)

)
.

(87)

Substituting (4) into (87) yields

V̇ = q̃T (t)
(
x̃(t) + z̃(t) + iwEv(t)

− (
I − γ(t)J (q̃(t)) + κ(t)J 2 (q̃(t))

)
iwEv(t)

)
= q̃T (t)

(
x̃(t) + z̃(t) + iwEv(t)− iwEv(t)

)
= q̃T (t) (x̃(t) + z̃(t)) . (88)

Substituting (77), (78), into (88) yields

V̇ = kx(t)q̃
T (t)J (

ix(t)
)
N
i R̂T (t)Nx

+ kz(t)q̃
T (t)J (

(I − P (t)) iz(t))
)
N
i R̂T (t)Nz

= kx(t)q̃
T (t)J (

ix(t)
)
R̃T (t)ix(t)

+ kz(t)q̃
T (t)J (

iz(t)
)
R̃T (t)iz(t)

− kz(t)q̃
T (t)J (

ix̄(t)ix̄T (t)iz(t)
)
R̃T (t)iy(t). (89)

Note that since x is perpendicular to z, ixT (t)iz(t) = 0.

Thus, (89) becomes:

V̇ = kx(t)q̃
T (t)J (

ix(t)
)
R̃T (t)ix(t)

+ kz(t)q̃
T (t)J (

iz(t)
)
R̃T (t)iz(t). (90)

Using the fact that q(t)TJ (x(t))J 2 (q(t))x(t) = 0 and

substituting (4) into (90) yields

V̇ = −kx(t)γ̃(t)q̃
T (t)J (

ix(t)
)J (q̃(t)) ix(t)

− kz(t)γ̃(t)q̃
T (t)J (

iz(t)
)J (q̃(t)) iz(t)

= −kx(t)γ̃(t)‖J
(
ix(t)

)
q̃(t)‖2

− kz(t)γ̃(t)‖J
(
iz(t)

)
q̃(t)‖2

< 0 (91)

where γ(t) is defined in (5). Thus, the time derivative of

the Lyapunov function is locally negative definite and the

observer is locally asymptotically stable.

Prepared using sagej.cls



Spielvogel and Whitcomb 9

Figure 4. The Johns Hopkins University Hydrodynamic Test Facility and the fully actuated JHU ROV used during vehicle trials.

6 Gyrocompass System

The gyrocompass system is comprised of the bias (Section
4) and attitude (Section 5) observers. The estimates of ie(t),
iwb, and iab from the bias observer presented in Section 4
are utilized in real-time by the attitude observer of Section 5
as follows:

Nx = −
(
I3×3 +

1

g0
J (NwE)2

)
e3, (92)

Nz = J
(
NwE

)
Nx, (93)

e3 =
[

0 0 1
]T
, (94)

ix(t) = iae(t)− iâb(t), (95)
iz(t) = iê(t), (96)
iwb = iŵb(t) (97)

where g0 is the magnitude of the local gravity field (∼ 9.81
m/s2).

The combined use of the reported East and bias observer
(for accelerometers and angular rate sensor bias calibration
on-the-fly) and the reported attitude observer will be termed
the “gyrocompass system” in the following sections. Figure
3 shows a block diagram of the gyrocompass system.

7 Gyrocompass System Evaluation

The gyrocompass system is preliminarily evaluated in three
numerical simulations and one UV experimental trial.

Note that in the derivation and stability proofs presented
in Sections 4 and 5, the noise free case (26-28) of the
measurement model is used. In the evaluation of the
gyrocompass system, actual noisy sensor measurements (27-
29) are used.

7.1 Test Facility

An experimental trial was performed with a remotely
operated vehicle (ROV) equipped with a KVH 1775 FOG
IMU (KVH Industries, Inc., Middletown, RI, USA) in the
facility’s 7.5 m diameter × 4 m deep fresh water tank.
The ROV is a fully actuated (six-DOF) vehicle with six
1.5 kW DC brushless electric thrusters and employs a
suite of sensors commonly employed on deep submergence
underwater vehicles. This includes a high-end INS, the
iXBlue PHINS III (iXBlue SAS, Cedex, France) (iXblue
SAS, Cedex, France (2008); IXSEA (2008)), that is used as
a “ground-truth” comparison during the experimental trial.
The PHINS is a high-end INS (∼$120k) with roll, pitch,
heading accuracies of 0.01◦, 0.01◦, 0.05◦/ cos(latitude),
respectively (iXblue SAS, Cedex, France (2008)). Figure 4
shows the test facility and the ROV operating in the test tank.
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Figure 5. Sim1 simulation results. During the simulation, the instrument experienced no instrument rotation.

7.2 Gain Selection
As with most adaptive systems that rely on persistence of
excitation (Narendra and Annaswamy (1989); Sastry and
Bodson (1989)) to converge to the true parameter values, the
rate of convergence is dependent on the amount of excitation
the system is experiencing and observer gains. In order to
choose the gyrocompass gains, a constrained optimization
using MATLAB’s nonlinear programing solver fmincon was
used to select gains for the sensor bias and East observer.

The optimization was setup as follows:

• The kx(t) = 1 and ky(t) = 1 gains were held constant
since these attitude observer gains are easy to tune by
hand.

• The ka, ke, kbw , and kba gains from the sensor bias
and East observer are the parameters optimized over.

• Root mean square error (RMSE) of the roll, pitch, and
heading from the gyrocompass system is the function
optimized.

• A 30 minute long simulation sampled at 10Hz with
‖iav(t)‖ = 0 was used. Note that the simulation was
sampled at 10hz to allow the optimization to run
faster and that this simulation experienced different
instrument rotations than the simulations and vehicle
trial presented in Sections 7.3-7.6.

• RMSE was started to be calculated 10 minutes after
filter starts.

• Initial conditions were

ka = 5.0 · 10−1 (98)

ke = 1.0 · 10−3 (99)

kbw = 1.0 · 10−5 (100)

kba = 5.0 · 10−1. (101)

These were chosen from previous experience with
these gains working well.
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Figure 6. Sim2 simulation results. During the simulation, the instrument experienced changes in heading.

• The constraints on the gain values were

0 < ka < 10 (102)
0 < ke < 1 (103)

0 < kbw < 1 (104)
0 < kba < 1 (105)

The gains resulting from the optimization are

ka = 3.3 · 10−1 (106)

ke = 1.2 · 10−3 (107)

kbw = 1.5 · 10−5 (108)

kba = 8.0 · 10−1 (109)
kx(t) = 1 (110)
ky(t) = 1 (111)

where kx(t) and ky(t) are the static gains chosen for
the attitude observer. These gains were used during the
simulations and vehicle experiment presented in this paper.
We note that this gain optimization process did not result in

gains that were significantly different from the initial gains
that we manually selected, and did not result in significant
improvements in observer performance.

Note: During the simulations and vehicle experiment, we
gain-scheduled the sensor bias gains, kbw and kba , by setting
them to zero for the first minute of operation to allow the
iê(t) and iâe(t) signals to settle so that the sensor bias
estimates are not driven far from their true values during the
start-up transient period.

7.3 Simulation Setup
The gyrocompass system is evaluated in three numerical
simulations.

• Sensor measurement sampling was simulated at 1kHz.

• Simulations include sensor biases consistent in
magnitude to those seen in KVH 1775 IMUs.

• Simulations were for a latitude of 39.32◦N.

• ‖iav(t)‖ = 0 for the three simulations.
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Figure 7. Sim3 simulation results. During the simulation, the instrument experienced changes in heading, roll, and pitch.

• Simulations included sensor measurements with
sensor noise representative of the KVH 1775
FOG IMU (used iam(t) and iwm(t) instead of
iae(t) and iwe(t)). Angular velocity sensor and
linear accelerometer sensor noises are computed
from the IMU’s specifications KVH Industries, Inc.,
Middletown, RI, USA (2015), as per Woodman
(2007), and confirmed by the authors experimentally
to be σw = 6.32× 10−3 rad/s and σa = 0.0037 g.

• The sensor biases used in the three simulations are:

wb =
[
−2 3 −1

]T · 10−5 rad/s (112)

ab =
[

1 −0.5 1
]T · 10−3 g (113)

• The sim1 simulation experienced no rotation.

• The sim2 simulation experienced changes in heading.

• The sim3 simulation experienced changes in heading,
roll, and pitch.

• Root mean square error (RMSE) was started to be
calculated 20 minutes after filter starts.

• The initial condition, N
i R̂(t), is chosen such that

the initial heading is off by ∼ 30− 35◦. This is
an initial heading that can be easily achieved with
magnetic compasses. In the future, we plan to use
the magnetometer in the KVH IMU for choosing the
initial condition of the proposed gyrocompass system.

• The sensor biases estimates, iŵb(t) and iâ(t), were all
set to zero for their initial conditions.

7.4 Simulation Results
The estimated attitude and sensor bias errors for the three
simulations are shown in Figures 5-7. The sim1 simulation
results show that when the instrument is not excited via
rotations, the gyrocompass system bias estimates and attitude
estimates do not converge to their true values. This is
consistent with adaptive identifiers which rely on persistence
of excitation (Narendra and Annaswamy (1989); Sastry
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Figure 8. Results from a full-scale vehicle trial in the JHU Hydrodynamic Laboratory’s test tank. During the experiment, the vehicle
experienced changes in heading.

and Bodson (1989)). In the sim2 and sim3 simulations,
the attitude converges. Specifically, the simulations show
(after the system has converged) the gyrocompass system to
estimate roll and pitch within 0.1◦ and heading within 1◦ in
RMSE. The sim3 simulation converges faster than the exp2
simulation due to the increased excitation experienced by the
instrument in the sim3 simulation.

In simulations with no sensor noise (not shown), we
observed the attitude and bias errors estimations errors
to converge to zero. In the three simulations reported
herein, which include simulated sensor noise for the
gyros and accelerometers, we see the attitude estimation
errors converge to a neighborhood zero. As shown in
the stability proof, the convergence of the bias estimation
error is seen to depend upon the richness of the attitude
excursions (persistence of excitation) the IMU experiences:
In simulation sim1, where the IMU is motionless, the
bias estimates do not converge to the true bias values. In
simulation sim2, where the IMU experiences excursions in
heading, with roll and pitch remaining zero, only four of
the six components of the bias estimate converge to the

neighborhood of the true values. In simulation sim3, where
the IMU experiences attitude excursions in 3-DOF, all six
bias estimate terms converge to the “true” bias values.

It is important to note that the iŵb(t) and iâb(t) update
laws do not update bias components in the kernels of
J
(
iae(t)

)
and J

(
iwe(t)

)
respectively. Thus, in the case

of sim2 where the instrument only experiences changes in
heading (the PE condition for asymptotic stability is not
met when the instrument only experiences heading changes),
the components of the biases along the gravity vector do
not evolve. This configuration is common in oceanographic
UVs which are commonly passively stable in roll and pitch.
Since the convergence of iê(t) is dependent on accurate
estimation of the components of the biases in the North-
East plane, the gyrocompass system is still able to converge
to the correct attitude in sim2 (only heading changes) since
the components of the biases which affect the accuracy of
the ”East” estimate are properly estimated. Thus, in vehicles
like oceanographic UVs which are passively stable in roll
and pitch, it is not necessary to estimate accurately the
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(a) sim1 KVH simulation measurements. (b) sim2 KVH simulation measurements.

(c) sim3 KVH simulation measurements.
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(d) Vehicle trial KVH measurements.

Figure 9. Instrument measurements from the three simulations and one vehicle trial. Note that all the signals are in the instrument
frame (i.e. iwm(t), iam(t)).

components of the biases along the gravity vector in order
to achieve accurate true-North attitude estimation.

7.5 Experimental Setup
The gyrocompass system is evaluated with a preliminary
vehicle trial employing a comparatively low-cost (∼ $20k
USD) FOG KVH 1775 IMU (KVH Industries, Inc.,
Middletown, RI, USA).

• The KVH 1775 FOG IMU was sampled at 5kHz.

• The KVH 1775 FOG IMU was aligned via a fixture
to the ROV’s iXBLUE PHINS INS (iXblue SAS,
Cedex, France). The PHINS attitude is used as ground
truth during our experimental evaluation of the attitude
estimator.

• The KVH experiment was conducted at a latitude of
39.32◦N.

• The ROV was commanded to execute smooth
sinusoidal rotations (∼ 720◦) in heading while in
closed-loop control.

• The ROV experienced ‖iav(t)‖ ≈ 0 during the
experiment.

• RMSE error was started to be calculated 20 minutes
after filter starts.

• The initial condition, N
i R̂(t), is chosen such that

the initial heading is off by ∼ 40◦. This is an
initial heading that can be easily achieved with
magnetic compasses. In the future, we plan to use
the magnetometer in the KVH IMU for choosing the
initial condition of the proposed gyrocompass system.

• The sensor biases estimates, iŵb(t) and iâ(t), were all
set to zero for their initial conditions.

• The instrument is mounted on the vehicle such that the
instrument’s x-axis is toward starboard, the y-axis is
toward up, and the z-axis is toward stern of the vehicle.

7.6 Experimental Results
The attitude and sensor bias estimations and attitude errors
for the vehicle trial are shown in Figure 8. The results show
that during this experimental evaluation of the gyrocompass
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system, the attitude estimate converged to the true attitude.
Roll and pitch converged to within 0.15◦ RMSE and true-
North heading to within 1◦ RMSE of their true values.

In this experiment, where the vehicle and IMU principally
experienced excursions in heading, with vehicle’s roll and
pitch remaining passively stable near zero, we see that the
attitude estimation errors converge to a neighborhood zero
and four of the six bias estimate terms converge to steady
values. Thus the experimental conditions and experimental
results of the bias and attitude estimator are seen to be similar
to that observed in the simulation study sim2.

Note that as in sim2, the JHU ROV is a passively in roll
and pitch and predominantly experiences attitude changes in
heading only. Hence, while the components of the biases
along the gravity vector (along the IMU’s y-axis) do not
converge to their correct values (See Figure 8), the true-North
attitude does converge to the correct attitude.

In this preliminary result, the estimator took ∼15
minutes to converge to the correct true-North heading.
Long convergence time is typical of true-North gyrocompass
systems. For example, the iXBlue PHINS takes ∼10
minutes to achieve fine alignment IXSEA (2008). We are
currently investigating improvements to this sensor bias and
East observer (e.g. adaptive gains) to improve its rate of
convergence.

8 Conclusion

This paper reports the derivation and stability analysis
of an adaptive bias and East vector observer and an
attitude observer for use in true-North gyrocompass systems.
Preliminary simulations and a full-scale vehicle experiment
using a commercially available low-cost FOG IMU are
reported.

The preliminary simulation and vehicle trial suggest, for
the case of a gyrocompass system that experiences rotations,
the convergence of the reported gyrocompass system to the
true attitude without using magnetometers. The vehicle trial
shows roll and pitch converge to within 0.15◦ RMSE and
true-North heading to within 1◦ RMSE of their true values.

In future studies, the authors hope to improve the time
of convergence, increase the accuracy of the gyrocompass
system, extend the system to account for nontrivial vehicle
accelerations, and conduct extensive full-scale experimental
vehicle trials both in the lab and in the field.
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Appendix 1: Lemma 1 Proof
Lemma 1: Given a system of the following form:

ẋ(t) = A(t)x(t) + f(t) (114)
y(t) = Cx(t) (115)

where x(t) ∈ Rn, and y(t) ∈ Rp such that

(i) limt→∞ ‖y(t)‖ = 0

(ii) limt→∞ ‖f(t)‖ = 0

(iii) [A(t), C] is UCO;

then limt→∞ ‖x(t)‖ = 0.
Proof: The proof follows the structure of the proof of

Lemma A.1 in (Besançon (2000)).
First, note that from (iii), the system

ẋ(t) = A(t)x(t) (116)
y(t) = Cx(t) (117)

is UCO. That is, ∃β1, β2, δ > 0 such that ∀t0 ≥ 0, the
observability grammian

N(t0, δ) =

∫ t0+δ

t0

ΦT (τ, t0)CTCΦ(τ, t0) dτ (118)
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satisfies (17).
Next, recall that the solution of the system (114) for any

t0 ≥ 0 is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)f(τ) dτ. (119)

Then

N(t, δ)x(t) =

∫ t+δ

t

ΦT (τ, t)CTCΦ(τ, t) dτ x(t)

=

∫ t+δ

t

ΦT (τ, t)CTCΦ(τ, t)[Φ(t, t0)x(t0)

+

∫ t

t0

Φ(t, s)f(s) ds] dτ

=

∫ t+δ

t

ΦT (τ, t)CTC[x(τ)

−
∫ τ

t

Φ(τ, s)f(s) ds] dτ

=

∫ δ

0

ΦT (σ + t, t)CT [Cx(σ + t)

−
∫ σ+t

t

CΦ(σ + t, s)f(s) ds] dσ

=

∫ δ

0

ΦT (σ + t, t)CT [y(σ + t)

−
∫ σ

0

CΦ(σ + t, v + t)f(v + t) dv] dσ

(120)

Since

• Φ(σ + t, t) and Φ(σ + t, v + t) are bounded (from
(iii)) on [0, δ],

• limt→∞ y(t) = 0,

• and limt→∞ f(t) = 0,

then

lim
t→∞

N(t, t+ δ)x(t) = 0. (121)

Thus, from (121) and (iii), we can conclude that

lim
t→∞

‖x(t)‖ = 0. (122)

Appendix 2: Uniform Complete Observability
Of The Sensor Bias and East Observer
As stated in Section 4.4, asymptotic convergence of the
sensor bias and East observer to the true values is dependent
on [A(t), C] being uniform complete observability (UCO).
However, it is not obvious that Φ(t, t0), the transition matrix
for A(t), has a closed-form solution for non-trivial iwe(t)
and iae(t) and, in consequence, it is not clear how to prove
analytically that the observability grammian

N(t0, δ) =

∫ t0+δ

t0

ΦT (τ, t0)CTCΦ(τ, t0) dτ (123)

satisfies (17).
We have, however, verified numerically that when iwe(t)

and iae(t) are PE, [A(t), C] is UCO. Figure 9 presents the
instrument measurements from the three simulations and one
vehicle trial. The following sections present results from
numerically evaluating the observability grammian of the
three simulations.

Sim1 Simulation
In sim1, iwe(t) and iae(t) are constant (i.e. heading, pitch,
and roll are all uniformly zero), and thus, not persistently
exciting (PE). Hence, the observability grammian for
[A(t), C] is not full rank and [A(t), C] is not UCO.
Numerically, we can verify that rank (N(0, 60)) = 6,
σmin(N(0, 60)) = 4.59× 10−12, and σmax(N(0, 60)) =
6.96× 106 (full rank occurs when rank (N(0, 60)) = 12).

Sim2 Simulation
In sim2, the vehicle only experiences changes in heading
only, with uniformly zero roll and pitch, and iwe(t) and
iae(t) are not PE. Hence, the observability grammian
for [A(t), C] is not full rank and [A(t), C] is not UCO.
Numerically, we can verify that rank (N(0, 60)) = 10,
σmin(N(0, 60)) = 3.76× 10−12, and σmax(N(0, 60)) =
6.90× 106 (full rank occurs when rank (N(0, 60)) = 12).

Sim3 Simulation
In sim3, the vehicle experiences changes in roll, pitch, and
heading, and iwe(t) and iae(t) are PE. The observability
grammian for [A(t), C] can be shown numerically to be full
rank and, in consequence, [A(t), C] is UCO. Numerically,
we can verify that rank (N(0, 60)) = 12, σmin(N(0, 60)) =
1.04, and σmax(N(0, 60)) = 4.89× 106 (full rank occurs
when rank (N(0, 60)) = 12).

Conclusion
We conclude from numerically evaluating the observability
grammians over t = [0, 60] from the three simulations,
that when iwe(t) and iae(t) are PE (sim3), the observer
is asymptotically stable. Note that during sim2, although
the observability grammian is not full rank, excitement in
heading (sim2) causes the observability grammian to be rank
10, which is a higher rank than in the case of a stationary
instrument (sim1).
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