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A B S T R A C T   

The roll-out of stochastic renewable energy sources (RES) undermines the efficiency of power system and market 
operations. This paper proposes an approach to derive electricity prices that internalize RES stochasticity. We 
leverage a chance-constrained AC Optimal Power Flow (CC AC-OPF) model, which is robust against RES un
certainty and is also aware of the resulting variability (variance) of the system state variables. Using conic 
duality theory, we derive and analyze energy and balancing reserve prices that internalize the risk of system 
limit violations and the variance of system state variables. We compare the risk- and variance-aware prices on 
the IEEE 118-node testbed.   

1. Introduction 

Power systems and electricity markets struggle to accommodate the 
massive roll-out of renewable energy sources (RES), which are sto
chastic in nature and impose additional risks on the system operations 
and market-clearing decisions. The current industry practice to mitigate 
these risks is based on procuring additional reserves, which are selected 
based on exogenous and often ad-hoc policies (e.g., 95-percentile rule 
in ERCOT, [1], or (5+7) rule in CAISO, [2]). 

Alternatively, such risk assessments can be carried out en
dogenously, i.e. while optimizing operational and market-clearing de
cisions, using high-fidelity prediction and historical data para
meterizing the RES stochasticity. Bienstock et al. [3] proposed a risk- 
aware approach to solving an Optimal Power Flow (OPF) problem that 
uses chance constraints (CC) to internalize the RES stochasticity and 
risk tolerance of the system operator to violating system constraints. 
Since [3], the CC-OPF has been shown to scale efficiently for large 
networks [4], accommodate various assumptions on the RES stochas
ticity (e.g. parametric distributions and distributional robustness)  
[4–6], as well as to accurately account for AC power flow physics, [7,8]. 
However, this framework has primarily been applied to risk-aware 
operational planning in a vertically integrated environment, neglecting 
market considerations. From a market design perspective, RES sto
chasticity has been primarily dealt with using scenario-based stochastic 
programming, e.g. [9–11], which is more computationally demanding 
than chance constraints, [3]. 

With the exception of our recent work in [12,13], chance con
straints have so far been overlooked in electricity pricing applications. 

The chance-constrained market design proposed in [13] leads to a 
stable robust equilibrium that, unlike scenario-based approaches in  
[9–11], guarantees desirable market properties, i.e. welfare max
imization, revenue adequacy and cost recovery, under various as
sumptions on the RES stochasticity. Therefore, the resulting energy and 
reserve prices make it possible to better approximate real-time oper
ating conditions for look-ahead dispatch applications, thus improving 
consistency between look-ahead and real-time stages. However, [13] 
neglects network constraints, an important modeling feature for real- 
life market applications. 

This paper uses a chance-constrained AC OPF (CC AC-OPF) from [7] 
to derive network-aware electricity prices that internalize the RES 
stochasticity with the intention to produce more accurate signals to 
market participants. This convex formulation allows the use of duality 
theory to derive risk-aware marginal-cost-based prices, which are si
milar to traditional deterministic locational marginal prices (LMPs) 
based on linear duality, [14]. Furthermore, the CC AC-OPF can ex
plicitly consider reactive power and voltage support services and ana
lyze their role in the deliverabilty of active power, thus supporting the 
design of a more “complete” electricity market, [15,16]. Completing 
the market by allowing all assets and services (active and reactive 
power, reserve capacity, transmission and voltage support) to be 
transacted, [16], makes it possible to co-align technical needs and re
quirements imposed by the physical aspects of power system operations 
and price signals received by market participants. We also extend the 
CC AC-OPF to follow a variance-aware dispatch paradigm, introduced in  
[17], to compute variance-aware prices and analyze the relationship 
between the system cost, risk and variance. 
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2. Model formulation 

This paper builds on the AC-CCOPF model presented in [7] with 
model assumptions and modifications explained below. 

2.1. Preliminaries 

Consider a transmission network with set of nodes , set of lines ,
set of generators and set of renewable generators (e.g. wind or 
commercial solar farms). For simplicity of notation, we assume that 
each node hosts one conventional and one renewable generator, such 
that = = . We denote the set of PQ and PV nodes as 

,PQ PV and index reference (θV) node as =i ref . Nodes without 
generation or with more than one generator can be handled by setting 
the generation limit to zero or by changing notations, respectively; both 
modification will not affect the proposed method. Let vectors pG in
dexed as pG,i, pD indexed as pD,i, and pU indexed as pU,i, denote the total 
active power output of conventional generators, the total active power 
demand and the active power injections from renewable generation at 
every node. The corresponding reactive power injections are denoted 
qG, qD, qU and the resulting vectors of net active and reactive power 
injections are thus given by: 

= +p p p p ,G D U (1a)  

= +q q q q .G D U (1b)  

In the following, we assume that there is no curtailment of renew
able generation and that that all loads pD are fixed. We denote v and θ, 
indexed as vi and θi, as the vectors of voltage magnitudes and voltage 
angles. The range of feasible voltage magnitudes is given as v ∈ [vmin, 
vmax]. Each line in is a tuple ij denoting its connected nodes i j, . 
For simplicity, we assume a single line between two nodes. Vectors fp 

and fq indexed as fij
p and fij

q denote the active and reactive power flows 
from node i to node j. Note that f fij

p
ji
p and f fij

q
ji
q due to power losses 

on the line. The vector of apparent power flow limits is denoted as smax, 
indexed by sij

max . We summarize the physical relationship between p, q, 
fp, fq, v and θ as 

=F p q v( , , , ) 0, (2) 

where F(p, q, v, θ) are the non-linear, non-convex AC power flow 
equations, [7, Eq. (2)]. 

2.2. Uncertain power injections 

We model the real-time deviations from the forecasted renewable 
active power generation pU by the random vector ω, indexed by ωi, so 
that the real-time injection from uncertain renewable sources is given 
by = +p p( )U U . The expected value and covariance matrix of ω are 
given by =[ ] 0 and =Var [ ] and we write = e and 

=S e e,2 where e is the vector of ones. The corresponding uncertain 
reactive power qU(ω) is linked to the active power generation through a 
constant power factor cos ϕi, i.e. = +q q( ) ,U i U i i i, , where 

=:i
1 cos

cos
i

i

2
can either be optimized or fixed in advance. Vector γ 

collects all . 

2.3. System response 

To mitigate the effects of ω, the controllable generators adjust their 
output pG(ω) and qG(ω) to maintain the active and reactive power 
balance. Subsequently, system state variables v(ω), θ(ω), fp(ω), fq(ω) 
will respond to those changes based on the system controls and their 
physical relationship =F p q v( ( ), ( ), ( ), ( )) 0. 

As in [3,7,18] the response of each generator is given by partici
pation factors 0 ≤ αi ≤ 1 that represent the relative amount of the 
system-wide forecast error (Ω) that the generator at node i has to 
compensate for. Therefore, the real-time active power output of each 

generator is: 

=p p( ) ,G i G i i, , (3) 

and we require = 1i i to balance the system. Vector α collects all 
i,i . The response of reactive power generation qG,i(ω), voltage 

magnitudes vi(ω) and voltage angles θi(ω) is determined by the type of 
node i. At PV nodes =v v i( ) , ,i i

PV is controlled and 
q i( ), ( ), ,G i i

PV
, are implicitly determined by power flow 

equations F(p, q, v, θ). Similarly, at PQ nodes =q q i( ) , ,G i G i
PQ

, ,
is controlled and v i( ), ( ), ,i i

PQ are implicitly determined by 
power flow equations F(p, q, v, θ). Finally, at the θV node =v v( )ref ref
and =( ) 0ref . Thus, active and reactive power response at the θV 
node is also determined implicitly by power flow equations F(p, q, v, θ). 
The resulting active and reactive power flows are implicitly given by 

=f f v( ) ( ( ), ( ))ij
p

ij
p and =f f v( ) ( ( ), ( ))ij

q
ij
q . 

2.4. Production cost 

The production cost of each generator is approximated by a quad
ratic function, [19]: 

= + +c p c p c p c( ) ( )i G i i G i i G i i, 2, ,
2

1, , 0, (4) 

and, for the compactness of derivations, we denote =c b1/2 ,i i2,
=c a b/i i i1, and =c a b/2i i i0,

2 . Given uncertainty ω and the response in  
(3), the expected operating cost is: 

= +c g c p
b

S[ ( ( ))] ( )
2

.i i
P

i G i
i

i
,

2
2

(5)  

2.5. Linearization of AC power flow equations 

As discussed in Section 2.3, some system state variables are de
termined implicitly by the non-linear, non-convex AC power flow 
equations in (2), which do not permit a direct solution. Therefore, we 
linearize =F p q v( , , , ) 0 around a given (forecast) operating point 
using Taylor’s theorem as in [7]. Let p q f f v( ¯ , ¯, ¯ , ¯ , ¯, ¯)p q be the linear
ization result, then the nodal power injections and line flows are: 

= + +p p J v v J v¯ ( ¯, ¯) ( ¯, ¯)i i i
p v

i
p, , (6)  

= + +q q J v v J v¯ ( ¯, ¯) ( ¯, ¯)i i i
q v

i
q, , (7)  

= + +f f J v v J v( , ) ( , )ij
p

ij
p

ij
f v

ij
fp, ,p

(8)  

= + +f f J v v J v( , ) ( , ) ,ij
q

ij
q

ij
f v

ij
fq, ,q

(9) 

where J J J J J J J J, , , , , , ,i
p v

i
p

i
q v

i
q

ij
f

ij
fp

ij
f v

ij
fq, , , , , , ,p q

are row-vectors of sensi
tivity factors describing the change of active and reactive nodal injec
tions as functions of v and θ derived from the AC power flow linear
ization. Similarly, the response of voltages, flows and reactive power 
outputs to ω can be modeled as (see Appendix A): 

= + +q q R I e X diag( ) [ ( ) ( )]G i G i i
q

i
q

, , (10)  

= + +v v R I e X diag( ) [ ( ) ( )]i i i
v

i
v (11)  

= + +f f R I e X diag( ) [ ( ) ( )]ij
p

ij
p

ij
f

ij
fp p

(12)  

= + +f f R I e X diag( ) [ ( ) ( )] ,ij
q

ij
q

ij
f

ij
fq q

(13) 

where row-vectors R ,i
q R ,i

v R ,ij
f p

Rij
f q

map adjustments of the respective 
variables to active power changes, row-vectors X ,i

q X ,i
v X ,ij

f p
Xij

f q
map 

adjustments of the respective variables to reactive power changes and I 
is the identity matrix. Note that sensitivity vectors 
R X R X R X R X, , , , , , ,i

q
i
q

i
v

i
v

ij
f

ij
f

ij
f

ij
fp p q q

can be zero, if i is a PV or PQ node, 
and depend on a chosen linearization point Appendix. 
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2.6. Chance constrained optimal power flow 

For a given operating point (pG, qG, v, θ, γ, α) the system will re
spond to any realization of ω according to (3), (6)-(13). To ensure that 
this system response does not violate the physical system limits with a 
high probability, we formulate the following chance constraints: 

p p p i( ( ) ) 1 2G i G i G i p,
min

, ,
max

(14)  

q q q i( ( ) ) 1 2G i G i G i q,
min

, ,
max

(15)  

v v v i( ( ) ) 1 2i i i v
min max (16)  

+f f s ij( ) ( ) ( ) 1 ,ij
p

ij
q

ij f

2 2
max 2

(17) 

where ϵp, ϵq, ,v <f
1
2 can be chosen to tune the risk level associated 

with the individual chance constraints. Using (10)–(13), we can obtain 
computationally tractable reformulations of chance constraints (14)- 
(17), [3,7,18], and formulate the deterministic equivalent of the CC AC- 
OPF: 

+c p
b

SEQV-CC: min ( )
2p q

v i
i G i

i

i

i,
, ,

,

2
2

G G
(18a)  

s.t.
( , ): (6), (7)i

p
i
q (18b)  

( , ):(8), (9)i
p

i
q (18c)  

=( ): 1
i

i
(18d)  

++ p z S p i( ):i
p

G i i G i
,

, ,
max

p (18e)  

+p z S p i( ):i
p

G i i G i
,

, ,
min

p (18f)  

++ q z t q i( ):i
q

G i i
q

G i
,

, ,
max

q (18g)  

+q z t q i( ):i
q

G i i
q

G i
,

, ,
min

q (18h)  

+R e X diag t i( ): ( ( ))i
q

i
q

i
q

i
q

i
q1/2

2 (18i)  

=R i( ):i
q

i
q

i
q (18j)  

++µ v z t v i( ):i i i
v

i
max

v (18k)  

+µ v z t v i( ):i i i
v

i
min

v (18l)  

+R e X diag t i( ): ( ( ))i
v

i
v

i
v

i
v

i
v

2
1
2 (18m)  

=R i( ):i
v

i
v

i
v (18n)  

+a a s ij( ): ( ) ( ) ( )ij ij
f

ij
f

ij
2 2 max 2p q

(18o)  

++ a z t f ij:ij
f

ij
f

ij
f

ij
p,p p

f
p

2.5
(18p)  

+a z t f ij:ij
f

ij
f

ij
f

ij
p,p p

f
p

2.5
(18q)  

z t a ij:ij
f

ij
f

ij
f,0p p p

5
(18r)  

++ a z t f ij:ij
f

ij
f

ij
f

ij
q,q q

f
q

2.5
(18s)  

+a z t f ij:ij
f

ij
f

ij
f

ij
q,q q

f
q

2.5
(18t)  

z t a ij:ij
f

ij
f

ij
f,0q

f
q q

5
(18u)  

+ =R e X diag t ij f f: ( ( )) , ,ij i i i i
p q

2
1
2

(18v)  

= =R ij f f( ): , , ,ij ij ij
p q

(18w) 

where Greek letters in parentheses in (18b)–(18w) denote dual multi
pliers of constraints. Objective (18a) minimizes the expected cost as in  
(5). and Eqs. (18b) (18c) are the active and reactive power balances and 
flows based on the linearized AC power flow equations. Eq. (18d) is the 
balancing reserve adequacy constraint and (18e)–(18w) are the de
terministic reformulation of chance constraints (14)–(17), [7]. Con
straints (18e)–(18f) limit the active power production pG,i and the 
amount of reserve z Si p provided by each generator, [13,20]. Risk 
parameters are given by =z (1 ),1 where (1 )1 is the 
(1 )-quantile of the standard normal distribution, if ω follows a 
normal distribution. Although less restrictive assumptions on the dis
tribution of ω can be invoked in (18), e.g. by means of non-Gaussian 
parametric distributions [5] or distributionally robust formulations  
[4,13], this paper assumes normally distributed forecast errors for the 
sake of presentation clarity. The standard deviation of reactive power 
outputs, voltage levels and flows resulting from the uncertainty and the 
system response is given by the SOC constraints (18i), (18m) and (18v). 
Given the convexity of the SOC constraints, auxiliary variables t ,i

q t ,i
v

t ,ij
f p

tij
f q

relate these standard deviations to the reactive output limits  
(18g)–(18h), voltage bounds (18k)-(18l) and flow limits(18p)-(18u). 
Due to its quadratic dependency on the uncertain variable, the chance 
constraint in (17) requires a more complex reformulation than (14)- 
(16). To accommodate this reformulation, we follow [7] and introduce 
auxiliary variables a ,ij

f p
aij

f q
and risk parameters 

2.5
f and 

5
f (i.e. ϵf divided 

by 2.5 and 5), respectively. This yields an inner approximation of (17) 
that ensures feasibility of the the AC OPF with desired confidence 1 f
and the conservatism of the approximation can be tuned by adapting 
the divisor (2.5 and 5), [7]. Note that the two-sided chance constraints 
in (14)-(17) are expressed as one-sided chance constraints in (18e)- 
(18w) since simultaneous violations of both the upper and lower ca
pacity or voltage limits are physically impossible. Auxiliary variables 

,i
v

ij
f p

, ij
f q

and constraints (18j), (18n) and (18w) have been in
troduced to simplify subsequent derivations. As a result, (18) includes 
convex quadratic objective and second-order conic constraints. Al
though it can be reformulated into a convex conic program to gain 
computational tractability, [21], the form in (18) allows for a clear 
presentation below. 

3. Risk-aware pricing 

The EQV-CC endogenously trades off the expected operating point 
(pG, qG, v, θ, γ, α) and the risk of system limit violations defined by the 
choice of parameters z z z z z, , , ,g q v f f

2.5 5
. Since the EQV-CC is a convex 

program, we can use its dual form to compute the marginal prices for 
active and reactive power, and balancing reserve that internalize this 
trade-off. 
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3.1. Prices with chance constraints on generation 

First, we consider a modification of the EQV-CC given as: 

+c p
b

SGEN-CC: min ( )
2p q

v i
i G i

i

i

i,
, ,

,

2
2

G G
(19a)  

+ q q q i
s.t. (18b) (18f)

( , ):i
q

i
q

G i G i G i
, ,

,
min

, ,
max

(19b)  

+µ µ v v v i( , ):i i i i i
min max (19c)  

+f f s ij( ): ( )ij ij
p

ij
q

ij

2 2
max 2

(19d) 

where, relative to the EQV-CC in (18), chance constraints are only 
enforced on active power generation limits and reactive power, voltage 
and power flow constraints are enforced deterministically by (19b)- 
(19d). In other words, the GEN-CC determines the optimal balancing 
participation of each generator and, thus, the optimal amount and al
location of committed reserve given by z Si g . Therefore, the GEN-CC 
replicates a traditional deterministic OPF that allocates the reserve re
quirement ( =z S z Si i g g ) among individual generators, see [7]. 

Using the GEN-CC, we compute the following prices: 

Proposition 1. Consider the GEN-CC in (19). Let ,i
p

i
q be dual 

multipliers of the nodal active and reactive power balance at node i in  
(18b). Then i

p and i
q are given as: 

=
+

+ +p a
bi

p G i i

i
i
p

i
p, , ,

(20)  

= +.i
q

i
q

i
q, , (21) 

Proof. The first order optimality conditions of (19) for pG,i, qG,i, αi, f ,ij
p

fij
q are: 

+ =
++p

p a
b

i( ): ( )G i i
p

i
p

i
p G i i

i
,

, , ,

(22a)  

+ =+q i( ): ( ) 0G i i
q

i
q

i
q

,
, ,

(22b)  

+ + =+z S
b

S i( ): ( )i i
p

i
p i

i

, , 2
p (22c)  

+ =f f ij: 2 0ij
p

ij
p

ij ij
f p

(22d)  

+ =f f ij: 2 0 .ij
q

ij
q

ij ij
f q

(22e) 

Eqs.  (20)-(21) follow directly from (22a)-(22b). □ 

Dual multiplier i
p of the active power balance, itemized in (20), is 

interpreted as the real power LMP at node i and a function of produc
tion cost coefficients ai, bi and scarcity rent +,i

p,
i
p, related to active 

generation limits. Dual multiplier i
q of the reactive power balance, 

itemized in (21), is interpreted as the reactive power LMP given by 
scarcity rent +,i

q,
i
q, related to reactive generation limits. Although 

there is no explicit production cost for reactive power in (18a), pro
viding reactive power can have a non-zero value, if at least one reactive 
power limit is binding. Further, Proposition 1 shows that both i

p and 
i
q in (20)-(21) do not explicitly depend on uncertainty and risk para

meters. 
In contrast, the price for balancing reserve explicitly depends on the 

uncertainty and set risk levels: 

Proposition 2. Consider the GEN-CC in (19). Let χ be the dual multiplier 
of the balancing adequacy constraint in (18d). Then χ is given as: 

= + ++
b

S z S b1 ( ) .
i i i

i i
p

i
p2 , ,

p
(23) 

Proof. Using (18d) to eliminate αi in (22c) yields (23). 

□ 

Dual multiplier χ of (18d) is interpreted as the price for balancing 
reserve, because it enforces sufficiency of the system-wide reserve. As 
per (23), χ is an explicit function of the uncertainty =S e e2 and risk 
parameter z g. Notably, the balancing reserve price is always non-zero, 
if there is uncertainty in the system (i.e. S > 0), even if all constraints  
(18e)-(18f) are inactive, i.e. = =+ i0,i

p
i
p, , . In this case, χ is 

independent of the risk parameters and is determined by the total un
certainty S2 weighted by the total marginal generator cost bi i of all 
generators, i , including those generators that do not provide any 
balancing reserve, i.e. = 0i . 

3.2. Prices with complete chance constraints 

We now consider the complete EQV-CC in (18), i.e. including 
chance constraints on reactive power generation, voltages and flows, 
and prove the following proposition: 

Proposition 3. Consider the EQV-CC in (18). Let ,i
p

i
q be dual 

multipliers of the nodal active and reactive power balances at node i as in  
(18b). Further, let χ be the dual multiplier of the balancing adequacy 
constraint in (18d). Then (i) i

p and i
q are given as (20)-(21) and (ii) χ is 

given as: 

= + + + + + ++
b
S z S b b y y y y1 ( ) ( ) ,

i i i i i i i i i
q

i
v f f2

Influenced by generator decisions Influenced by system decisions

p q

(24) 

where: 

=
+

y z R
R X diag e R S

[ ]
( ( ))

( , )i
q

j
j
q

i j
q j

q
j
q

j
q

q

2

q
G j, (25)  

=
+

y z R µ
R X diag e R S

[ ]
( ( ))

( , )i
v

j
j
v

i j
j
v

j
v

j
v

v

2

v
j (26)  

=
+

y R
R X diag e R S

2 [ ]
( ( ))

( , )
,i

jk
jk i ij

jk jk jk
2

jk (27) 

where = f f,p q and = ++
j
q

j
q

j
q, , , = ++µ µ µ ,j j j and 

= + ++z z( )ij ij ij ij
, , ,0f f

2.5 5
. Terms ( , ), ( , ),q vG j j, ( , ),f jk

p

( , )f jk
q denote the standard deviations of reactive power at node j, 

voltage at node j, active power flow on line jk and reactive power flow on line 
jk, respectively, and [ · ]i denotes the i-th element of a vector. 

Proof. The first order optimality conditions of (18) for pG,i, qG,i, αi, f ,ij
p

fij
q and auxiliary variables are: 

+ + +

+

+ + =

+z S R

R

R R S i

(22a)(22b)(28b)and(28a)
( ): ( ) [ ]

[ ]

[ ] [ ]

i i
p

i
p

j j
q

j
q
i

j j
v

j
v
i

jk jk
f

jk
f

i jk jk
f

jk
f

i b

, ,

2

p

p p q q i
i

(28a)  

+ =+t z i( ): ( ) 0i
q

i
q

i
q

i
q, ,

p (28b)  

+
+

=
R e X diag e
R e X diag

i( ):
( ( ))
( ( ))

0i
q

i
q i

q
i
q

i
q

i
q

i
q

i
q i

q

2
1
2 (28c)  
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+
+

=
R e X diag e
R e X diag

i( ):
( ( ))
( ( ))

0i
v

i
v i

v
i
v

i
v

i
v

i
v

i
v i

v

2
1
2 (28d)  

+ =+t z µ µ i( ): ( ) 0i
v

i i i
v

v (28e)  

+ =+f ij: 0ij
p

ij
f

ij
f

ij
p, ,p p

(28f)  

+ =+f ij: 0ij
q

ij
q

ij
f

ij
f, ,q q

(28g)  

+

+
= =

R e X diag e

R e X diag
ij f f:

( )

( ( ))
0 , ,ij i

v
ij ij ij

ij i
v

ij
ij

p q

2
1
2

(28h)  

+ = =+a a ij f f( ): 2 0 , ,ij ij ij ij ij ij
p q, , ,0

(28i)  

+ + = =+t z z ij f f( ): 0 , ,ij ij ij ij ij
p q, , ,0f f

2.5 5 (28j) 

The result (i) follows directly from the proof of Proposition 1. The 
result (ii) follows from (28a) by eliminating αi using (18d). Note that 
terms ,i

q ,i
v ,ij

f p
ij
f q

are given by (28c), (28d) and (28h). Further, 
=t ( , ),i

q
qG i, if > 0i

q as per (18i), =t ( , ),i
v

vj if > 0i
v as per  

(18m) and =t ( , ),ij jk if > 0ij as per (18v) for = f f,p q. Thus, for 
any the dependency on the standard deviation would disappear. 
Finally, terms , , ,i

q
i
v

ij
f

ij
fp q

are given by (28b)–(28e) and (28j). □ 

Similar to the result of Proposition 1, prices i
p and i

q do not ex
plicitly depend on uncertainty and risk parameters. On the other hand, 
relative to (23), balancing reserve price χ depends on additional terms 
y ,i

q y ,i
v y ,i

f p
y ,i

f q
see (24), that relate the balancing reserve provided by 

each generator at node i to the risk of reactive power and voltage limits 
violation at every node j and to the risk of power flow violations 
on every line jk . This risk awareness is not part of the generator 
decisions, which are only driven by its own production limits and cost, 
as indicated in (24). As a result of this incompleteness, given system- 
wide balancing price χ, generators may elect for balancing participa
tion factors which are sub-optimal from the system perspective. This 
can be overcome either by further completing the market in terms of 
transmission and voltage prices as proposed in [16], or by augmenting 
the system-wide balancing price to reflect location-specific constraints, 
e.g. = + + + +y y y y˜ :i i

q
i
v

i
f

i
fp q

. 

4. Variance-aware pricing 

The risk-aware results of the EQV-CC in (18) yield solutions with a 
high variability (variance) of system state variables, which has been 
shown to complicate real-time operations, [17,22]. The variances of 
reactive power generation, voltage magnitudes, and active and reactive 
flows can directly be computed from the standard deviations related to 
t ,i

q t ,i
v t ,ij

f p
t ,ij

f q
respectively. We introduce the metric V t t t t( , , , )i

q
i
v

i
f

i
fp q

that models a connection between the variances and system cost in the 
following variance-aware formulation: 

+ +c p S V t t t tVA-CC: min ( ) ( , , , )

s.t. (18b) (18w).

p q
v

i i G i i b i
q

i
v

ij
f

ij
f

,
, ,

,
2

G G
i
i

p q2

(29) 

Specifically, metric V( · ) penalizes the variance of state variables and, 
thus, it can be used to trade-off the overall system variance and the 
expected operating cost in the system as discussed in [17]. We define 
metric V( · ) as: 

= +

+ +

V t t t t t t( , , , ) ( ( ) ) ( )

( (t ) (t ) ),

i
q

i
v

ij
f

ij
f

i
i
q

i
q

i
i
v

i
v

ij
ij ij ij

2 2

f f 2
i
f f 2

p q

p p q q

(30) 

where ,i
q ,i

v ,ij
f p

ij
f q

are variance penalty factors in the units of 
[ ],$

MVAr2 [ ],
V
$
2 [ ]$

MW2 and [ ],$
MVAr2 respectively. Note that active power 

standard deviation ti
p is already controlled by the generation cost and 

the constraints on αi. 

Proposition 4. Consider the VA-CC in (29). Let ,i
p

i
q be dual multipliers 

of the nodal active and reactive power balance at node i as in (18b). Further, 
let χ be the dual multiplier of the balancing adequacy constraint in (18d). 
Then (i) i

p and i
q are given by (20)-(21) and (ii) χ is given as: 

= + + + + + ++
b

S z S b b y y y y1 ( ) ( ) ,
i i i

i i i
i

i i
q

i
v f f2 p q

(31) 

where: 

=
+

y R
R X diag e R S

[ ]
( ( ))

( , )i
q

j
j
q

i j
q j

q
j
q

j
q

q

2

G j, (32)  

=
+

y R
R X diag e R S

[ ]
( ( ))

( , )i
v

j
j
v

i j
v j

v
j
v

j
v

v

2

j (33)  

=
+

y R
R X diag e R S

2 [ ]
( ( ))

( , )i
jk

jk i ij
jk jk jk

2

jk (34)  

= ++z ( ) 2 ( , )j
q

j
q

j
q

q j
q, ,

q Gj (35)  

= ++z µ µ( ) 2 ( , )j
v

j j v j
v

v j (36)  

= + ++z z 2 ( , ) ,jk ij ij ij j
, , ,0f f jk

2.5 5 (37) 

and = f f,p q. 

Proof. The first-order optimality conditions of (29) for pG,i, qG,i, αi, f ,ij
p

fij
q and auxiliary variables are: 

+ + +

+ + = +

=

+z S R

R R
b

S

i f f

(22a), (22b), (28c), (28d)and(28f) (22i)
( ): ( ) [ ]

[ ] [ ] 1 2

, ,

i i
p

i
p

j
j
q

j
q

i

j
j
v

j
v

i
jk

jk jk i i
i
p

i

p q

, ,

2

p

(38a)  

+ =+t z t i( ): ( ) 2i
q

i
q

i
q

i
q

i
q

i
q, ,

p (38b)  

+ =+t z µ µ t i( ): ( ) 2i
v

i i i
v

i
v

i
v

v (38c)  

+ + =

=

+t z z t

ij f f

( ): 2

, ,

ij ij ij ij ij ij ij

p q

, , ,0f f
2.5 5

(38d) 

The result (i) follows directly from the proof of Proposition 1. The 
result (ii) follows from re-arranging (38a) using (18d) to eliminate αi. 
Note that terms ,i

q ,i
v ,ij

f p
ij
f q

are given by (28c), (28d) and (28h) and 
terms (35), (36) and (37) follow from (38b)-(38d). Similarly to the 
proof of Proposition 3, =t ( , ),i

v
vj if > 0i

v as per (18m), 
=t ( , ),ij

f
f

p
p

jk if > 0ij
f p

as per (18m), and =t ( , ),ij
f

f
q

p
jk if 

> 0ij
f q

as per (18v). □ 

Relative to the results of Proposition 3, terms y ,i
q y ,i

v y ,i
f p

yi
f q

now 
include an inherent trade-off between the risk of limit violation and the 
absolute standard deviations weighted by penalty factors ,i

p ,i
q ,i

v
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,ij
f p

,ij
f q

see (35)-(37). Since dual multipliers , , ,j
q

j
v

jk
f

jk
fp q

must be 
non-negative by definition, the scarcity rents of reactive power 

+, ,j
q

j
q, , voltage magnitude +µ µ, ,j j active power flows +, ,ij

f
ij
p

ij
f, , ,0p p

and reactive power flows +, ,ij
f

ij
f

ij
f, , ,0q q q

and risk parameters 
z z z, ,g v f set an upper bound to the standard deviations 

, , ,p v f fG j j jk
p

jk
q

, weighted by the penalty factors. 

5. Case study 

We conduct numerical experiments using the modified 118-node 
IEEE test system from [7], which includes 11 wind farms with the total 
forecast power output of 1196MW ( ≈ 28.2% of the total active power 
demand). As in [4,7], the wind power forecast error is zero-mean with 
the standard deviation of = p i0.125 ,p U i,U i, . In addition to the 
GEN-CC, EQV-CC and VA-CC, we solve a deterministic AC OPF (re
ference) case using the forecast renewable generation and 

= i0,i . All calculations have been performed for risk levels 
= 0.1 and = 0.01 assuming that = = = =p q v f . Additionally, 

the VA-CC has been computed for various values of 
= {0.1, 1, 10, 100, 1000} assuming that = = = i,i

p
i
q

i
v

and = = ij,ij
f

ij
fp q

. All models are implemented in Julia 
using JuMP [23] and the code and input data are reported in [24]. The 
linearization point (see Section 2.5) has been obtained as described in  
[7] using the IPOPT solver, [25], and the chance-constrained models 
have been solved using the MOSEK solver, [26]. 

5.1. Cost and price analysis 

Table 1 compares the results of the deterministic, GEN-CC, EQV-CC 
and VA-CC cases for different values of ϵ and Ψ. As expected, the ob
jective value and expected generation cost increase as we introduce 
additional chance constraints and increase the value of Ψ, thus inter
nalizing the cost of re-dispatch to ensure larger security margins and 
lower variance of state variables. Similarly to the results in [17], which 

uses DC power flow assumptions, increasing variance penalty factor Ψ 
does not significantly raise the expected generation cost. This ob
servation suggests that this reduction in state variable variances is 
achieved by adjustments to those variables which are not limited by 
binding constraints in the optimal solution. In other words, the variance 
of variables related to non-binding constraints can be controlled 
without significantly affecting the optimal values of other variables. 
Note that the variance of variables related to binding chance constraints 
is a priori controlled by the defined violation tolerance of these con
straints. 

Also, increasing conservatism of the model increases system-wide 
balancing reserve price χ for both values of ϵ. For example, in the GEN- 
CC, the value of χ is only driven by chance constraints on power output 
limits of generators, as per Proposition 2, while the EQV-CC and VA-CC 
introduce additional components (e.g. reactive power, voltage and flow 
variances) to price χ as per Propositions 3 and 4. Location-specific 
prices i

p and i
q for all network nodes are displayed in Fig. 1a), while  

Figs. 1b)-c) map the relative difference between i
p for the VA-CC case 

with = 100 and = 0.01 and the deterministic case. At the majority of 
nodes, prices i

p (indicated by the box-plots in Fig. 1a) remain within 
32–38$/MWh. Note that unlike χ, which significantly increases for 
more conservative models, prices for i

p and i
q do not vary as much as 

conservatism increases. This corresponds to our findings in  
Propositions 1-4, which show that active and reactive power prices do 
not explicitly depend on the uncertainty and risk parameters. However, 
at some nodes, prices i

p and i
q in the GEN-CC and VA-CC cases exhibit 

larger deviations, e.g. see i
p at nodes 20 and 23, which are also in 

proximity of wind farms, as shown in Fig. 1c). A resulting high flow 
variance on the line between nodes 19 and 23 causes price differ
entiation at nodes 19, 20, 21 and 23, 24, 25. 

5.2. Analysis of variance of state variables 

Table 1 shows how the aggregated variance of state variables 
,i q

2
G i, ,i v

2
i ,i f

2
ij
p i f

2
ij
q change relative to the EQV-CC case as 

Table 1 
Optimal Solutions of the deterministic, GEN-CC, EQV-CC and VA-CC cases.   
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penalty Ψ increases. Even if Ψ is set to a small value, the variance of 
state variables reduce significantly, without a large increase in the 
objective function, expected generation cost, and prices i

p and i
q. 

Furthermore, as the value of ϵ increases, the relative reduction in var
iances of all state variables slightly reduces. The effect of variance 
penalty Ψ on prices is two-fold. First, it does not affect prices i

p and i
q

relative to the EQV-CC case. Second, system-wide balancing price χ, 
which internalizes the variance penalties as per Proposition 4, increases 
with penalty Ψ. 

6. Conclusion 

This paper described an approach to internalize RES stochasticity 
and risk parameters in electricity prices. Using SOC duality, these risk- 
and variance-aware prices are derived from a chance-constrained AC- 
OPF and are itemized in terms of active and reactive power, voltage 
support and power flow components. We proved that active and re
active power prices do not explicitly depend on uncertainty and risk 

parameters, while expressions for balancing reserve prices explicitly 
include these parameters. Further, introducing variance penalties on 
the system state variables has been shown to internalize the trade-off 
between variance, risk and system cost at a modest increase in the 
expected operating cost. The results have been demonstrated and 
analyzed on the modified IEEE 118-node testbed. Future work includes 
extensions of the proposed market-clearing model to account for risk- 
averse strategies of market participants, enable risk trading instruments 
using our preliminary work in [27], and to account for multi-period 
trading horizons. 
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Appendix A.   

This section shows the derivation of (10)-(13) from (6)-(9). First, rewrite (6)-(7) in the following form: 

= =
p
q

p
q

J J
J J

v J v( )
( )

¯
¯

( )
( )

( )
( )

,
p v p

q v q

, ,

, , (A.1) 

where the rows of matrices J⋄ are equal to sensitivity vectors Ji for i and = p v p q v q{( , ); ( , ); ( , ); ( , )}. First, we sort the rows of the terms in  
(A.1) by node types and introduce superscripts PQ, PV, θV to indicate the node type: 

=

p
p
q

p
q
q

p
p
q

p
q
q

J J
J J

v

v
v

( )
( )
( )

( )
( )
( )

¯
¯
¯

¯
¯
¯

( )
( )
( )

( )
( )
( )

,

PQ

PV

PQ

V

PV

V

PQ

PV

PQ

V

PV

V

A B

C D

PQ

PQ

PV

PV

V

V
(A.2) 

where J A D denote the blocks of re-arranged matrix J from (A.1). Quantities pPQ(ω), pPV(ω), qPQ(ω) are explicitly given by the uncertain generation 
and the respective system responses such that: 

Fig. 1. (a) Active and reactive power prices i
p and i

q for the deterministic, GEN-CC and EQV-CC cases and VA-CC with = 100 for risk level = 0.01. The orange 
line within the blue box represents the median value, the left and right edges of the box represent the first and third quartiles and the outliers are plotted as circles. (b) 
Difference of active power prices i

p in the VA-CC ( = 100) relative to the deterministic case (in %). (c) Magnification of the area indicated by the doted rectangle in 
(b). 
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= +
+
+

p
p
q

p
p
q

p
p
q diag

( )
( )
( )

¯
¯
¯

( )
( )

( ( ) )
.

PQ

PV

PQ

PQ

PV

PQ

G
PQ

G
PV

G
PQ

PQ

PV

PQ
(A.3) 

Notably, pU and pD are not part of the right-hand side of (A.3) because they are fixed parameters. Further, =v v( ) ,PV PV =v v( ) ,V PV and 
=( )V V as discussed in Section 2.3. We use this relationship and (A.2)-(A.3) to compute the reactions of the uncontrolled variables to un

certainty ω: 

=
+
+

v v
J

diag

( )
( )
( )

( )
( )
( )

( ( ) )
.

PQ

PQ

PV

PQ

PQ

PV

A

PQ

PV

PQ

1

(A.4) 

Note that although vPQ, θPQ, θPV implicitly depend on the AC power flow equations, these variables are endogenous to the model and not subject to 
uncertainty. Similarly, we get: 

=
+
+

p
q
q

p
q
q

p
p
q

J J
diag

( )
( )
( )

¯
¯
¯

( )
( )
( )

( ( ) )
.

V

PV

V

V

PV

V

V

PV

V

C A

PQ

PV

PQ

1

(A.5) 

Using (A.4), we immediately obtain (11) by separating matrix J( )A 1. Similarly, we obtain (10) from separating matrix J J( )C A 1. In analogy, (12)-(13) 
can be obtained by noting that =p fi j ij ij

p
: and =q fi j ij ij

q
: and combining the sensitivity factors respectively.  
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