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Abstract

Single substances within complex vertebrate chemical signals could be physiologically or
behaviourally active. However, the vast diversity in chemical structure, physical properties and
molecular size of semiochemicals makes identifying pheromonally active compounds no easy
task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-
Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genus
Sceloporus), synthesised one of them and investigated their biological activity in male intra-
specific communication. In a series of behavioural trials, lizards performed more chemosensory

behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised
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cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or
a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role
of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the
relative concentration of both compounds in the chemical signal. In addition, our results stress
how minor compounds in complex mixtures can produce a meaningful behavioural response,
how small differences in structural design are crucial for biological activity, and highlight the
need for more studies to determine the complete functional landscape of biologically relevant

compounds.

Key Words — Sceloporus virgatus, intra-specific communication, 2,5-diketopiperazine, chemical

signal, gas chromatography-mass spectrometry.
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Introduction

Chemical signals of terrestrial vertebrates tend to be complex mixtures of compounds'.
However, this does not necessarily mean that numerous compounds are always needed for
recognition by a signal receiver (e.g.>***). Single compounds, or even a selected profile from all
mixture components, could be physiologically or behaviourally active in different contexts>™®.
Intra-specific chemical signals, often liberally referred to as “pheromones” in the extensive
literature, can vary considerably in their chemical structure, physical properties and molecular
size’, and there is currently no simple way to rule out the biological roles of additional mixture
components. For example, even in an extensively studied model system such as the house
mouse, the biological roles of volatile ligands, compared to the lipocalin proteins that are

. Y . 10-13
involved in different chemosensory functions

, are relatively unknown. Using an
interdisciplinary approach, here we characterise two volatile cyclic dipeptides from the complex
mixture of a chemical signal in terrestrial vertebrates (lizard genus Sceloporus) and investigate
their biological activity in intra-specific communication.

The structural diversity of compounds documented in terrestrial vertebrates is
enormous'?, and it has been difficult to associate specific structural designs or features with
chemical signalling in general'. It has been somewhat useful to divide potential chemosignals
according to their volatility: while volatile pheromones can act in longer distance signalling,
protein-like molecules and other highly polar substances with very low vapour pressure (e.g.,
polypeptides) require direct contact between the receiver’s chemosensory structures and the
signaller or their scent marks'”. Similar considerations may apply to kairomones in predator-prey
communication’. One common feature among some proven or putative volatile pheromonal

4,16-19

ligands is the incorporation of nitrogen atoms into their structures . However, other
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structurally diverse volatile chemosignals have been documented (for review, see™''*), all
pertaining to terrestrial vertebrates and their thus far known semiochemistry, and there is still
much to be learned about how chemical structures relate to biological function.

There are two entirely different strategies to identify the physiologically and
behaviourally active components of highly complex mixtures sampled from vertebrates: (i) the
response-guided strategy and (ii) the chemical image strategy™. In the first strategy, the stimulus
mixture (e.g., glandular extract) is subjected to isolation and fractionation, each followed with a
bioassay, until the isolated chemical compound is structurally identified and ultimately proven as
biologically active. The chemical image strategy relies on the capability to cover an entire profile
of substances, assuming that many (if not all) profile constituents are involved in the complete
biological response. The first strategy has particularly been fruitful in relatively simple cases
such as insects®', while the chemical image strategy implies that enormous complexity is
associated with a complete behavioural or physiological response. The downside of the response-
guided strategy is that repeated fractionation of a complex stimulus-containing mixture can lead
to a loss of biological activity if more than one component is needed for a robust biological
response. Additionally, this approach can be procedurally tedious. From a chemist’s perspective,
looking for structurally unusual compounds that consistently appear in a complex profile of
substances, rather than systematically testing each and every compound, can sometimes be
profitable. As we demonstrate in this study, two structurally unique compounds in a chemical
mixture were positively identified from the femoral gland secretions of Sceloporus virgatus
lizards through their mass-spectral (MS) data and a capillary gas chromatography-mass

spectrometry (GC-MS) profiling technique. These mixture constituents, tentatively identified as
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“heterocyclic compounds” when first discovered®, we now report are cyclic dipeptides (Fig. 1),
whose relative hydrophobicity imparts sufficient volatility to act as longer-range chemosignals.

Cyclic dipeptides, which can be classified structurally as diketopiperazines or pyrazine
derivatives, have received considerable attention in recent years due to their structural stability
and significant pharmacological potential related to their reported bioactivity as antibacterial,
antifungal and antiviral agents™, but are hardly known in semiochemical roles. In nature, they
are predominantly synthesised by microorganisms**. In animals, enzymatic pathways for
production of cyclic dipeptides have been reported for the annelid worm Platynereis dumerolii®
and for the starlet sea anemone Nematostella vectensis*®. Pyrazines of low molecular weights
such as alkylated or alkoxylated derivatives are ubiquitous in nature. They are highly
odoriferous, and not surprisingly, involved in signalling as insect alarm pheromones®’. Another
pyrazine derivative, 2,5-dimethylpyrazine, has been identified as a key component of the
puberty-delaying pheromone of female mice™® and as a behaviourally relevant compound of the
scent signals of male tree-shrews® . Moreover, different pyrazines are speculated to act as
“classical alerting signals functioning as deterrents or attractants™".

Among vertebrates, reptiles possess a highly developed olfactory system, characterised
by the presence of the vomeronasal organ (VNO), a specialised sensory organ for processing
semiochemicals®'. The chemosensory lives of reptiles are very rich, as they use chemical cues
and signals for foraging, social and spatial organization, species and sex recognition, and

- . 3235
reproductive behaviour

, and thus chemical communication can importantly affect their
fitness. One of the main sources of chemical cues in lizards are their femoral glands (FG), whose

secretions are deposited on substrates as lizards move, both passively and actively*®*’. The

chemical components of femoral gland secretions (FGS), a mix of lipids and proteins, potentially
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serve different biological roles, not only as chemical signalling compounds, but also as structural

33,38-41

stabilisers, antioxidants or signal enhancers , yet the functions of individual compounds

identified in lizard glandular secretions remain largely unknown (but see***).

Species of the large genus Sceloporus (90+ species™) are characterised by the presence of
a row of femoral pores along each of their inner thighs that exude femoral gland secretions. As in
many lizards™, both male and female Sceloporus use these secretions to signal individual and

36,38

species identity, sex, and physiological state™", although males produce secretions more

36,45

abundantly with peak production during the breeding season™"". Earlier reports on FGS of

Sceloporus list proteins, sterols and some other fairly common volatile organic compounds as

part of their composition*>**

. While studying evolutionary interactions between visual and
chemical signals in males of four Sceloporus species, namely S. cozumelae, S. parvus, S.
siniferus, and S. merriami**, we observed a number of carboxylic acids and steroids together
with a series of structurally unidentified “heterocyclic compounds” with no known function.
These heterocyclic compounds found in all four investigated Sceloporus species are the cyclic
dipeptides cyclo(L-Leu-L-Pro) 1 and cyclo(L-Pro-L-Pro) 2 (Fig. 1), which can be chemically
classified as diketopiperazines. We have now identified these compounds in an additional
species, the lizard S. virgatus, and provided the synthetic analogues, one commercial and one in-
house synthesized analogue, of the identified cyclic dipeptides to (i) authenticate the presumed

cyclic dipeptide mixture components; and (ii) supply sufficient amounts for testing their potential

biological role in intra-specific communication in a series of behavioural trials.

Results

Chemical Composition of Femoral Gland Secretions (FGS). We identified compounds by

comparing mass spectra and retention times against reference compound spectra and the National
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Institute of Standards and Technology (NIST) database. Samples and standard compounds were
analysed by scanning the MS total ion chromatograms (TICs) in the mass range between 40-350
amu using the positive electron ionization (EI) mode as described in Pruett et al.*%. After the MS
recording, we extracted selective-ion currents from TICs using appropriate m/z ions as filters to
obtain selected-ion chromatograms (SICs) where we measured the peak areas to compare
compound abundances. The SIC peak areas were divided by the peak area of the internal
standard peak area (SIC m/z 113) and by the sample weight (mg) in each sample to obtain
normalised data values per weight. A total of 24 volatile compounds assigned to 8 different
chemical classes were identified in the lipophilic fraction of FGS of adult male S. virgatus (Table
1). Short-chain fatty acids were the most abundant constituents of FGS (81.5%) and we
confirmed the presence of the two volatile cyclic dipeptides in this species, cyclic dipeptide 1,
cyclo(L-Leu-L-Pro), and cyclic dipeptide 2, cyclo(L-Pro-L-Pro), as shown in extracted m/z 70
ion currents (Fig. 2). Cyclic dipeptides 1 and 2 were not fully resolved in S. virgatus samples and
we estimated peak areas using an integration approach (Fig. S1). These cyclic dipeptides were
present at lower quantities than those found in congener lizard species, e.g. S. merriami’® (Figs. 2
and 3) and, overall, cyclic dipeptides were the least abundant class of compounds in FGS of S.
virgatus (~0.1%). Generally, cyclic dipeptide 2 appeared in higher concentrations than cyclic

dipeptide 1 in all FGS samples.

Biological Activity of Cyclic Dipeptides. Chemosensory behaviour of S. virgatus differed
among treatments during behavioural trials (X°, = 15.08, P = 0.045). Lizards performed more
tongue flicks, lip smacks and substrate lickings when presented with the synthesised cyclic
dipeptide 2 (CDP 2) compared to the blank control (BC; coefficient estimate + S.E.: 0.51 + (.16,

Z =-3.28, P=10.001), the matrix control (MC: 0.35 £ 0.15, Z =-2.38, P = 0.017), the cyclic
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dipeptide 1 (CDP 1: 0.42 = 0.15, Z =-2.79, P = 0.005), or the combined blend of CDP1 and
CDP2 (CDP1+CDP2: 0.48 £ 0.15, Z =-3.12, P = 0.002) (Fig. 4). However, we found no
differences between spontaneous chemosensory behaviour in the presence of an unscented
pebble and the chemosensory behaviour elicited by MC (Z = 0.94, P =0.347), CDP1 (Z = 0.18,

P =0.859) or CDP1+CDP2 (Z = 0.52, P = 0.601) (Fig. 4).

Discussion

In this study, we characterised and confirmed the presence of two cyclic dipeptides in the
femoral gland secretions (FGS) of S. virgatus, of which at least one elicited a chemosensory
response typical of social communication via olfaction and vomerolfaction®”. Cyclic dipeptide 1,
cyclo(L-Leu-L-Pro), and cyclic dipeptide 2, cyclo(L-Pro-L-Pro) are relatively hydrophobic (non-
zwitterionic) dipeptides and, unlike most diketopiperazines, they are apparently detectable in the
gas phase. Here, they accounted for ~0.1% of the total content of FGS. This makes S. virgatus
the Sceloporus species in which these two cyclic dipeptides have been found in the lowest
proportion to date’*’, presenting a great opportunity to test the biological activity of rare volatile

constituents of complex signalling mixtures in a terrestrial vertebrate.

Even in the most studied of taxa (terrestrial mammals), it has been difficult to ascribe
function to specific chemical structures™'"'*. For example, here, cyclic dipeptide 1 and cyclic
dipeptide 2 have, relatively, very similar chemical structures (Fig. 1), including a
diketopiperazine ring with nitrogen atoms, yet the biological response to each of their chemical
blends was significantly different (Fig. 4); only CDP 2, when presented alone, elicited a
significant chemosensory response. This disparity in the behavioural responses toward CDP1 and

CDP2, together with the fact that the matrix control elicited an equivalent response to
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spontaneous lizard behaviour, demonstrate that the effect of CDP2 was not the result of
compound class (diketopiperazine) nor compound novelty per se. Because the here tested
compound quantities were within the naturally occurring range found in natural secretions of
Sceloporus lizards* it is unlikely that CDP2 acted through trigeminal chemoreception
(pungency). In fact, we know that whole FGS elicit a comparable chemosensory behavioural

response to CDP2, if not higher, from conspecific S. virgatus®*’

, whose FGS samples contain
approximately between below detection limit-282 ng of cyclic dipeptide 1 and 19-295 ng of
cyclic dipeptide 2 (with m/z 70). Unexpectedly, the combined blend CDP1+CDP2 evoked the
same response as either of the controls, suggesting that CDP1 interferes with the effects of CDP2
and could mask the presence of the latter in the complete scent. However, cyclic dipeptide 2
consistently appears in higher concentrations than cyclic dipeptide 1 in the FGS of these lizards®
(Table 1); instead, our combined blend used an equal amount of both compounds. This allows
for the possibility of CDP2 conserving its biological activity amid compounds in natural FGS.
Overall, these results support the idea that biological activity resides in the nuances of structural
design (i.e. it has a high specificity), relative compound proportion and/or chemical context

(e. g.48).

To date, both cyclic dipeptide 1, cyclo(L-Leu-L-Pro), and cyclic dipeptide 2, cyclo(L-

22,49

Pro-L-Pro), have been found in at least other four Sceloporus lizards*™", the only vertebrates on

the list. Cyclic dipeptide 1 has also been identified in benthic marine diatoms®® and different
Bacteria phyla, including the mangrove rhizosphere bacterium Bacillus amyloliquefaciens® >
and chili pepper rhizosphere bacterium B. vallismortis®® (Firmicutes), Streptomyces spp.*®

(Actinobacteria), the marine bacteria Rheinheimera japonica™ and Pseudomonas fluorescens™,

and Achromobacter xylosoxidans ® (Proteobacteria). Likewise, it is present in fungal cultures of
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Aspergillus flavipes®’ and in ants®®. Cyclic dipeptide 2 has been identified in the Antarctic
psychrophilic bacterium Pseudoalteromonas haloplanktis™, the fungus Aspergillus fungi®,
blowflies®" and bumblebees®. The taxonomical breadth in which these two compounds are
naturally found thus seems to be quite extensive, and as diverse as the environments in which
they occur. More generally, cyclic dipeptides are common by-products of anabolic and catabolic
biochemical pathways, endogenous to many protists, fungi, plants and animals®, suggesting that
these compounds may be far more frequent in animal skins®* and gland secretions®*®*. A possible
microbial source of cyclic dipeptides 1 and 2 within the femoral pore opening could also be
considered™ %

The fact that CDP 2 elicited increased chemosensory behaviour from male S. virgatus
conspecifics suggests that cyclo(L-Pro-L-Pro) may potentially play a role in intra-specific
communication in this species without the need of actual physical contact between
individuals**’. Furthermore, because S. virgatus is not the only Sceloporus species that excretes
this compound, cyclic dipeptide 2 might also potentially operate in an inter-specific signalling
context between sympatric congeners, but these hypotheses require further experimental testing.
In other taxa, cyclo(L-Leu-L-Pro) has demonstrated anti-microbial and anti-mutagenic properties

852 while cyclo(L-Pro-L-Pro) functions as a mate attractant in diatoms™ and has

in vitro
demonstrated anti-bacterial activity in vitro®*®'. Thus, the fact that cyclo(L-Pro-L-Pro) could act
as a pheromone in male-male communication of S. virgatus is congruent with previous reports of
biological activity.

CDP 1 showed no apparent biological activity in intra-specific communication. There are

several reasons why we may have not observed a significant behavioural response. First,

behavioural responses to some pheromones sometimes require co-presentation with other

10
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constituents (e.g.%’). Second, CDP 1 may be meaningful in other Sceloporus species, where
increased concentrations of cyclic dipeptides in FGS occur, and its presence in S. virgatus is the
result of phylogenetic conservatism. Third, CDP 1 may not be relevant to male conspecifics,
although it may to females (e.g.®) or to allospecifics. Alternatively, CDP1 could modulate the
effects of CDP2, as suggested by the lack of response to the combined blend CDP1+CDP2, or it
may have a structural function in FGS. For example, it may increase signal effectiveness by
protecting the integrity and/or enhancing the durability of chemical scents deposited on the
substrate, perhaps by slowing bacterial degradation owing to its anti-microbial effects. In ants,
cyclic dipeptide 1 is putatively responsible for the bitter taste of ant venom gland secretions .
Even humans can taste relatively low levels of CDP1 (25 ppm) as metallic taste in cocoa nibs®.
Thus, we cannot completely discard a biological role of CDP 1 and further studies are needed to
discern among these and other possibilities. Follow-up studies should investigate, for example,
how differences in absolute concentration, relative concentration, or the combination with
additional compounds within the FGS affect behavioural responses to CDP1 and CDP2, and
whether these responses differ between male and female conspecifics. To determine whether the
molecular context might be important to elicit behavioural responses, it should also be instructive
to present these two compounds in a different solvent, absent from FGS.

Many volatile constituents are likely by-products of general metabolism without any
signalling function. In vertebrates, cyclic dipeptides (diketopyrazines) are not known in
semiochemical roles and it is possible that other compounds within the FGS of S. virgatus, either
lipids or proteins, have semiochemical activity. None of the known putative lizard pheromones,
including cholesterol, cholesta-5,7-dien-3-ol and ergosterol (steroids), linoleic acid

(polyunsaturated fatty acid), hexadecanol and octadecanol (alcohol), squalene (triterpene) and

11
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tocopherol (vitamin E)**®

were detected in FGS of S. virgatus (Table 1), and thus they are

unlikely to be semiochemicals in this species. In addition, we have experimentally tested other
two likely candidates, namely the only steroid and the odorous ester methyl dihydrojasmonate,
and found no apparent effect (C.R.D. unpub. data). In snakes, squalene and several long-chain

3766 and the ratio of unsaturated-

methyl ketones (ketone) are well-characterized sex pheromones
to-saturated ketones of pheromone blends (ranging from 10 to 18 unique methyl ketones)
determines the attractiveness’ . However, we found only two medium-chain saturated ketones in
S. virgatus, suggesting that a similar mechanism is unlikely to operate here. Thus, any other
potential semiochemicals within the FGS of S. virgatus remain to be identified.

In sum, we were able to characterize two cyclic dipeptides in the chemical signal of a
terrestrial vertebrate, and demonstrate biological activity of cyclo(L-Pro-L-Pro), which may
potentially be involved in intra-specific (male-male) communication of S. virgatus. This finding
supports the idea that even minor components in complex mixtures can be meaningful and

perhaps enough to produce a complete behavioural response®"">

. Importantly, our results
highlight the need for more detailed studies to determine the functional landscape of biologically

relevant compounds in the complex mixtures of Sceloporus lizards, and more generally, of

terrestrial vertebrates.

Methods

Study Species. Sceloporus virgatus is a small (up to 70 mm, adult snout-to-vent length [SVL])
Phrynosomatid lizard that commonly occurs in Madrean pine-oak woodlands and Petran conifer
forests of the Chiricahua Mountains in Arizona, USA. Like its congeners, S. virgatus uses

multimodal communication, namely visual (motion and colour) and chemical signals in intra-

38,47,71 72,73

and inter-specific interactions . Males defend territories mainly for breeding purposes’ ™",

12



262 which they patrol, performing broadcast displays and depositing scent marks’, and engage in
263 male-male competition for access to females’. In comparison with other Sceloporus species, S.
264  virgatus has a higher rate of basal chemosensory behaviour and previous studies suggest that

265  they rely more on chemical cues*”’"’.

266  Sample Collection. We collected femoral gland secretions (FGS; waxy plugs <1.0 mm

267  diameter) from 17 adult male S. virgatus in the field in May 2012. We used nitrile gloves to
268  handle lizards, and pulled waxy plugs from femoral pores on both legs using clean forceps,

269  storing secretions in 2 mL glass vials with Teflon®-lined screw caps at -20 °C until analysis at
270  Indiana University’s Institute for Pheromone Research. Because individual lizard samples were
271 too small for separate chemical analyses (< 1 mg”*), we pooled secretions from various

272 individuals to create six samples weighing 1.6 mg each and used stir bar sorptive extraction to

273 analyse them’’.

274  Gas Chromatography-Mass Spectrometry (GC-MS). We characterised the volatile lipidic

275  fraction of FGS of male S. virgatus using gas chromatography-mass spectrometry. The samples
276  were weighed and placed in 20 mL glass scintillation vials, 8 ng of the internal standard 7-

277  tridecanone (Sigma-Aldrich, Saint Louis, MO) dissolved in 5 pL. methanol (Baker Analyzed®,
278  Mallinckrodt Baker Inc., Phillipsburg, NJ), 2 mL of OmniSolv™ water (EMD Millipore

279  Corporation, Billerica, MA) and 50 mg of ammonium sulfate (99.99 %, Sigma-Aldrich, St.Louis,
280 MO) were added to each vial. Cyclo(L-Leu-L-Pro) (99.9+%), henceforth “cyclic dipeptide 17,
281  was obtained from BOC Sciences, Shirley, NY. Cyclo(L-Pro-L-Pro), henceforth “cyclic

282  dipeptide 27, was synthesised at Indiana University, Department of Chemistry (see details below)
283  since pure chiral forms were not commercially available. All other reference compounds were

284  purchased from Sigma-Aldrich (St. Louis, MO).

13
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Synthesis of the Cyclic Dipeptide 2. (5aS,10a5)-Octahydrodipyrrolo[1,2-a:1",2"-d]pyrazine-

5,10-dione (2). The piperazine-2,5-dione 2 was prepared following the literature report of ’®. In
our study, L-proline (23.0 g; 200 mmol) was dissolved in tetrahydrofuran (THF; 200 mL).
Phosphorous trichloride (8.7 mL; 100 mmol) was dissolved in 30 mL of THF, and this solution
was added into the reaction flask in approximately 10 mL quantities at 22 °C with stirring. After
the addition was completed, the mixture was stirred at 22 °C for 1 h and subsequently heated to
reflux for an additional 2 h. Upon cooling, the reaction mixture was concentrated under reduced
pressure and water (30 mL) and then saturated aqueous sodium bicarbonate were added to adjust
the pH 7-8. The precipitate was collected by filtration and washed with water (3 x 50 mL).
Following silica gel column chromatography of this precipitate (methanol/ethyl acetate 1:5 by
volume), the desired cyclic dipeptide 2 was obtained in 52 % yield. Our bulk sample of the 2,5-
diketopiperazine 2 was recrystallised three times from ethyl acetate to give fine white crystals of

the pure product for biological studies.

The pure product 2 was fully characterised after drying in vacuo. Spectroscopic data were in
agreement with the reported values’"". Lit. '"H NMR (CDCls) & 4.16 (t, 2H), 3.49-3.54 (m, 4H),
1.88-2.33 (m, 8H)"®". Mp 146-148 °C; IR (solid) 2975, 2958, 1655, 1430, 1336, 1280, 1258,
1160 cm™'; "TH NMR (CDCls) & = 4.18 (m, 2H), 3.52 (m, 4H), 2.29-2.17 (m, 4H), 2.0-1.92 (m,
4H); *C NMR (CDCls) & 166.4 (C=0), 60.4 (CH), 45.1 (NCH,), 27.7 (CH,), 23.4 (CH,), HRMS

[M + 1] caled 195.1128; found 195.1126; [ol] b —145 (¢ 1, CH;0H).

Testing of cyclic dipeptides. In May 2018, we captured 20 adult (mean SVL: 56.6 + 0.3 mm),
male S. virgatus by noose from a population surrounding the Southwestern Research Station
(SWRS) in Cochise County (AZ, USA). We housed them individually in glass terraria (50.8 x

27.9 x 33.0 cm) containing a paper substrate and a wooden perch in the Live Animal Holding

14
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Facilities at SWRS. Terraria were placed on shelves in a screened concrete porch and hence
received indirect sunlight and were subjected to natural daily variation in ambient air
temperatures. Terraria were misted with water every two days, and a 60W lamp located towards
one end of the terrarium provided heat on a 12:12h light:dark photoperiod. Lizards were visually
isolated from one another, fed two crickets every other day and allowed 48 hours of acclimation

to captivity before the beginning of behavioural trials, which occurred in their home terraria.

We presented each lizard with four different chemical blends and a blank control, in random
order. One of the chemical blends, the matrix control, was composed of 2 mL of acetone, a fatty
acid matrix with the three most common saturated fatty acids found across Sceloporus secretions
in representative relative proportions® (i.e. 25 pL tetradecanoic acid, 150 puL hexadecanoic acid
and 50 pL octadecanoic acid, corresponding to 250 ng, 1500 ng, and 500 ng in the applied 20 puL
of test solution, respectively), and 60 mg of polyethylene glycol (PEG). The other three
treatment blends, additionally included 50 pL of one or each of the two cyclic dipeptides of
interest diluted in acetone, with each corresponding to 500 ng in the applied 20 puL of test
solution. These tested compound quantities are within the naturally occurring range found in
FGS samples of Sceloporus lizards (i.e. cyclic dipeptide 1: 12-529 ng; cyclic dipeptide 2: 19-791
ng)*>*’. The saturated fatty acids on the blend’s matrix are also very common in FGS of other
lizard taxa and are associated with a structural, non-informative function®*°. PEG is a non-
volatile, odourless, and colourless polymeric binding agent that entraps temporarily the volatile
compounds in the blend. Due to their hydrophobic and volatile nature, cyclic dipeptides were not
presented alone. By embedding the cyclic dipeptides in the matrix control we were able to test
the effects of these compounds in analogous conditions to those in which they appear in nature

while avoiding their premature evaporation during transfer onto the cue surface.
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Thus, to one of the treatment blends, hereafter “CDP 1, we added the commercially available
cyclic dipeptide 1, cyclo(L-Leu-L-Pro); to a second blend, hereafter known as “CDP 2”, we
added the laboratory synthesised cyclic dipeptide 2, cyclo(L-Pro-L-Pro) (see above). We made a
third blend by adding an equal quantity of each of the two cyclic dipeptides (“CDP1+CDP2”).
The fourth blend acted as a matrix control (“MC”) and had no added cyclic dipeptides, but
contained acetone, the fatty acid matrix and PEG (see above). Blends were mixed in capped
glass vials, stirred homogeneously using a vortex and stored at 4-6 °C until use. Wearing nitrile
gloves, we used a 50 pL Hamilton syringe (Hamilton Company, Reno, NE) to apply 20 pL of
treatment solution onto a pebble and deposited it inside the lizard’s terrarium on top ofa 15 x 15
cm glazed tile. We cleaned the syringe and pebbles with acetone between applications. In the
blank control treatment (hereafter “BC”), we replicated this presentation procedure but deposited
an unscented pebble with no added test solution. Upon presentation, we video-recorded lizard
behaviour during 15 min and later scored chemosensory behaviour, namely, the number of
tongue flicks, lip smacks, and substrate licking (directed at the pebble; Table S1). Chemosensory
behavioural acts involve gustation, olfaction, and vomerolfaction in lizards and their frequency

reflects the strength of the response to a particular chemical stimulus®®'.

All procedures described adhere to national and international guidelines for the ethical use of
animals in research and were approved by Arizona State University Institutional Animal Care
and Use Committee (protocol 17-1597R to E.P.M.). Animal collection was permitted by Arizona

Game and Fish Department (LIC #SP621793) and the US Forest Service.

Statistical Analyses. To test for differences in the response to different chemical blends, we
analysed the scored chemosensory behaviour in R statistical software®, using generalised linear

mixed models (GLMM). To account for repeated measures of the same individual we used

16



354

355

356

357

358
359
360

361
362

363
364
365
366

367
368
369

370
371
372

373
374
375

376
377

378
379
380

381
382

383
384
385

individual ID as a random factor. We used package Ime4*’ and models with a Poisson

distribution and a log link. We used pairwise post-hoc comparisons with a Holm-Bonferroni

. 4 . . .
correction®* and verified model assumptions on the residuals.
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1 (C), and cyclic dipeptide 2 (D). Cyclic dipeptide 1, identified as cyclo(L-Leu-L-Pro), with
retention time (Rt) 47.99 min and cyclic dipeptide 2, identified as cyclo(L-Pro-L-Pro), with Rt
48.12 min, are not fully resolved in S. virgatus but exhibit characteristic mass spectra as seen in
other congeners, e.g. S. merriami** (B)—shown here for comparison purposes—where they
occur at higher concentrations. Peak areas for cyclic dipeptide 1 were 0.09 x10° and 0.26 x10° for
S. virgatus and S. merriami, respectively. Peak areas for cyclic dipeptide 2 were 0.27 x10° and

1.1 x10° for S. virgatus and S. merriami, respectively.

Figure 3. Mass spectra (electron impact, EI) for cyclic dipeptide 1 (1) for: S. virgatus (A), S.
merriami (B), and the reference standard compound cyclo(L-Leu-Pro) (C). Mass spectra for
cyclic dipeptide 2 (2) for: S. virgatus (D), S. merriami (E), and the reference standard compound

cyclo(L-Pro-L-Pro) (F).

Figure 4. Chemosensory behaviour (number of tongue flicks, lip smacks, and substrate lickings
of the pebble) of 20 male S. virgatus in response to a blank control (BC; an unscented pebble)
and each of four different chemical blends: MC: matrix control; CDP 1: cyclic dipeptide 1,
cyclo(L-Leu-L-Pro); CDP 2: synthesised cyclic dipeptide 2, cyclo(L-Pro-L-Pro); CDP1+CDP2:
a blend of CDP1 and CDP2 in equal amount. All blends included a matrix of the three most
common saturated fatty acids in Sceloporus, in representative proportions, an acetone carrier and
a non-volatile binding agent (PEG; see Methods). Shown are means = 1 S.E. Different letters

denote significantly different groups.

25



630

631

632

633

Tables

Table 1. Chemical composition of femoral gland secretions of male S. virgatus, in order of

abundance.

Compound class Mean %  Compounds (from more to less abundant)
Fatty acids 81.5
saturated 51.7 Heptadecanoic acid; pentadecanoic acid; tridecanoic acid; nonanoic acid;
decanoic acid; dodecanoic acid; hexadecanoic acid
unsaturated 29.7 Octadecenoic acid; 9,12-octadecadienoic acid; 9-hexadecenoic acid
Alkanes 10.1 Decane; pentadecane
Esters 34 Ethyl 4-ethoxybenzoate; methyl dihydrojasmonate
Salicylates 33 2-Ethylhexylsalicylate; homomenthylsalicylate
Alcohols 1.1 1-Hexadecanol; 2-ethylhexanol
Ketones 0.3 2-Tridecanone; 2-tetradecanone; 2-decanone
Steroids 0.2 B-Androstane
Cyclic dipeptides 0.1 Cyclic dipeptide 2, cyclo(L-Pro-L-Pro); cyclic dipeptide 1, cyclo(L-Leu-

L-Pro)
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