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a b s t r a c t

This paper presents a new finite element solver for linear elasticity on quadrilateral and
hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian
elements. It solves the primal variable displacement in the strain–div formulation and
can handle both displacement and traction boundary conditions. It is a locking-free
solver based on conforming finite elements. The solver has second order accuracy in
displacement and first order accuracy in stress and dilation (divergence of displace-
ment), as validated by theoretical analysis and illustrated by numerical experiments on
benchmarks. deal.II implementation is also discussed.
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1. Introduction

This paper concerns finite element methods (FEMs) for linear elasticity prototyped as
{

−∇ · σ = f(x), x ∈ Ω,
u|Γ D= uD, (σn)|Γ N = tN ,

(1)

where Ω is a two- or three-dimensional bounded domain occupied by a homogeneous and isotropic elastic body, f is a
body force, uD, tN are respectively boundary data about displacement and traction posed on the Dirichlet and Neumann
boundaries Γ D and Γ N , and n is the outward unit normal vector to the domain boundary ∂Ω . As usual, u is the solid
displacement, ε(u) = 1

2

(

∇u + (∇u)T
)

is the strain tensor, and σ = 2µε(u)+ λ(∇ ·u)I is the Cauchy stress tensor, where
I is the order-two or -three identity matrix. Note that the Lamé constants λ,µ are given by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, (2)

where E is the elasticity modulus and ν is Poisson’s ratio. It is known that ν ∈ (0, 0.5), so λ ∈ (0,∞), whereas µ has
positive lower and upper bounds.

A challenging issue with development of numerical methods for elasticity is the so-called Poisson-locking, which often
appears as loss of convergence rates in displacement and/or suspicious behaviors in other quantities such as stress when
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λ → ∞ or ν → 1
2
, namely, the material becomes nearly incompressible. It is well known that the linear Lagrangian

elements Q 2
1 (for rectangles) or P2

1 (for triangles) suffer Poisson-locking [1,2]. Remedies have been sought [3–6].

There are several approaches for overcoming Poisson-locking.

(i) By design, the mixed finite element methods (MFEMs) based on the Hellinger–Reissner formulation overcome

Poisson-locking. These mixed methods consider approximations to stress and displacement simultaneously. The first

family of conforming mixed FEMs for triangles was developed in [7]. Analogous finite elements for rectangular

and cuboid meshes were developed in [8]. In [9], weakly symmetric conforming mixed FEMs were developed for

quadrilaterals. Simple confirming [10] and non-confirming [4] mixed FEMs were developed for rectangles of any

dimension. Other related work on MFEMs can be found in [4,11–14]. However, MFEMs involve more unknowns and

result in indefinite linear systems that are nontrivial to solve.

(ii) The discontinuous Galerkin (DG) finite element methods provide a different type of choices. The early efforts on

interior penalty (IP) DG methods can be found in [15,16]. These IPDG have optimal or suboptimal order convergence

in displacement depending on the polynomial types being used. In [17], Nitsche’s method was utilized to design IPDG

methods for incompressible and nearly incompressible elasticity problems on triangular meshes. These methods are

locking-free but introduce too many unknowns. A hybridizable discontinuous Galerkin (HDG) method for linear

elasticity was developed in [18]. Approximants are introduced to displacement and stress in element interiors and

their traces on the mesh skeleton in the initial formulation of the method. However, after cancellation, ‘‘the only

globally coupled degrees of freedom are those of an approximation of the displacement defined solely on the faces

of the elements’’.

(iii) The weak Galerkin (WG) methodology offers a new perspective. A family of WG finite element methods have been

developed in the primal formulation by using polynomial approximants (degree 1 or higher) on general polygonal

or polyhedral meshes [19]. Along this line, [20,21] have developed the lowest order WG methods for linear

elasticity. In other words, constant vectors are used separately in element interiors and on interelement boundaries

for approximating the displacement.

(iv) Re-using stable Stokes elements for elasticity offers another choice, due to the similarity between Stokes flow and

linear elasticity. More details on the MINI elements (on triangles) and the Bernardi–Raugel elements (on triangles

and tetrahedra) can be found in [5,22,23].

Finite element approximation on quadrilaterals and hexahedra is important in its own right [24–26]. For practical

computation, FEMs on quadrilateral and hexahedral meshes are viable alternatives to FEMs on triangular and tetrahedral

meshes, since the former usually involve less degrees of freedom and can still accommodate complicated domain

geometry. However, as commented earlier, the classical Lagrangian finite elements are subject to Poisson-locking.

Therefore, development of locking-free FEMs for linear elasticity on quadrilateral and hexahedral meshes is an important

topic in its own right [6,13,27].

In this paper, we develop a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes

based on enrichment of the classical Lagrangian Q d
1 (d = 2, 3) elements. The new method solves the primal variable

displacement in the strain–div formulation. The new solver is locking-free, as demonstrated by theoretical analysis and

numerical experiments. This new solver for elasticity was motivated by the elasticity discretization on triangles for the

Biot’s system in [23] and the Bernardi–Raugel element pair on quadrilaterals in [28], but we focus on its computational

aspect, especially an accessible deal.II implementation [29].

The rest of this paper is organized as follows. In Section 2, we first discuss enrichment of the classical Lagrangian

elements and then present our new solver for linear elasticity by utilizing the enriched elements. Section 3 presents error

analysis for this new solver and validates its locking-free property. Section 4 discusses implementation of this new solver

in deal.II. In Section 5, we present numerical results to illustrate its accuracy and locking-free property. Section 6

concludes the paper with comments on other related existing and future work.

2. An elasticity solver based on enriched Lagrangian elements

2.1. Enrichment of Lagrangian elements on quadrilaterals and hexahedra

We first consider convex quadrilaterals in two dimensions. Then we discuss cuboidal hexahedra in three dimensions

that have flat faces and hence the outward unit normal vector on each face is a constant vector.

Let E be a convex quadrilateral with vertices Pi = (xi, yi), i = 1, 2, 3, 4. Let ei be the edge connecting Pi−1 and

Pi, i = 1, 2, 3, 4. Of course, P0 is understood as P4, by the modulo convention. Let ni be the outward unit normal vector

on edge ei, i = 1, 2, 3, 4 (see Fig. 1).

Let Ê = [0, 1]2 (the unit square) be the reference element. Let (x̂, ŷ) be the reference variables. A bilinear mapping

from Ê to E is established as
{

x = a1 + a2x̂ + a3ŷ + a4x̂ŷ,

y = b1 + b2x̂ + b3ŷ + b4x̂ŷ,
(3)
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Fig. 1. Four edge-based bubble functions for a quadrilateral.

where the eight coefficients ai, bi(i = 1, 2, 3, 4) can be directly calculated using the vertex coordinates:

a1 = x1,

b1 = y1,

a2 = x2 − x1,

b2 = y2 − y1,

a3 = x4 − x1,

b3 = y4 − y1,

a4 = (x1 + x3) − (x2 + x4),
b4 = (y1 + y3) − (y2 + y4).

We first consider four scalar basis functions defined on Ê:

φ̂1(x̂, ŷ) = (1 − x̂)(1 − ŷ), φ̂2(x̂, ŷ) = x̂(1 − ŷ), (4)

φ̂3(x̂, ŷ) = x̂ŷ, φ̂4(x̂, ŷ) = (1 − x̂)ŷ. (5)

Let (x, y) ∈ E be the bilinear mapping image of (x̂, ŷ) ∈ Ê. We consider eight vector-valued Lagrangian Q1(E)
2 basis

functions on E:

φ2i−1(x, y) =

[

φ̂i(x̂, ŷ)
0

]

, φ2i(x, y) =

[

0

φ̂i(x̂, ŷ)

]

, i = 1, 2, 3, 4. (6)

Now we consider four more scalar basis functions defined on Ê:

ψ̂1(x̂, ŷ) = x̂(1 − x̂)(1 − ŷ), (7)

ψ̂2(x̂, ŷ) = x̂(1 − ŷ)ŷ, (8)

ψ̂3(x̂, ŷ) = x̂(1 − x̂)ŷ, (9)

ψ̂4(x̂, ŷ) = (1 − x̂)(1 − ŷ)ŷ, (10)

and accordingly four vector-valued edge-based bubble functions on E:

ψi(x, y) = ni ψi(x, y) = ni ψ̂i(x̂, ŷ), i = 1, 2, 3, 4. (11)

The classical Lagrangian space Q1(E)
2 is now enriched as

EQ1(E) = Q1(E)
2 + Span(ψ1,ψ2,ψ3,ψ4). (12)

Next we consider a cuboidal hexahedron E with six flat faces that is treated as a trilinear mapping image of the reference

unit cube Ê = [0, 1]3, whose six faces are identified as follows.

#1 #2 #3 #4 #5 #6

x̂ = 0 x̂ = 1 ŷ = 0 ŷ = 1 ẑ = 0 ẑ = 1
Left Right Back Front Bottom Top

The trilinear mapping is expressed as

p = (x, y, z) = p000 + pax̂ + vbŷ + vc ẑ + pdŷẑ + peẑx̂ + pf x̂ŷ + pg x̂ŷẑ, (13)
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Fig. 2. An illustration for the trilinear mapping for a general hexahedron.

where the points and vectors are defined as

pa = p100 − p000, pd = (p011 − p000) − (pb + pc),

pb = p010 − p000, pe = (p101 − p000) − (pc + pa),

pc = p001 − p000, pf = (p110 − p000) − (pa + pb),

pg = (p111 − p000) − ((pa + pb + pc) + (pd + pe + pf ))

and further explained in Fig. 2. It is interesting to note that the hexahedron E is a parallelepiped if and only if the vector

pg vanishes.

For the six faces of Ê = [0, 1]3, we define six scalar-valued bubble functions:
⎧

⎨

⎩

ψ̂1 = ŷ(1 − ŷ)ẑ(1 − ẑ)(1 − x̂), ψ̂2 = ŷ(1 − ŷ)ẑ(1 − ẑ)x̂,

ψ̂3 = x̂(1 − x̂)ẑ(1 − ẑ)(1 − ŷ), ψ̂4 = x̂(1 − x̂)ẑ(1 − ẑ)ŷ,

ψ̂5 = x̂(1 − x̂)ŷ(1 − ŷ)(1 − ẑ), ψ̂6 = x̂(1 − x̂)ŷ(1 − ŷ)ẑ.

(14)

Suppose E is a cuboidal hexahedron with six flat faces and ni(1 ≤ i ≤ 6) are the constant outward unit normal vectors

on these faces. Similarly, we define six face-based vector-valued bubble functions as follows

ψi(x, y, z) = ni ψi(x, y, z) = ni ψ̂i(x̂, ŷ, ẑ), 1 ≤ i ≤ 6. (15)

Then the classical Lagrangian space Q1(E)
3 for a cuboidal hexahedron E is enriched as

EQ1(E) = Q1(E)
3 + Span(ψ1,ψ2,ψ3,ψ4,ψ5,ψ6). (16)

Remark. For a general hexahedron, some faces may not be flat. If the distortion is not too significant, then we can use

the average of the outward normal vectors or that at the face center for a non-flat face in Eq. (15).

2.2. A new finite element scheme for elasticity based on enrichment of Lagrangian elements

In this subsection, we develop a finite element scheme for solving linear elasticity on quadrilateral and hexahedral

meshes based on enrichment of the bilinear or trilinear Lagrangian elements.

Let Ω be a polygonal or polyhedral domain equipped with a shape-regular convex quadrilateral/hexahedral mesh Eh.

Let Vh be the space spanned by the basis functions discussed in the previous subsection. Let V0
h be the subspace of Vh

consisting of those shape functions that vanish on Γ D. For v ∈ Vh, it is known that ∇ ·v is not a constant on each element

E. We shall consider its elementwise average ∇ · v.
For the elasticity boundary value problem (1), we now establish a finite element scheme in the strain–div formulation

as follows. Find uh ∈ Vh such that uh|Γ D
h
= ΠDuD and

Ah(uh, v) = Fh(v), ∀v ∈ V0
h, (17)

where

Ah(uh, v) = 2µ
∑

E∈Eh

(ε(uh), ε(v))E + λ
∑

E∈Eh

(∇ · uh,∇ · v)E, (18)

Fh(v) =
∑

E∈Eh

(f, v)E +
∑

e∈Γ N
h

⟨tN , v⟩e, (19)
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and

(ΠDuD)|e= Π̃DuD +

(∫

e

(uD − Π̃DuD) · n
/

∫

e

ψe · n

)

ψe, e ∈ Γ D
h , (20)

with Π̃D being the interpolation operator into Q1(e)
d and ψe ∈ {ψi}

2d
i=1 being the basis functions that satisfy (ψi)|e ̸= 0.

Remarks.

(i) Compared to the usual numerical scheme using the classical Lagrangian Q d
1 elements, now the finite element space

Vh used in Scheme (17)–(19) is larger.

(ii) In (18), the elementwise average of the dilation is used. In other words, the dilation is approximated by piecewise
constants. Note that the enlarged finite element space is the same as the BR1 space used in [28] for approximating
the velocity in Stokes problems, which corresponds to the piecewise constant space for approximating the pressure.

Enforcing boundary conditions. Clearly, there are two sets of basis functions: node-based and edge/face-based. Compati-
bility among these two types of functions needs to be maintained in enforcement or incorporation of boundary conditions.
Here we discuss treatments for three-dimensional problems only, since two-dimensional treatment is similar.

(i) For a Dirichlet face, one can directly enforce the displacement boundary condition at its four vertices. Then the
difference between the original Dirichlet data and the interpolant is utilized to calculate the coefficient for the face
bubble function.

(ii) For a Neumann face, integrals of the traction data against the thirteen basis functions (twelve for the four vertices
of the face, one for the face itself) are computed directly and used independently to determine the coefficients for
the respective basis functions.

Computation of numerical stress σh. This will be done elementwise. Again the elementwise average of dilation is used,
as shown below

σh = 2µε(uh) + λ∇ · uh I. (21)

3. Analysis: Accuracy and locking-free property

This section validates the locking-free property of the proposed finite element scheme while providing error analysis
for the scheme. For ease of presentation, we consider problem (1) with a homogeneous Dirichlet boundary condition on
the whole boundary.

Definition 1 (Local and Global Projection Operators). Let E be a quadrilateral or cuboidal hexahedron with vertices Pi, i =
1, 2, . . . , 2d (d = 2 or 3). We define a projection operator ΠE : H1(E)d → EQ1(E) as

ΠEv = Π̃Ev +

2d
∑

i=1

αiψi, (22)

with

Π̃Ev =

2d
∑

i=1

v(Pi)φi (23)

and

αi =

(∫

ei

(v − Π̃Ev) · ni

)

/

∫

ei

ψi · ni, 1 ≤ i ≤ 2d. (24)

Note that here φi, 1 ≤ i ≤ 2d are the classical scalar-valued Lagrangian basis functions in Q1(E) for a quadrilateral or
hexahedron. Then we define the global projection operator Πh : H1(Ω)d → Vh by

(Πhv)|E= ΠE(v|E). (25)

Accordingly, Πhv ∈ V0
h if v ∈ H1

0 (Ω)d.

Lemma 1 (Properties of the Global Projection Operator). For any E ∈ Eh, the following properties hold true

(Πhv)(Pi) = v(Pi), 1 ≤ i ≤ 2d, (26)

∇ · (v −Πhv)|E= 0. (27)
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Proof. The scalar-valued Lagrangian basis functions φi, i = 1, . . . , 2d and vector-valued basis functions ψi, i = 1, . . . , 2d

defined in Section 2 satisfy

φi(Pj) = δi,j, i, j = 1, . . . , 2d,

ψi(Pj) = 0, i = 1, . . . , 2d, j = 1, . . . , 2d,

ψi|ej = 0, i, j = 1, . . . , 2d, i ̸= j.

Since ψi(Pj) = 0 and (Π̃Ev)(Pi) = v(Pi), we have (ΠEv)(Pi) = v(Pi). It follows from the definition of ΠE that

∫

ei

(v −ΠEv) · ni =

∫

ei

(v − Π̃Ev) · ni −

∫

ei

2d
∑

j=1

αjψj · ni.

Combined with the fact that ψj|ei= 0 (i ̸= j), this implies
∫

ei

(v −ΠEv) · ni

=

∫

ei

(v − Π̃Ev) · ni −

∫

ei

αiψi · ni

=

∫

ei

(v − Π̃Ev) · ni − αi

∫

ei

ψi · ni

=

∫

ei

(v − Π̃Ev) · ni −

(∫

ei

(v − Π̃Ev) · ni

/

∫

ei

ψi · ni

)∫

ei

ψi · ni

= 0.

Therefore,

∥∇ · (v −ΠEv)∥
2 =

∑

E∈Eh

∇ · (v −ΠEv)

∫

E

∇ · (v −ΠEv)

=
∑

E∈Eh

∇ · (v −ΠEv)

∫

∂E

(v −ΠEv) · n

= 0,

which completes the proof. □

Definition 2 (Energy Norm or h-norm). Since V0
h is a subspace of H1

0 (Ω)d, the Korn’s inequality holds [1,30] with a constant

C > 0 that is independent of λ and h:

∥vh∥1 ≤ C∥ε(vh)∥, ∀vh ∈ V0
h.

And hence we can define a norm on the finite element space V0
h by

∥ · ∥2
h = Ah(·, ·). (28)

Lemma 2 (1st Order Convergence in Energy Norm). Let u ∈ H2(Ω)d be the exact solution of (1) and uh ∈ V0
h be the numerical

solution obtained from the finite element scheme (17) with a homogeneous Dirichlet boundary condition. Then

∥u − uh∥h ≤ Ch∥f∥, (29)

where C > 0 is a constant that is independent of λ, h.

Proof. Note that the regularity estimate established in [3] for the elasticity boundary value problem (1) with a

homogeneous Dirichlet boundary condition implies that

∥u∥2 + λ∥∇ · u∥1 ≤ C∥f∥. (30)

Note that there exists one constant C > 0 such that for v ∈ H1(Ω)d,

∥∇ · v∥ ≤ C∥ε(v)∥ ≤ C∥∇v∥ ≤ C∥v∥1. (31)

It follows from the definition of Πh that for any constant q on E ∈ Eh,

(∇ · v − ∇ ·Πhv, q)E = 0. (32)
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It is known [31] that the error between u and uh could be estimated as

∥u − uh∥h ≤ 2 inf
wh∈Vh

∥u − wh∥h + sup
0̸=wh∈V

0
h

|Ah(u − uh,wh)|

∥wh∥h

. (33)

It follows from (31), (32), and the projection properties that

2µ(ε(u −Πhu), ε(u −Πhu))E + λ(∇ · (u −Πhu),∇ · (u −Πhu))E

≤ 2µ∥ε(u −Πhu)∥E∥ε(u −Πhu)∥E + 0

≤ C∥u −Πhu∥1∥ε(u −Πhu)∥E

≤ Ch∥u∥H2(E)∥ε(u −Πhu)∥E .

We sum the above estimate over the mesh and apply cancellation to obtain

∥u −Πhu∥h ≤ Ch∥u∥2.

Applying the regularity estimate (30), we obtain

∥u −Πhu∥h ≤ Ch∥f∥. (34)

For the first term on the right side of (33), we use Πhu ∈ Vh to obtain

inf
wh∈Vh

∥u − wh∥h ≤ ∥u −Πhu∥h ≤ Ch∥f∥.

Next, we take a detour to handle wh ∈ Vh. We use (31), the definition of the energy norm, and the fact that µ has a
positive lower bound to obtain

∥∇ · wh∥ ≤ C∥ε(wh)∥ ≤ C∥wh∥h.

Now we return to the 2nd term on the right side of (33). Note ∇ · u denotes the elementwise average. We use (17), the
projection properties, the Cauchy–Schwarz inequality, the above estimate, the approximation capacity, and the regularity
estimate (30) to obtain

sup
0̸=wh∈V

0
h

|Ah(u − uh,wh)|

∥wh∥h

= sup
0̸=wh∈V

0
h

|Ah(u,wh) − Fh(wh)|

∥wh∥h

= sup
0̸=wh∈V

0
h

⏐

⏐λ(∇ · u − ∇ · u,∇ · wh)
⏐

⏐

∥wh∥h

≤ Chλ∥∇ · u∥1 ≤ Ch∥f∥,

which yields (29). □

Theorem 1 (1st Order Convergence in Stress and Dilation). Let u ∈ H2(Ω)d be the exact solution of (1) and uh ∈ V0
h be the

numerical solution obtained from the finite element scheme (17) with a homogeneous Dirichlet boundary condition. Let σh be
the numerical stress recovered from (21). Then

λ∥∇ · u − ∇ · uh∥ ≤ Ch∥f∥, (35)

∥σ − σh∥ ≤ Ch∥f∥, (36)

where C > 0 is a constant that is independent of λ, h.

Proof. The variational formulation for the elasticity problem (1) implies

2µ
∑

E∈Eh

(ε(u), ε(v))E + λ
∑

E∈Eh

(∇ · u,∇ · v)E = Fh(v), ∀v ∈ V0
h. (37)

For the numerical solution uh, the FE scheme (17) can be rewritten as

2µ
∑

E∈Eh

(ε(uh), ε(v))E + λ
∑

E∈Eh

(∇ · uh,∇ · v)E = Fh(v), ∀v ∈ V0
h. (38)

Subtracting (38) from (37) gives

λ
∑

E∈Eh

(∇ · u − ∇ · uh,∇ · v)E = −2µ
∑

E∈Eh

(ε(u − uh), ε(v))E . (39)

Recall ∇ · u is an elementwise average (see Lemma 2 proof). From the fact that u|∂Ω= 0, we obtain
∫

Ω

∇ · u =
∑

E∈Eh

∫

E

∇ · u =
∑

E∈Eh

∫

E

∇ · u =

∫

Ω

∇ · u =

∫

∂Ω

u · n = 0,
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which implies ∇ · u ∈ L20(Ω). Similarly, uh|∂Ω= 0 implies ∇ · uh ∈ L20(Ω). Thus, ∇ · u − ∇ · uh ∈ L20(Ω). By [1] Lemma

11.2.3, there exists w ∈ H1
0 (Ω)d such that

∇ · w = ∇ · u − ∇ · uh, (40)

∥w∥1 ≤ ∥∇ · u − ∇ · uh∥. (41)

Now we use (39) and (32) with v = Πhw ∈ V0
h to obtain

λ∥∇ · u − ∇ · uh∥
2
E

= λ(∇ · u − ∇ · uh,∇ · u − ∇ · uh)E

= λ(∇ · u − ∇ · uh,∇ · w)E

= λ(∇ · u − ∇ · uh,∇ ·Πhw)E

= λ(∇ · u − ∇ · uh,∇ ·Πhw)E − λ(∇ · u − ∇ · u,∇ ·Πhw)E

= 2µ(ε(uh − u), ε(Πhw))E − λ(∇ · u − ∇ · u,∇ ·Πhw)E . (42)

Applying the Cauchy–Schwarz inequality, (31), and the projection properties, we obtain

2µ(ε(uh − u), ε(Πhw))E

≤ C∥ε(uh − u)∥E∥Πhw∥H1(E)

≤ C∥ε(uh − u)∥E(∥Πhw − w∥H1(E) + ∥w∥H1(E))

≤ C∥ε(uh − u)∥E∥w∥H1(E). (43)

Similarly, we have

λ(∇ · u − ∇ · u,∇ ·Πhw)E ≤ Cλh∥∇ · u∥H1(E)∥w∥H1(E). (44)

Applying (42), (43), and (44) on the whole mesh, we obtain

λ∥∇ · u − ∇ · uh∥
2 =

∑

E∈Eh

λ∥∇ · u − ∇ · uh∥
2
E

≤
∑

E∈Eh

2µ(ε(uh − u), ε(Πhw))E −
∑

E∈Eh

λ(∇ · u − ∇ · u,∇ ·Πhw)E

≤
∑

E∈Eh

C∥ε(uh − u)∥E∥w∥H1(E) +
∑

E∈Eh

Cλh∥∇ · u∥H1(E)∥w∥H1(E)

≤ C(∥uh − u∥h + hλ∥∇ · u∥1)∥w∥1

≤ C(∥uh − u∥h + hλ∥∇ · u∥1)∥∇ · u − ∇ · uh∥,

which gives, by cancellation,

λ∥∇ · u − ∇ · uh∥ ≤ C(∥uh − u∥h + hλ∥∇ · u∥1).

By a triangle inequality and approximation capacity, we have

λ∥∇ · u − ∇ · uh∥ ≤ λ∥∇ · u − ∇ · u∥ + λ∥∇ · u − ∇ · uh∥
≤ C(hλ∥∇ · u∥1 + ∥uh − u∥h) ≤ Ch∥f∥.

For the last step, the regularity of the exact solution has also been used.
Finally, by (21), (31), (35), (30), and the projection properties, we have

∥σ − σh∥ = ∥2µε(u) + λ(∇ · u)I − 2µε(uh) − λ∇ · uhI∥

≤ 2µ∥ε(u − uh)∥ + dλ∥∇ · u − ∇ · uh∥

≤ C∥u − uh∥1 + Ch∥f∥

≤ Ch∥u∥2 + Ch∥f∥

≤ Ch∥f∥,

which proves (36). □

Theorem 2 (2nd Order Convergence in Displacement). Let u ∈ H2(Ω)d be the exact solution of (1) and uh ∈ V0
h be the

numerical solution obtained from the finite element scheme (17) with a homogeneous Dirichlet boundary condition. Then

∥u − uh∥ ≤ Ch2∥f∥, (45)

where C > 0 is a constant that is independent of λ, h.
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Proof. We apply a duality argument. Assume ζ ∈ H2(Ω)d is the solution to the following dual problem

−∇ · (2µε(ζ) + λ(∇ · ζ)I) = u − uh, in Ω,

ζ = 0, on ∂Ω.

It follows from [3] that

∥ζ∥2 + λ∥∇ · ζ∥1 ≤ C∥u − uh∥. (46)

Using the fact that (u − uh)|∂Ω= 0, we obtain

∥u − uh∥
2 = (−∇ · (2µε(ζ) + λ(∇ · ζ)I),u − uh)

= A(ζ,u − uh),

where for convenience we have defined

A(ζ,u − uh) = 2µ(ε(ζ), ε(u − uh)) + λ(∇ · ζ,∇ · (u − uh)).

Next, we apply the usual technique to split ∥u − uh∥
2 as three terms:

∥u − uh∥
2 =

(

A(ζ,u − uh) − Ah(ζ,u − uh)
)

+Ah(ζ −Πhζ,u − uh) + Ah(Πhζ,u − uh)

=: T1 + T2 + T3 (47)

and conduct estimation for each term.
For term T1, we apply (29), (46), and the projection properties to obtain

A(ζ,u − uh) − Ah(ζ,u − uh)

= 2µ (ε(ζ), ε(u − uh)) + λ (∇ · ζ,∇ · (u − uh))

−2µ (ε(ζ), ε(u − uh)) − λ (∇ · ζ,∇ · (u − uh))

= (λ(∇ · ζ − ∇ · ζ),∇ · (u − uh))

≤ Chλ∥∇ · ζ∥1∥ε(u − uh)∥

≤ Chλ∥∇ · ζ∥1∥u − uh∥h

≤ Ch2∥f∥∥u − uh∥. (48)

For term T2, we apply (29), (46), and the projection properties again to obtain

Ah(ζ −Πhζ,u − uh)

= 2µ(ε(ζ −Πhζ), ε(u − uh)) + λ(∇ · (ζ −Πhζ),∇ · (u − uh))

≤ Ch∥ζ∥2∥u − uh∥h

≤ Ch2∥f∥∥u − uh∥. (49)

To estimate T3, we test (1) with Πhζ and use (Πhζ)|∂Ω= 0 to derive

Fh(Πhζ) = 2µ(ε(u), ε(Πhζ)) + λ(∇ · u,∇ · (Πhζ)).

Then we combine (30), (46), and the projection properties to obtain

Ah(Πhζ,u − uh)

= Ah(Πhζ,u) − Fh(Πhζ)

= λ(∇ · u,∇ · (Πhζ)) − λ(∇ · u,∇ · (Πhζ))

= λ((∇ · u − ∇ · u),∇ · (Πhζ) − ∇ · (Πhζ))

≤ Ch2λ∥∇ · u∥1∥ζ∥2

≤ Ch2∥f∥∥u − uh∥. (50)

Finally a combination of (47)–(50) leads to the desired result (45). □

Remarks. For Theorems 1 and 2, if we consider general boundary conditions, then the right-hand sides of these error
estimates should be revised to

∥f∥ + ∥uD∥
H

3
2 (Γ D)

+ ∥tN∥
H

1
2 (Γ N )

.

For a particular problem, each of these three terms may or may not depend on λ. These norms may go large or stay
bounded as λ goes large.
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4. Implementation in deal.II

The new solver developed in this paper applies to linear elasticity problems in both two and three dimensions.

Interestingly, it can be implemented in a dimension-independent way on the deal.II platform. In addition, we have

also Matlab implementation for its two-dimensional version and the code modules are included in our own package

DarcyLite. This provides additional mutual verification for our code implementation.

deal.II is a popular C++ finite element package for solving partial differential equations [29]. It uses quadrilateral and

hexahedral meshes but does not support simplicial (triangular or tetrahedral) meshes. The former involve less degrees

of freedom in general. If needed, we can refine a triangular or tetrahedral mesh into a quadrilateral or hexahedral mesh,

respectively [32].

deal.II supports a dimension-independent programming paradigm through use of template functions, so implemen-

tation of the enriched Lagrangian Q1 elements (also named as BR1 elements) was accomplished through writing a new

shape function class and finite element class

PolynomialsBernardiRaugel<dim>
FE_BernardiRaugel<dim>

using template functions with dimension as a template parameter. The finite element class is a derived class of

FE_PolyTensor<PolynomialType, dim, spacedim>

We will refer to these classes without their template parameters for convenience. This finite element was released as a

part of deal.II Version 9.1.

On the reference square, each shape function in (6) is constructed as a tensor product of univariate Lagrangian shape

functions in each component. This allows us to take advantage of the class Polynomials::LagrangeEquidistant,
from which we define two polynomials p0(t) = 1 − t and p1(t) = t so that

φ̂1(x̂, ŷ) = p0(x̂)p0(ŷ), φ̂2(x̂, ŷ) = p1(x̂)p0(ŷ),

φ̂3(x̂, ŷ) = p1(x̂)p1(ŷ), φ̂4(x̂, ŷ) = p0(x̂)p1(ŷ).

Here we refer to the shape functions in the same clockwise order for consistency with (6), but deal.II orders vertices

and faces lexicographically. Each of the polynomials φi are multiplied by R
2 standard basis vectors [1, 0]T or [0, 1]T to

yield the φi shape functions for Q 2
1 . The construction of Q 3

1 basis functions is similar.

The bubble functions are constructed via the

Polynomials::LagrangeEquidistant

class as well, but with the addition of a third polynomial p2(t) = 4t(1 − t). The bubble functions in (11) are constructed

without the factor 4 so that

ψ̂1(x̂, ŷ) = p2(x̂)p0(ŷ), ψ̂2(x̂, ŷ) = p1(x̂)p2(ŷ),

ψ̂3(x̂, ŷ) = p2(x̂)p1(ŷ), ψ̂4(x̂, ŷ) = p0(x̂)p2(ŷ).

In deal.II, these are arranged in the lexicographical order of faces and normalized to a maximum value of 1. Each shape

function is then multiplied by the corresponding normal vector. This construction has been extended to the unit cube also.

The unit square and cube are mapped to quadrilaterals and hexahedra via bilinear and trilinear mappings, see, e.g., Fig. 2

and Eq. (13). The shape functions discussed in Section 2.1 are evaluated using the mappings from the unit square and cube

to quadrilaterals and hexahedra accordingly. The vector fields for bubble functions on the distorted mesh in Example 4

are mapped to the physical cell via the Piola transformation; however, we plan to update deal.II to override the

fill_fe_values function. This would involve calling the base implementation in the FE_PolyTensor class by the

derived FE_BernardiRaugel class and then adjusting the bubble function vector field to use the normal vector of the

physical cell so that

ψi(x) = n⃗iψ̂i(x̂).

This further improvement is planned to appear in deal.II Version 9.3.

Computation of finite element quantities, e.g., local stiffness matrices, involves the Jacobian matrix and determinant,

especially the transpose of the inverse of the Jacobian matrix. The Jacobian determinant and quadrature weights are

combined by deal.II into a single function call for simplicity, denoted as JxW, since it depends on the quadrature points

only. This reduces the work required by the user when computing the discrete bilinear form. The following code computes

elementwise averages of divergence of displacement.
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for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int q_i = 0; q_i < n_q_points; ++q_i)
{
avg_div[i] += fe_values[displacement].divergence(i,q_i)

*fe_values.JxW(q_i) / cell->measure();
}

The following code computes the bilinear form for the elasticity problem.

for (unsigned int q_i = 0; q_i < n_q_points; ++q_i)
for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
{
const Tensor<2, dim> grad_phi_i =
fe_values[displacement].symmetric_gradient(i,q_i);

const Tensor<2, dim> grad_phi_j =
fe_values[displacement].symmetric_gradient(j,q_i);

cell_matrix(i,j) +=
(2. *Ex.mu *scalar_product(grad_phi_i,grad_phi_j)
+ Ex.lambda *avg_div[i] *avg_div[j])

*fe_values.JxW(q_i);
}

The bilinear form for our elasticity solver based on the enriched Lagrangian elements is symmetric positive-definite
(SPD). The global discrete system is therefore solved by a conjugate-gradient type linear solver in deal.II after the
constrained degrees of freedom are condensed out of the sparse system. Multigrid preconditioning methods have potential
to reduce the linear solver iterations, but this will be a topic of future investigation.

Data visualization is accomplished by postprocessing the linear system coefficients and then projecting them into the
Q0(E)

d space. The postprocessed data is then saved by deal.II to a .vtk file that can be visualized with ParaView or
VisIt. For this paper, we used VisIt.

5. Numerical experiments

This section presents numerical experiments to demonstrate accuracy and robustness of our new solver for linear
elasticity.

Example 1 (Locking-Free). This example is directly taken from [19] (Section 9.3 therein). It has also been tested in [20,21].
Specifically, the domain is Ω = (0, 1)2, a Neumann boundary condition is posed on the right boundary of the
domain, whereas the other three sides have Dirichlet boundary conditions derived from a known analytical solution for
displacement

u(x, y) =

[

sin(x) sin(y)
cos(x) cos(y)

]

+
1

λ

[

x

y

]

. (51)

Here the first term is divergence-free, but the second term provides a constant divergence (2/λ). Clearly, ∇ · u → 0 as
λ → ∞. But µ = 0.5 is fixed.

The results in Table 1 indicate that the Lagrangian Q 2
1 finite element method for linear elasticity on rectangular meshes

is subject to Poisson-locking. When λ = 1, the errors in displacement, stress, and dilation exhibit 2nd, 1st, and 1st order
convergence, respectively. But when λ = 106, there is no convergence in the displacement errors.

However, the results in Table 2 demonstrate that the new method based on the enriched Lagrangian elements (EQ1)
is locking-free. As λ is increased from 1 to 106, the convergence rates in displacement and stress (relative errors) are
maintained as 2nd order and 1st order, respectively. The convergence rate in dilation errors is actually better than the
theoretical estimate 1st order. This may be related to the fact that the exact dilation is a constant.

In addition, we have also tested other analytical examples in the literature, e.g., [33] (p.134 therein) and [14] (p.997
therein). Our numerical results demonstrate the locking-free property of our solver and its optimal 2nd order convergence
in displacement, 1st order in stress, and 1st order in dilation. However, the details are omitted due to page limitation.

Example 2 (Cook’s Membrane). For this test case, the domainΩ is a trapezoid that connects the four vertices (0, 0), (48, 44),
(48, 60), and (0, 44).
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Table 1

Example 1: CG.Q 2
1 on rectangular meshes suffers Poisson-locking.

1/h ∥u − uh∥ Rate ∥σ − σh∥ Rate ∥∇ · u − ∇ · uh∥ Rate

λ = 1

8 2.1169e−03 – 6.5673e−02 – 2.7993e−02 –

16 5.2969e−04 1.99 3.2859e−02 0.99 1.4010e−02 0.99

32 1.3244e−04 1.99 1.6432e−02 0.99 7.0066e−03 0.99

64 3.3111e−05 2.00 8.2166e−03 0.99 3.5035e−03 0.99

128 8.2777e−06 2.00 4.1083e−03 1.00 1.7518e−03 0.99

λ = 106

8 4.7193e−03 – 3.9423e+04 – 2.7876e−02 –

16 3.7879e−03 0.31 1.9728e+04 0.99 1.3949e−02 0.99

32 3.6288e−03 0.06 9.8659e+03 0.99 6.9763e−03 0.99

64 3.5810e−03 0.01 4.9332e+03 0.99 3.4883e−03 0.99

128 3.5145e−03 0.02 2.4667e+03 0.99 1.7442e−03 0.99

Table 2

Example 1: CG.EQ1 on rectangular meshes is locking-free.

1/h ∥u − uh∥/∥f∥ Rate ∥σ − σh∥/∥f∥ Rate λ∥∇ · u − ∇ · uh∥/∥f∥ Rate

λ = 1

8 2.3044e−03 – 3.6811e−02 – 1.0862e−03 –

16 5.7523e−04 2.00 1.8212e−02 1.01 3.0293e−04 1.84

32 1.4377e−04 2.00 9.0616e−03 1.00 8.2803e−05 1.87

64 3.5945e−05 1.99 4.5204e−03 1.00 2.2325e−05 1.89

128 8.9875e−06 1.99 2.2577e−03 1.00 5.9596e−06 1.90

λ = 106

8 2.5437e−03 – 3.7236e−02 – 3.9230e−03 –

16 6.3700e−04 1.99 1.8283e−02 1.02 1.1226e−03 1.80

32 1.5943e−04 1.99 9.0727e−03 1.01 3.1295e−04 1.84

64 3.9886e−05 1.99 4.5220e−03 1.00 8.5603e−05 1.87

128 9.9807e−06 1.99 2.2579e−03 1.00 2.2944e−05 1.89

Table 3

Poisson’s ratio (ν) values of commonly seen materials.

Material ν Material ν

Concrete 0.1 – 0.2 Rubber 0.4999

Copper 0.33 Saturated clay 0.40 – 0.49

Foam 0.1 – 0.5 Stainless steel 0.30 – 0.31

The left side is clamped, namely, we have a displacement boundary condition uD = [0, 0]T for x = 0. The right side has
a vertical traction with a total load 1, in other words, there is a traction boundary condition tN = [0, 1

16
]T pointwise for

x = 48. There is no body force, i.e., f = [0, 0]T . The elasticity modulus is E = 1 but the Poisson’s ratio ν varies. There is no
known analytical solution for this problem. This example has been frequently tested [5,34], see Fig. 3 for an illustration.

For this example, it is natural to use quadrilateral meshes that respect the domain geometry. We use both the
classical Lagrangian elements Q 2

1 and the enriched elements EQ1 in the continuous Galerkin framework. After a numerical
displacement is obtained, the numerical dilation and stress are calculated ad hoc. To compare the performances of these
two finite element solvers, we choose ν as 0.33, 0.49, or 0.4999. As shown in Table 3, these mimic elastic materials of
copper, saturated clay, and rubber, respectively.

Figs. 4 and 5 present profiles of numerical displacement, dilation, and shear stress σxy obtained from using CG.Q 2
1 and

CG.EQ1 on a 32×32 quadrilateral mesh. It is obvious that for CG.Q 2
1 , all these three quantities start to behave suspiciously

(see the right column of each figure), as ν approaches 0.5, or the material becomes nearly incompressible. However, for
CG.EQ1, all these three quantities are reasonably correct (see the left column of each figure), as reflected by the following
observations: Regardless of the Poisson’s ratio (ν value) of the material, due to the mechanical conditions (displacement
and traction data, and no body force),

(i) Around the top-left corner, the elastic body is squeezed the most, i.e., the dilation ∇·u is negative and has the largest
magnitude;

(ii) The body is stretched the most near the bottom side, that is, ∇ · u > 0 with the largest magnitude.

Example 3 (A Cantilever Beam). For this frequently tested example, we consider a rectangular beam that has length a,
height b, and unit thickness. The beam is subject to a couple at one end and a linearly varying load with magnitude F at
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Fig. 3. Example 2 (Cook’s membrane): Problem illustration.

Fig. 4. Example 2 (Cook’s membrane): Numerical displacement and dilation obtained from using CG.EQ1 (left column) and CG.Q 2
1 (right column) on

a 32× 32 quadrilateral mesh. Top row: ν = 0.33 (copper); Middle row: ν = 0.49 (saturated clay); Bottom row: ν = 0.4999 (rubber). As ν approaches

0.5, CG.Q 2
1 results become suspicious but CG.EQ1 results are correct.
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Fig. 5. Example 2 (Cook’s membrane): Numerical shear stress σ
xy

h obtained from using CG.EQ1 (left column) and CG.Q 2
1 (right column) on a 32 × 32

quadrilateral mesh. Top row: ν = 0.33; Middle row: ν = 0.49; Bottom row: ν = 0.4999. As ν approaches 0.5, CG.Q 2
1 results become suspicious but

CG.EQ1 results are correct.

Fig. 6. Example 3 (A cantilever beam): A beam with length a and height b is coupled at the left end and subject to a linearly varying load at the

right end.

the free end, as shown in Fig. 6. Along the edge x = 0, the horizontal displacement is zero. At the lower-left corner (also

the origin) and the upper-left corner, the vertical displacement is also zero. In other words,

u1|x=0= 0, u|(0,0)= u|(0,b)= 0, tN |x=a=

[

2y − b

b
F

0

]

. (52)
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Table 4

Example 3: A cantilever beam solved by CG.EQ1: Errors and convergence rates for (10n)×n

rectangular meshes.

n ∥u − uh∥ Rate ∥σ − σh∥ Rate max(σ xx
h )

ν = 0.4

4 1.5241e−02 – 9.0535e−01 – 3.8519

8 3.7399e−03 2.02 4.5553e−01 0.99 4.4211

16 9.3084e−04 2.00 2.2810e−01 0.99 4.7105

32 2.3247e−04 2.00 1.1409e−01 0.99 4.8552

64 5.8093e−05 2.00 5.7053e−02 0.99 4.9276

ν = 0.49999

4 1.7020e−2 – 1.1392e+00 – 3.8787

8 4.1565e−3 2.03 5.7035e−01 0.99 4.4336

16 1.0333e−3 2.00 2.8524e−01 0.99 4.7167

32 2.5787e−4 2.00 1.4263e−01 0.99 4.8583

64 6.3857e−5 2.01 7.1316e−02 0.99 4.9292

Fig. 7. Example 3 (A cantilever beam) with ν = 0.499: Numerical normal stress σ xx
h and deformation obtained from applying CG.EQ1 on a 80 × 8

rectangular mesh.

We ignore the beam’s own weight, so there is no body force exerting on the beam, i.e., f = 0. It is known [5,12] that the

exact solution for displacement is u = [u1, u2]
T with

u1(x, y) = Ax(2y − b), u2(x, y) = −Ax2 + By(b − y), (53)

where

A =
1 − ν2

E

F

b
, B =

ν

1 − ν
A. (54)

Obviously,

∇ · u =
(1 − 2ν)(1 + ν)

E

F

b
(2y − b). (55)

So the upper half of the beam (y > b/2) is stretched, whereas the lower half (y < b/2) is compressed. Moreover, ∇·u → 0

as ν → 1
2
. It is also clear by direct calculations that

σxx = (2µA + λ(A − B))(2y − b) =
F

b
(2y − b), σyy = σxy = σyx = 0. (56)

Hence the maximum of the normal stress in the x-direction is max(σxx) = F .

An interesting phenomenon in this example is that many quantities, e.g., displacement u and stress σ , are actually

independent of the beam length a.

Note also that our description for the cantilever beam is slightly different than what is commonly seen in the literature

(up to a negative sign) but looks more reasonable for simulating a bending-down beam.

For numerical experiments, we set a = 10, b = 1, E = 1000, F = 5 but vary ν among 0.4, 0.499, and 0.49999. We

use a family of uniform rectangular meshes with (10n) × n elements, where n = 4, 8, 16, 32, 64, respectively. Shown in

Table 4 are the errors in displacement, stress, and dilation obtained from applying the CG.EQ1 method. The convergence

rates are respectively 2nd, 1st, and 1st order, as expected, regardless of the value of the Poisson’s ratio ν. The maximum

of the numerical normal stress max(σ xx
h ) approaches the analytical value 5.0, and the convergence rate is also 1st order.

Shown in Fig. 7 are the profiles of the numerical normal stress σ xx
h and deformation (determined by displacement

nodal values) obtained from applying the EQ1 solver developed in this paper on a 80 × 8 rectangular mesh. In this case,

ν = 0.499, one can clearly observe the symmetry of the numerical stress σ xx
h across the middle line y = 1

2
and the

downward bending in the beam, due to the linearly varying load on the right (free) end.
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Table 5

Example 4: CG.EQ1 convergence rates for slightly distorted hexahedral meshes.

1/h ∥u − uh∥ Rate ∥σ − σh∥/∥f∥ Rate λ∥∇ · u − ∇ · uh∥/∥f∥ Rate

λ = 1

4 8.7462e−02 – 1.1379e−01 – 3.3496e−02 –

8 2.3135e−02 1.91 5.5831e−02 1.02 1.7069e−02 0.97

16 5.9074e−03 1.96 2.7713e−02 1.01 8.5971e−03 0.98

32 1.4671e−03 2.00 1.3788e−02 1.00 4.3071e−03 0.99

λ = 103

4 1.7364e−02 – 1.9304e−01 – 1.1127e−01 –

8 4.5972e−03 1.91 9.9476e−02 0.95 5.6893e−02 0.96

16 1.1970e−03 1.94 5.0429e−02 0.98 2.8514e−02 0.99

32 3.0264e−04 1.98 2.5346e−02 0.99 1.4264e−02 0.99

Fig. 8. Example 4 (Slightly distorted hexahedral meshes): Elasticity of a cylindrical sector (λ = 103) solved by CG.EQ1 . Left panel: Profile of numerical

displacement z-component (with mesh) for h = 1/16; Right panel: Profile of numerical normal stress σ
yy

h (with mesh) for h = 1/16.

Example 4 (Elasticity on a Cylindrical Domain). Here we consider a cylindrical sector described by

Ω = {(r, θ, z) : r ∈ (1, 2), θ ∈ (0, π/2), z ∈ (0, 1)} .

An analytical solution for displacement is specified as

u = A

⎡

⎣

xz

yz

−z2

⎤

⎦ +
B

λ

⎡

⎣

x2

y2

z2

⎤

⎦ ,

where A > 0, B > 0 are constants. The dilation is ∇ · u = 2(x + y + z)B/λ so that ∇ · u → 0 as λ → ∞. The stress and

body force are derived accordingly. A displacement boundary condition is posed on all boundary faces.

For numerical experiments, we fix A = 1, B = 1, µ = 1, but vary λ to test the locking-free property of this new

solver. The numerical results for this example were produced using our deal.II code. We have tested both uniform

hexahedral meshes (similar to those used in [32]) and slightly distorted hexahedral meshes. For the latter, we use smooth

perturbations of the cylindrical coordinates of the former. Specifically, if the coordinates of the nodes in a uniform mesh
are (r̂, θ̂ , ẑ), then the coordinates of the nodes in the slightly distorted mesh are given as

⎧

⎨

⎩

r = r̂ + 0.02 sin(3π (r̂ − 1)) cos(6θ̂ ) cos(3π ẑ),

θ = θ̂ + 0.02 cos(3π (r̂ − 1)) sin(6θ̂ ) cos(3π ẑ),

z = ẑ + 0.02 cos(3π (r̂ − 1)) cos(6θ̂ ) sin(3π ẑ).

(57)

Convincing numerical results have been obtained for both types of meshes. Due to page limitation, we focus on the latter.

As shown in Table 5, the absolute or relative errors in displacement, stress, and dilation exhibit 2nd, 1st, and 1st order

convergence, respectively, regardless of the values of λ. In Fig. 8 generated with the visualization software VisIt [35],

the profile of numerical normal stress σ
yy

h exhibits linear variation as expected.
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6. Concluding remarks

In this paper, we have developed a new finite element solver for linear elasticity on quadrilateral and hexahedral
meshes based on enrichment of the classical Lagrangian Q 2

1 or Q 3
1 elements by edge/face-based bubble functions. This new

solver is locking-free, as validated by the theoretical analysis in Section 3 and the numerical experiments on benchmarks,
e.g., Cook’s membrane and a cantilever beam, in Section 5.

This new solver has been implemented in different forms: (i) In Matlab for two-dimensional elasticity problems, the
code modules are included in our own package DarcyLite; (ii) In C++ for both two-dimensional and three-dimensional
elasticity problems in the so-called dimension-independent paradigm, the code modules are included in the popular FEM
package deal.II. We intend to make this new solver freely accessible to the scientific computing community.

Different than the mixed, HDG, IPDG finite element methods for linear elasticity, our new method is a CG type method.
It is a locking-free method in the primal formulation, resulting in a symmetric positive-definite linear system that is easy
to solve. However, the recovered numerical stress does not have the strong continuity that is built in the construction of
some mixed methods.

As is well known, the classical Lagrangian Q 2
1 or Q 3

1 elements suffer Poisson-locking when used for solving elasticity
problems [1,2]. The results in this paper have demonstrated that we obtain a new locking-free elasticity solver by
appropriately enriching those classical Q d

1 (d = 2, 3) spaces. This echoes our early efforts in [36]. It is known that the
Lagrangian P1 or Q1 elements are not locally mass-conservative when used for solving the Darcy equation. However,
in [36], we have demonstrated theoretically and numerically that we obtain new locally mass-conservative Darcy solvers
by simply enriching the classical P1 or Q1 spaces with elementwise constants.

In the bilinear form defined in (18), the treatment of the dilation term may be interpreted as reduced integration, as
done in [3]. Such techniques date back to [37]. Here it is actually more convenient to understand it as a mimicry of
matching the EQ1 or BR1 space (for displacement) to the constant space Q0 (for the pseudo-pressure).

Our numerical solver is motivated by the Stokes element pair (BR1,Q0) on quadrilaterals [28]. But we are not directly
using the (BR1,Q0) element pair. We are solving for only the displacement and the scheme (17) is in the primal
formulation.

The two-dimensional version of this new elasticity solver has also been combined with a two-dimensional Darcy
solver based on the novel weak Galerkin methodology for development of a new poroelasticity solver [38], which was
implemented in Matlab. The promising numerical results in [38] have demonstrated potentials for reviving the 2-field
approach for poroelasticity, which calls for further development and analysis of efficient solvers. This is currently under
our investigation and will be reported in our future work.

Extension to higher order is possible. This shall involve bubble functions similar to those used in [23] and reduced
integration techniques [37]. Implementation of these higher order solvers on open-access platforms are undoubtedly
useful. These will be our future work.
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