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Abstract

In this study, a comparative anhalysis of three satellite precipitation products including Tropical
Rainfall MeasuringsMission (TRMM-3B43 V7), Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS V2) with ground-measured
Indian Meteorological Department (IMD) precipitation data were performed to estimate the
meteorological drought in the Bundelkhand region of Central India. The high-resolution CHIRPS
data showed the closest agreement with the IMD precipitation and well captured the drought

characteristics. The Standardized Precipitation Index (SPI) identified seven major droughts
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events during the period of 1981 to 2016. Appropriate calibration and validation were performed
for drought forecasting using the Auto-Regressive Integrated Moving Average (ARIMA) model.
The forecasting result showed a reasonably good agreement with the observed datasets with the
one-month lead time. The outcomes of this study have policy level implications for drought

monitoring and preparedness in this region.

Keywords: SPI; Meteorological drought; Precipitation; ARIMA model; Forecasting

1. Introduction

Most of the Indian states are severely affected by recurrent and prolonged drought events that
lead to high water scarcity and adversely affect the crop yields, livestock, allied sectors, and
thereby socioeconomic condition, along with natural vegetation, groundwater recharge, etc.
(Glantz 1994, Bandyopadhyay et al. 2020). Drought is characterized as a stochastic phenomenon
with indistinct onset and ends, undefined structure, and its slower impact that accumulated over a
considerable period (Yaduvanshi et al. 2015): Considering its complexity, nature, and impact,
drought has been grouped intofour types: meteorological, agricultural, hydrological, and
socioeconomic (Wilhite and Glantz 1985, Wilhite 2000). The meteorological drought is initiated
with a significant deficit ‘of precipitation from long term climatology and reduces soil moisture,

groundwater, streamflows and other water storages.

In recent.years, drought events become more recurrent and severe due to global climate
alteration (Jentsch and Beierkuhnlein 2008). Numerous studies have indicated that precipitation
is the precursor of onset and persistence of meteorological and other drought types (Heim Jr
2002, Hao and Singh 2015). Therefore, reliable measurement of precipitation at different

temporal and spatial scales is important for drought hazard assessment. Although the rain gauge



observation provides accurate and long-term records, there are several limitations such as coarse
spatial coverage due to sparse or nonhomogeneous networks, discontinuity in data records, high
maintenance cost, etc. which constraint the accurate drought assessment and monitoring
especially in developing countries. On the other hand, the satellite remote sensing-based
precipitation products offer a powerful alternative data having much higher spatial resolution that
are continuous spatially and temporally (Pandey et al. 2019, Pandey and Srivastava 2019a).
These datasets provide global monitoring of precipitation and widely used' for different
hydrological and climatic applications as they fill data voids over inaccessible areas where
conventional rain gauge and ground radar measurements are limited or unavailable. The accuracy
of different satellite-based precipitation products varies greatly depending on the working
principle, sensor type, range of electromagnetic spectrausediin generating the products such as
microwave, Infrared, and Visible or combined range,»numbers of integrated observational
networks, data processing algorithms and aesampling techniques. Several attempts were made on
comparative analysis of these satellite precipitation products by available ground observed data.
Stisen and Sandholt (2010) evaluated .the performance of five satellite-based precipitation
products through the input specifi¢ calibration capability of the distributed hydrological models
over the Senegal Riverbasin in West Africa. The statistical evaluation of daily precipitation rates
of high-resolution PERSIANN, TMPA-3B42V7, and TMPA-3B42RT was carried out by
Moazami et al. (2013). Sharifi et al. (2016) compared the multi-satellite retrieval for GPM,
TRMM, TMPA-3B42, and the Era-Interim product from the European Centre for Medium Range
Weather Forecasts (ECMWF) precipitation products in different climatic and topographic
regions in Iran. Recently, Dandridge et al. (2019) statistically evaluated the TMPA 3B42 v.7 and

CHIRPS data at various temporal scales in the Lower Mekong River basin (LMRB) in Southeast



Asia for drought assessment. The satellite precipitation data evaluations were mostly carried out
at the global scale (Beck et al. 2017, Zhao and Ma 2019), continental scale (Xie et al. 2007,
Pena-Arancibia ef al. 2013, Awange et al. 2016, Kimani et al. 2017) country level (Shen et al.
2010, Miao et al. 2015, Alijanian et al. 2017, Prakash 2019), and regional scale (Hirpa et al.
2010, Gao and Liu 2012, Jiang et al. 2012). However, a similar assessment at the local scale is
inadequate, leads to highly uncertain output while satellite-based precipitation data preducts are

used.

Various indicators are used to identify drought conditions by investigating the deviation of
climatic variables from the long-term average value. The Standardized Precipitation Index (SPI)
is a compliant index that popularly used for meteorological drought assessment and also
recommended by the World Meteorological Organizationy(WMO). SPI is extensively used to
assess various aspects of drought events including frequency (McKee et al. 1993), intensity
(Naresh Kumar et al. 2009), spatio-temporal distribution (Umran Komuscu 1999, SIRDAS and
Sen 2003, Kalisa et al. 2020), and forecasting (Mishra and Desai 2005). SPI is also preferred
because of its versatility, flexibilitysin time scale, and especially its dependency on precipitation
data only. The modeling and.fotecasting of drought conditions using the time-series analysis rely
on the past and present observations, which are highly challenging due to the stochastic nature of
drought events. ‘However, such projections have high usefulness in prior preparedness via
advance mitigation and management strategies, most importantly in the field agriculture and
water resource management activities (Gupta et al. 2020). Several studies have utilized the
simplistic but efficient time series analysis approaches for drought projection, such as
Autoregressive Integrated Moving Average (ARIMA) models, neural network, exponential

smoothening, etc. using SPI (Mishra and Desai 2006, Morid et al. 2007, Han et al. 2012, Maca



and Pech 2016). The ARIMA model uses a statistical approach to predict reliable drought trend
and have several advantages over other techniques such as fixed structure, specificity for time
series, easiness, computationally inexpensive, dependency over skill and experience of the data
analyst, use of backward observations, etc. (Mishra and Desai 2005, Yurekli et al. 2005,
Fernandez et al. 2009). ARIMA time series model is a structured empirical technique for
forecasting and analyzing the stochastic nature of drought. When the time series data is
stationary and linear, the Auto Regressive (AR) or Moving Average (MA), or, mixed Auto
Regressive Moving Average (ARMA) models are applied. However, when time series data is
non-stationary and non-linear, the differencing is applied before the application of Auto

Regressive Integrated Moving Average (ARIMA) (Hamilton 1994, Contreras ef al. 2003).

This study aims to identify the most accurate satellite-based precipitation product at a local
scale, to assess and forecast the drought condition,in"the study site to assist water resource
managers for improved management activities and policies. The specific objectives of this study
are 1) to evaluate the reliability” of different satellite-based precipitation products for
meteorological drought assessment at,a local scale, 2) to assess meteorological drought using
Standardized Precipitation ITndex (SPI) in a drought-prone region (Bundelkhand region of Uttar
Pradesh, India) for 36 years (1981-2016), and 3) to forecast drought condition (SPI) employing
ARIMA medel. It;should be emphasized that the high-resolution CHIRPS data has been used in
this study, which was not used previously in any Indian site for drought assessment and

forecasting.

2. Site Description



The study site is the Bundelkhand region of Uttar Pradesh, India; where the socio-economic
condition is primarily dependent on agriculture and allied sectors. The region comprises of seven
districts and stretches between the latitude 24°18' and 26°45' N and the longitude 78°16' and
81°56' E, covering an area of around 29485.34 km” (Figure 1). The altitude in the study area
ranges between 58 m to 619 m above mean sea level, with the slope from north to south.
Bundelkhand region has a semi-arid climatic condition, lies in the dry Vindhyan plateau, and
characterized by four distinctive seasons i.e., winter, summer, monsoon, and post-monsoon
(Gupta et al. 2014). This region is a rain-fed area, where precipitation ig/vVeryierratic, uncertain
and has a poor supply in terms of late-onset of monsoon, early withdrawal of precipitation. The
annual average rainfall ranges from 665 mm to 1035 mm, concentrated mostly in the monsoon
season (June-September: JJAS) (https://data.gov.in),.«Bundelkhand region is plagued by
underdevelopment and poverty, experiences recurrent'drought events, which aggravates the food
insecurity in the region. The water scareity dueito recurrent drought conditions with nutrient
deficit soil and low productivity makes ‘agriculture under-invested, risky, and vulnerable. The
adverse conditions increased the demand for drought monitoring and effective mitigation

strategies in this region.
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Figure 1. IMD derived mean annual precipitation map of the study area for the period of 1998 to
2016 overlaid by the IMD grid center points. The inset displays the monthly precipitation
climatology of the Bundelkhand UP region.

3. Data and Methods

3.1. The Observed Precipitation Data

For validating satellite precipitation data products, the observed precipitation records were
accessed from the archives of the National Data Center, India Meteorological Department (IMD)
that is usedwoptimally for various meteorological applications. The gridded IMD precipitation
product uses'around 6955 rain gauge stations across India, whereas at daily scale the number of
reported gauges may vary. The Inverse Distance Weighted (IDW) interpolation technique is
employed to create continuous or gridded precipitation data at 0.25° spatial resolution (Pai et al.
2014). Based on the availability of satellite precipitation data products, the IMD precipitation

data was accessed for the period of 1998-2016, which was used as a reference for comparing



satellite precipitation data products and the precipitation-data derived SPI for drought

monitoring. The overall methodology used in this study is shown in Figure 2.
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3.2. Satellite Precipitation Datasets

Three multi-satellite precipitation products were assessed namely, TRMM, CHIRPS, and
PERSIANN-CDR from 1998 to 2016, based on the common period of data availability (Table
1). The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) 3B43 version 7 products are widely used in monitoring and studying tropical and
subtropical precipitation measurements for various hydro-climatological applicationsiysuch as
drought assessment, flood prediction, and hydrological modeling. Recently,Chen et al. (2020)
evaluated the TRMM 3B43 precipitation product and suggested its applicability for reliable
drought monitoring over the Yangtze River basin. Fereidoon e# al” (2019) used the TRMM
products for calibrating the SWAT (Soil and Water AssessmentyTool) hydrological model to
simulate runoff for flood prediction in Iran. Fang et ali (2019) integrated the TRMM 3B42 and
the Global Precipitation Measurement Integrated Multi=satellite Retrievals (GPM IMERG) data
to estimate extreme precipitation events over China'and observed the high potentiality of merged
product to better represent the spatial ‘pattern and overall characteristics of the extreme
precipitation events. The widelyyused data product is TMPA 3-hourly 3B42 which is
accumulated to daily and=monthly 3B43. The TRMM products are available from 1998 to
present with a high spatial resolution (0.25° x 0.25°) over near-global coverage (Huffman et al.

2007).

Table 1. Summary of the satellite precipitation products

Satellite Precipitation | Spatial Temporal Temporal
Products Resolution Resolution Coverage
TRMM 0.25° 1998-Present Daily/Monthly
PERSIANN-CDR 0.25° 1983-Present Daily

CHIRPS 0.05° 1981-Present Daily




Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data is a long-term
(1981-present) near-global (50°S - 50°N) precipitation dataset, developed by jointly the U.S.
Geological Survey (USGS) and the Climate Hazards Group (CHG) at the University of
California, Santa Barbara. The thermal infrared (TIR) based high resolution (0.05° x 0.05°)
CHIRPS data was developed with the main focus to support drought monitoring and. fotecasting
and other land surface modeling activity (Funk et al. 2015). CHIRPS has\relatively long
precipitation records (>30 years) than other available satellite precipitation at daily, pentadal, and
monthly temporal resolution (Funk ef al. 2014). It is a blended product of global precipitation
climatology, geostationary TIR satellite estimates, and in-situ"gauge-observations (Peterson et al.

2013). For this study, the monthly CHIRPS version 2.0/precipitation data were used.

Precipitation Estimation from Remotely: Sensed Information using Artificial Neural
Networks-Climate Data Record (PERSIANN-CDR) is a multi-satellite high-resolution
precipitation data developed by the Center for Hydrometeorology and Remote Sensing (CHRS),
University of California, Irvine" (WCI) The PERSIANN-CDR were generated applying artificial
neural network approach/on/GridSat-B1 infrared (IR) satellite product to provide an estimate of
precipitation rate at 0.25° X 0.25° spatial resolution across the near-globe (60°N - 60°S) at a daily
temporal resolutionsas a high-quality Climate Data Record (CDR) of precipitation from 1983 to
the near-present (Ashouri et al. 2015, Miao et al. 2015). The near-global available precipitation
data supports many meteorological applications especially extreme events like drought and flood

analysis.

3.3. Performance evaluation of satellite precipitation index
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The time series of monthly precipitation was prepared using spatially aggregated data to
quantify the variation between the observed IMD and satellite precipitation products. The annual
average difference was calculated to measure the departure and level of underestimation or
overestimation of monthly satellite precipitation data from the observed one. For
accompaniment, the seasonal climatological variations were derived by temporally aggregating
mean for winter (Jan-Feb; JF), pre-monsoon (March-May; MAM), monsoon (June-Sept; JJAS),
and post-monsoon (Oct-Dec; OND) seasons during 1998 to 2016 to determine the differences in

the seasonal inter-relationship among satellites precipitation datasets.

For a comprehensive evaluation of satellite-precipitation products;” a series of widely used
statistical metrics such as Pearson’s correlation coefficienty,(C€), Root mean square error
(RMSE), Mean Absolute Error (MAE), and Relative Bias (RB) were calculated against observed
gauge precipitation data (Table 2). CC was derived toytest the linear agreement or association
between two variables (i.e., how well satellite precipitation data corresponds to the observed
precipitation data). Whereas, the RMSEwand MAE were used for measuring the average
magnitude of estimated error between observed and satellite precipitation. The RB depicted the
biasness in the satellite jprecipitation compared to observed precipitation data. The overall
evaluation was performed by pooling all the values from the 39 point for the period of 1998-
2016 and then comparing with their respective grid points.

Table 2. List of statistical metrics used in the validation of satellite precipitation products
(CHIRPS, PERSIANN-CDR and TRMM), where “O” is observed precipitation, “S” is satellite

precipitation, and “n” is sample size

Statistical Metrics Equation Optimal Value Unit
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3.4. The Standardized Precipitation Index for drought assessment

The SPI computation required fitting a probability distribution such as the Pearson Type III
or Gamma probability function for homogenized.long-term precipitation records to attain the
standard normal variable as normally it follows the nonnormal stable distribution. Then it is
transformed into a normal distribution. with the unit standard deviation and zero mean for the
selected region and desire periodithrough equiprobability transformation (Guttman 1998). In this
study, SPI was calculated on a1, 3, 6, and 12-month time scale using the R platform for
evaluation of meteorological drought identified by the IMD and most accurate satellite-
precipitationwdata.wThe range of SPI is varying between 2 to -2, where negative SPI value

indicates drier or drought events and a positive value indicate wet events (Table 3).

Table 3. Drought classification based on SPI values (McKee et al. 1993)

SPI values Categories Probabilities (%)
>2.0 Extremely wet 2.3

1.5to 1.99 Very wet 4.4

1.0 to 1.49 Moderately wet 9.2

12



-0.99 to 0.99 Near normal 68.2
-1.0 to -1.49 Moderately dry 9.2
-1.5t0-1.99 Severe dry 4.4

<-2.0 Extremely dry 2.3

3.5. Time series (ARIMA) model development for drought forecasting

The long-term SPI3 time series analysis was performed for modeling the temporalpattern of
drought using the Auto Regressive Moving Average (ARIMA) model. Apptoptiate calibration
and validation were performed in the R programming environment..With the calibrated
parameters, the best fit ARIMA model was identified, which was then=used to predict the
upcoming drought condition for the study area. ARIMA is used, for the time series analysis and
thereby forecasting. The ARIMA model is mainly of two types: 1) non-seasonal linear ARIMA
models that defined by parameters as ARIMA (p, d,.q), and 2) multiplicative seasonal ARIMA
model that is defined by adding seasonal parameters as ARIMA (p, d, q) (P, D, Q). The non-

seasonal ARIMA model is mathematically expressed as (Wei 2006, Brockwell and Davis 2016):
#(B)V'Z, =0(B)a, (1)
where, ¢(B) and 6(B) are polynomials for p and q order, respectively and computed as:

0(B)=1-6,B~...— 4B

#(B)=1-¢B— L~ p;B" @)

However, thesseasonal multiplicative ARIMA model can be written as:
4,(B)Y®,(BWV,Z, =0,(B)O,(B)a, 3)

where, p, d, and q are the non-seasonal parameters of the model, which denotes the order

of AR model, degree of differencing and the order of the MA model and P, D, Q, and s are the
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order of seasonal AR, seasonal differencing, order of seasonal MA model and the length of the

season respectively. ¢, ,®,,0,, and ©,are polynomials coefficients.

The ARIMA model development consists of three stages: identification, estimation, and
diagnostic measures (McCleary ef al. 1980, Chatfield 2000, Box et al. 2015). In the first stage of
developing the ARIMA model, exploration of time series stationarity was done. After achieving
stationarity, the general form of model determined by the autocorrelation function (ACF) and
partial autocorrelation functions (PACF) (http://people.duke.edu). Again, the, final’ model is
selected based on penalty function statistics the Akaike information criterion (AIC) and Bayesian
Information Criterion (BIC) or Schwarz-Bayesian criterion (SBC) using the following formula
(Akaike 1974, Schwarz 1978);

AIC =-2log(L)+2k 4)
BIC =—-2log(L)+ kIn(n) (5)
where k= (p+q+P+Q) is the parameters in'the model, L denotes the likelihood function of the

model, and n is the number of observations.

During model parameter estimation, least-square and moment, conditional sum-of-squares, or
maximum likelithood functions (Wilson 1989) were applied, where the statistical significance
was qualified using various statistics like standard error, p-values, t-statistics, and z-values. In
the last stage ‘of model development, the diagnosis of the ARIMA model was done to ensure the
residuals are' 'white noise. Diagnostic statistical tests and plots of residuals were used in
estimating the correlation between residuals and white noise such as ACF of residuals (RACF),
normal probability of residuals, Periodogram check, histograms of residuals, residuals

distribution around the mean, Kolgomorov—Smirnov (K-S) tests, Ljung Box test, etc. (Box and
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Pierce 1970, Li 2003). With the calibrated parameters the best-fit model was identified for

forecasting.

4. Results and Discussion

4.1. Precipitation Evaluation

The monthly time series of observed IMD and satellite-derived precipitations, are' shown in
Figure 3a. Although the precipitation from all the satellites follows a similar pattern, a phase
shift is observed in the year 2002 between all satellite-derived precipitations’and IMD data. The
precipitation peaks correspond to the monsoon season indicates overestimation (compared to
IMD observed data) of precipitation in each satellite data, which was much higher for TRMM
and PERSIANN-CDR than CHIRPS. Figure 3b shows the annual averaged monthly difference
between the satellite precipitation products and TIMD precipitation data. Similar to the previous
observations, TRMM shows the highest overestimation (nearly up to 50 mm) in almost every
year except 1998, 2003, 2007, 2009, ‘and 2010; whereas, the PERSIANN-CDR shows the highest
difference. In comparison, CHIRPS data shows the lowest overestimation in all the years except
a slight underestimation (0.3 mm) in 2003. At seasonal scale, the significant overestimation in
precipitation was©bserved during the monsoon season, which is lowest for CHIRPS followed by

PERSIANN-CDR.and TRMM (Figure 3c¢).

The statistical comparison between the observed IMD and satellite precipitation was carried
out for individual IMD grids (39 grids) in the study area. The plots of different statistical metrics
between observed and three different satellite precipitation estimates are shown in Figure 4. All

the satellite precipitation products showed good agreement with the correlation coefficient (CC)
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values ranging from 0.75 to 0.94. Relatively higher CC was obtained for TRMM with maximum,
minimum, and average values as 0.94, 0.79, and 0.88, respectively, followed by PERSIANN-

CDR (0.93, 0.76, and 0.88) and CHIRPS (0.92, 0.75 and 0.87) (Figure 4a).
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Figure 3. The monthly time series (a), Annual averaged difference (b), and Seasonal variations

(c) between IMD precipitation and three satellite precipitation products

However;uall satellite precipitation data seems to overestimate the monthly observed
precipitation for all the points except 13 where the PERSIANN-CDR underestimated the
precipitation. CHIRPS showed a minimum relative bias (0.58) in comparison to TRMM (0.81)
and PERSIANN-CDR (0.99) (Figure 4b). Similarly, the MAE and RMSE for CHIRPS data
were minimum having the average value of 31.99 mm month™ and 60.68 mm month™,

respectively. Whereas, the MAE values for PERSIANN-CDR and TRMM were estimated as
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35.90 mm month” and 37.60 mm month”' with the RMSE values of 67. 35 mm month™ and

71.57 mm month™, respectively (Figure 4c, d).

PCRSIANN-CDR  mCHIRPS ®TRMM 20
(@) 1o ® .
~ 09 15
@) * *
U og oh Lie o o
:' Lo A 4 * * * .
= 0.7 - e A
2 = A FEVC TN . o2 LY ah * eoe
g 06 2 A *aa ota gatte L
g 05 s us “ ISR 4 i
3 0 @ N A T, ATAAL A Aghya
o 04 < A
g 2 00
g 03 K 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3133 35 37 39
=
g 02 0.3 PERSIANN-CDR
S 01
[} ACHIRPS
0.0 1.0
1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 *TRMM
15
(©) (d)
60 120
E
_
E 50 £ 100
g = |
2 40 = ¢ \
oy
;E g %
2
=
£ g o0
£ @
25 PERSIANN-CDR = .
- = , .
= —CIIIRPS g PERSIANN-CDR
S —CHIRPS
=10 —TRMM s
é —TRMM
0 0
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39
Point Locations Point Locations

Figure 4. The statistical metrics- correlation coefficient (a), Relative bias (b), Mean absolute

error (c), and Root mean square error (d)- for the selected 39 points in the study area.

The scatter plot between observed IMD precipitation and the three satellite products (TRMM,
CHIRPS, and PERSIANN-CDR) for the nineteen-year monthly precipitation for 39 grids over
the Bundelkhand region is shown in Figure 5. All satellite products showed a significant (p<
0.0001) coefficient of determinants (R”), which was slightly higher for TRMM (0.78) followed
by PERSIANN-CDR (0.77) than CHIRPS (0.75). However, the regression line (black) exhibited
the closest agreement with 1:1 line (red-dotted) for CHIRPS followed by PERSIANN-CDR and

TRMM, indicating their deviation from the observed data.
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Figure 5. Scatter plots between the observed IMD precipitation and satellite-based precipitation

at a monthly time scale. Linear regression is fitted with sample size (n) 8892. The dotted red line

indicates 1:1 and the black line indicates the best fit linear regression line.

The overall performance of all three satellite product$ is'promising for identifying precise

satellite precipitation products that could potentially(be utilized in meteorological and other

allied studies (Table 4). However, the statistical ‘comparison shows a comparatively better

correlation coefficient for TRMM and PERSIANN-CDR in almost all the points, the CHIRPS

exhibits the lowest error in terms of MAE, RMSE, and bias that indicates better performance of

CHIRPS in comparison to TRMM,and PERSIANN-CRD. Thus, we have selected high-

resolution CHIRPS data in this study for meteorological drought assessment and forecasting.

Table 4. Summary-ofstatistical metrics

Data sets PERSIANN-CDR | CHIRPS | TRMM
R? 0.77 0.75 0.78
ccC 0.88 0.87 0.88
RB 0.81 0.58 0.99
MAE 35.90 32.00 37.60
RMSE 67.35 60.68 71.57
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4.2. SPI Comparison

Additionally, we corroborated the suitability of CHIRPS in drought monitoring. The spatially
averaged SPI has been calculated using the domain-averaging process at different timescales as
SPI1, SPI3, SPI6, and SPI12 to compare with IMD derived SPI from 1998 to 2016 (Figure 6).
Short duration SPI computation evaluates the impact of drought on agriculture, while longer
duration SPI is most suitable for detecting hydrological drought hazard (Vicente-Serrano, ef al.
2014). We observed close agreements and consistency between CHIRPS and+*IMD data derived
SPI values in terms of both frequency and intensity. The performance of CHIRPS was observed

well in capturing drought for all the time scales.

— IMD — CHIRPS 7
l | | Y .

. ml m I nh | T I :"w'\]f\; “ J N A

i i kil u il "W

N
IR :fWMWYYNM M

CC=0.80 RMSE=064 CC=0.84 RMSE=0.57
T I T I ' I I I '

I ' I
2000 2005 2010 2015 2000 2005 2010 2015

SPI1
SPI3

[——
\\-\_

D A A
“/KMAAAAAM\A AL oA
NN ‘ \/\\N \\/ < \/

SPI6
1 0
1
<§
<
Pl
<]
=
<;;;::
SPI12
Il

Figure 6. The SPI time series for comparison between CHIRPS and observed IMD precipitation
from 1998 to 2016 at different time scales: (a) 1-month; (b) 3-month; (c) 6-month; and (d) 12-

month.

19



SPI1 SPI3

R? = 0.64
p<0.0001

R?=0.71
3® 60001

4 -4
1% -4 3 2 I 0 1 2 3 4 -4 3 2 10 1 2@ 3 4
E SPI6 SPI12
5 4 4
R2=0.69 i R?=0.59
3
© 50001 3 1@ 5<0.0001

Observed (IMD)
Figure 7. Scatter plots between CHIRPS, and observed IMD derived SPI from 1998 to 2016 at

different time scales: (@)"l-month; (b) 3-month; (c) 6-month; and (d) 12-month.

It identifies the historie’drought events, which was occurred in most of the Indian regions in
the years 2002, 2009,°2014, and 2015 (www.iwmi.cgiar.org; www.im4change.org),(Gupta and
Head, Samra 2004). The correlation coefficient (CC) between IMD and CHIRPS derived SPIs
were estimated as > 0.75 and RMSEs < 0.70 for all time scales. A comparative study among all
the time scale exhibits better agreements for SPI3 and SPI6 (CC: 0.84 and 0.83 respectively; and
RMSE: 0.57 and 0.59, respectively). On the contrary, SPI1 and SPI12 showed comparatively
moderate and lower agreement (CC: 0.8 and 0.77, respectively, and RMSE: 0.64 and 0.68,

respectively). The scatter plot between IMD and CHIRPS data derived SPI at different time
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scales shown in Figure 7. All SPI timescale showed significant R* with (p<0.0001), which was

comparatively higher for SPI3 (0.71).
4.3. Meteorological drought assessment based on CHIRPS during Monsoon Season

Majority of the precipitation in this region is concentrated in monsoon season (June-September,
JJAS). With the availability of CHIRPS data science 1981, SPI3 was evaluated for the monsoon
season from 1981 to 2016 (36 years) to assess the drought pattern and severity!in this‘region
(Figure 8). The obtained results identified seven severe to extreme droughtievents i, the study
region during 1981 to 2016 (Figure 8). With reference to past studies, the'years 1982, 1984,
1987, and 2014-2015 undergone through severe drought event, while yeats 1992, 2002, and 2009
faces extreme drought conditions with an intensity ranging from -1.75 to -1.87 and -2.21 to -

2.30, respectively. The current study findings are consistent with Thomas et al. (2015).
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Figure 8. SPI3 time series based on all grids average over the Bundelkhand region.

4.4. SPI Time Series Modeling

4.4.1. Model Development
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The ARIMA model was used to analyze the temporal patterns and forecast the drought
events through CHIRPS data derived SPI at the 3-month time scale (SPI3). The seasonal datasets
(June-September or JJAS) from 1981 to 2011 were used for model development and calibration,

while 2012 to 2016 were used for the validation of the model.

Model Identification: The ACF and PACF plots generated using the SPI3 time series data are
shown in Figure 9, suggest the input data series to be stationary. Again, the stationarity.of the
data series was also confirmed by applying the Dickey-Fuller Test (p = 0.01)#The ACF shows a
sine-wave shape with the first three significant lags and PACF with the first two significant lags,
which indicates the applicability of both AR and MA componentsq Considering this, ARIMA (p,
0, q) model were identified with possible p =1 to 2 and q =1"te. 3.*All the possible combinations
were tested and compared to identify the best fit mod¢l based on minimum AIC and SBC/BIC
values, which indicates white noise residuals¢Table 5:shows the different combinations of the

model with estimated AIC and BIC values.
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Figure 9. ACF and PACEF plots used for model selection for the SPI3 series.
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Table 5. Comparison of AIC and BIC for the selection of a best-fit model for SPI3.

Parameter estimation: The second stage of model development is, the estimation of parameters
using the maximum likelihood method in this study. The z-valuesyp-values, and standard error
corresponds to each parameter were evaluated. to (testythe statistical significance of the
parameters. Usually, p-values are informativeby. itself'and state parameters are significant if its

value is less than 0.05 at a 95% confidence interval: The summary of the statistical parameters of

ARIMA Models AIC BIC/SBC
ARIMA (2,0,0) 254.87 266.08
ARIMA (2,0,1) 254.62 268.63
ARIMA (2,0,2) 241.90 258.71
ARIMA (2,0,3) 242.78 262.41
ARIMA (1,0,3) 238.14 252.95
ARIMA (1,0,2) 243.12 257.13
ARIMA (1,0,1) 262.89 274.10
ARIMA (0,0,3) 241.60 255.62
ARIMA (0,0,2) 24327 254.48
ARIMA (0,0,2) (0,0,1) | 238.84 252.86

the best fit model has been given in Table 6.

Table 6. Summary of the statistical parameters of ARIMA (1,0,3).

Model Parameters | Yariablesin the model

Estimate value Standard error Z-value | P <0.05
ARI1 =0.7483 0.1221 -6.1327 0.00
MA1 1.7199 0.1052 16.3337 | 0.00
MA2 1.5066 0.1294 11.6376 | 0.00
MA3 0.7307 0.0808 9.0351 0.00
Intercept -0.0383 0.1541 -0.2487

Diagnostic measures: This step of model development involves verification of the adequacy of
the selected model using diagnostic statistics and plots of residuals. In the present study, the

residual ACF function (RACF), histogram of residuals, Ljung Box test, and normal probability
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of residuals test were performed for residual checking. In RACF plot, the correlogram was drawn
by plotting residual ACF (ri) against lag k. The ACF of residuals for the ARIMA (1,0,3) model
is shown in Figure 10a, indicates that all values were within the significant bounds and shown
no significant correlation between residuals except the first lag. Histograms of residuals for the
same model are shown in Figure 10b shows the normal distribution of residuals that signifies the
residuals were white noise. The p-values obtained from the Ljung Box test are shown in Figure
10c, represents all values that were well above 0.05, indicating white noise residuals and model
adequacy. The normal probability of residuals plot (Figure 10d) shows the“white noise residuals
as it appears fairly linear that holds normality assumptions of the residuals (Durbin 1960, Box

and Pierce 1970, McLeod and Li 1983, Chow ef al. 1988).
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Figure 10. Diagnostic check for best-fitted model ARIMA (1,0,3)
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4.4.2. Forecasting

The best fit ARIMA model (1,0,3) was validated with the observed data for the monsoon
season (JJAS) from 2012 to 2016. The forecasting was done for one-month lead-time (because it
decreases with increasing lead time) for better accuracy, that was also observed in previous
studies by (Mishra and Desai 2005), (Fathabadi et al. 2009), (Bazrafshan ef al. 2015) and Han et
al. (2012). Figure 11a represents the observed and modeled SPI time series, which, indicates
close agreement among modeled (ARIMA) with observed CHIRPS and IMD."The obtained
result shows that the forecasted data follows the same pattern and satisfied the basic statistics
compared to the monitored and observed data. The high correlationsyand low RMSE were

obtained for both CHIRPS and IMD as shown in (Figure 11b).
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Figure 11:.(a) SPI time series and (b) scatter plot for observed (IMD), CHIRPS along with the

forecasted data using the ARIMA (1,0,3) model.
5. Discussion

In India, this is the first study which evaluates precipitation products to monitor and forecast

drought hazard in the Bundelkhand region, where frequent drought is regularly witnessed by the
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community. This study assessed the performance of three widely used satellite-derived
precipitation products having long-term records as TRMM, PERSIANN-CDR, and CHIRPS.
The ground observed data recorded by IMD over this region was taken as the reference or
baseline data for comparison. These evaluations are done for promoting the use of satellite
precipitation products for hydro-meteorological, agriculture, natural hazards, and other related
studies and planning. The evaluation was carried out on a monthly scale with a common grid size
of 0.25° Additionally, the evaluation includes assessment via a drought “index as the
Standardized Precipitation Index (SPI). The SPI time series analysis was “performed using the
ARIMA model to project the SPI for drought hazard preparedness in thewstudy region. Although
the precipitation event is dependent on many dynamic and coupled processes, which requires
highly complex coupled simulation models for prediction, here the simplistic and reliable time
series analysis was performed using the ARIMA model="Mishra and Desai (2005), Modarres,
(2007), Han et al. (2010), Alam et al. (2014), ete. studied and assessed the applicability of the
ARIMA model for reliable time series forecasting of drought. Karimi et al. (2019) confirmed the
robustness of ARIMA model in the semi-arid region of Iran by forecasting the SPI3 time series

and observed a fairly good agreement (CC >0.7 and RMSE <0.4) with the observed data.

The comparison ©0f the three multi-satellite precipitation products shows that all the three
precipitation products had almost similar accuracies (correlations ranges from 0.75 to 0.94) but
notable low relative bias and RMSE values (0.58 and 60.6 mm month™) were observed with
CHIRPS data. Therefore, we concluded that the satellite precipitation records is well captured by
the CHIRPS data in comparison to the other two satellite precipitations data used in the study
region. Recent studies at India level by (Prakash 2019) indicates a higher error (high bias and

RMSE, and lower correlation) in satellite precipitation data (including CHRIPS) over a tropical
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and mountainous region. Over the central India region, (Prakash 2019) estimated the CC as 0.99
with RMSE of 0.84 (mm day™) and bias ratio of 1.11. Moreover, many studies have been also
indicated CHIRPS as the best data for drought monitoring with relatively lower error and high
correlation after comparing it with gauge precipitation data (Bayissa et al. 2017, Shrestha et al.

2017).

The reasonably good results of CHIRPS are probably due to its higher spatial resolutions (as
0.05° in comparison to other data having a spatial resolution of 0.25°) and integration 6f more in-
situ data in a two-phase process with high-resolution climatology and multi-satellite products. It
may be indicated that higher resolution data is proportional to accuracy depending on the method
adopted for data processing (Dandridge er al. 2019). This study confirms that CHIRPS
precipitation can be used as an alternative to IMD/data for studying hydro-meteorological
phenomena such as long-term drought assessment even at a local scale and suitable for ungagged
basin. This infers regions with sparse rain-gauge stations and data records having inconsistency

in the recording can blend the CHIRPS, precipitation data to fill the spatial and temporal data

gaps.
6. Conclusions

Drought monitoring<and assessment for improved management strategies and policy
development are,Jlacking in numbers of underprivileged drought-prone and economically
backward regions in India. Such studies are exaggerated by the unavailability of suitable rain-
gauge station data. The current study investigated the effectiveness of the three satellite-derived
precipitation products to monitor and forecast drought events in the Bundelkhand region of India.
Rainfed agriculture-dependent Bundelkhand region of central India is adversely affected by

recurrent and severe drought conditions, which becomes worst due to poor management
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strategies and water scarcity. Results showed that the high resolution (0.05°) CHIRPS data is the
most suitable for drought characterization according to statistical performance studied from 1998
to 2016 in comparison to (PERSIANN-CDR, CHIRPS, and TRMM). The monthly CHIRPS data
was used to evaluate the drought condition for 36 years (1981-2016) at 3- month time scale
(SPI3). This research also examined the feasibility of applying the ARIMA time series model
using SPI3 for drought forecasting. In total, seven distinct drought events were found in the
region during the period from 1981 to 2016, in which four can be placed into severe droughts (in
the year 1982, 1984, 1987, and 2015) and three into extremes drought (in"the,year 1992, 2002
and 2009) categories. Based on the high accuracy of ARIMA, the forecasting was carried out at a
one-month lead-time. The outcome of the study can be used forithe sustainable water resources
management and other watershed management related=activities in the region and could be

applied to other regions with similar hydro-climatic'conditions.
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