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Abstract

How and to what extent does BERT en-

code syntactically-sensitive hierarchical infor-

mation or positionally-sensitive linear infor-

mation? Recent work has shown that contex-

tual representations like BERT perform well

on tasks that require sensitivity to linguis-

tic structure. We present here two studies

which aim to provide a better understanding

of the nature of BERT’s representations. The

first of these focuses on the identification of

structurally-defined elements using diagnostic

classifiers, while the second explores BERT’s

representation of subject-verb agreement and

anaphor-antecedent dependencies through a

quantitative assessment of self-attention vec-

tors. In both cases, we find that BERT en-

codes positional information about word to-

kens well on its lower layers, but switches to

a hierarchically-oriented encoding on higher

layers. We conclude then that BERT’s repre-

sentations do indeed model linguistically rel-

evant aspects of hierarchical structure, though

they do not appear to show the sharp sensitiv-

ity to hierarchical structure that is found in hu-

man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-

nerstone in any NLP pipeline. Although such

embeddings traditionally involve context-free dis-

tributed representations of words (Mikolov et al.,

2013; Pennington et al., 2014), recent successes

with contextualized representations (Howard and

Ruder, 2018; Peters et al., 2018; Radford et al.,

2019) have led to a paradigm shift. One promi-

nent architecture is BERT (Devlin et al., 2018), a

Transformer-based model that learns bidirectional

encoder representations for words, on the basis of

∗Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency

training objective. Simply using BERT’s represen-

tations in place of traditional embeddings has re-

sulted in state-of-the-art performance on a range of

downstream tasks including summarization (Liu,

2019), question answering and textual entailment

(Devlin et al., 2018). It is still, however, unclear

why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;

Gulordava et al., 2018; Marvin and Linzen, 2018;

Lakretz et al., 2019) has explored how recurrent

neural language models perform in cases that re-

quire sensitivity to hierarchical syntactic structure,

and study how they do so, particularly in the do-

main of agreement. In these studies, a pre-trained

language model is asked to predict the next word

in a sentence (a verb in the target sentence) follow-

ing a sequence that may include other intervening

nouns with different grammatical features (e.g.,

“the bear by the trees eats...”). The predicted verb

should agree with the subject noun (bear) and not

the attractors (trees), in spite of the latter’s recency.

Such analyses have revealed that LSTMs exhibit

state tracking and explicit notions of word order

for modeling long term dependencies, although

this effect is diluted when sequential and structural

information in a sentence conflict. Further work

by Gulordava et al. (2018) and others (Linzen

and Leonard, 2018; Giulianelli et al., 2018) ar-

gues that RNNs acquire grammatical competence

in agreement that is more abstract than word col-

locations, although language model performance

that requires sensitivity to the phenomena such as

reflexive anaphora, non-local agreement and neg-

ative polarity remains low (Marvin and Linzen,

2018). Meanwhile, studies evaluating which lin-

guistic phenomena are encoded by contextualized

representations (Goldberg, 2019; Wolf, 2019; Ten-

ney et al., 2019) successfully demonstrate that

purely self-attentive architectures like BERT can
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capture hierarchy-sensitive, syntactic dependen-

cies, and even support the extraction of depen-

dency parses (Hewitt and Manning, 2019). How-

ever, the way in which BERT does this has been

less studied. In this paper, we investigate how and

where the representations produced by pre-trained

BERT models (Devlin et al., 2018) express the hi-

erarchical organization of a sentence.

We proceed in two ways. The first involves the

use of diagnostic classifiers (Hupkes et al., 2018)

to probe the presence of hierarchical and linear

properties in the representations of words. How-

ever, unlike past work, we train these classifiers

using a “poverty of the stimulus” paradigm, where

the training data admit both linear and hierarchi-

cal solutions that can be distinguished by an en-

riched generalization set. This method allows us to

identify what kinds of information are represented

most robustly and transparently in the BERT em-

beddings. We find that as we use embeddings from

higher layers, the prevalence of linear/sequential

information decreases, while the availability of on

hierarchical information increases, suggesting that

with each layer, BERT phases out positional infor-

mation in favor of hierarchical features of increas-

ing complexity.

In the second set of experiments, we explore

a novel approach to the study of BERT’s self-

attention vectors. Past explorations of attention

mechanisms, whether in the domain of vision

(Olah et al., 2018; Carter et al., 2019) or NLP

(Bahdanau et al., 2015; Karpathy et al., 2015;

Young et al., 2018; Voita et al., 2018), have largely

involved a range of visualization techniques or the

study of the general distribution of attention. Our

work takes a quantitative approach to the study

of attention and its encoding of syntactic depen-

dencies. Specifically, we consider the relation-

ships between verbs and the subjects with which

they agree, and reflexive anaphors and their an-

tecedents. Building on past work in psycholin-

guistics, we consider the influence of distractor

noun phrases on the identification of these de-

pendencies. We propose a simple attention-based

metric called the confusion score that captures

BERT’s response to syntactic distortions in an in-

put sentence. This score provides a novel quan-

titative method of evaluating BERT’s syntactic

knowledge as encoded in its attention vectors. We

find that BERT does indeed leverage syntactic re-

lationships between words to preferentially attend

to the “correct” noun phrase for the purposes of

agreement and anaphora, though syntactic struc-

ture does not show the strong categorical effects

we sometimes find in natural language. This result

again points to a representation of syntactically-

relevant hierarchical information in BERT, this

time through attention weightings.

Our analysis thus provides evidence that

BERT’s self-attention layers compose increas-

ingly abstract representations of linguistic struc-

ture without explicit word order information,

and that structural information is expressly fa-

vored over linear information. This explains why

BERT can perform well on downstream NLP

tasks, which typically require complex modeling

of structural relationships.

2 Diagnostic Classification

For our first exploration of the kind of linguistic

information captured in BERT’s embeddings, we

apply diagnostic classifiers to 3 tasks: identify-

ing whether a given word is the sentence’s main

auxiliary, the sentence’s subject noun, and the

sentence’s nth-token. In each task, we assess

how well BERT’s embeddings encode information

about a given linguistic property via the ability of

a simple diagnostic classifier to correctly recover

the presence of that property from the embeddings

of a single word. The three tasks focus on dif-

ferent sorts of information: identifying the main

auxiliary and the subject noun requires sensitivity

to hierarchical or syntactic information, while the

nth-token requires linear information.

For each token in a given sentence, its input rep-

resentation to BERT is a sum of its token, segment

and positional embeddings (Devlin et al., 2018).

We refer to these inputs as pre-embeddings. Note

that by construction, a) the pre-embeddings con-

tain linear but not hierarchical information, and b)

BERT cannot generate new linear information that

is not already in the input. Thus, any linear infor-

mation in BERT’s embeddings ultimately stems

from the pre-embeddings, while any hierarchical

information must be constructed by BERT itself.

2.1 Poverty of the stimulus

To classify an embedding as a sentence’s main

auxiliary or subject noun, the network needs to

have represented structural information about a

word’s role in the sentence. In many cases, such

structural information can be approximated lin-
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Main auxiliary task Subject noun task

Training, Development
the cat will sleep the bee can sting

the cat will eat the fish that can swim the bee can sting the boy

Generalization
the cat that can meow will sleep (compound noun) the queen bee can sting

the cat that can meow will eat the fish that can swim (possessive) the queen’s bee can sting

Table 1: Representative sentences from the main auxiliary and subject noun tasks. For the latter, the generalization

set contains two types of sentences, compound nouns and possessives, which are evaluated on separately. In each

example, the correct token is underlined, while the distractor (consistent with the incorrect linear rule) is italicized.

early: the main auxiliary or subject noun could be

identified as the first auxiliary or noun in a sen-

tence. Though such a linear generalization may be

falsified if given certain complex examples, it will

succeed over a large range of simple sentences.

Chomsky (1980) argues that the relevant distin-

guishing examples may be very rare for the case

of identifying the main auxiliary (a property that

is necessary in order to form questions), and hence

this is an instance of the “poverty of the stimu-

lus” that motivates the hypothesis of innate bias

toward hierarchical generalizations. However, it

seems clear that distinguishing examples are plen-

tiful for the subject noun case. The question we

are interested in, then, is whether and how BERT’s

embeddings, which result from training on a mas-

sive dataset, encode hierarchical information.

Pursuing the idea of poverty of the stimulus

training (McCoy et al., 2018), we train diagnos-

tic classifiers only on sentences in which the rel-

evant property (main auxiliary or subject noun) is

stateable in either hierarchical or sequential terms,

i.e., the linearly first auxiliary or noun (cf. Section

2.2). The classifiers are then tested on sentences of

greater complexity in which the hierarchical and

linear generalizations can be distinguished. Since

our classifier is a simple perceptron that can access

only one embedding at a time, it cannot compute

complex contingencies among the representations

of multiple words, and cannot succeed unless such

information is already encoded in the individual

embeddings. Thus, success on these tasks would

indicate that BERT robustly represents the words

of a sentence using a feature space where the iden-

tification of hierarchical generalizations is easy.

2.2 Dataset

The main auxiliary and subject noun tasks use syn-

thetic datasets generated from context-free gram-

mars (cf. Appendix A.1) that were designed to iso-

late the relevant syntactic property for a poverty

of the stimulus setup. Typical sentences are high-

lighted in Table 1. In both tasks, the training,

development and generalization sets contained

40000, 10000, and 10000 examples respectively.

Main auxiliary In the training and development

sets, the main auxiliary (will in Table 1) is al-

ways the first auxiliary in the sentence. A classi-

fier that learns the naive linear rule of identifying

the first linearly occurring auxiliary instead of the

correct hierarchical (syntactic) rule still performs

well during training. However, in the generaliza-

tion set, the subject of each sentence is modified

by a relative clause that contains an intervening

auxiliary (that can meow). Since the main auxil-

iary is never the first auxiliary in this case, learning

the hierarchical rule becomes imperative.

Subject noun In the training and development

sets, the subject noun (bee in Table 1) is always the

first noun in the sentence. A classifier that learns

the linear rule of identifying the first linearly oc-

curring noun does well during training, but only

the hierarchical rule gives the right answer at test

time. In the generalization set (both compound

nouns & possessives cases), the subject noun is

the head of the construction (bee) and not the de-

pendent (queen). In the possessives case, we note

that subword tokenization always produces ’s as

a standalone token, e.g. queen’s is tokenized into

[queen] [’s]. Also, we allow sentences to chain an

arbitrary number of possessives via nesting.

nth-token For this experiment, we use sentences

from the Penn Treebank WSJ corpus. Following

the setup of Collins (2002) and filtering for sen-

tences between 10 to 30 tokens BERT tokeniza-

tion, we obtained training, development and gen-

eralization sets of sentences of sizes 21142, 3017

and 2999. We only consider 2 ≤ n ≤ 9. In par-

ticular, we ignore n = 1 since the first token pro-

duced by BERT is always trivially [CLS].







246

BERT composes increasingly abstract representa-

tions via self-attention, which allows it to extract

information from other tokens in the sentence. At

some point, the representation becomes abstract

enough to represent the hierarchical concept of a

“main auxiliary”, causing an early increase in clas-

sification accuracy. However, as depth increases

further, the representations become so abstract that

finer linguistic features are increasingly difficult to

recover, e.g., a token embedding at the sentence-

vector level of abstraction may longer be capable

of identifying itself as the main auxiliary, account-

ing for the slowly deteriorating performance to-

wards later layers.

Subject noun Given the similarity of the main

auxiliary and the subject noun classification tasks,

we might expect them to exhibit similar trends

in performance. In Figure 2, we observe a sim-

ilar early increase in diagnostic classification ac-

curacy for the bbu embeddings. The lack of sig-

nificant performance decay on higher layers pos-

sibly reflects the salience of the subject noun fea-

ture even at the sentence-vector level of abstrac-

tion. Strangely, blu performed poorly, even worse

than chance (50%). We are unable to explain why

this happens and leave this for future research.

On the possessive generalization set, the poor

performance of both models seems to contra-

dict the hypothesis that BERT has learned an ab-

stract hierarchical generalization to classify sub-

ject nouns. We conjecture that BERT’s issues in

the possessive case stem from the ambiguity of

the ’s token, which can function either as a pos-

sessive marker or as a contracted auxiliary verb

(e.g.“She’s sleeping”). If BERT takes a possessive

occurrence of ’s as the auxiliary verb, the immedi-

ately preceding noun can be (incorrectly) analyzed

as the subject. If so, this would suggest that BERT

does not represent the syntactic structure of the en-

tire sentence in a unified fashion, but instead uses

local cues to constituency. In Figure 3, the gradu-

ally increasing but still poor performance towards

later layers in both models suggests that the em-

beddings might be trending toward a more abstract

representation, but do not ultimately achieve it.

nth token For each layer k ≥ 3, Figure 4 shows

an asymmetry where the classifier for layer k per-

forms worse at identifying the nth token as n in-

creases. We believe that this may be an artifact of

the distributional properties of natural language:

the distribution of words that occur at the start of a

sentence tends to be concentrated on a small class

of parts of speech that can occur near the begin-

ning of constituents that can begin a sentence. As

n increases, the class of possible parts is no longer

a function of the beginning of the sentence, and

as a result becomes more uniform. As a result, it

is easier for a classifier to predict whether a given

word is the nth token when n is small, since it can

make use of easily accessible part-of-speech infor-

mation in the embeddings to limit its options to

only the tokens likely to occur in a given position.

3 Diagnostic Attention

Our second exploration of BERT’s syntactic

knowledge focuses on the encoding of grammat-

ical relationships instead of the identification of

elements with specific structural properties. We

consider two phenomena: reflexive anaphora and

subject-verb agreement. For each, we deter-

mine the extent to which BERT attends to lin-

guistically relevant elements via the self-attention

mechanism. This gives us further information

about how hierarchy-sensitive syntactic informa-

tion is encoded.

3.1 Quantifying intrusion effects via

attention

Subject-verb and antecedent-anaphor dependen-

cies both involve a dependent element, which we

call the target (the verb or the anaphor) and the el-

ement on which it depends, which we call the trig-

ger (the subject or the antecedent that provides the

interpretation). A considerable body of work in

psycholinguistics has explored how humans pro-

cess such dependencies in the presence of ele-

ments that are not in relevant structural positions

but which linearly intervene between the trigger

and target. Dillon et al. (2013) aim to quantify

this intrusion effect in human reading for the two

dependencies we explore here. Under the assump-

tion that higher reading time and eye movement

regressions indicate an intrusion effect, they con-

clude that intruding noun-phrases have a substan-

tial effect on the processing of subject-verb agree-

ment, but not antecedent-anaphor relations.

We adapt this idea in measuring intrusion ef-

fects in BERT. We propose a simple and novel

metric we term the “confusion score” for quantify-

ing intrusion effects using attention. This quantita-
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Subject-Verb Agreement

Condition
Relative
Clause

DN
Number Match

Example Sentence
Mean

Confusion Score

A1 ✗ X the cat near the dog does sleep 0.97

A2 ✗ ✗ the cat near the dogs does sleep 0.93

A3 X X the cat that can comfort the dog does sleep 0.85

A4 X ✗ the cat that can comfort the dogs does sleep 0.81

Reflexive Anaphora

Condition
Relative
Clause

DNo

Gender Match
DNr

Gender Match
Example Sentence

Mean
Confusion Score

R1 ✗ X NA the lord could comfort the wizard by himself 1.01

R2 ✗ ✗ NA the lord could comfort the witch by himself 0.92

R3 X NA X the lord that can hurt the prince could comfort himself 0.99

R4 X NA ✗ the lord that can hurt the princess could comfort himself 0.89

R5 X X X the lord that can hurt the prince could comfort the wizard by himself 1.57

R6 X X ✗ the lord that can hurt the princess could comfort the wizard by himself 1.52

R7 X ✗ X the lord that can hurt the prince could comfort the witch by himself 1.49

R8 X ✗ ✗ the lord that can hurt the princess could comfort the witch by himself 1.39

Table 2: Representative sentences from the subject-verb agreement and reflexive anaphora datasets for each con-

dition, and corresponding mean confusion scores. DNo: distractor noun as object. DNr: distractor noun in relative

clause.

tive metric allows us to measure the preferable at-

tention of transformer-based self-attention on one

entity as opposed to another. Formally, suppose

X = {xi}
n
i=1

are linguistic units of interest, i.e.

candidate triggers for the dependency, and Y is the

dependency target. For each layer l and attention

head a, we sum the self-attention weights from the

indices of xi (since each xi may consist of multi-

ple words) on attention head a of layer l − 1 to

Y on layer l, and take the mean over A attention

heads:

attnl(xi, Y ) =
1

A

A∑

a=1

∑

xij∈xi

attnla(xij , Y ) (3)

We finally define the confusion score on layer l as

the binary cross entropy of the normalized atten-

tion distribution between {xi} given Y as follows:

confl(X,Y ) = − log
attnl(x1, Y )∑n
i=1

attnl(xi, Y )
(4)

Note that this equation assumes that each depen-

dency has a unique trigger x1: verbs agree with

a single subject, and anaphors take a single noun

phrase as their antecedent.

Our study focuses on the examples of the forms

shown in Table 2. For subject-verb agreement,

there are two types of examples: with the distrac-

tor within a PP (A1 and A2) and with the distrac-

tor within a RC (A3 and A4). Past psycholinguis-

tic work has shown that distractor noun phrases

within PPs give rise to greater processing diffi-

culty than distractors within RCs (Bock and Cut-

ting, 1992). For each type, we compare confusion

in the case of distractors that share features with

the subject, the true trigger of agreement, (A1 and

A3) with those that do not (A2 and A4). Our ex-

pectation is that distractors that do not share fea-

tures with the target of agreement will yield less

confusion.

For reflexive anaphora, because of the possibil-

ity of ambiguity, we also consider sentences that

include a noun phrase that is a structurally pos-

sible antecedent. For example, condition R1 has

the subject the lord as its antecedent, but the ob-

ject noun phrase the wizard is also grammatically

possible. In contrast, for R2, the mismatch in gen-

der features prevents the object from serving as

an antecedent, which should lead to lower confu-

sion. Sentences R3 and R4 include a distractor

noun phrase within a RC. Since this noun phrase

does not c-command the anaphor, it is grammati-

cally inaccessible and should therefore contribute

less, if at all, to confusion. Sentence types R5

through R8 include both the relative modifier and

the object noun phrase, and systematically vary the

agreement properties of the two distractors.

We hypothesize that attention weights on each

linguistic unit indicate the relative importance of

that entity as a trigger of a linguistic dependency.

As a result, the ideal attention distribution should

put all of the probability mass on the antecedent

noun phrase for reflexive anaphora or on the sub-
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to subtleties of linguistic structure: a distractor

within a PP causes more confusion than one within

a relative clause (i.e., the presence of the relative

has a negative coefficient in the linear model), in

agreement with past psycholinguistic work (Bock

and Cutting, 1992). Moreover, the presence of

matching distractors has a significant positive ef-

fect on confusion scores. These findings there-

fore suggest that BERT representations are sensi-

tive to different types of syntactic embedding as

well as the values of number features in comput-

ing subject-verb agreement dependencies.

Reflexive anaphora From Table 2, we see the

major effect of the number of distractor noun

phrases: mean confusion scores for conditions

with one distractor (R1-R4) are lower than those

with two distractors (R5-R8). If BERT were per-

fectly exploiting grammatical structure, we should

expect the presence of a grammatically inacces-

sible distractor noun within a relative clause not

to add to confusion. Thus, we might expect R5

and R6 to have mean confusion scores compara-

ble to R1, as both include single grammatically

viable distractor. However, they both have higher

mean confusion scores than R1 (the same is true

for R7/R8 vs. R2). Moreover, conditions R2 to

R4 and R7 to R8 should have confusion scores of

zero, since the head noun phrase is the only gram-

matically possible antecedent. This, however, is

not so. Taken together, we might conclude that

BERT attends unnecessarily to grammatically in-

accessible or grammatically mismatched distrac-

tor noun phrases, suggesting that it does not accu-

rately model reflexive dependencies.

Nonetheless, if we look more closely at the ef-

fects of the different factors through the linear

model reported in Table 3, we once again find ev-

idence for a sensitivity to both syntactic structure

and grammatical features: the presence of gram-

matically accessible distractors has a (slightly)

larger effect on confusion than grammatically in-

accessible distractors (i.e., DNo vs. DNr), particu-

larly when the distractor matches in features with

the actual antecedent.

3.5 Further Analysis

Layerwise diagnosis Figure 5 and Table 3 show

that confusion is negatively correlated with layer

depth for reflexive anaphora. Confusion scores

for subject-verb agreement exhibit a similar trend.

This provides additional evidence for our con-

jecture that BERT composes increasingly abstract

representations containing hierarchical informa-

tion, with an optimal level of abstraction. Notably,

the observed sensitivity of BERT’s self-attention

values to grammatical distortions suggests that

BERT’s syntactic knowledge is in fact encoded in

its attention matrices. Finally, it is worth noting

that confusion for both reflexives and subject-verb

agreement showed an increase at layer 4. Strik-

ingly, this was the level at which linear informa-

tion was found, through diagnostic classifiers, to

be degraded. We leave for the future an under-

standing of the connection between these.

4 Conclusion

In this paper, we investigated how and to what ex-

tent BERT representations encode syntactically-

sensitive hierarchical information, as opposed to

linear information. Through diagnostic classifi-

cation, we find that positional information is en-

coded in BERT from the pre-embedding level up

through lower layers of the model. At higher

layers, information becomes less positional and

more hierarchical, and BERT encodes increas-

ingly complex representations of sentence units.

We propose a simple and novel method of ob-

serving, for a given syntactic phenomenon, the

intrusion effects of distractors on BERT’s self-

attention mechanism. Through such diagnostic

attention, we find that BERT does encode as-

pects of syntactic structure that are relevant for

subject-verb agreement and reflexive dependen-

cies through attention weights, and that this infor-

mation is represented more accurately on higher

layers. We also find evidence that BERT is re-

sponsive to matching of grammatical features such

as gender and number. However, BERT’s atten-

tion is only incompletely modulated by structural

and featural properties, and attention is sometimes

spread across grammatically irrelevant elements.

We conclude that BERT composes increasingly

abstract hierarchical representations of linguistic

structure using its self-attention mechanism. To

further understand BERT’s syntactic knowledge,

further work can be done to (1) investigate or vi-

sualize layer-on-layer changes in BERT’s struc-

tural and positional information, particularly be-

tween layers 3 and 4 when positional information

is largely phased out, and (2) retrieve the increas-

ingly hierarchical representations of BERT across

layers via the self-attention mechanism.
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A Appendix

A.1 Context-free grammars for dataset

generation

S → NPM VPM

NPM → Det N | Det N Prep Det Nom | Det N RC

NPO → Det Nom | Det Nom Prep Det Nom | Det Nom RC

VPM → Aux VI | Aux VT NPO

RC → Rel Aux VI | Rel Det Nom Aux VT | Rel Aux VT Det Nom

Nom → N | JJ Nom

Det → the | some | my | your | our | her

N → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf | birds | bees | ants |
ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

JJ → small | little | big | hot | cold | good | bad | new | old | young

Figure 6: Context-free grammar for the main auxiliary dataset.

S → NPM VP

NPM → Det MNom | Det MNom Prep Det Nom | Det MNom RC

NPO → Det Nom | Det Nom Prep Det Nom | Det Nom RC

VP → Aux VI | Aux VT NPO

RC → Rel Aux VI | Rel Det Nom Aux VT | Rel Aux VT Det Nom

Nom → N | JJ Nom

MNom → MNom1 | MNom2

MNom1 → N | JJ MNom1

MNom2 → N | JJ MNom2 | NS Poss MNom2 | Nadj+MN

Det → the | some | my | your | our | her

Poss → ’s

NS → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf

N → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf | birds | bees | ants |
ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

Nadj+MN → worker bee | worker ant | race horse | queen bee | german dog | house cat

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

JJ → small | little | big | hot | cold | good | bad | new | old | young

Figure 7: Context-free grammar for the subject noun dataset.
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S → NPsg Agr Auxsg VI | NPpl Agr Auxpl VI

NPsg Agr → Det Nsg | Det Nsg Prep Det N | Det Nsg Prep RCsg

NPpl Agr → Det Npl | Det Npl Prep Det N | Det Npl Prep RCpl

RCsg → Rel Auxsg VI | Rel Auxsg VT Det N | Rel Det Nsg Auxsg VT | Rel Det Npl Auxpl VT

N → Nsg | Npl

RCpl → Rel Auxpl VI | Rel Auxpl VT Det N | Rel Det Nsg Auxsg VT | Rel Det Npl Auxpl VT

Auxsg → does | Modal

Auxpl → do | Modal

Det → the | some | my | your | our | her

Nsg → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf

Npl → birds | bees | ants | ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

VS → think | say | hope | know

VD → tell | convince | persuade | inform

Modal → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

Figure 8: Context-free grammar for the subject-verb agreement dataset.

S →
NPM Ant Aux VT ReflM | NPF Ant Aux VT ReflF |
NPM Ant Aux VT Det NF by ReflM | NPF Ant Aux VT Det NM by ReflF |
NPM Ant Aux VT Det NM by ReflM | NPF Ant Aux VT Det NF by ReflF

NPM Ant → Det NM | Det NM RC

NPF Ant → Det NF | Det NF RC

N → NM | NF

RC → Rel Aux VI | Rel Det N Aux VT | Rel Aux VT Det N

ReflM → himself

ReflF → herself

Det → the | some | my | your | our | her

NF → girl | woman | queen | actress | sister | wife | mother | princess | aunt | lady | witch | niece |
nun

NM → boy | man | king | actor | brother | husband | father | prince | uncle | lord | wizard | nephew |
monk

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

VS → think | say | hope | know

VD → tell | convince | persuade | inform

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

Figure 9: Context-free grammar for the reflexive anaphora dataset.


