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ABSTRACT The main contribution of this interdisciplinary work is a robust computational framework
to autonomously discover and quantify previously unknown associations between well-known (target) and
potentially unknown (non-target) toxic industrial air pollutants. In this work, the variability of polychlori-
nated biphenyl (PCB) data is evaluated using a combination of statistical, signal processing, and graph-based
informatics techniques to interpret the raw instrument signal from gas chromatography-mass spectrometry
(GC/MS/MS) data sets. Specifically, minimummean-squared techniques from the adaptive signal processing
literature are extended to detect and separate coeluted (overlapped) peaks in the raw instrument signal.
A graph-based visualization is provided which bridges two complementary approaches to quantitative
pollution studies: (i) peak-cognizant target analysis (limits data analysis to few well-known compounds)
and (ii) chemometric analysis (statistical large-scale data analysis) that is agnostic of specific compounds.
Further, peak fitting techniques based on L2 error minimization are employed to autonomously calculate the
amount of each PCB present with a normalized mean square error of -18.4851 dB. Graph-based visualization
of associations between known and unknown compounds are developed through principal component
analysis and both fuzzy c-means (FCM) and k-means clustering techniques are implemented and compared.
The efficiency of these methods are compared using 150 air samples analyzed for individual PCBs with
GC/MS/MS against traditional target-only techniques that perform analysis across only the known (target)
PCBs. Parameter optimization techniques are employed to evaluate the relative contribution of PCB signals
against ten potential source signals representing legacy signatures from historical manufacture of Aroclors
andmodern sources of PCBs produced as byproducts of pigment and polymermanufacturing. Aroclors 1232,
1254, 1016, and 1221 as well as non-Aroclor 3, 3’, dichlorobiphenyl (PCB 11) were found in many of the
samples as unique source signals that describe PCB mixtures in air samples collected from Chicago, IL.

INDEX TERMS Identifying sources, interpreting GC/MS/MS, PCBs, signal processing.

I. INTRODUCTION
Recent years have seen a surge in interdisciplinary research
[1]–[6] combining signal processing and related analyti-
cal techniques for interpretation of environmental data sets
[2]–[4], [6]–[14]. Statistical techniques [3], [6]–[13] have
been employed successfully in interpretation of poly-
chlorinated biphenyl (PCB) data. PCBs are a set of
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209 bioaccumulating, persistent, and toxic compounds that
are widely found in the environment worldwide. The 209 pos-
sible PCB compounds are referred to as congeners belonging
to ten sets of PCB homolog isomers each with the same
molecular mass. The relative concentrations of each PCB
congener measured in active air samples varies as a func-
tion of proximity to sources, their specific physicochemical
properties, meteorological conditions, and historical use [15],
[16]. Although not intentionally produced today, PCBs are
byproducts to certain manufacturing processes, still present
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throughout the environment, and pose multiple health risks
to those exposed to them [17]–[20].

PCBs have many different sources which are affected by
microbial and environmental processes that change the rela-
tive mass of each congener. In a formative study from 1997,
Frame analyzed commercial PCB mixtures called Aroclors
for their specific PCB content [21]. EachAroclor has a unique
signal which can be used to determine the product or process
producing these PCBs. This identification is useful for expo-
sure management and remediation. This work hypothesizes
that the evaluation of the raw chromatographic signal will
uncover information about the environment that would not be
detected from target analysis of the individual PCBs. Specif-
ically, minimummean-squared error techniques are extended
in combination with adaptive signal processing which has
been proposed in recent literature [22]–[28] to detect, sep-
arate, and analyze coeluted peaks within the raw signal to
bridge the gap between peak-cognizant target analysis and
statistical chemometric analysis.

This paper is divided into six sections. The remainder of
this section describes the instruments used, current-state-of-
the-art methods, and key contributions of this work in asso-
ciating dominant peaks to hidden peaks within the signal as
well as sampling locations. Section II describes the collection
and extraction of sample data. Section III presents the peak
fitting procedures of the signals and Section IV describes
the association techniques implemented within this work.
Finally, Sections V and VI discusses and compares the results
produced from this work and presents conclusions.

A. INSTRUMENT DESCRIPTION AND PREPARATION OF
THE RAW INSTRUMENT SIGNAL
The instrumentation used for generating the data used in
this work identifies PCBs through gas chromatography-mass
spectrometry (GC/MS/MS) in multiple reaction monitoring
mode (MRM). This provides selective signal separations of
all the known (target) PCBs by their homolog isomer for
each sample [29], [30]. The selective signal separations in
this work are exploited by fitting curves to the peaks to iden-
tify target PCBs within each sample, detailed in Section III.
Direct peak interpretation is difficult due to retention time
shifts of target PCBs on the chromatograms and non-linearity
from sample to sample. To overcome this challenge, PCBs
are typically measured in environmental samples by com-
paring the signal of a calibration standard solution run
through GC/MS/MS in MRM mode of target PCB content
against that of the prepared environmental sample [31], [32].
The raw instrument signal after this pre-processing is an
information-rich signal representative of PCBs in the envi-
ronment at the time the sample was collected.

B. CURRENT STATE-OF-THE-ART METHODS
Signal processing techniques employing constrained
optimization techniques for peak extraction have been
exhaustively researched in beamforming and sonar local-
ization literature [33]–[37] as well as other applications

e.g. real-time brain activity and heart rate monitoring [38],
[39], to name a few. Signal processing techniques have also
been employed for raw instrumental signal interpretation to
provide better analysis in determining environmental pollu-
tants [40], [41]. However, despite these recent computational
advances, peak-cognizant raw signal interpretation beyond
target compounds remains an open challenge, particularly for
studying toxic air pollutants such as PCBs. Further discussion
is provided below.

C. TARGET ANALYSIS VS. CHEMOMETRIC ANALYSIS
The raw instrument signal from gas-chromatographic
and mass spectrometric instruments carries a wealth of
information on the composition of complex mixtures
[2], [42]–[46]. However, most chemical analysis and expert
interpretation of the raw signal is target-based (e.g. [42] and
references in [44]) i.e., focused only on the contribution of tar-
get compounds whose chemical properties are well-known,
and which occupy specific positions in the retention time
of the instrument signal. Target analysis, while extremely
important and relevant to interpret the dominant or known
part of the instrument signal, provide limited opportunity
to exploit the full informational power that sophisticated
analytical hardware can offer. For example, hundreds if
not thousands, of non-target compounds that manifest as
unknown peaks within the raw instrument signal can provide
hitherto unforeseen knowledge of environmental pollutants
within passive air samples.

Raw signal analysis itself is not new. The rich and grow-
ing field of chemometrics [47]–[49] already provide many
statistical techniques to analyze the peaks within the raw
instrument signal on a large scale. However, purely statistical
methods are compound-agnostic and as such, provide insight
into the aggregate behavior of the raw signal, e.g. domi-
nant trends in a principal component analysis (PCA) [47].
Aggregate studies are useful to understand broader trends
but, as yet, are not designed to detect compound-specific
information, particularly from unknown toxic contaminants
that can be buried in the larger statistical behavior of the raw
signal (e.g. hidden against more dominant targets, or aligned
along less dominant PCA components). This is an important
distinction against the currently available techniques in both
environmental chemistry and statistical methods; as currently,
no technique exists that can discover and disentangle the
signature of highly toxic yet unknown contaminants which
chemists do not look for and which peak-agnostic multi-
variate chemometric analysis fail to detect. There is, there-
fore, a compelling need to bridge the gap between purely
target-driven methods, as pursued by chemists that provide
in-depth knowledge of a few well-known compounds, and
purely statistical methods, which are compound-agnostic.

The GC/MS/MS MRM raw signal interpretation routinely
excludes many of the non-targeted analytes found in the
samples thus eliminating key connections between non-target
analytes and target PCBs in an environmental sample. In this
work, non-target analytes are defined as chemicals that have
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gone through the GC/MS/MS and appear as peaks in the
chromatograms in more than 50% of the samples but are
not in the calibration solutions. A more comprehensive data
interpretation can be achieved without such filtering; how-
ever, these non-target analytes are traditionally ignored to
improve detection and identification of target PCBs within
each sample.

Current-state-of-the-art analysis of PCBs usingGC/MS/MS
focus solely on target PCBs and ignore other poten-
tial co-indicators of PCB sources. Presently, modeling
GC/MS/MS and calculating the contribution of sources have
produced many algorithms to aid in the process. Listed next
are approaches from the current art that are well known and
have offered important advancements in the calculation of
PCBs and sources. Discussion of how the proposed com-
putational techniques complement and potentially enhance
the current art in raw signal interpretation can be found
throughout the manuscript.
1) MODELING GC/MS/MS - Recent computational tech-

niques proposed include algorithms that model raw
gas chromotagrophic signals, e.g. PARAFAC and
PARAFAC2 [7], [8], [14], [50]. PARAFAC uses a
N-way PCA decomposition method assuming low-rank
N-linearity which breaks down the array into sets of
scores and loadings that are mainly unique estimates
of the underlying peaks in the data. Further, using an
alternating least squares algorithm, the model fits the
curve of the analyte in the total ion chromatogram (TIC)
data set [14], [50]. While PARAFAC can locate peaks
in a sample, it struggles to detect the retention time
shifts of the peaks from sample to sample and can
overlook analytes that are small peaks in the data [7],
[50]. In PARAFAC2 however, the data does not require
low-rank linearity and can allow deviation in the data.
This decomposition similarly breaks down the array into
a set of scores and loading which are unique estimates
of the underlying data and uses similar procedures as
PARAFAC [7], [8], [50]. Although PARAFAC2 fixes
the retention time shift problem by using a time loading
matrix for each sample and a one-component model,
it is still challenged in determining the number of com-
ponents required for the peak, identifying PCBs, and
finding other reoccurring chemicals within the chro-
matographic data sets [8], [50]. The motivation in this
work is to complement such modeling approaches and
employ robust signal processing techniques that glean
as much peak information as possible against the ambi-
ent noise in the raw signal. This enables robust joint
and compound-cognizant interpretation of target and
non-target peaks from the raw signal.

2) IDENTIFYING SOURCES - Analysis to identify
sources can be done using linear regression models
[9]–[13] or even positive matrix factorization (PMF)
[10]–[13], [51]–[54]. These algorithms attempt to solve
for the various percentages of sources through lin-
ear equations. Although these algorithms pose unique

solutions to the problem, they are limited in their estima-
tions. Linear regression models are limited to linear rela-
tionships and is sensitive to outlier data when calculating
mixture percentages, and PMF requires source weights
that can influence the outcomes of the percentages.

D. BACKGROUND MOTIVATION
PCBs are frequently detected in different environmental com-
partments such as air, water and sediment, and even in human
serum, and provide a well-established basis to compare dif-
ferent samples. The interpretation of target PCBs and sources
can be greatly enhanced by incorporating non-target analytes
found within the GC/MS/MS topography. While recent chro-
matography interpretations of GC/MS/MS data sets have pro-
posed various methods to locate target PCBs, approaches to
finding non-target analytes are rare. Moreover, contributions
of various analytical techniques to target PCBs have partial
limitations and would benefit from deeper analysis.

E. KEY CONTRIBUTIONS
The scope of this work is to automate and enhance
target-centric raw signal processing such that the end result is
a compound-cognizant graph-based peak profile. The value
of the work lies in automating the process to avoid human
confirmation bias in peak selection, while also allowing
human interpretation using the peak-cognizant graph visu-
alization as well as statistical clustering analysis presented
in this work. This approach connects peak-specific interpre-
tation, as is commonly done in traditional target analysis
and related peak-mapping efforts [2], [42]–[46], to purely
chemometric interpretation [47]–[49]. Furthermore, as noted
in Section V-G and related discussion for Table 1, the tech-
nique is capable of isolating non-target peaks thatmay coelute
or elute in close proximity to target peaks. Through these
techniques, as when applied to target-centric raw signals,
such as presented here, the contribution of non-targets can
be isolated and quantified. Such non-target identification can
detect chemical threats from toxic contaminants, e.g. intro-
duced into the environment by hostile agents or as byprod-
ucts of unknown sources, which would otherwise remain
undiagnosed in routine target and regulatory analysis. This
is particularly applicable to toxins that are similar in chem-
ical composition and retention time to known targets, and
hence will be captured in the raw GC-MS signal, but only
as non-targets which may coelute or elute in close proximity.

More specifically, the aim of this work is to propose
and test novel combinations of peak fitting PCB chro-
matograms, applying principal component analysis (PCA)
and both k-means and c-means clustering, L2 minimization
calculations to analyze sources andmixtures of contaminants,
and provide a further examination of signals more topolog-
ically to develop deeper analysis of the data. An impor-
tant distinction between the technique presented here and
other methods is the potential to discover hidden peaks
within the samples through automating (peak-cognizant)
detection and interpretation while preserving the identity

VOLUME 8, 2020 3



R. A. Mccarthy et al.: Signal Processing Methods to Interpret PCBs in Airborne Samples

of target peaks within the signal. In this case, the peaks
within the MRM data sets are fitted and target peaks are
autonomously identified based on the calibrations and their
retention times. Once performed, hidden peaks are identified
from the remaining peaks within the MRM or TIC signals.
The objective is to extend the scope of target PCB analysis
to include detection of non-target peaks within the various
samples and better identify sources of PCBs in the sam-
ple locations. While target peaks dominate the GC/MS/MS
signal, the unutilized contribution of non-target peaks can
also be employed to distinguish related samples. Employing
these techniques and methods will significantly enhance the
already well-established knowledge of PCBs and sources
through deeper analysis of GC/MS/MS data. Further, these
techniques can relate compound-cognizant target analysis
with compound-agnostic and purely statistical approaches
to create an in-depth dictionary of underlying information
hidden within the signals.

II. DESCRIPTION OF DATA
A. DATA
The data set originated from 150 air samples collected with
active high-volume air samplers (Hi-Vols) deployed across
the Chicago metropolitan area from 2007 to 2009 [29]. The
data for this paper were generated by instrument analysis as
follows: sample extracts were analyzed using a GC-MS/MS
(Agilent 7000 Triple Quad with Agilent 7890A GC and Agi-
lent 7693 autosampler equipped with a Supelco SPB-Octyl
capillary column) in multiple-reaction monitoring (MRM)
mode [18], [20]. Analytical quality control included sur-
rogate standards recoveries, replicates, laboratory and field
blanks, and standard reference material. The MRMs pro-
duce twelve chromatograms for each sample, representing
the chromatographic signal for different mass transition ions
(10 transitions for unlabeled PCBs and 2 for mass-labeled
PCB standards). Further, one total ion chromatogram (TIC) is
obtained for each sample, representing the combined MRM
signals. The same MRM and TIC were obtained for the cal-
ibration solutions containing 209 PCB congeners. Theoreti-
cally, each peak within the TIC andMRM signal corresponds
to a PCB congener or, in a lesser extent, to a non-target chem-
ical found in the sample. Heights or relative intensity were
used as the total amount of the PCB congener or chemical
found. The heights of the peaks in the calibration solutions
were used for calculating the mass of each congener through
computation of the relative response factor (RRF) [29].

B. SOFTWARE
The algorithms and analysis done in this work were devel-
oped with the MATLAB R2018a software (The Mathworks,
Inc. USA). The following toolboxes were installed with
the MATLAB 2018a software to implement the algorithms:
Fuzzy Logic toolbox, Optimization toolbox, and Statis-
tics and Machine Learning toolbox. The MRM and TIC
chromatographic signals were first manually adjusted for

appropriate and consistent baseline using Agilent’s software
MassHunter (Version B.06.00, c©Agilent Technologies, Inc).

III. FITTING SIGNALS PROCEDURE
The total ion chromatogram (TIC) signal obtained for each
sample represents the linear superposition of the B combined
multiple reaction monitoring mode (MRM) signals. This is
expressed as:

T [x] =
B∑
i=1

Hi[x] (1)

where T [x] and H [x] are the TIC at the x th time instance
and the ith MRM signal, respectively. The MRM raw sig-
nal specifically isolates individual groups, and therefore has
higher-precision compound-specific information, though it
does not convey the total contribution of all the chemicals
captured in the TIC signal. Therefore, to autonomously cap-
ture the individual contributions of different contaminants
within a Hi-Vol sample, it is imperative to analyze the avail-
able MRM raw signals for different compound groups. This
enables derivation of the individual peak heights, correspond-
ing to individual PCB congeners (target peaks), as well
as significant non-target peaks that contribute towards the
aggregated TIC signal. This section highlights, describes, and
presents the procedure in the order used to analyze the raw
MRM signals.

A. SHIFTING MRM SAMPLE SIGNALS
Changes in the GC/MS/MS column temperature, dimension,
or carrier gas linear velocity through the GC/MS/MS columns
cause retention time shifts which can impact the analysis
of identifying PCB congeners in the sample signals [41].
To alleviate this issue and aid in identifying PCB congeners,
the signals are shifted to align the peaks in the MRM sample
signals. The peaks are aligned by identifying the standards,
the largest peaks in the signal, within the samples and adjust-
ing the retention times to the standards in the calibration
samples. The adjusted TIC signal, T [x], is expressed as:

T [x] =
B∑
i=1

Hi[x − f ] (2)

where f is the difference in retention time from each MRM’s
respective standard to the calibration’s standard.

B. DETERMINING PEAK MAXIMA AND LOCAL MINIMA
To remove the noise from eachMRM sample signal, the max-
imum signal value, smax , is determined in each of the
twelve MRM chromatograms. The background noise floor is
selected as τ smax where any part of the raw signal with ampli-
tude s ≥ τ smax is used for peak detection (detailed in Fig. 1).
The background noise threshold is selected empirically as
τ = 5 × 10−5. The threshold is chosen by examining the
previously analyzed MRM data and determining an average
baseline value; this corresponds to a maximum signal-to-
noise ratio (SNR) of ∼ 43dB for the maximum value of
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FIGURE 1. Pseudo-code for peak detection with the raw signal.

the raw signal, i.e., treating smax as the signal amplitude.
The choice of maximum SNR allowed robust detection of
any peaks, target or non-target, that fall within 43 dB of the
highest peak within the raw signal. After the noise removal
step, the pseudo-code given in Fig. 1 Step 1 is used to
determine PCB peaks, where x is the index corresponding
to the retention time on the MRM. A peak spread threshold
of 20 indices is used to ensure determination of a distinct
peak.

C. APPLYING A CURVE FIT FOR PEAKS
To obtain the minima, local minimum heights were identified
by using the original MRM sample signals for twelve differ-
ent compound groups [29] and finding the smallest relative
intensity in the signal relative to nearby points seen in Fig. 1
Step 2. A threshold of 70 indices is implemented to minimize
the capture of local minimums within larger peaks.

To eliminate further noise in the peaks and evaluate the
contribution of the peak to the signal, H[x], a best fit cosine
curve is applied to the signal peaks (example seen in Fig. 2).

FIGURE 2. Example of cosine peak used for modeling peaks. α adjusts
the height of the cosine peak, β varies the width of the left side of the
peak and ζ varies the width of the right side of the peak.

A cosine model is used since it provided a superior good-
ness of fit to other popular peak shapes such as Gaussian
models. To computationally calculate the portion of each
peak the maxima and minima are first determined using
the pseudo-code and specific steps detailed in Fig. 1. There
are two cases when modeling peaks within the raw signal,
described below in detail.

1) CASE 1: SINGLE PEAK, NON-COELUTED PEAKS
In this scenario, a peak is identified at xmax between two
minima at xmin1 and xmin2, where xmin1 < xmax < xmin2, using
the pseudo-code depicted in Fig. 1. Because peaks within the
signals can be asymmetrical, each half of the peak is fitted
separately. The signal between xmin1 and xmin2 is defined as
s[x]. Half of the peak, rβ [x], is fitted as:

rβ [x] = α
(cos(βθ)+ 1

2

)
(3)

where θ = −π, . . . , 0, α varies the height of the peak and is
initialized to s[xmax], and β varies the width of the half peak
and is initialized to the distance between s[xmin 1] and s[xmax].
The other half of the peak, rζ [x], is fitted using:

rζ [x] = α
(cos(ζθ )+ 1

2

)
(4)

where θ = 0, . . . , π , α is the same as (3), and ζ deter-
mines the width of the half peak and is initialized to the
distance between s[xmax] and s[xmin2]. The modeled peak,
R[x], is written as:

R[x] = rβ [x]+ rζ [x] (5)

Equation (5) is optimized by minimizing the objective
function for the best fit curve, P[x], as:

P[x] =
n∑
i=1

||s[x]− Ri[x]||22 (6)

2) CASE 2: MULTIPLE PEAKS: COELUTED PEAKS
When there are multiple peaks around the same retention
time identified using the pseudo-code depicted in Fig. 1, it is
possible to separate them using a similar technique as before.
Identifying % peaks between two minima indicates a coelu-
tion of peaks within the signal. To determine the contributions
of each peak to s[x], each peak is fitted using (3)-(5). There
are three cases in which the peak fitting is initialized:
(i) Peak lies between a local minimum and another peak,

i.e. xmin1 < xmax1 < xmax2, the β in (3) is initialized as
described in case 1 and ζ in (4) as the distance between
xmax1 and xmax2.

(ii) Peak lies between a peak and local minima, i.e. xmax2 <
xmax3 < xmin2, the ζ in (4) is initialized as described in
case 1 and β in (3) as the distance between xmax1 and
xmax2.

(iii) Peak between two peaks, i.e. xmax1 < xmax2 < xmax3,
the β is initialized as the distance between xmax1 and
xmax2 and ζ as the distance between xmax2 and xmax3 in
(3) and (4) respectively.
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FIGURE 3. Procedure of fitting peaks within the signal. Once all the peaks have been fitted, the fitted curves are subtracted from the raw signal and fit the
resulting peaks in the new signal (denoted in the green box). Once all the peaks and coeluted peaks have been determined, target peaks are determined
from the calibration signals. Once the target peaks have been identified, non-target peaks that occur greater than 50% of the signals are found over the
sample signals.

To optimize the fitted curve, P[x], and contribution of each
peak to s[x], use the following:

P[x] =
n∑
i=1

||si[x]−
%∑
j=1

Rji[x]||
2
2 (7)

where j denotes the jth fitted peak in the raw signal. Equa-
tion (7) thus optimizes the overall fit of each of the peaks to
the coeluted signal, s[x], and determines each peak’s contri-
bution.

D. DISCOVERING COELUTED PEAKS
Because of the properties of the chromatographic column
used in the GC/MS/MS, some PCBs that go through the
GC/MS/MS will reach the detector at the same retention time
and create further coelution of peaks. To better identify these
coeluted peaks, the N fitted curves detailed in Section III-C.,
P[x], are subtracted from the original raw signal,H [x], to get
a new signal, A[x], containing hidden peaks. This is done by
using:

A[x] = H [x]−
N∑
j=1

Pj[x] (8)

where j denotes the jth fitted curve in the raw signal. If there
are hidden non-target peaks, they can be identified in the
new signal A[x]. Section III A-D is repeated using A[x] as
the new raw signal to determine if any peaks were unsepa-
rated (coeluted) within the signal. The procedure of this tech-
nique can be seen in Fig. 3. To demonstrate how well fitted
this model is, one sample’s twelve modeled MRM signals
were added to produce a TIC sample signal seen in Fig. 4.

IV. AUTOMATIC DETECTION AND INTERPRETATION OF
RAW INSTRUMENT SIGNAL
The peak model presented in Section III is used to
autonomously detect hundreds of target and non-target peaks

FIGURE 4. Fit of the TIC data set. The blue line is the TIC signal T [x] and
the red line is the linear summation of fitted cosine peaks in each MRM
samples.

from the raw instrument signal and interpreted their associ-
ations using a combination of statistical and geometric clus-
tering techniques.

A. DETERMINING PCB CONGENER
A PCB was identified in the MRM sample if the peak’s
retention time was closest to a PCB’s peak retention time in
the same MRM calibration solution’s chromatogram (within
a 0.07-minute range). After a target PCB was determined,
the PCB’s modeled peak was stored in the constructed TIC
signal. For each target PCB found in each of theMRM sample
signals, the fitted peakwas shifted back to its original position
to match the original MRM sample signal.

B. DETERMINING NON-TARGET ANALYTES
Implementing the peak model from Section III A-D,
non-target analytes in the MRM and TIC data sets are then
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FIGURE 5. Procedure of PCA, k-means and c-means clustering.

analyzed. After the target PCBs are determined, a new signal
is reconstructed for the MRM data sets using only these
target PCBs. The signal is subtracted from the original data
sets, theoretically uncovering peaks that are not identified
as PCBs. After applying this approach to all the data sets,
the newly found peaks are compared to each other to deter-
mine non-target peaks. The non-target peaks are determined
by first finding the difference in retention times of the uncov-
ered peaks to the peak of the closest target PCB. Then, the dif-
ference is used to search all 150 samples to find similarities.
If a peak is found present more than 50% of the time, it is
labeled as a potential non-target analyte within the data. This
method is applied to both MRM and TIC data sets.

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
After determining the PCB peak height values found in each
sample and normalizing using the internal standard heights
of both the calibration solutions and samples, principal com-
ponent analysis (PCA) is implemented to find relationships
within the peak heights of the data. In this case, PCA is partic-
ularly useful to determine correlations from similar instances
of peaks within the samples. The data matrix V , comprising
of all the identified target peak heights for each sample, can be
described by the product between the scores matrixG and the
transpose, T , of the loading matrix L with an added residual
matrix E .

V = GLT + E (9)

Equation (9) produces the principal components which are
a linear combination of the original variables. The principal
components are ordered according to the amount of variance
explained in V , i.e. principal component 1 represents the
dominant variation while principal component 2 represents
the second most. For this work, the scores matrix G is used
for clustering and is plotted in the first two or three principal
components to visualize the associations within the data.

D. K-MEANS CLUSTERING
The k-means algorithm implements an unsupervisedmachine
learning algorithm to associate a data set within an N dimen-
sional space into k clusters. These clusters are created by
using k centroids to assign the data to each cluster. The choice
of k was determined based on empirical observations and
the elbow method (see Appendix B). The k-means objective

function minimized is shown in (10).

JM =
k∑
j=1

n∑
i=1

||gi − cj||2 (10)

where k is the number of clusters, n is the number of data-
points, g is the ith data-point in the scores matrix G, and c
is the centroid for cluster j. Each value is assigned a cluster
using:

c(i) = argmin
j
||gi − cj||2 (11)

The jth centroid location, cj, is updated using:

cj :=

∑m
i=1 δ(cj = i)gi∑m
i=1 δ(cj = i)

(12)

where δ = 1 if gi belongs to the jth cluster. Equation (12)
is iterated until Equation (10) converges on a local or global
minima. Because of the high variability between runs of the
k-means clustering, this technique is implemented multiple
times to find an average centroid location to consistently
cluster the data and determine associations (Fig. 5). From
the resulting clusters, PCB congeners or sample locations are
associated with each other in multiple principal components
to find connections between the clustering of PCBs or loca-
tions to potential sources.

E. FUZZY C-MEANS CLUSTERING (FCM)
The fuzzy c-means (FCM) algorithm is used in conjunc-
tion with the k-means algorithm to provide validation to the
clustering parameters chosen. The FCM objective function
minimized is shown in (13).

JM =
n∑
i=1

k∑
j=1

µmi,j‖gi − cj‖
2 (13)

where n is the total number of data-points, k is the total
number of clusters, µi,j is the calculated degree of member-
ship of the ith data-point to the jth cluster, m is the fuzzy
partition matrix exponent, gi is the ith data-point, and cj is
the jth centroid location. The fuzzy partition matrix exponent
is chosen and explained further in Appendix A. Similar to
k-means, this is an iterative algorithm, and starts by assigning
random degrees of memberships to the data-points. The jth
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centroid, cj is calculated and updated with Equation (14).

cj :=

∑n
i=1 µ

m
i,jgi∑n

i=1 µ
m
i,j

(14)

where the same variable definitions hold. After centroid
location calculation the degree of membership matrix, µi,j,
is calculated and updated using Equation (15).

µi,j =
1∑k

l=1

(
‖gi−cj‖
‖gi−cl‖

) 2
m−1

(15)

The FCM is iteratively run until a maximum number of
iterations has been updated or the objective function improves
less than a specified threshold, whichever occurs first. Due
to the variability in resultant centroid locations, the FCM
algorithm is performed multiple times and an overall average
of the centroid locations are used for association determina-
tion (Fig. 5). After calculating the average centroid locations,
the final degree of membership is calculated from Equa-
tion (15), where the maximum degree of membership is used
to assign a cluster number to the data-point.

F. ACCURATELY DETERMINING SOURCES
Geographical locations can have different sources of PCBs
thus it is imperative to identify and localize these sources
using different techniques. Previously, sources have been
identified by either using linear regression models [9]–[13]
or even PMF [10]–[13], [51]–[54] on other data sets. In this
work, sources are identified by correcting the mass of each
PCB congener using the calibration solutions, RRF, and sur-
rogate standard recoveries for each sample, then finding the
mass fraction of the PCB congeners in each sample. The
percentages of Aroclor sources, γ , of PCBs are identified
using an L2 minimization optimization technique that con-
siders PCB mass fractions and minimizes the error, ε. The
percentages of Aroclor sources is calculated using:

ε = min
γ

((Dγ − b)2) (16)

where D is the mass fraction contribution of PCBs in each
Aroclor mixture (found in [21]), γ are the factors (sources)
represented as columns of Aroclor data that are being calcu-
lated (restricted to γ ≥ 0), and b is the mass fraction of the
PCBs found in a sample. Equation (16) can also be written
as:

γ = (DTD)−1DT b (17)

This technique is implementedwithMATLAB’sfmincon
function to parameterize the results given. Although reference
[21] provides feasible sources, non-Aroclor mixtures present
and other potential mixtures not considered that are not
present are of interest to this study. Referring to references
[17]–[20], new factors are added to D to calculate the per-
centages of each mixture. To ensure randommixtures are also
being considered, a Monte Carlo approach is employed to
calculate an average percentage of each mixture used.

G. RELATIVE RETENTION TIME PROXIMITY
Relative retention time proximity is a useful criterion to
associate peaks that closely elute and therefore, may be useful
to associate within and beyond PCA clusters. A node edge
graph visualizes the relationship between PCBs with respect
to their retention time that are harder to determine by just
examining the TIC or MRM signal. This relation can be use-
ful in identifying closely eluted PCBs and identifying peaks
as PCB targets. Fig. 10 is created using the average retention
time location of each PCB congener across all samples. The
relative proximity of each target PCB within the TIC signal
is found by implementing a nearest neighbor technique. This
step allows for a better understanding of the location of PCB
targets within the TIC signal. These graphs are shown to
demonstrate the co-occurrence associations between PCBs
and not as knowledge graph informatics as [55].

V. RESULTS AND DISCUSSION
The resulting fitted peaks described in detail throughout
Section III was used for the clustering analysis performed
throughout the results and discussion, Section V. The peak
fitting procedure had an average normalized mean square
error of −18.4851 dB to the signal.

A. CROSS-COMPARISON BETWEEN AUTONMOUSLY
DETECTED TARGET PEAKS AND EXPERT-ANNOTATED
TARGET PEAKS
This work aims to automate the time-consuming process of
identifying target PCB peaks and mapping them to known
target compounds. Therefore, it is imperative to provide
quantitative comparisons between what our algorithm finds
against expert-annotated ground truths validated over the
same data. The ground truth for retention times for each of the
209 target PCBs considered in this work are based on existing
calibration standards documented in [29]. Therefore, based
on the documented retention times for each target peak in
the standards, any identified peaks can be mapped to specific
target PCB. Additionally, for each sample, ground truths are
further established based on manually executed expert vali-
dation of whether or not a peak was visually identified at the
stipulated retention time. Depending on the PCB composition
of the sample, a particular peak may (or may not) be present
in the raw signal, as all PCBsmay not be present in detectable
concentrations in every sample.

Table 1 compares the target PCBs identified with this
algorithmic technique to what was manually identified in
[29]. A raw signal peak identified manually or using our
autonomous technique based on Equations (3)-(7) is labeled
‘‘positive’’ if a PCB is also identified within (±)0.07 minutes
of the listed retention time in the calibration standard, where
0.07 minutes is the sampling time period of the raw signal.
Otherwise, we assign the label ‘‘negative’’ to a detected peak,
which cannot be mapped to a target PCB in the standard;
either due to the peak falling outside the 0.07 minutes range
or for being an undocumented non-target peak. Similarly,
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the labels ‘‘manual’’ and ‘‘autonomous’’ are respectively
assigned for peaks detected by an expert, as detailed in [29],
or autonomously identified using the signal processing tech-
niques detailed in this work. Specifically, the four possible
labels are described as below:
(i) Manual negative: A PCB peak is identified in the stan-

dard but the manual inspection cannot find the peak in
the sample;

(ii) Manual positive: A PCB peak is identified in the stan-
dard and the manual inspection can find the peak in the
sample;

(iii) Autonomous negative: A target PCB peak is identified in
the standard but the algorithm does not detect the peak
in the raw signal for the sample;

(iv) Autonomous positive: A target PCB peak is identified in
the standard and the algorithm also detects the peak in
the raw signal for the sample.

Each entry of Table 1 shows the number of raw sig-
nal peaks that meet the criteria for the corresponding row
and column labels. For example, the entry ‘‘Manual posi-
tive/Autonomous positive’’ indicates that 23411 raw signal
peaks were autonomously identified across the full dataset
which also matched with the ground truth of manually vali-
dated target PCB peaks.

TABLE 1. Cross-Comparison between target PCBs retention times found
autonomously through the described technique and expert-validated
target PCBs retention times provided from previous work [29] as ground
truths. The full definition of terms are provided in Section V-A.

The results of Table 1 can be summarized as: 98.1% of
manually determined target peaks could also be detected
as target PCB peaks by our autonomous method. On the
other hand, 90.3% of autonomously detected target peaks,
i.e., peaks that occurred within ±0.07 minutes of a listed
target PCB in the calibration standard, could be matched with
target peaks that were manually determined over the raw
signal sample. Therefore, the proposed algorithm discovered
2519 peaks over the whole data that corresponded to a target
PCB based on the standard but were missed in manual inspec-
tion. We also observe that 16 raw signal peaks, listed as target
PCBs in the standard sample, were not found both by manual
inspection or the proposed autonomous method. Therefore,
Table 1 provides validation that our method autonomously
identifies target peaks from the raw signal with 98.1% accu-
racy, while identifying extra target peaks missed by man-
ual detection. Any peak-allocation error in the technique is
attributed to any residual baseline noise in the MRM data
sets or larger retention time shifts that can be accounted for
by the raw signal sampling interval. These autonomously
identified peaks, which are mapped into specific target PCBs,
provide the basis for automated peak-cognizant interpreta-
tion that most autonomous chemometric studies cannot offer.

FIGURE 6. Scree plots of target PCB (a) and sample location (b) data.
(a) The majority of the variance explained is found within the first
3 principal components. (b) The majority of the variance explained if
found within the first 5 principal components. For this work, only the
principal components that contribute to ∼ 95% of the variance explained
are considered in clustering.

Reproducing this rich peak-cognizant information manually,
annotated as specific target PCBs, and visualized based on
their relative proximity as in Fig. 10, will be overwhelmingly
expensive in expert personnel time and subject to human bias.

For the PCA visualization, the peak heights were deter-
mined for each PCB and these values were normalized based
on their surrogate standards and were standardized sample to
sample. The scree plots are shown in Fig. 6 and plots of the
data in the principal components are seen in Fig. 7 and Fig. 8.
To better visualize the clusters and plotted data in Fig. 7
and Fig. 8, the first two principal components were plotted
in Fig. 7 and first three principal components were plotted
in Fig. 8.

B. COMPARISON OF K-MEANS AND FCM CLUSTERING
To associate the data presented in this work and cluster
either PCBs or sampling locations, both k-means and FCM
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FIGURE 7. First 2 principal components of the target PCB data are
plotted. (a) k-means clustering of target PCB data with 7 clusters. (b) FCM
clustering of target PCB data with 7 clusters and fuzzy exponent, m,
as 1.2. Both clustering techniques offer unique solutions to the data,
however, FCM clusters the larger group of data into separate clusters, i.e.
cluster 1 and cluster 2, and clusters two outlier points that are far apart
together, i.e. cluster 7.

clustering are examined. FCM is implemented with a choice
of the fuzzy partition exponent, m, in Equation (13) as
1.2 (discussed in Appendix A). The optimal number of
centroids for PCB data and sampling locations is 7 and
5 respectively (discussed in Appendix B). Although FCM
considers all points in the data for each centroid to make
a soft decision, the computational time of the technique is
slower. Further, the clusters created using FCM does not
partition the points into distinct clusters and can have diffi-
culty finding optimal associations. Seen in Fig. 7 and Fig. 8,
the larger group of points is clustered differently and includes
outlier points within the relatively closer groups of points
as compared to k-means clustering. In Fig. 7 (a), the k-
means clustering technique clusters the larger group of data
together while in Fig. 7 (b), FCM splits the larger group into

FIGURE 8. First 3 principal components of the sample location data are
plotted. (a) k-means clustering of sample location data with 5 clusters.
(b) FCM clustering of sample location data with 5 clusters and fuzzy
exponent, m, as 1.2. Both clustering techniques offer unique solutions to
the data, however, FCM clusters two outlier points into the larger groups,
i.e. cluster 5, and cluster 2 separates closely related data.

separate clusters. Although this provides more separation of
data, the c-means technique clusters outliers together with
the larger group and can provide misleading associations.
In Fig. 8 (a), the k-means technique clusters outlier data
as their own clusters and clusters the larger group of data
into 3 separate clusters. In Fig. 8 (b), the FCM technique
clusters the larger group of data into separate clusters and
associates outlier data within the larger groups providing
incorrect associations of the data. From the above analysis,
k-means clustering is chosen and plotted in the results for the
rest of this work.

C. PCA OF TARGET PCBs
This section is focused on the target PCBs and their contri-
bution throughout each sample clusters. PCA and clustering
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FIGURE 9. The Chicago land area map labeled with sample clusters. The
cluster coloring comes from the PCA plot in Fig. 8 (a).

of the PCBs across all the samples are plotted in Fig. 7 (a)
where the first two principal components make up roughly
50% of the variance explained. This plot shows clusters of
potential significance across the samples that could be related
to sources. Applying this concept, major PCBs are identified
that are contributing as outliers to overall PCB profiles such
as PCB 3 and PCB 5which form their own separate respective
clusters. Further, when non-target analytes are identified this
method is used to make associations with Aroclors aiding in
fingerprinting the pollutants.

D. PCA OF GEOGRAPHICAL SAMPLING LOCATIONS
Clustering geographical sampling locations is based on target
PCBs and plotted in Fig. 8 (a) where the first three principal
components consist of 45% of the variance explained. Fur-
ther, the color of the cluster is plotted for each of the samples
on a map to get a better topological view seen in Fig. 9.
Although seasonal clustering was not a particular focus of
this work, it was noticed that all the winter samples clustered
together independent of the location (Cluster 2) while all
other seasons were scattered throughout the various clusters.
With samples of the same season that were collected around
the same time, this method can produce associations between
various locations to identify sources based on proximity of
their geographical sampling location.

E. RETENTION TIME PROXIMITY
Cluster analysis identifies two distinct groups of target PCB
retention time proximity shown in Fig. 10. Fig. 10 (b) shows

a subgraph that only contains PCBs that cluster in the same
group and Fig. 10 (c) shows PCBs that clustered in com-
pletely different groups. This provides two different ways of
interpreting the data. In the former, it means that the general
proximity of the PCBs in retention time may not be coeluting
as much or that these PCBs together show up with the same
relative intensity throughout all the samples. The latter case
demonstrates that either the PCBs are coeluting and that some
of the actual concentration may be in another PCB or that
these PCBs appear close to one another and further analysis
of peaks that show up around the larger PCB can be based
on the other PCB. Although these are two different ways
of analyzing this, it provides a better understanding of the
locations of the PCBs in the chromatogram and identification
of PCBs in the TIC data more topologically.

F. DETERMINING SOURCES
The percentage of Aroclor only contribution to each location
was determined and displayed in Fig. 11 using Equation (16).
Focusing on the two largest percentages of Aroclors in each
location, Aroclors 1232, 1254, 1016, and 1221 were highly
present (Fig. 11 (a)). Further, with added uncertainty to Equa-
tion (16), there is a large contribution of 3, 3’, dichloro-
biphenyl (PCB 11) and Aroclors 1232, 1254, 1016, and
1221 as shown in Fig. 11 (b). Aroclors 1254, 1016, and
1221were produced and sold byMonsanto for use in products
such as capacitors, adhesives, and rubbers [15]. These Aro-
clors can be primarily seen as products used in construction
throughout Chicago, however, Aroclor 1232was not expected
to be an important source. Aroclor 1232 was sold in small
quantities compared to other Aroclors and is only found in
a few products such as hydraulic fluids or adhesives that
could have similar contributions as Aroclors 1221 and 1254
[15], [16]. Environmental weathering by microbial dechlori-
nation, environmental distillation, and atmospheric reaction
may have changed the PCBmixtures present in Chicago air to
resemble Aroclor 1232. In addition to detection of Aroclors,
PCB 11 is present in each sample. PCB 11 is a current byprod-
uct of pigment manufacturing and was not present in the
Aroclor mixtures sold, and now banned, more than 40 years
ago [17], [30]. It has a lower molecular weight and is more
volatile than most of the PCBs present in Aroclors which
could explain its large relative abundance. Because paint is
applied to surfaces in thin coats, PCB 11 likely volatilizes into
the air more efficiently than heavier PCB congeners. This is
also seen in [19].

G. NON-TARGET PCB PEAKS
Although no non-target peaks of significant size were iden-
tified within the MRM data, there were hidden non-target
peaks that coeluted with target PCBs in the TIC data set.
Fig. 12 shows representative non-target peaks that appeared
in the TIC signal after deleting the modeled TIC signal with
color coding corresponding to cluster colors in Fig. 13. The
non-target peaks thus isolated are significant from a data anal-
ysis perspective. This is because the TIC signal is generated
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FIGURE 10. Graph of detected target PCBs within the GC/MS/MS data sets. The nodes represent PCBs with colors
corresponding to their cluster color, and the edges represent a connection to another PCB that has retention time
closest to it (a). The retention times used are the average retention time found throughout each of the data sets.
Found within (a) are two cases: 1) where the PCBs all have the same cluster color (b) and 2) where the PCBs are all
closest to each other but are within different clusters (c).

FIGURE 11. Two highest percentages of Aroclors in the geographical locations are counted excluding random other mixture. (a) Top 2 Aroclor
only percentages are considered from each sample using target PCBs peak heights and Equation (9) to determine percentages (Appendix C).
(b) Top 2 Aroclor only percentages are considered from each sample using target PCBs peak heights and Equation (9) with contributions of each
PCB to each Aroclor considered from [8] to determine percentages (Appendix D). Further, different mixtures of PCB only and random mixtures
of PCBs are considered. In both (a) and (b), Aroclor 1016 is one of the most present Aroclors across all sampling locations.

from archived samples that are traditionally filtered to screen
out chemicals that are not PCBs. Such target-selective chem-
ical filtering is a standard laboratory protocol in a majority of

environmental studies and most public-domain data archives
assume such target-selective filtering has been successfully
performed. However, based on the raw TIC signal analysis
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FIGURE 12. Plot of one of the sample TIC data sets after the subtraction of
target PCB peaks. A few of the potentially found non-target peaks within
the TIC data set are pictured and are indicated by the stars at the location
they were found. The coloring is based on PCA and k-means clustering.

from such a representative data archive it appears that some
non-target chemicals still pass through as undetected contam-
inants. These contaminants, while potentially closely associ-
ated with target analytes, coelute with the target compounds
as hidden TIC peaks, and normally would not be detected
or accounted for in any target-based or statistical analysis.
Therefore, while the motivation for raw signal analysis is
to find target and non-target compounds, from a purely tra-
ditional target-oriented perspective, such hidden non-target
contaminants discovered in the TIC signal are significant for
two reasons: (i) to test using GC/MS/MS raw signal analysis
whether the laboratory protocols can indeed screen out most
non-target analytes in the samples as typically desired in
target-oriented studies, and (ii) to validate whether compu-
tational techniques, such as those proposed here, can indeed
discover hidden non-target analytes that coelute with target
PCBs.

H. PCA OF TARGET PCBs AND NON-TARGET ANALYTES
For this section, both the target PCBs identified before and
the non-target analytes identified in the TIC data set were
used. Examples of a few non-target analytes identified can be
seen in Fig. 12. PCA and clustering of PCBs and non-target
analytes are plotted in Fig. 13. The first three principal com-
ponents make up roughly 60% of the variance explained.
This plot shows clustering of target PCBs and non-target
analytes across the samples that could impact source dis-
coveries. Although a large amount of the non-target analytes
clustered as outliers, some were clustered with target PCBs
like PCB 5 and PCB 1. This is a significant finding as
these non-targets, which closely associate with target PCBs,
would otherwise never be included in traditional contami-
nant studies. Although this technique was implemented for
PCBs and non-target analytes, this same approach can be
used for specific sample locations. The idea behind this
technique is to find non-target analytes and target PCBs that
associate together to better identify sources of PCBs in the

FIGURE 13. (a) First 3 principal components plotted for target PCBs and
non-target analytes found within the TIC. Clustering analysis performed
with k-means clustering with 6 clusters. (b) Scree plot of target PCBs and
non-target analytes found in TIC signal data. Over 50% of the variance
explained is explained within the first 3 principal components.

sample locations. This approach was only implemented for
non-target analytes in the TIC data set because there were
more significant peaks in the TIC than the MRM data sets.

VI. CONCLUSION
This work proposes a novel combination of various com-
putational techniques to automate peak-cognizant detection
and interpretation of PCBs found within GC/MS/MS data
sets. Specifically, peak modeling and L2 error minimiza-
tion techniques are employed to autonomously detect target
and previously undetected non-target peaks from the raw
instrument signal. Then, a combination of PCA and k-means
clustering techniques are employed to isolate groups of PCB
congeners that are potentially associated with each other to
demonstrate how they manifest in the environment. Individ-
ual contributions of Aroclors across a diverse portfolio of
Chicago air samples are isolated. Utilizing these techniques
and concepts can aid in discovering and interpreting all the
information inherent within the GC/MS/MS signal. This type
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FIGURE 14. Average degree of membership of points to a cluster as a
function of cluster number and fuzzy partition matrix exponent, m.
(a) shows c-means clustering for the sample locations while (b) shows
the clustering for target PCBs. As the fuzzy partition matrix exponent, m,
increases the average cluster certainty decreases (average cluster
uncertainty increases) since there are more options for a data-point to
belong too.

of comprehensive and quantitative analysis is valuable to
environmental science in two significant ways:

(i) By design, these developed techniques are not biased
towards target contaminants, which are typically employed
in traditional GC/MS/MS interpretation, and therefore, can
be used to discover unknown contaminants that might prove
critical to air pollution studies.

(ii) These novel techniques are peak-based, and there-
fore compound-cognizant, unlike purely statistical chemo-
metric methods [7], [8]. This approach allows interpretation
of large-scale statistical results based on PCA and k-means
clustering at the level of individual compounds. Therefore,
the methods can bridge the gap between compound-agnostic
statistical interpretation and compound-specific (target-
based) studies [7]–[13], [17]–[21], [29], [51]–[54].

In summary, the major science return of these tech-
niques is connecting target compounds (known PCB con-
geners) with potentially significant but previously unknown
non-target compounds and allow comprehensive automated

FIGURE 15. Plot of sum of euclidean distance of points within a cluster to
their respective centroid vs number of clusters, k, using the iterative
process depicted in Fig. 5. The sum of euclidean distances were averaged
by implementing k-means and fuzzy c-means clustering 20 unique times
for each k.

(peak-cognizant) analysis of raw GC-MS (and combinations
thereof) signals across large data repositories. While this
work reports the findings across 150 active air samples, this
technique has the potential to be applied across much larger
scales of data and repositories.

APPENDIX A
FCM CLUSTERING CERTAINTY AND FUZZY
PARTITION EXPONENT
Equations (13)-(15) depend primarily on the fuzzy parti-
tion exponent, m, to update the cost function and centroid
location within each cluster. The fuzzy partition exponent
dictates how fuzzy the results will be and often can skew
the results determined by the relative inter-distance of the
data-points. While choosing a random m may yield results,
further observations into the exponent m is plotted in Fig. 14.
An important observation to note is the increasing m value
causes the uncertainty of points within a cluster to increase.
Further, the number of clusters impacts the cluster certainty
because the clusters will be close together making it difficult
to distinguish the optimal cluster for the point to belong to.
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FIGURE 16. Percentage of each Aroclor contributing to the PCB values found for each location. Only
Aroclors are considered in [8].

For this work, a smaller m value is implemented to ensure
clustering of neighboring data.

APPENDIX B
DETERMINING K CLUSTERS
For practical purposes, the sum of euclidean distances from
each point within each cluster is considered and plotted to
determine the optimal choice of k clusters. Mathematically,
the sum of euclidean distances from each point within each
cluster is expressed as:

d =
k∑
i=1

∑
gjεKi

||ci − gj||22 (18)

where g is the set of points in the scores matrix G, K is the set
of k clusters, and ci is the center of cluster i. Summing across
multiple replications of similar number of clusters measures
the variability of the points within cluster and describes how

compact the clusters are within the data. To confirm the
correct number of clusters used, d is plotted for different num-
ber of clusters implemented. Seen in Fig. 15 is the optimal
choice of clusters for the scores matrix, G, of both PCB and
and sample location data. The choice of clusters is based on
empirical observations and the slope of the plot in Fig. 15.

APPENDIX C
AROCLOR PERCENTAGE PRESENCE
Contributions of each Aroclor are determined using Equa-
tion (17) for each sampling location. The mass fraction
contribution matrix, D, is determined by normalizing the
PCBs found in the samples using internal standards to the
calibration data. The relative response factor (RRF) of each
PCB is determined using the normalized peak heights to the
calibration data. The percents of only Aroclor contributions
for each sampling location are determined using [5]. The two
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highly present Aroclors found across all sampling locations
are plotted in Fig. 11 and discussed further in Section V-E.

APPENDIX D
MIXTURE PERCENTAGE PRESENCE
Contributions of each Aroclor are determined using Equa-
tion (17) for each sampling location. The mass fraction
contribution matrix, D, is determined by normalizing the
PCBs found in the samples using internal standards to the
calibration data. The relative response factor (RRF) of each
PCB is determined using the normalized peak heights to
the calibration data. The percents of Aroclor and other mix-
ture contributions for each sampling location are determined.
While Aroclor only contributions values can be found in [5],
other PCB only contributions and random mixtures of vary-
ing PCBs are considered to determine mixture percentages.
The two highly present mixutres found across all sampling
locations are plotted in Fig. 11 and discussed further in
Section V-E.

APPENDIX E
NOMENCLATURES

APPENDIX F
MRM MASS TRANSITIONS (M/Z)
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