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The roll-out of stochastic renewable energy sources (RES) undermines the efficiency of power system and market
operations. This paper proposes an approach to derive electricity prices that internalize RES stochasticity. We
leverage a chance-constrained AC Optimal Power Flow (CC AC-OPF) model, which is robust against RES un-
certainty and is also aware of the resulting variability (variance) of the system state variables. Using conic

duality theory, we derive and analyze energy and balancing reserve prices that internalize the risk of system
limit violations and the variance of system state variables. We compare the risk- and variance-aware prices on

the IEEE 118-node testbed.

1. Introduction

Power systems and electricity markets struggle to accommodate the
massive roll-out of renewable energy sources (RES), which are sto-
chastic in nature and impose additional risks on the system operations
and market-clearing decisions. The current industry practice to mitigate
these risks is based on procuring additional reserves, which are selected
based on exogenous and often ad-hoc policies (e.g., 95-percentile rule
in ERCOT, [1], or (5+7) rule in CAISO, [2]).

Alternatively, such risk assessments can be carried out en-
dogenously, i.e. while optimizing operational and market-clearing de-
cisions, using high-fidelity prediction and historical data para-
meterizing the RES stochasticity. Bienstock et al. [3] proposed a risk-
aware approach to solving an Optimal Power Flow (OPF) problem that
uses chance constraints (CC) to internalize the RES stochasticity and
risk tolerance of the system operator to violating system constraints.
Since [3], the CC-OPF has been shown to scale efficiently for large
networks [4], accommodate various assumptions on the RES stochas-
ticity (e.g. parametric distributions and distributional robustness)
[4-6], as well as to accurately account for AC power flow physics, [7,8].
However, this framework has primarily been applied to risk-aware
operational planning in a vertically integrated environment, neglecting
market considerations. From a market design perspective, RES sto-
chasticity has been primarily dealt with using scenario-based stochastic
programming, e.g. [9-11], which is more computationally demanding
than chance constraints, [3].

With the exception of our recent work in [12,13], chance con-
straints have so far been overlooked in electricity pricing applications.
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The chance-constrained market design proposed in [13] leads to a
stable robust equilibrium that, unlike scenario-based approaches in
[9-11], guarantees desirable market properties, i.e. welfare max-
imization, revenue adequacy and cost recovery, under various as-
sumptions on the RES stochasticity. Therefore, the resulting energy and
reserve prices make it possible to better approximate real-time oper-
ating conditions for look-ahead dispatch applications, thus improving
consistency between look-ahead and real-time stages. However, [13]
neglects network constraints, an important modeling feature for real-
life market applications.

This paper uses a chance-constrained AC OPF (CC AC-OPF) from [7]
to derive network-aware electricity prices that internalize the RES
stochasticity with the intention to produce more accurate signals to
market participants. This convex formulation allows the use of duality
theory to derive risk-aware marginal-cost-based prices, which are si-
milar to traditional deterministic locational marginal prices (LMPs)
based on linear duality, [14]. Furthermore, the CC AC-OPF can ex-
plicitly consider reactive power and voltage support services and ana-
lyze their role in the deliverabilty of active power, thus supporting the
design of a more “complete” electricity market, [15,16]. Completing
the market by allowing all assets and services (active and reactive
power, reserve capacity, transmission and voltage support) to be
transacted, [16], makes it possible to co-align technical needs and re-
quirements imposed by the physical aspects of power system operations
and price signals received by market participants. We also extend the
CC AC-OFPF to follow a variance-aware dispatch paradigm, introduced in
[17], to compute variance-aware prices and analyze the relationship
between the system cost, risk and variance.
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2. Model formulation

This paper builds on the AC-CCOPF model presented in [7] with
model assumptions and modifications explained below.

2.1. Preliminaries

Consider a transmission network with set of nodes N, set of lines £,
set of generators G and set of renewable generators U (e.g. wind or
commercial solar farms). For simplicity of notation, we assume that
each node hosts one conventional and one renewable generator, such
that G = U = N. We denote the set of PQ and PV nodes as
NP NPV c N and index reference (0V) node asi = ref. Nodes without
generation or with more than one generator can be handled by setting
the generation limit to zero or by changing notations, respectively; both
modification will not affect the proposed method. Let vectors ps in-
dexed as pg,;, pp indexed as pp;, and py indexed as py;, denote the total
active power output of conventional generators, the total active power
demand and the active power injections from renewable generation at
every node. The corresponding reactive power injections are denoted
ds qp, qu and the resulting vectors of net active and reactive power
injections are thus given by:

P =Pz —Pp * Py> (1a)
q=4; —qp t+ qy. (1b)

In the following, we assume that there is no curtailment of renew-
able generation and that that all loads pp, are fixed. We denote v and 6,
indexed as v; and 6,, as the vectors of voltage magnitudes and voltage
angles. The range of feasible voltage magnitudes is given as v € [V,
V™). Each line in £ is a tuple ij denoting its connected nodesi, j € N.
For simplicity, we assume a single line between two nodes. Vectors f°
and f? indexed as j;f and qu denote the active and reactive power flows
from node i to node j. Note that ff # f? and f # /1 due to power losses
on the line. The vector of apparent power flow limits is denoted as s™,

indexed by s;"**. We summarize the physical relationship between p, g,
£, f, vand 0 as
F(p,q,v,0) =0, (2)

where F(p, q, v, 6) are the non-linear, non-convex AC power flow
equations, [7, Eq. (2)].

2.2. Uncertain power injections

We model the real-time deviations from the forecasted renewable
active power generation py by the random vector w, indexed by w;, so
that the real-time injection from uncertain renewable sources is given
by py (w) = p;; + w. The expected value and covariance matrix of w are
given by F[w]=0 and Var[w] =% and we write Q =e¢'w and
S? = ¢"Xe, where e is the vector of ones. The corresponding uncertain
reactive power qy(w) is linked to the active power generation through a

constant power factor cos¢; ie. gy (@) =qy; + %w, where
/1—cos¢; . - X .
% =%(;¢‘ can either be optimized or fixed in advance. Vector y
L

collects all .
2.3. System response

To mitigate the effects of w, the controllable generators adjust their
output pg(w) and gs(w) to maintain the active and reactive power
balance. Subsequently, system state variables v(w), 8(w), f(w), fi(w)
will respond to those changes based on the system controls and their
physical relationship F(p(w), q(w), v(w), 8(w)) = 0.

As in [3,7,18] the response of each generator is given by partici-
pation factors 0 < @; < 1 that represent the relative amount of the
system-wide forecast error (Q) that the generator at node i has to
compensate for. Therefore, the real-time active power output of each
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generator is:
pG,i(w) =Dg;i — a;Q, 3)

and we require ), _ 5 % = 1 to balance the system. Vector a collects all
a;, i € G. The response of reactive power generation qg (), voltage
magnitudes v{(w) and voltage angles 6,(w) is determined by the type of
node i. At PV nodes v(w)=v,Vie N, is controlled and
g (@), 6i(w), Vi€ NV, are implicitly determined by power flow
equations F(p, g, v, 6). Similarly, at PQ nodes qg (@) = qg;, Vi € N7,
is controlled and v;(w), 6;(w), ¥V i € N9, are implicitly determined by
power flow equations F(p, g, v, 6). Finally, at the OV node vy (w) = vys
and B,s(w) = 0. Thus, active and reactive power response at the OV
node is also determined implicitly by power flow equations F(p, g, v, 6).
The resulting active and reactive power flows are implicitly given by

ff (@) = f7 (v(@), 6(w)) and fi (w) = fl (v(w), 6(w)).
2.4. Production cost

The production cost of each generator is approximated by a quad-
ratic function, [19]:

¢i(pg) = €2,i(Pg)* + C1ibg; + Coi 4)

and, for the compactness of derivations, we denote c,; = 1/2b;,
c1i = a;/b; and ¢y; = a?/2b;. Given uncertainty w and the response in
(3), the expected operating cost is:

(@ (@] = c; o
(g @)] = o) + 5, 5™ ©

2.5. Linearization of AC power flow equations

As discussed in Section 2.3, some system state variables are de-
termined implicitly by the non-linear, non-convex AC power flow
equations in (2), which do not permit a direct solution. Therefore, we
linearize F(p, q, v, 6) = 0 around a given (forecast) operating point
using Taylor’s theorem as in [7]. Let (p, g, f7, f?, ¥, ) be the linear-
ization result, then the nodal power injections and line flows are:

P =D, + 3, 6 + IO (0, 6)6 ®)
g =g + @, 0y + I, 5)6 %)
fE=T0 43w 8w + 1w, 86 ®
F=T8+ 3@, 8w + 119w, 6, ©

where JP, JP°, I3V, J2°, Jl-{ " Lf"’e, Jl-]f W, L{q’e are row-vectors of sensi-
tivity factors describing the change of active and reactive nodal injec-
tions as functions of v and 6 derived from the AC power flow linear-
ization. Similarly, the response of voltages, flows and reactive power

outputs to w can be modeled as (see Appendix A):

9o (@) = qg; + [RAT — ae™) + X diag (y)]w (10)
vi(@) = v + [RP U — ae”) + X diag ()] (an
fP@) =f2 + R - ae”) + X[ diag ()] 12)
fi@) = f3 + [R]"(I - ae) + X" diag ()], a3)

P q . .
where row-vectors R/, R/, R,»Jf ) Rijf map adjustments of the respective
. . P q
variables to active power changes, row-vectors X, X}", Xuf , lef map
adjustments of the respective variables to reactive power changes and I

is the identity matrix. Note that sensitivity vectors
R4, X!, R, X7, Rijfp, Xijfp, Rl-ij, Xiij can be zero, if i is a PV or PQ node,

and depend on a chosen linearization point Appendix.
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2.6. Chance constrained optimal power flow

For a given operating point (pg, g, V, 0, v, a) the system will re-
spond to any realization of w according to (3), (6)-(13). To ensure that
this system response does not violate the physical system limits with a
high probability, we formulate the following chance constraints:

PRI <po (@) <pI)21-2,Vi€g a9
P(gg" <o (@) < g5 21 -2 VieG (15)
PE™M <vi(@) <v™)21-2,VieN (16

2 2
[P[(fij‘.’(w)) + (f;(w)) < (s,-}““‘")z) >1-¢Vije L, a
17

where ¢, €4, €, € < % can be chosen to tune the risk level associated
with the individual chance constraints. Using (10)-(13), we can obtain
computationally tractable reformulations of chance constraints (14)-
(17), [3,7,18], and formulate the deterministic equivalent of the CC AC-
OPF:

2
) ; ' Qi ¢
EQV-CC:  min 3 c(pe,) + 3, %5
va0 €6 ieg (18a)

s.t.

@Af, 4f): (6), (7) (18b)
@2, 28):(8), (9) (18¢)
), a=1

lé (18d)
(6F*): Py + @z, S <P VieG (18¢)
(6P 7): =pgs + @iz, S < —pFt VIEG (186
O go + 25t < 45 ViEG (18g)
(627): —Gg; + Ze i< —q(';”‘ii“ Vieg (18h)
OD:IRE - + Xdiag(y)Z, <tiVieg (18i)
):Rila=pivVieg (18p
W):vi+ 2o, SV Vie N (18k)
W) v+ 2z, < -V Vie N (181
E:NRY = p'e” + XPdiag()E:l, <t Vie g (18m)
W):Rla=p’'VieN (18n)
) (af N+ (a Y < (si™)y» vije L (180)
g0 —af" 2yt <fPvijeL

ij y 35 y ')

(18p)
g :—af’ +zvt <-ffvijel

(18q)
gi]]',.p,o :thijfpﬁa,{pVijel:

(18r)
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§U.fq’+ :—auf +zqt <f’1 Vije L
(18s)
A o q
& i —ay +zeft <-fivijeL
(18t)
g0 zytf <al'vije L
5
(18u)
(Q;}II(Rf — preT + X7 diag()ZHs < Vi € Lo o = f, f1
(18v)
) Rja=p; Vij€ L o=frf1, (18w)

where Greek letters in parentheses in (18b)-(18w) denote dual multi-
pliers of constraints. Objective (18a) minimizes the expected cost as in
(5). and Egs. (18b) (18c) are the active and reactive power balances and
flows based on the linearized AC power flow equations. Eq. (18d) is the
balancing reserve adequacy constraint and (18e)-(18w) are the de-
terministic reformulation of chance constraints (14)-(17), [7]. Con-
straints (18e)—(18f) limit the active power production pg; and the
amount of reserve iZe,S provided by each generator, [13,20]. Risk
parameters are given by z.= ®7!(1 —¢), where ®!(1 —¢) is the
(1 — ¢€)-quantile of the standard normal distribution, if w follows a
normal distribution. Although less restrictive assumptions on the dis-
tribution of w can be invoked in (18), e.g. by means of non-Gaussian
parametric distributions [5] or distributionally robust formulations
[4,13], this paper assumes normally distributed forecast errors for the
sake of presentation clarity. The standard deviation of reactive power
outputs, voltage levels and flows resulting from the uncertainty and the
system response is given by the SOC constraints (18i), (18m) and (18v).
Given the convexity of the SOC constraints, auxiliary variables tZ, t,
tl}f , Uq relate these standard deviations to the reactive output limits
(18g)—(18h), voltage bounds (18k)-(181) and flow limits(18p)-(18u).
Due to its quadratic dependency on the uncertain variable, the chance
constraint in (17) requires a more complex reformulation than (14)-
(16). To accommodate this reformulation, we follow [7] and introduce
auxiliary variables aU ,a % and risk parameters f and f (i.e. esdivided
by 2.5 and 5), respectlvely This yields an mner approxlmatlon of (17)
that ensures feasibility of the the AC OPF with desired confidence1 — ¢
and the conservatism of the approximation can be tuned by adapting
the divisor (2.5 and 5), [7]. Note that the two-sided chance constraints
in (14)-(17) are expressed as one-sided chance constraints in (18e)-
(18w) since simultaneous violations of both the upper and lower ca-
pacity or voltage limits are physically impossible. Auxiliary variables
AR pyf s ,oyf and constraints (18j), (18n) and (18w) have been in-
troduced to simplify subsequent derivations. As a result, (18) includes
convex quadratic objective and second-order conic constraints. Al-
though it can be reformulated into a convex conic program to gain
computational tractability, [21], the form in (18) allows for a clear
presentation below.

3. Risk-aware pricing

The EQV-CC endogenously trades off the expected operating point
(e 96 Vv, 6, v, @) and the risk of system limit violations defined by the
choice of parameters Zegs Zeg e % Ef ZEf Since the EQV-CC is a convex
program, we can use its dual form to compute the marginal prices for

active and reactive power, and balancing reserve that internalize this
trade-off.
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3.1. Prices with chance constraints on generation

First, we consider a modification of the EQV-CC given as:

2
o
GEN-CC: mln Z ¢i(pgy) + E 2—[‘)(52
s ieEN ieN L (19a)
s.t. (18b) — (18f)
G887 gt < g S qEVieg (19b)
U7 ™ <y <y Vie N (19¢)
2 2
(ny): (fyp) + (f;) SR vigel
(19d)

where, relative to the EQV-CC in (18), chance constraints are only
enforced on active power generation limits and reactive power, voltage
and power flow constraints are enforced deterministically by (19b)-
(19d). In other words, the GEN-CC determines the optimal balancing
participation of each generator and, thus, the optimal amount and al-
location of committed reserve given by %iZe, S. Therefore, the GEN-CC
replicates a traditional deterministic OPF that allocates the reserve re-
quirement (Ei < a,»zsgS = zegS) among individual generators, see [7].
Using the GEN-CC, we compute the following prices:

Proposition 1. Consider the GEN-CC in (19). Let Af, A be dual
multipliers of the nodal active and reactive power balance at node i in
(18b). Then Af and A are given as:

AP = P, + i + 8P — 8Pt
b; (20)

A =617 — 6" (21)

Proof. The first order optimality conditions of (19) for pg;, qc,i» %> fup ,
fi;? are:

_ P a .
(0g): AF + P+ =8P = TL Vieg (22a)
(@) Ad + @G -8t =0Vieg (22b)
S - Pv
(a): 2, SGPT + 8P7) +x b, ieg (220)
fP _ ..

(fyp) Him+ By =ovieL (22d)

(22e)

gs. (20)-(21) follow directly from (22a)-(22b). [J

Dual multiplier 1 of the active power balance, itemized in (20), is
interpreted as the real power LMP at node i and a function of produc-
tion cost coefficients a; b; and scarcity rent §7*, §7~ related to active
generation limits. Dual multiplier 1/ of the reactive power balance,
itemized in (21), is interpreted as the reactive power LMP given by
scarcity rent 6%, 57 related to reactive generation limits. Although
there is no explicit production cost for reactive power in (18a), pro-
viding reactive power can have a non-zero value, if at least one reactive
power limit is binding. Further, Proposition 1 shows that both 1 and
A in (20)-(21) do not explicitly depend on uncertainty and risk para-
meters.

In contrast, the price for balancing reserve explicitly depends on the
uncertainty and set risk levels:

Proposition 2. Consider the GEN-CC in (19). Let  be the dual multiplier
of the balancing adequacy constraint in (18d). Then y is given as:
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x= S? 42,8 ) bGP+ 6P |-

Zzeg b; ieg (23)
Proof. Using (18d) to eliminate q; in (22¢) yields (23).

O

Dual multiplier y of (18d) is interpreted as the price for balancing
reserve, because it enforces sufficiency of the system-wide reserve. As
per (23), x is an explicit function of the uncertainty S? = e"Ze and risk
parameter z.,. Notably, the balancing reserve price is always non-zero,
if there is uncertainty in the system (i.e. S > 0), even if all constraints
(18e)-(18f) are inactive, i.e. 57+ = 6P~ =0,V i € G. In this case, y is
independent of the risk parameters and is determined by the total un-
certainty S? weighted by the total marginal generator cost Dic g biofall
generators, i € G, including those generators that do not provide any
balancing reserve, i.e. a; = 0.

3.2. Prices with complete chance constraints

We now consider the complete EQV-CC in (18), i.e. including
chance constraints on reactive power generation, voltages and flows,
and prove the following proposition:

Proposition 3. Consider the EQV-CC in (18). Let AP, A be dual
multipliers of the nodal active and reactive power balances at node i as in
(18b). Further, let y be the dual multiplier of the balancing adequacy
constraint in (18d). Then (i) 1 and A/ are given as (20)-(21) and (ii) ¥ is
given as:

Influenced by generator decisions Influenced by system decisions

2= %z+zesz bi(&t+6) +Zi€§ b +y) +y % yj-‘I)) ,

Elegb (24)
where:
(R?+X1diag(y))Ze — RiaS?
0 =2y 3 RGeS
Jeo %6, (% ¥) (25)
) . (R)+X]diag(y))Ze — R} aS?
W=z ), [Ry—— -
jeN oy (@, 7) (26)
. , (Rj +X i diag (y))Ze — R aS?
=2 [Ri gj : E,
jres Ty (0, ) 27)

where o=fP,f1 and &l=8"+6&" W= ,uj+ +p7, and
S5 =2y Er+g )+zv§°°- Terms oy, (@, ), oy(@, v), o2 (e, 7),
g5l (a, y) denote the standard deviations of reactive power at node j,
voltage at node j, active power flow on line jk and reactive power flow on line
jk, respectively, and [ - 1; denotes the i-th element of a vector.

Proof. The first order optimality conditions of (18) for pg, qgi» %> fy
f} and auxiliary variables are:

(222)(22b)(28b)and (282)
(a): X+ 25, SOPT +6P7) + X VIR,

+ Zien Vi IR,

p a
+ije£vjfk[ ] +ijE£ Jk ] = 52 Vieg
(28a)
(t1): 2o, (6" + 8P~ {I=0Vieg (28b)
d — ple” + X/dia Te
): ¢ R —pf i .g(}’))l —vi—0Vieg
||(Rq ple’ + Xdiag (y))Z2ll (28¢)
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R — p'e" + X{'diag(y))Ze

©H: & — =V =0YieN
(R — p’e" + Xdiag (y))X2]l, (28d)
) 2o, + ) = ¢ =0VieN (28e)
(ﬁ;’): Bl - &+ g =0vijeL
(28f)
(f) B =g gl =0viels
(28)

(Ri;? - pl.;?eT + X;j diag (y))Ze

p-‘?):{-” - - —vy=0VijEL o=fP f1
( Y TUIRE —ple + le-’dlag(y))Z;Hz

(28h)

(ai?): 27]1--(1;-) - (gi?’+ + gi?’i) - §i<_>,0 =0V l.] € L’ 4 =fp,fq
i j-y g y i (281)
&) zi(gg* + 55?") + Zifgl.;‘o - gy‘? =0Vije L, o=fP,fa .
25 5 (28j)

The result (i) follows directly from the proof of Proposition 1. The
result (ii) follows from (28a) by eliminating a; using (18d). Note that
terms v, v, vijf p, vif  are given by (28c¢), (28d) and (28h). Further,
t1= Uqc,i(“’ y), if {[.‘1 >0 as per (18i), t’ = oy; (a, y), if §’iv > 0 as per
(18m) and 7 = aojk(oc, 7), if{ij‘.’ > 0 as per (18v) for o = fP, f4. Thus, for
any the dependency on the standard deviation would disappear.
Finally, terms ¢4, ¢, g’l.jfp, g’yfq are given by (28b)-(28e) and (28j). [

Similar to the result of Proposition 1, prices 1 and 4 do not ex-
plicitly depend on uncertainty and risk parameters. On the other hand,
relative to (23), balancing reserve price y depends on additional terms
4y, yif P, yif q, see (24), that relate the balancing reserve provided by
each generator at node i to the risk of reactive power and voltage limits
violation at every node j € N and to the risk of power flow violations
on every line jk € L. This risk awareness is not part of the generator
decisions, which are only driven by its own production limits and cost,
as indicated in (24). As a result of this incompleteness, given system-
wide balancing price y, generators may elect for balancing participa-
tion factors which are sub-optimal from the system perspective. This
can be overcome either by further completing the market in terms of
transmission and voltage prices as proposed in [16], or by augmenting
the system-wide balancing price to reflect location-specific constraints,
eg mi=x+yl+y +y

4. Variance-aware pricing

The risk-aware results of the EQV-CC in (18) yield solutions with a
high variability (variance) of system state variables, which has been
shown to complicate real-time operations, [17,22]. The variances of
reactive power generation, voltage magnitudes, and active and reactive
flows can directly be computed from the standard deviations related to

th t), 6] Pl respectively. We introduce the metric V (¢, t, t/ ? tf D)

ij ij
that models a connection between the variances and system cost in the
following variance-aware formulation:
A . . a? 2 q v ,fP L f1
VA-CC: ‘gxcngé ZieN ci(pg) + ZieN zTiS + VLt )
v,a,0
s.t. (18b) — (18w).
29

Specifically, metric V( - ) penalizes the variance of state variables and,
thus, it can be used to trade-off the overall system variance and the
expected operating cost in the system as discussed in [17]. We define
metric V() as:
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P q
v il gy = 20 WD) + ) Wy
ieg ieN
P, P2 q, 4,2
+ 25 (wFa” + e,
ijeL (30)
where W, ¥}, ll’gp, IP{;q
$ $ $ $ . .
[MVArz], [ﬁ], [W] and [W]’ respectively. Note that active power
standard deviation ¢/ is already controlled by the generation cost and
the constraints on a;.

are variance penalty factors in the units of

Proposition 4. Consider the VA-CC in (29). Let AP, 2{ be dual multipliers
of the nodal active and reactive power balance at node i as in (18b). Further,
let x be the dual multiplier of the balancing adequacy constraint in (18d).
Then () Af and A are given by (20)-(21) and (ii) x is given as:

xzilbkzﬂgsz bi(8+87) + ), biy+y) +y 4y,
Zieg i€g ieG 31

where:

[RA):¢0
jezg o CRY) (32)

(R7+X]diag (y))Ze — Rlas?

yiq

(R? +X!diag (y))Ze — R} aS?
W= Y R :

eyt oy (@, v) (33)
=2 z RS (Rj +X ;i diag (y))Ze — Rj aS?

ey Toy (a1, 7) (34

§f = 2¢,(8] " + 8]7) — 203, (e, 1) ¥ (35)

¢ = ze, (U + 1) = 20y (a, Y] (36)

3 o, + o, — ©,0 o
C =z |EST + EXT | + zr €20 — 204, (a, V)V,
k=2 (é’y §; ) 74 (2 7) @7

and ¢ = fP, f4.
Proof. The first-order optimality conditions of (29) for pg,;, qg,i @i ff>
f&] and auxiliary variables are:
(22a), (22b), (28c), (28d)and(28f) — (22i)
(@) z,S@EP*+ 827+ x+ Y VIR

=
v v o o 1
+ Z v} [R} ]i + Z Vik [Rjk]i = (F + ZLI’ip)oziSz
JEN jkeL i
Vieg,o=fP,f1 (38a)
(1) 2,38+ 887) — I =21WIVieg (38b)
W)z (" +u)) =" =27V VieN (380)
() Z%(é’if’* + 5[;?-‘] + Zgg;'o =& = 25
Vije L o=fP, fi (38d)

The result (i) follows directly from the proof of Proposition 1. The
result (ii) follows from re-arranging (38a) using (18d) to eliminate a;.
Note that terms v/, v, vijfp, vi]fq are given by (28c), (28d) and (28h) and
terms (35), (36) and (37) follow from (38b)-(38d). Similarly to the
proof of Proposition 3, " =oy(a, y), if {¥>0 as per (18m),
tijfp = Gfpjk(oc, y), if g’ijfp >0 as per (18m), and tifq = O‘fpjk(OC, y), if

{iij > 0 as per (18v). [J
Relative to the results of Proposition 3, terms 9, ', y/*, y/* now

include an inherent trade-off between the risk of limit violation and the
absolute standard deviations weighted by penalty factors %7, W{, ¥},
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. . qs P rq

‘P{; s ng , see (35)-(37). Since dual multipliers {j?, g’]?’, {jfk s {]5{ must be

non-negative by definition, the scarcity rents of reactive power

§#*, 87, voltage magnitude /x » 47, active power flows §' P+ § P § 70

and reactive power flows é’yf ¢ o+ é'ijf 4 = §i]f %0 and risk parameters
Zeg» Lo Xy S€t an  upper bound to the standard deviations
Opg Oup T B T4, weighted by the penalty factors.

5. Case study

We conduct numerical experiments using the modified 118-node
IEEE test system from [7], which includes 11 wind farms with the total
forecast power output of 1196MW ( = 28.2% of the total active power
demand). As in [4,7], the wind power forecast error is zero-mean with
the standard deviation of g, , = 0.125p;;, V i € U. In addition to the
GEN-CC, EQV-CC and VA-CC, we solve a deterministic AC OPF (re-
ference) case using the forecast renewable generation and
a;=0,Vieg. All calculations have been performed for risk levels
€=10.1 and ¢ = 0.01 assuming that ¢, = ¢; = ¢, = ¢; = ¢. Additionally,
the VA-CC has been computed for various values of
¥ ={0.1, 1, 10, 100, 1000} assuming that ¥’ =¥{=9/ =¥, Vie N
and lI’ifj'p = llfgq =Y,V ije L. All models are implemented in Julia
using JuMP [23] and the code and input data are reported in [24]. The
linearization point (see Section 2.5) has been obtained as described in
[7] using the IPOPT solver, [25], and the chance-constrained models
have been solved using the MOSEK solver, [26].

5.1. Cost and price analysis

Table 1 compares the results of the deterministic, GEN-CC, EQV-CC
and VA-CC cases for different values of € and W. As expected, the ob-
jective value and expected generation cost increase as we introduce
additional chance constraints and increase the value of W, thus inter-
nalizing the cost of re-dispatch to ensure larger security margins and
lower variance of state variables. Similarly to the results in [17], which

Table 1

Optimal Solutions of the deterministic, GEN-CC, EQV-CC and VA-CC cases.
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uses DC power flow assumptions, increasing variance penalty factor W
does not significantly raise the expected generation cost. This ob-
servation suggests that this reduction in state variable variances is
achieved by adjustments to those variables which are not limited by
binding constraints in the optimal solution. In other words, the variance
of variables related to non-binding constraints can be controlled
without significantly affecting the optimal values of other variables.
Note that the variance of variables related to binding chance constraints
is a priori controlled by the defined violation tolerance of these con-
straints.

Also, increasing conservatism of the model increases system-wide
balancing reserve price y for both values of e. For example, in the GEN-
CC, the value of y is only driven by chance constraints on power output
limits of generators, as per Proposition 2, while the EQV-CC and VA-CC
introduce additional components (e.g. reactive power, voltage and flow
variances) to price y as per Propositions 3 and 4. Location-specific
prices A and A/ for all network nodes are displayed in Fig. 1a), while
Figs. 1b)-c) map the relative difference between 1/ for the VA-CC case
with ¥ = 100 and € = 0.01 and the deterministic case. At the majority of
nodes, prices 1/ (indicated by the box-plots in Fig. 1a) remain within
32-38$/MWh. Note that unlike y, which significantly increases for
more conservative models, prices for 1 and 1 do not vary as much as
conservatism increases. This corresponds to our findings in
Propositions 1-4, which show that active and reactive power prices do
not explicitly depend on the uncertainty and risk parameters. However,
at some nodes, prices 1/ and 1, in the GEN-CC and VA-CC cases exhibit
larger deviations, e.g. see 1 at nodes 20 and 23, which are also in
proximity of wind farms, as shown in Fig. 1c). A resulting high flow
variance on the line between nodes 19 and 23 causes price differ-
entiation at nodes 19, 20, 21 and 23, 24, 25.

5.2. Analysis of variance of state variables

Table 1 shows how the aggregated variance of state variables
change relative to the EQV-CC case as

Zl 96,17 ZiU Zafp’ E,-O'j%z

| Model | Det | GEN-CC| EQV-CC | VA-CC (¥ =P =w!=wy =0l =l viVvij
Risk Level J
| v I - | - | - | o1 1 10 100 1000

— | Objective [$] | 91103.22 | 91107.33 | 92237.67 | 92237.74 9223830 92243.86 9229691  92764.30
N Exp. Gen. Cost [$] | 91103.22 | 91107.33 | 92237.67 | 92237.68 92237.68 92237.72  92239.70  92260.83
- A'rel. to EQV-CC | 98.770% | 98.774% | 100.000% | 100.000% 100.000% 100.000% 100.002%  100.025%
w

] x 8] | - | 872 | 2810 | 2811 28.23 29.40 40.35 125.54
)

0 AY, 02, . [%] - - 1000% | 0.132%  0.103%  0.090%  0.087%  0.064%
> AY, 02 %] - - 1000% | 3.459%  1215%  0.349%  0269%  0.225%
" AT, agp [%] - - 1000% | 61.071%  60458%  60.537%  59.798%  59.614%
& Ay 07 (%) - - 100.0% | 55.808%  54793%  54.925%  54.584%  54.313%
= | Objective [$] | 91103.22 | 91107.71 | 93744.95 | 9374501 9374557 93751.17  93805.19  94281.35
<|=|" Exp. Gen. Cost [$] | 91103.22 | 91107.71 | 93744.95 | 9374495 9374494 9374496 93747.04  93772.27
T A'rel. to EQV-CC | 97.182% | 97.187% | 100.000% | 100.000% 100.000% 100.000% 100.002%  100.029%
I | x 8] | - | 974 | 2593 | 2594 26.03 26.95 37.47 126.42
S AT, 02, %] - - 1000% | 0.194%  0.188%  0.187%  0.163%  0.149%
I AY, 02 (%] - - 1000% | 25384%  4570%  1073%  0.752%  0.650%
v AY o J%,, [%] - - 100.0% | 64.291%  64.526% 64.404%  62.879%  62.103%

2]
& AY,; 0% (%] - - 1000% | 54022% 54241%  54.193%  52.940%  52.626%
ij
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Fig. 1. (a) Active and reactive power prices 1 and A/ for the deterministic, GEN-CC and EQV-CC cases and VA-CC with ¥ = 100 for risk level ¢ = 0.01. The orange
line within the blue box represents the median value, the left and right edges of the box represent the first and third quartiles and the outliers are plotted as circles. (b)
Difference of active power prices 1/ in the VA-CC (¥ = 100) relative to the deterministic case (in %). (¢) Magnification of the area indicated by the doted rectangle in

(b).

penalty W increases. Even if W is set to a small value, the variance of
state variables reduce significantly, without a large increase in the
objective function, expected generation cost, and prices 1/ and A/.
Furthermore, as the value of ¢ increases, the relative reduction in var-
iances of all state variables slightly reduces. The effect of variance
penalty W on prices is two-fold. First, it does not affect prices 1 and 1/
relative to the EQV-CC case. Second, system-wide balancing price y,
which internalizes the variance penalties as per Proposition 4, increases
with penalty W.

6. Conclusion

This paper described an approach to internalize RES stochasticity
and risk parameters in electricity prices. Using SOC duality, these risk-
and variance-aware prices are derived from a chance-constrained AC-
OPF and are itemized in terms of active and reactive power, voltage
support and power flow components. We proved that active and re-
active power prices do not explicitly depend on uncertainty and risk

Appendix A.

parameters, while expressions for balancing reserve prices explicitly
include these parameters. Further, introducing variance penalties on
the system state variables has been shown to internalize the trade-off
between variance, risk and system cost at a modest increase in the
expected operating cost. The results have been demonstrated and
analyzed on the modified IEEE 118-node testbed. Future work includes
extensions of the proposed market-clearing model to account for risk-
averse strategies of market participants, enable risk trading instruments
using our preliminary work in [27], and to account for multi-period
trading horizons.
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This section shows the derivation of (10)-(13) from (6)-(9). First, rewrite (6)-(7) in the following form:

-P(w) _ p _ | Jpeé || v(w) =7 v(w)
| 9(@) q Jov Jee || 6(w) 6w) |’

[ pe(@)| [p™ [V (@) |
PP () a4 67 ()

| 47%(w) | | §79 ja g]16" (@) |

@] [p] [JC JD}'vPV(w)"
qPV (w) qPV vsv (w)

»qSV(w)_ _qu | 796V(w)7

(A.1)

where the rows of matrices J° are equal to sensitivity vectors J fori € N and o = {(p, v); (p, 6); (g, v); (g, 6)}. First, we sort the rows of the terms in
(A.1) by node types and introduce superscripts PQ, PV, 6V to indicate the node type:

(A.2)

where J4~P denote the blocks of re-arranged matrix J from (A.1). Quantities p*%(w), p*V(w), ¢"%(w) are explicitly given by the uncertain generation

and the respective system responses such that:
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PQ

PP (w) pe P (w + a2)fQ
PP () [=| % | =P [+] (@ + a®)?”
PQ qPQ P i PQ
%@ ] |4 gte| | (diag(y)ew) (A.3)

Notably, py and pp are not part of the right-hand side of (A.3) because they are fixed parameters. Further, v*V (w) = v?¥, v*" (w) = vV, and
0% (w) = 6%V as discussed in Section 2.3. We use this relationship and (A.2)-(A.3) to compute the reactions of the uncontrolled variables to un-
certainty w:

vPQ(w) vPQ (@ + a )P
0 (w) | = 6P| = T (w + a2)PV
6"V (w) erv (diag (y)w)? (A.4)

Note that although v"% 672 6" implicitly depend on the AC power flow equations, these variables are endogenous to the model and not subject to
uncertainty. Similarly, we get:

)| | p? | | p% (@ + a)™?
qPV(w) — qPV — pPV =]C(]A)f (CU + cxﬂ)PV
qu(cu) qsv qsv (diag(y)cu)PQ (A.5)

Using (A.4), we immediately obtain (11) by separating matrix (J4)~!. Similarly, we obtain (10) from separating matrix J¢ (J4)"1. In analogy, (12)-(13)

can be obtained by noting that p, = Zj:ij er fl]" and g, = Zj:ije s fl]q and combining the sensitivity factors respectively.
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