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ARTICLE INFO ABSTRACT

In the last decades, advancements in computational science have greatly expanded the use of artificial neural
networks (ANNs) in hydrogeology, including applications on groundwater forecast, variable selection, extended
lead-times, and regime-specific analysis. However, ANN-model performance often omits the sensitivity to ob-
servational uncertainties in hydroclimate forcings. The goal of this paper is to implement a data-driven modeling
framework for assessing the sensitivity of ANN-based groundwater forecasts to the uncertainties in observational
inputs across space, time, and hydrological regimes. The objectives are two-folded. The first objective is to
couple an ANN model with the PAWN sensitivity analysis (SA). The second objective is to evaluate the scale- and
process-dependent sensitivities of groundwater forecasts to hydroclimate inputs, computing the sensitivity index
in groundwater wells (1) across the whole time-series (for the global sensitivity analysis); (2) across the output
sub-regions with conditions of water deficit and water surplus (for the ‘regional’ sensitivity analysis); and (3) at
each time step (for the time-varying sensitivity analysis). The implementation of the ANN-PAWN occurs in 68
wells across the Northern High Plains aquifer, USA, with pre-time-step rainfall, evapotranspiration, snowmelt,
streamflow, and groundwater measurements as inputs. Results show that evapotranspiration and rainfall are the
major sources of uncertainty, with the latter being particularly relevant in water surplus conditions and the
former in water deficit conditions. The time-varying sensitivity analysis leads to the identification of localized
sensitivities to other sources of uncertainty, as snowmelt in spring or river flow during the annual peak period at
the groundwater level.
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1. Introduction

In the past century, the growing access to pumping technologies and
aquifer mapping has evidenced the role groundwater (GW) plays in
securing food production and sustaining population growth (Konikow
and Kendy, 2005). Agriculture consumes about 90% of the world’s
green water, and about 40% of irrigated water comes from groundwater
withdrawals (Aeschbach-Hertig and Gleeson, 2012). The pressure ex-
erted on global groundwater storage has led to global aquifers’ deple-
tion at rates of about 283 km3y-1 (Pokhrel et al., 2012), a value that
represents an increase of 120% for the one observed in the 1960s (Wada
et al., 2010). Contrary to common perceptions, GW depletion is not

limited to arid and semi-arid regions but also occurs in humid areas of
the world. One of the best-documented cases is the High Plains aquifer
(HPA) in the United States. The HPA, located in a temperate-subtropical
area, has lost about 250 km® of water in the past 60 years, corre-
sponding to about 8% of the initial storage (Scanlon et al., 2012). Thus,
effective water management is an unavoidable task, which could be
achieved through a range of mechanisms, such as improved crop water
use efficiency (Kukal and Irmak, 2017), irrigation scheduling (Kang
et al., 2000) and reservoir operation optimization (Galelli and Soncini-
Sessa, 2010).

In irrigated agriculture, water resources re-allocations are typically
planned semi-seasonally or seasonally with the aim of optimizing water
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use efficiency, maintaining soil field capacity, and sustaining water
systems (Amaranto et al., 2019). Hence, the successful implementation
of seasonal water management strategies and irrigation scheduling re-
lies on the ability to anticipate the future state of the GW system in
response to various hydro-climatic and anthropogenic factors (Coppola
et al., 2005). Data-driven models (DDMs) can be used for such fore-
casting purposes. DDMs are well-recognized techniques that extract the
input-output relationship from data without requiring the complete
characterization of a system. Developments of computational sciences
have greatly expanded their application domain to hydrogeological
systems, and DDMs have been used successfully for groundwater fore-
casts in many studies. One of the first applications of DDMs was im-
plemented by Coulibaly et al. (2001), who tested and compared dif-
ferent ANN architectures for groundwater forecasting in Burkina Faso.
A few years later, Daliakopoulos et al. (2005) investigated the most
suitable ANN architecture for predicting the GW level, finding that the
most accurate model was a standard-feed forward neural network.
More recent studies include Tapoglou et al. (2014), who simulated
groundwater level variations across the Isar River using a combination
of ANN and kriging (Bavaria, Germany). They found that this hybrid
approach can be used successfully in aquifers, where the hydro-
geological information is constrained. Mohanty et al. (2015) used ANN
to simultaneously forecast the weekly groundwater level at multiple
sites, up to a maximum of a month. They found a significant decrease in
performance for an increase in lead time. Barzegar et al. (2017) com-
pared the ability of wavelet group data handling and extreme learning
machines to forecast GW level three months ahead, concluding that the
best performances can be obtained by the latter. Guzman et al. (2017)
and Wunsch et al. (2018) forecasted daily GW level variations in a well
in the Mississippi River Valley aquifer and Germany by using nonlinear
autoregressive neural networks (NARX). Their results showed the po-
tential of NARX to predict GW levels effectively. Amaranto et al. (2018)
compared the ability of five different DDMs to forecast seasonal (1- to 4-
month) GW levels across hydrological regimes. They found that the
error of all the DDMs increased during intra-seasonal water-deficits.
Amaranto et al. (2019) implemented an artificial neural network-in-
stance based learning framework called Multi-Model Combination
(MuMoC) to forecast GW levels in three hundred wells across the High
Plains aquifer in response to irrigation demands and hydro-climatic
inputs. The implementation of MuMoC led to finding that modeling
performances were strongly affected by precipitation and evapo-
transpiration and that MuMoC outperformed and artificial neural net-
work model in a single well, especially in areas where observations
were abundant.

Nonetheless, DDMs do not require a complete hydrogeological
characterization of the GW system, the performance of, for example,
ANN models is sensitive to input measurements. Such discrepancies in
the inputs can be attributed to operational errors, systematic bias, the
geographical distance between weather stations and the monitoring
wells, or the combination of the factors above. These observational
uncertainties propagate through the model, leading to a decrease in
predicting accuracy or a problematic interpretation of the results. The
latter is more DDM-specific, given their intrinsic ‘black-box’ nature. In
areas where GW is used for irrigation supply, and water allocation is
scheduled ahead of time according to the projected water availability, it
is critical to understand the dominant drivers of the GW model’s dy-
namics. In other words, it is crucial to identify which variables need to
be known with higher accuracy, and what effects the uncertainties of
those variables have on the model outputs and forecast errors.

Thus, assessing the sensitivity of forecasting accuracy to observa-
tional uncertainty still represents a significant challenge for modelers
and water managers, which can be addressed by global sensitivity
analysis (GSA) techniques.

Modeling results might also be sensitive to different observational
uncertainties (i.e., for different inputs) in different hydrogeological
conditions (Corzo and Solomatine, 2007). A separate sensitivity
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analysis per each regime (hereafter referred to as ‘regional’ sensitivity
analysis) is recommended. Usually, global sensitivity analysis methods
use performance metrics aggregated over the whole simulation time
series, which might lead to a significant loss of information regarding
local behavior that might be of great interest (Pianosi et al., 2015).
Aggregating and performing SA at each time step (time-varying sensi-
tivity analysis, TvSA) is a viable option for recovering significant sen-
sitivity to input uncertainty at specific instants in time.

The goal for this study is to implement a framework for assessing a
data-driven groundwater forecast (one month) sensitivity to multiple
observational uncertainties in hydroclimate inputs (rainfall, evapo-
transpiration, snowmelt, river flow, and groundwater measurements)
across space and time and for different hydrological regimes. The ob-
jectives are two folded. The first objective is to develop an ANN-based
full-fledged framework, including an input-variable lag selection, and
then we couple it with the global SA method called PAWN (Pianosi and
Wagener, 2015). The second objective is to evaluate the scale- and
process-dependent sensitivities of groundwater forecasts to hydro-
climate inputs, computing the sensitivity index in groundwater wells
(1) across the whole time-series (for the global sensitivity analysis); (2)
across the output sub-regions with conditions of water deficit and water
surplus (for the ‘regional’ sensitivity analysis); and (3) at each time step
(for the time-varying sensitivity analysis).

The testbeds for the current experiment are 68 wells across the
Northern High Plains aquifer.

The authors carried deterministic analyses to characterize the spa-
tial distribution of the error in groundwater forecasts in a previous
study (Amaranto et al., 2019), which is not further discussed in this
manuscript.

2. Methodology
2.1. Methodological framework

To achieve the objectives described above, we apply the methodo-
logical framework outlined in Fig. 1 to each of the wells selected for the
analysis. In the first step, the hydroclimatic data (rainfall, evapo-
transpiration, river discharge, snowmelt, and groundwater level data)
are divided into training and test sets (data division). Here, we optimize
the split between the training set and the test set to ensure that both sets
fit approximately the same statistical distribution, using the training
and test average and standard deviation as optimization criteria. Then,
the training minimum and maximum are used to normalize the data
between 0 and 1 (data transformation). To select the most relevant lag
times, we apply a model-based input variable selection (IVS) procedure
(using Artificial Neural Networks as models) to the training set.

The training set is then further split into a proper training set and a
cross-validation set. This procedure, referred here as cross-validation, is
implemented to optimize the number of nodes in the ANN hidden layer,
using the RMSE in the cross-validation set as criteria to be minimized.
Unlike traditional applications of data-driven models, the test set is not
just used to test the performance of the model but also to evaluate the
sensitivity of the model’s accuracy to input uncertainty. To implement
this approach, we characterize each of the sources of uncertainty, and
then we perform several perturbations on each of the inputs’ time series
(in the test set) accordingly. The perturbed input data are then itera-
tively sampled following a density-based sensitivity analysis scheme
proposed by Pianosi and Wagener (2015), called PAWN. PAWN uses the
difference between the conditional and the unconditional distributions
of the output metric (RMSE in our case) to measure the sensitivity to
different uncertain inputs. For each input combination sample, the ANN
model is run, and the RMSE on the test set is used to evaluate the
model’s performance. Then, the difference between the unconditional
and conditional distributions of the RMSE is used to compute the PAWN
sensitivity indices in three conditions. First, to assess the overall effect
of data uncertainties on model performance, the PAWN indices are
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Fig. 1. Methodological Framework employed in this study.

computed for the RMSE calculated over the whole time series in each of
the 68 wells under analysis. Second, to estimate the impact of data
uncertainties in water deficit and surplus conditions, the PAWN indices
are computed for the RMSE of the data-points below the 10% quantile
of the water level hydrograph (deficit) and above the 90% quantile
(surplus) (see Amaranto et al., 2018, for a more detailed description).
Finally, to assess how the relative influence of different variables
changes over time, we compute the PAWN indices for the RMSE eval-
uated at each time step with a moving window centered around the
time step itself. Since the number of output time series in this paper is
one per well (68 in total), for simplicity, the time-varying SA analysis is
limited to two representative groundwater level time series.

Further details about each of the blocks in Fig. 1 are provided in the
following sections.

2.2. Data division and transformation

To assure that data come from the same population (Bhattacharya
et al., 2007), the theory of DDM requires the statistical distributions of
the training and the test sets to be approximately the same. First, we
implement an iterative process of random selection to achieve the
statistical homogeneity between the training and test sets. Then, we
compare their distributions and select the split providing the closest
statistical distribution. One drawback of this procedure is the inability
to reproduce modeling results. In consequence, we chose to constrain
the iterative randomization of the splits by limiting the search of the
test set only to consecutive years, corresponding to 30% of the total
number of time steps. For example, if we are supposed to have 30 years
of data, the first nine years of the data are selected as the test set and the
remaining 21 years of data as the training set. The statistical

distributions of the two sets are compared using their mean and stan-
dard deviation, and the result is stored. In the second iteration, the test
set is composed of the second-to-tenth year time-steps, and so on. The
maximum statistical similarity is ensured by choosing the split(s) s* that
satisfies the following rule:

s* = argmin /(i (s) — 1)*> + (o: (s) — 1)?

@

where Where u, and cpare the ratios between means and standard
deviations of the training and the testing set outputs (after normal-
ization), respectively, and the optimal split(s) s* is selected by solving
the Eq. (1) through an exhaustive search procedure.

After selecting the optimum split, the minimum and the maximum
of the training set are used to normalize the data in the interval [0-1].

2.3. Selection of lags for the input variables

In building DDMs, a key step consists in the selection of relevant
(and adequately lagged) input variables, a procedure commonly re-
ferred to as input variable selection (IVS). Often this is done by ex-
haustively testing all the possible combinations of properly lagged
variables. However, due to the often-high number of candidates, the
IVS procedure frequently becomes an optimization problem aimed at
minimizing the trade-off between being computationally efficient (i.e.,
testing the least possible number of combinations) and finding the best
input candidate (i.e., testing them all). Several studies have tried to
address this problem. Among them, a genetic algorithm and general
regression neural network (GAGRNN) proposed by Bowden et al.
(2005); a tree-based iterative search method developed by Galelli and
Castelletti (2013); and a partial-mutual information-based algorithm
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(May et al., 2008; Elshorbagy et al., 2010a). A good variety of IVS
methods is available in the literature (see, for example, Galelli et al.,
2014, for a review). Considering our objective to evaluate the sensi-
tivity of the groundwater forecasts to the uncertainties in the inputs, we
include all the candidate input variables once in this study. Then, the
problem is limited to selecting the proper lag for each input (rainfall,
evapotranspiration, river discharge, and snowmelt).

To select the optimal lag for each variable, we perform a con-
strained ANN-based exhaustive search (CES). The CES algorithm
iteratively tests any possible lag combination among the variables, each
of them taken at one specific lag at the time. In other words, con-
sidering the four inputs mentioned above, and four lags (from t to t-4)
per input, the CES generates 256 (4*) potential input candidates. Each
candidate includes rainfall, evapotranspiration, snowmelt, and
streamflow (only referred to as flow from here on) once, in a lag going
from t to t-4. For what concerns the fifth input (current groundwater
level), we use only the last groundwater observation available (GW)).
This choice is based on the fact that, for this specific input, the lag 1 was
the one maximizing the average mutual information with the model’s
output (GW,41). For each of the candidates, an ANN model is fitted on
the training set. The RMSE in the cross-validation set was selected as
optimization objective, to be minimized in the search of the best input
subset.

2.4. Artificial neural networks

Multilayer perceptron (MLP, Haykin, 2004) neural networks are a
machine learning technique that has been widely used in water-related
studies (see, for example, Elshorbagy et al., 2010b; Abrahart et al.,
2012). An MLP consists in an input layer, a hidden layer, and an output
layer. The first has the sole purpose of distributing the inputs further.
The nodes in the hidden layer usually depend on the complexity of the
system analyzed, but also on the number of input neurons. The number
of nodes in the output layer is often one, or equal to the number of
outputs. The connections between layers are associated with weights
(w). A sigmoidal transfer function in the nodes of the hidden (and often
of the output) layer(s) ensures the nonlinearity of the MLP.

2.5. Characterization of the sources of uncertainty

One of the objectives of this study is to assess the relative con-
tribution of the uncertainties of the inputs on the accuracy of a data-
driven model. Hence, the uncertainties in the observational inputs are
divided into five categories: (1) the uncertainty in the rainfall ob-
servations, (2) the uncertainty in the evapotranspiration time series, (3)
the uncertainty in snowmelt observations, (4) the uncertainty in
streamflow time-series, and (5) the uncertainty in groundwater level
observations used to both feed the model (autoregressive input) and
evaluate it (output). Data uncertainty here is treated similarly, as in
Pianosi and Wagener (2015). In particular, rainfall uncertainty was
characterized, assuming that the measurement error is multiplicative,
and the extent of the error changes differently in every rainfall event.
This procedure, called storm-dependent rainfall depth multiplier, was
first proposed and adopted by Kavetski et al. (2003, 2006). We assume
a maximum observational rainfall error of * 40%. Therefore, the
corresponding storm-dependent multipliers are extracted by a uniform
distribution within the range [0.6, 1.4]. For evapotranspiration and
snowmelt error, we assume a constant multiplier through the whole
time series, drawing it from a uniform distribution over [0.7-1.3], i.e.,
assuming a maximum error of * 30%. These error percentages were
decided by computing the average monthly coefficient of variation with
respect to the climatology (defined here as the monthly cyclostationary
average).

An additive error model was used to perturbing the flow data. Here,
the errors are represented by a zero-mean autocorrelated hetero-
scedastic Gaussian process (HGp). The variance of the error model is
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considered linearly dependent on the flow (Schoups and Vrugt, 2010).
The two parameters of this model are set to maintain the maximum
error in flow observations at = 20% in 99% of the cases. Groundwater
observations time series were treated similarly, but the HGp was fitted
to the groundwater variations, rather than to the measurements
themselves, to ensure that the measurement error is proportional to the
difference in hydraulic head change, and not to its absolute value.

2.6. Evaluation scheme

To evaluate the contribution of each input to the performance of the
model, we use three different aggregation schemes of the forecasting
errors. First, to identify the global contribution of the various inputs
over time in each well in the study area, we compute the root mean
squared error (RMSE) over the whole time series. Second, to assess the
input importance in different hydrological conditions, we compute the
RMSE over the region of the water levels above the upper (90%) and
below the lower (10%) quantile of the water-level hydrograph. Finally,
to assess the temporal evolution of the inputs relative influence, we
compute the RMSE at each time step over a moving window centered
on that time step:

+w

Z (gwszm gwlng)z
ke=t—w (2)

RMSE, =

o \/ 2w+ 1
where w is the semi-length of the moving window, ¢ is the time step on
which the window is centered, and gw;"" and gw"bs are respectively the
simulated and observed groundwater levels on day k.

2.7. The PAWN sensitivity analysis

To assess the relative contribution of each input to the accuracy of
the forecasts, we use a distribution-based sensitivity analysis method
proposed by Pianosi and Wagener (2015) and called PAWN. The choice
of this particular sensitivity method lies in its easy applicability to
nonlinear models and its independence from the type of output dis-
tributions (for example, symmetric, multimodal, or highly skewed).
Furthermore, it has shown to provide robust results for a relatively low
sample size (Zadeh et al., 2017; Pianosi and Wagener, 2016). As other
distribution-based methods, PAWN measures the sensitivity of the
output y (the RMSE, in our case) to variations of an input x; (the time-
series of a particular hydrometeorological variable) by the distance
between the unconditional distribution of y (obtained by varying all the
inputs) and the conditional distribution obtained when all the inputs
change but x;. Here, the conditional and unconditional distributions are
approximated by their empirical distribution functions. The distance
between distributions is measured by the Kolmogorov-Smirnov statistic,
computed as follows:

KS(XI) maxl (Y) ylxi(ylxi)l

3
where F,(y) is the empirical unconditional distribution of y, and
E,;(¥lx;) is the empirical conditional distribution of y when the ith
input is kept fixed at the nominal value x;. Since KS is dependent on
such nominal value, the PAWN method considers KS statistics over a
prescribed number of nominal values and then extracts their maximum
as follows:
S; = max[KS(x;

= max[Ks ()] @

By definition, all the KS (x;) values, and consequently, the sensitivity

indices S;, vary in the range [0, 1]. The closer the unconditional dis-
tribution F,(y) is to the conditional ones E,,(ylx;), the smaller the
KS(x;), values and therefore the smaller the sensitivity of y to x;, and
vice versa.
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3. Experimental setup
3.1. Artificial neural networks

To maximize the forecast performance, it is important to optimize
the number of nodes in the hidden layer of the MLP. Here, the number
of neurons was selected individually in each of the 68 wells under
analysis within the interval [5, 17]. The MLP were trained by using the
resilient backpropagation algorithm, using the R package RSNNS
(Bergmeir and Benitez, 2012).

3.2. Pawn

As mentioned above, the PAWN index estimates the sensitivity of
the model output to a given input by the difference between the un-
conditional and the conditional cumulative distribution functions
(CDFs) of the output. The unconditional CDF is approximated here by
the empirical distribution of N, output samples obtained by sampling
the whole input feasibility space. Similarly, the conditional CDFs are
approximated by the empirical distributions of N, output evaluations
per each input. These evaluations require iterative sampling all the
inputs but x;, which is kept fixed to a nominal value. Since the index is
dependent on the nominal value at which x; is fixed, we repeat the
evaluations using n different nominal values for x;. Consequently, being
M the number of variables, the total number of model evaluations re-
quired to compute the PAWN indices for M-inputs is N, + N, X n X M.
The values of N, N;, and n are fixed (by trial and error) to 5000, 3000,
and 20, respectively, leading to a total number of model evaluations
equal to 305,000 per well, and an average confidence interval size
(obtained with 50 bootstraps) around the sensitivity index of 0.02.

The numerical implementation of the PAWN sampling and evalua-
tion for our application is schematized in Fig. 2. To obtain the un-
conditional distribution of y, we randomly sample each of the input
factors 5000 times. Each of these 5000 samples corresponds to a dataset
containing one perturbed time series of rainfall, evapotranspiration,
snowmelt, discharge, and current GW level. These input datasets are fed
iteratively into the ANN model, which will, therefore, produce 5000
time series of GW level forecasts. Then, by comparing GW forecasts and
observations, we obtain 5000 realizations of the model performances
(i.e., 5000 values of RMSE, or 5000 RMSE values at each time step in
case of TvSA), which are used to approximate the unconditional dis-
tribution.

The steps required for the numerical approximation of the condi-
tional distributions are represented in the bottom part of Fig. 2. For the
sake of simplicity, Fig. 2 refers to only one of the inputs (in this case,
rainfall), but the procedure for the other inputs remains the same. First,
we randomly sample one conditional rainfall time series. Then, we
generate 3000 random samples of the other time series, and we itera-
tively run the model (in this case, the rainfall time series is fixed while
snowmelt, discharge, evapotranspiration, and GW level time series
change at each of the 3000 iterations). The 3000 RMSE values asso-
ciated with the model forecasts time series are then used to approx-
imate the conditional distributions. Then, we apply Eq. (3) to compute
the KS statistic, we rerun the experiment as many times as the number
of conditioning values (20 in the current analysis), and we compute the
PAWN index as in Eq. (4). To achieve the specific objectives of this
study, we compute the PAWN indices for the RMSE calculated over (1)
the whole time series; (2) water scarcity and abundance conditions; and
(3) at each time step using a window semi-length of three months
(w = 3 months). Also, a six-month window is tested.

The PAWN analysis is implemented using an R adaptation of the
SAFE Toolbox (Pianosi et al., 2015).
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4. Material
4.1. Case study and dataset

The study area in the High Plains aquifer (HP, Fig. 3a) extends for
about 450,000 km? (the largest aquifer in the United States) over eight
states (South Dakota, Nebraska, Colorado, Kansas, Oklahoma,
Wyoming, New Mexico, and Texas). Since the 1950s, the aquifer has
been intensively exploited by irrigation, and now ranks first in the
United States for groundwater withdrawal. In the last 30 years, water
levels in the HP have shown declines of more than 30 m. These declines
caused a saturated thickness reduction in some areas (Kansas and
Texas, in particular) of more than 50% (Scanlon et al., 2012). The total
GW depletion in the HP in the past 70 years is about 8% of the total
groundwater storage.

The area under investigation is the Northern portion of the High
Plains (Fig. 3b-e), which occupies about 37% (167,000 km?) of the total
aquifer area. It is crossed by the Platte River, which drains northeast
Colorado, southeast Wyoming, and central Nebraska before merging
into the Missouri River (Eschner, 1983). Here, the aquifer is constituted
by unconsolidated Quaternary alluvial deposits and is mainly in un-
saturated conditions, with total saturated thickness ranging from 400 m
in the central part to less than 50 m in the west (McGuire, 2015).

Irrigation (measured in terms of percentage of irrigated area,
Ozdogan and Gutman, 2008) is particularly developed in the eastern
part and alongside the Platte River (Fig. 3b), with corn and soybeans
being the most cultivated crops. The irrigation system is usually a
center pivot sprinkler. According to Wen and Chen (2006), the number
of registered irrigation wells grew from 1200 in 1936 to about 100,000
in 2007, serving about 85% of the state’s irrigation land.

Rainfall (Fig. 3d) follows a west-to-east gradient with a minimum of
about 27 mm/month near the border with Wyoming to a maximum of
about 70 mm/month on the eastern side of the aquifer. The maximum
net recharge-rate of the aquifer occurs in the east part of Nebraska
(mainly rainfall-driven) and alongside the Platte River, and it is of
about 22 mm/y (Houston et al., 2011). The contribution of the Platte
River to aquifer recharge is also evident from Fig. 3e, where it is pos-
sible to observe how the area close to the river is the one characterized
by the highest rise in the GW level in the past 70 years. GW level in-
creases are also frequent in the north-central part of the state, where
low irrigation intensity and high saturated aquifer thickness might be
considered the main drivers of the aquifer recharge. Water level de-
crease is particularly severe in the southeast and in the southwest.

Monthly estimation of rainfall (P, mm/month), evapotranspiration
(mm/month), and snowmelt (mm/month) were obtained by the Global
Land Data Assimilation System (GLDAS, Rodell et al., 2004) with a
spatial resolution of 1/8-degree latitude X longitude (about
15 x 15 km). GW (in meters below land surface) and discharge (Q, m3/
d) in the HP aquifer data were provided by the USGS (2015). We fil-
tered the complete USGS GW database to exclude stations with an ob-
servation period of fewer than ten years of data (120 observations) and
missing data higher than 25% within the 1980-2018 period. After the
implementation of the filter, 68 wells remained available for analysis
(Fig. 3c). Streamflow data were gathered from the stream gauges closest
to the selected monitoring wells.

5. Results and discussion
5.1. Spatial global sensitivity to data uncertainty

Fig. 4 shows the spatial distribution of the sensitivity index for each
of the five variables assessed in this study. By looking at the chart and in
Table 1, it is easy to notice the strong impact that rainfall and evapo-
transpiration uncertainties have on ANN performances. In contrast, the
contribution of snowmelt is practically negligible. One possible ex-
planation for this might lie in the fact that, while Fig. 4 shows
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Fig. 2. PAWN experimental setup (TS stands for time-series; ARGW TS is the Autoregressive term of groundwater level time-series).

aggregated results for the whole time series, snowmelt is a phenomenon
that usually occurs only a few months a year (in February, March, and
April, see Amaranto et al., 2019 for additional elements). Its con-
tribution is limited to this time frame. Therefore, while its impact on the
model’s performances in a time step might be relevant, its overall
contribution appears to be much lower. Also, the interaction of snow-
melt with the upper soil layers is well known, and it is unlikely that, in
locations where the aquifer is deeper, this variable might have any
influence on groundwater dynamics.

Fig. 5 shows the variables producing the highest and the second-
highest value of the PAWN index in each of the wells analyzed. Ana-
lyzing Fig. 4, Fig. 5, and Table 1, one can see that, overall, evapo-
transpiration (WPPAWN = 0.56), rainfall (WPAWN = 0.49), and river
flow (WPAWN = 0.3) are the three dominant variables governing model
performances. In particular, evapotranspiration was the most relevant
variable in 37 wells (54% of the cases) and the second most relevant in
another 19 wells (27% of the total), followed by rainfall (the most
pertinent input in 21 wells, 31% of the whole; and the second most
relevant in 30, 40% of the total) and river flow (most relevant input in 9
wells, 13% of the total, second-most appropriate in 12 wells, 17% of the
total).

By comparing Fig. 5 and Fig. 3b, we see that evapotranspiration

uncertainties seem to mainly affect the performance of the models in
regions where irrigation intensity is higher (orange and red areas in
Fig. 3b). The influence of flows can be more robust near rivers, but flow
measurement stations were not always available near wells to effec-
tively couple the discharge time series with the groundwater levels. On
the other hand, the influence of rainfall on groundwater level changes
can be particularly relevant along the Platte River.

5.2. Regional sensitivity analysis for water availability regimes

Fig. 6 shows the input variables responsible for the highest un-
certainty in forecasts during water surplus (left panel) and water deficit
(right panel) conditions. By looking at the figure on the left, one can
notice the increased relevance of snowmelt, rainfall, and flow. This
close relationship between surface water-based variables and ground-
water levels is probably because the upper quantile corresponds to the
hydrograph section associated with the water level peak, usually oc-
curring between February and April. During those months, snowmelt
occurs and recharges the aquifer. As a consequence, snowmelt becomes
the most relevant input variable in water abundance conditions in six of
the wells under analysis, a situation in which the overall sensitivity
analysis never occurred. March and April are also the months when



A. Amaranto, et al.

8 B Irrigation intensity (%) ¢

0o m1-20 O 21-40
0O 41-60 @ 61-80 W 81-100

High Plains aquifer
O Study Area

D Rainfall (mm/year)

W <360 W 372-420 [ 432-480
[ 492 - 540 1552 - 600 M 612 - 660
W 660-720 W>720

Journal of Hydrology 587 (2020) 124957

Monitoring Stations

@ Monitoring well A River station

—— Platte River

" AGW level (m) (1950-2016)

—

B -30to-20 H -20to -10
[ 3t 10
W 10-20 W 20-30

| >-30
[ -10to-3 [ -3t03
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of the wells under analysis and of river discharge monitoring stations; (D) Annual rainfall (Rodell et al., 2004); (E) Decrease in water table level in the period

1950-2016.

maximum rainfall usually occurs and when forecast sensitivity to pre-
cipitation uncertainty is the most relevant in 26 of the wells. Besides,
the higher water level in the upper quantile favors river seepage (which
is inversely proportional to the distance between river sediment and
groundwater level), and consequently, sensitivity to flow data un-
certainty increases, with flow being the most important source of un-
certainty in 16 wells. As expected, the left panel in Fig. 6 also shows
how relevant is the decrease in evapotranspiration when there is a
water surplus. For example, the relationship between evapotranspira-
tion and crop water demand, and it is maximum during the crop-
growing season, is more evident later on in the year, causing a sig-
nificant intra-annual water-level depletion.

At the same time, Fig. 6 shows how evapotranspiration is by far the
primary source of forecast uncertainty in the lower quantile of the
water level hydrograph. Overall, 44 out of the 68 wells (about 65% of

Table 1
Mean, maximum, and minimum value of the PAWN index across the study area.
ET Snow Rain Flow H
mean (PAWN) 0.56 0.12 0.49 0.30 0.08
max (PAWN) 0.89 0.62 0.89 0.90 0.42
min (PAWN) 0.07 0.03 0.06 0.04 0.04

the total wells assessed) had ET associated with the highest PAWN
value. As stated above, ET is at its maximum during the crop growing
season, when significant GW depletions also occur. In particular (and as
we will see in the following sections), the peak in ET usually occurs in
August, which is also the month corresponding to the yearly minimum
in groundwater level and the maximum drawdown. Consequently, un-
certainty in evapotranspiration inputs can propagate from ET to the

Snow Rain

PAWN index: [ °°

- 04
0.2
0.0

Fig. 4. Spatial distribution of the PAWN sensitivity index computed for each input variable ET = evapotranspiration; Snow = snowmelt, Rain = rainfall;
Flow = streamflow and H = groundwater level measurement at previous time-step.
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Fig. 5. Variable producing the highest (left panel) and second highest (right panel) sensitivity index in each of the 68 wells. The blue and red rectangles represent the
wells selected for time varying SA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

forecasts of groundwater levels. This propagation is more evident
during months in the lower quantile, and when the forecast sensitivity
to evapotranspiration becomes the most relevant among all inputs
analyzed in this study.

5.3. Time-varying sensitivity to input data uncertainty

Regarding the temporal variability of the PAWN index, Fig. 7 shows
the time series (February 1991-October 2001) of the GW level (red line
in the plot) and the PAWN index (grayscale rectangles) in one of the
monitoring wells (MW1, red box in Fig. 5a). The location of MW1 is
near the Lower Republican River, in the southern part of Nebraska
(Fig. 3c). In MW1, the aquifer is relatively shallow (the average
groundwater depth is 2 m), allowing surface water and groundwater to
interact. The initial portion of the time series shows a keen sensitivity of
flow observational uncertainties on modeling error, with flow influence
being particularly relevant during the rising limb of the water table
level hydrograph. As can be seen in the figure, snowmelt has a peri-
odical control, with peaks on the PAWN index regularly occurring be-
tween February and April, when snowmelt occurs. This influence seems
to confirm the previous finding that, despite the low overall sensitivity
to snowmelt, there are instances in time when this variable at least
marginally influences modeling performances. However, snowmelt in-
fluence dissipates in the second half of the time series (from 1997),
when the pattern in groundwater levels also changes. Staring in 1997,
groundwater depletion during the growing season appears to be much
more acute (on average, five times greater than the depletion rates
occurring between 1991 and 1996). This increased depletion might

Water Surplus

cause groundwater level changes occurring deeper from the surface in
the spring, reducing the effect of snowmelt on the model error. At the
same time, the model exhibits an increase in the sensitivity to evapo-
transpiration during the crop-growing season. The best possible ex-
planation for this period is an increase in groundwater use for irriga-
tion. In essence, crop irrigation requirements (and consequently
evapotranspiration) govern the groundwater variability in the season
when irrigation takes place. Hence, an increase in irrigation water use
might lead to more considerable influence of evapotranspiration un-
certainties on modeling performances.

Fig. 8 shows the time-varying PAWN index for MW2 (in the blue box
of Fig. 5a). As in MW1, snowmelt likely influences the strong season-
ality in the figure. However, unlike in the previous case, the influence of
river flow on MW2 appears to be more seasonal rather than a con-
tinuous effect along with the time series. The deeper water level might
explain this effect in MW2, which varies from a minimum of about 10 m
in March and April to a maximum of about 19 m in August and Sep-
tember, in comparison to MW1’s shallow groundwater level. The only
time when any interaction between the surface water and groundwater
emerges is when the spring recharge might be responsible for bringing
the water table level closer to the surface. Practically no interaction
between the two occurs through the rest of the year. In the case of
MW2, the performance of the model looks to be entirely driven by
rainfall and evapotranspiration, with the latter showing an increasing
influence in the second portion of the time series (between March 2000
and December 2005). As in the previous case, the increased influence of
evapotranspiration coincides with much deeper water tables during the
growing season. For instance, after the summer of 2000, the water level

Water Deficit

@ET @®Flow @H @ Rain Snow

Fig. 6. Most important input factor in water surplus (left panel) and in water deficit (right panel) conditions.
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Fig. 7. Time-varying PAWN index in Monitoring Well 1 (the red line is a qualitative representation of the normalized GW level changes). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

experienced a drastic depletion in the water table during summer,
which decreased the autumn-spring recovery typically observed in the
previous five years. Furthermore, the water level starts showing a low
depletion trend during which the influence of rainfall decreases, and
the influence of evapotranspiration consistently increases.

5.3.1. Effect of changing the window size

Fig. 9 illustrates an unclear increase in the window in MW2 for the
sensitivity of groundwater changes to rainfall and evapotranspiration
when w = 6 months. The time series has two sections, one section
(1995-2000), predominantly rainfall-driven, and another section
(2000-2005) evapotranspiration-driven.

Also, Fig. 9 indicates that the effect of snowmelt and flow becomes
practically negligible throughout the time series. This result might be
explained by the fact that both variables have a significant impact on
modeling results only for limited and specific times. The effect of flow
was relevant only around March-April, while the snowmelt effect was
detectable only around February-March. These months also correspond
to the only time of the year when snowmelt (2 mm/day) is comparable
to rainfall (1.8 mm/day). By increasing the window length, the

estimated sensitivity index for those months contrasts with the low
sensitivity obtained in the months before February and after April.
Thus, an apparent combination of conditions makes the contribution of
flow and snowmelt practically undetectable. At the same time, rainfall
and evapotranspiration lead to a more regular sensitivity index (char-
acterized by fewer variations between one-time step and the following).
In essence, drastic changes in the PAWN index, such as the one oc-
curring for evapotranspiration in March and April 2007 (or the one for
rainfall in March 2000), are attenuated and become practically negli-
gible.

6. Conclusions

In this study, we implemented a SA framework to better understand
the sensitivity of ANN errors to input observational uncertainties in
groundwater forecast.

As a product of the coupling ANN-SA, we conclude the following:

Overall, evapotranspiration (UWPAWN = 0.56) and rainfall
(LPAWN = 0.49) were the most relevant inputs. In particular, evapo-
transpiration appeared to be particularly relevant in areas with higher

Input

Date (M-Y)

PAWN Index

0.25

Fig. 8. Time-varying PAWN index in Monitoring Well 2 (the red line is a qualitative representation of the normalized GW level changes). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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irrigation intensity, whereas the rainfall effect was detectable, espe-
cially in the Platte River area. Modeling errors were not sensitive to the
groundwater level measurement error in any of the case studies.

Results for flow were difficult to interpret since flow stations were
unavailable for coupling with the time series at all 68 wells. However,
the flow effect was higher in the geographic proximity to the Platte and
Lower Republican rivers.

The contribution of snowmelt to the changes in groundwater levels
was practically negligible across the studied area (average PAWN
index = 0.12). Two factors might drive this effect. The first factor is
that snowmelt occurs one to two months in any given year, and the
second factor is that the performance of the model might be relevant in
a single time step, but the effect is much lower throughout the whole
time series.

Regional SA results showed that evapotranspiration is the most re-
levant variable in water scarcity conditions (10% quantile of the water
level hydrograph). It showed in fact to dominate the error dynamics in
about 65% of the wells in the study area. In contrast, rainfall was the
most important in water surplus (90% quantile); being the major
sources of uncertainty in 40% of the analyzed wells. Sensitivity to
snowmelt and flow also showed an increase in the upper quantile.

The time-varying SA was able to register information that otherwise
would have been lost by applying SA to the whole time series. For
example, the analysis of the constrained window shows that the effect
of snowmelt is significant at the beginning of spring, with peaks of
sensitivity index up to 0.62. Also, evapotranspiration proved influential
in seasons when the groundwater depletion was particularly severe,
while at other times, flow or rainfall was the most relevant variables.

Increasing the window size led to less variability in the results and,
consequently, to a less qualitative interpretation. Additionally, it hides
potentially relevant information, such as the effect of snowmelt and
river seepage in the spring.

In summary, the present study evidence how complex phenomena
govern the ANN ability to predict GW availability in irrigated areas in
the land surface and the subsurface and across different spatial, hy-
drological, and temporal scales. Accurate estimations of evapo-
transpiration are critical since it was identified as the primary source of
uncertainty in the forecast of groundwater levels. Furthermore, regional
and time-varying sensitivity analyses —tailored for specific water re-
gimes— were able to identify the importance of other forcing inputs
(e.g., rainfall in water surplus, and snowmelt at the beginning of the
year), which could not be captured when those errors were averaged
over the entire time-series. These analyses are recommended in order to
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raise awareness of the multiple sources of uncertainty and their roles in
governing specific hydrological conditions and during particular per-
iods.

7. Limitations and future recommendations

This study is limited by the lack of real-world pumping data (which
were not available for the case study area) and by the use of proxies,
such as evapotranspiration, to simulate crop water requirements. Using
pumping data would have provided more information on how human
intervention shapes model performance. Furthermore, the selection of
the feasibility space for the perturbed input was empirically estab-
lished. When possible, this choice should be made based on information
about the error (available, perhaps, from local institutions). The ana-
lyses of the TvSA indicate how a different window convey different
information. A suggestion is to investigate various sizes, to capture the
full range of sensitivities across time-scales. Also, SA results might be
sensitive to the choice of the model. Here, we used artificial neural
networks to forecast GW levels and GSA to estimate the effect of data
uncertainty on the model’s performance. The choice of a different
model (perhaps physically-based) might lead to different results. The
use of a physically-based model (coupled with an analysis not based on
error metrics such as the presented here) might likewise provide in-
sights on how the physical system (and not the model’s error) is sen-
sitive to uncertainties in forcings and parameters. Therefore, further
research on coupling physically- and data-driven models should might
lead estimate the contributions of the multiple sources of uncertainty in
sub-seasonal forecasts of groundwater levels.
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