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ABsTRACT. We consider two manifestations of non-positive curvature: acylindrical actions
(on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of
hierarchically hyperbolic groups, which is a general framework for simultaneously studying
many important families of groups, including mapping class groups, right-angled Coxeter
groups, most 3—manifold groups, right-angled Artin groups, and many others.

A group that admits an acylindrical action on a hyperbolic space may admit many such
actions on different hyperbolic spaces. It is natural to try to develop an understanding
of all such actions and to search for a “best” one. The set of all cobounded acylindrical
actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove
that all hierarchically hyperbolic groups admit a unique action which is the largest in this
poset. The action we construct is also universal in the sense that every element which acts
loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special
cases of this result are themselves new and interesting. For instance, this is the first proof
that right-angled Coxeter groups admit universal acylindrical actions.

The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi-
convexity which can be considered outside the context of hyperbolic groups. In this paper,
we provide a complete classification of stable subgroups of hierarchically hyperbolic groups,
generalizing and extending results that are known in the context of mapping class groups
and right-angled Artin groups. Along the way, we provide a characterization of contracting
quasigeodesics; interestingly, in this generality the proof is much simpler than in the special
cases where it was already known.

In the appendix, it is verified that any space satisfying the a priori weaker property of
being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic
space. The results of the appendix are used to streamline the proofs in the main text.
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1. INTRODUCTION

Hierarchically hyperbolic groups were recently introduced by Behrstock, Hagen, and Sisto
[BHS17b] to provide a uniform framework in which to study many important families of groups,
1
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including mapping class groups of finite type surfaces, right-angled Coxeter groups, most
3—manifold groups, right-angled Artin groups and many others. A hierarchically hyperbolic
space consists of: a quasigeodesic space, X; a set of domains, ©, which index a collection
of d—hyperbolic spaces to which X projects; and, some additional information about these
projections, including, for instance, a partial order on the domains and a unique largest
element in that order, which we denote by S (i.e., S is comparable to and larger than every
other domain in &).

Largest acylindrical actions. The study of acylindrical actions on hyperbolic spaces, as
initiated in its current form by Osin |Osil6| building on earlier work of Sela [Sel97] and
Bowditch [Bow08|, has proven to be a powerful tool for studying groups with some aspects
of non-positive curvature. As established in [BHS17b]|, non-virtually cyclic hierarchically
hyperbolic groups admit non-elementary acylindrical actions when the d—hyperbolic space
associated to the maximal element in & has infinite diameter, a property which holds in all
the above examples except for those that are direct products.

Any given group with an acylindrical action may actually admit many acylindrical actions
on many different spaces. A natural question is to try and find a “best” acylindrical action.
There are different ways that one might try to optimize the acylindrical action. For instance,
the notion of a universal acylindrical action, for a given group G, is an acylindrical action
on a hyperbolic space X such that every element of G which acts loxodromically in some
acylindrical action on some hyperbolic space, must act loxodromically in its action on X. As
established by Abbott, there exist finitely generated groups which admit acylindrical actions,
but no universal acylindrical action [Abb16]; we also note that universal actions need not be
unique [ABO19].

In [ABO19], Abbott, Balasubramanya, and Osin introduce a partial order on cobounded
acylindrical actions which, in a certain sense, encodes how much information the action
provides about the group. When there exists an element in this partial ordering which is
comparable to and larger than all other elements it is called a largest action. By construction,
any largest action is necessarily a universal acylindrical action and unique.

In this paper we construct a largest action for every hierarchically hyperbolic group. Special
cases of this theorem recover some recent results of [ABO19], as well as a number of new
cases. For instance, in the case of right-angled Coxeter groups (and more generally for special
cubulated groups), even the existence of a universal acylindrical action was unknown. Further,
outside of the relatively hyperbolic setting, our result provides a single construction that
simultaneously covers these new cases as well as all previously known largest and universal
acylindrical actions of finitely presented groups. The following summarizes the main results
of Section 5 (where there are also further details on the background and comparison with
known results).

Theorem A (HHG have actions that are largest and universal). Every hierarchically hyperbolic
group admits a largest acylindrical action. In particular, the following admit acylindrical
actions which are largest and universal:

(1) Hyperbolic groups.

(2) Mapping class groups of orientable surfaces of finite type.

(3) Fundamental groups of compact three-manifolds with no Nil or Sol in their prime decom-
position.

(4) Groups that act properly and cocompactly on a special CAT(0) cube complex, and more
generally any cubical group which admits a factor system. This includes right angled-Artin
groups, right-angled Cozeter groups, and many other examples as in [HS16].
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We use this construction of a largest action to characterize stable subgroups (Theorem B)
and contracting elements (Corollary 5.5) of hierarchically hyperbolic groups, and to describe
random subgroups of hierarchically hyperbolic groups (Theorem E).

Stability in hierarchically hyperbolic groups. One of the key features of a Gromov
hyperbolic space is that every geodesic is uniformly Morse, a property also known as (quasi-
geodesic) stability; that is, any uniform quasigeodesic beginning and ending on a geodesic
must lie uniformly close to it. In fact, any geodesic metric space in which each geodesic is
uniformly Morse is hyperbolic.

In the context of geodesic metric spaces, the presence of Morse geodesics has important
structural consequences for the space; for instance, any asymptotic cone of such a space has
global cut points [DMS10]. Moreover, quasigeodesic stability in groups is quite prevalent, since
any finitely generated acylindrically hyperbolic group contains Morse geodesics [Osil6, Sis16].

There has been much interest in developing alternative characterizations [DMS10, CS15,
ACGH17, ADT17] and understanding this phenomenon in various important contexts [Min96,
Beh06, DMS10, DT15, ADT17|. This includes the theory of Morse boundaries, which encode
all Morse geodesics of a group [CS15, Corl7, CH17, CD19, CM19]. In [DT15|, Durham and
Taylor generalized the notion of stability to subspaces and subgroups.

In this paper, we obtain a complete characterization of stability in hierarchically hyperbolic
groups.

Let (X,8) be an HHS. We say that a subset ) < X has D-bounded projections when
diamey (m7())) < D for all non-maximal U € &; when the constant does not matter, we
simply say the subset has uniformly bounded projections.

Theorem B (Equivalent conditions for subgroup stability). Any hierarchically hyperbolic
group G admits a hierarchically hyperbolic group structure (G, &) such that for any finitely
generated H < G, the following are equivalent:
(1) H is stable in G;
(2) H is undistorted in G and has uniformly bounded projections;
(8) Any orbit map H — CS is a quasi-isometric embedding, where S is the E—mazimal
element in G.

Theorem B generalizes some previously known results. In the case of mapping class groups:
[DT15] proved equivalence of (1) and (3); equivalence of (2) and (3) follows from the distance
formula; moreover, [KL08, Ham] yield that these conditions are also equivalent to convex
cocompactness in the sense of [FM02|. The case of right-angled Artin groups was studied in
[KMT17|, where they prove equivalence of (1) and (3).

Section 6 contains a more general version of Theorem B, as well as further applications,
including Theorem 6.6, which concerns the Morse boundary of hierarchically hyperbolic groups
and proves that all hierarchically hyperbolic groups have finite stable asymptotic dimension.

On purely loxodromic subgroups. In the mapping class group setting [BBKL16] proved
that the conditions in Theorem B are also equivalent to being undistorted and purely pseudo-
Anosov. Similarly, in the right-angled Artin group setting, it was proven in [KMT17] that (1)
and (3) are each equivalent to being purely loxodromic.

Subgroups of right-angled Coxeter groups all of whose elements act loxodromically on
the contact graph were studied in the recent preprint [Tra, Theorem 1.4|, who proved that
property is equivalent to (3). Since there often exist elements in a right-angled Coxeter group
which do not act loxodromically on the contact graph, his condition is not equivalent to (1);
it is the ability to change the hierarchically hyperbolic structure as we do in Theorem 3.7,
discussed below, which allows us to prove our more general result which characterizes all
stable subgroups, not just the ones acting loxodromically on the contact graph.
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Mapping class groups and right-angled Artin groups have the property that in their standard
hierarchically hyperbolic structure they admit a universal acylindrical action on C.S, where
CS is the hyperbolic space associated to the E—maximal domain S. On the other hand,
right-angled Coxeter groups often don’t admit universal acylindrical actions on CS in their
standard structure. Accordingly, we believe the following questions are interesting. The first
item would generalize the situation in the mapping class group as established in [BBKL16],
and the second item for right-angled Artin groups would generalize results proven in [KMT17],
and for right-angled Coxeter groups would generalize results in [Tra|. If the second item is
true for the mapping class group, this would resolve a question of Farb—Mosher [FM02|. See
also [ADT17, Question 1].

Question C. Let (G, &) be a hierarchically hyperbolic group which admits a universal acylin-
drical action on CS, where S is the E—mazimal element in &. Let H be a finitely generated
subgroup of G.
e Are the conditions in Theorem B also equivalent to: H is undistorted and acts purely
loxodromically on CS?
e Under what hypotheses on (G, &), are the conditions in Theorem B also equivalent to:
H acts purely loxodromically on CS?

Note that in the context of Question C, an element acts loxodromically on CS if and only
if it has positive translation length. This holds since the action is acylindrical and thus each
element either acts elliptically or loxodromically.

In an early version of this paper, we asked if the second part of Question C held for all
hierarchically hyperbolic groups. In the general hierarchically hyperbolic setting, however,
the undistorted hypothesis is necessary, as pointed out to us by Anthony Genevois with the
following example. The necessity is shown by Brady’s example of a torsion-free hyperbolic
group with a finitely presented subgroup which is not hyperbolic [Bra99|. This subgroup is
torsion-free and thus purely loxodromic. But, a subgroup of a hyperbolic group is stable if
and only if it is quasiconvex. Thus, since this subgroup is not quasiconvex, we see that being
purely loxodromic is strictly weaker than the conditions of Theorem B.

New hierarchically hyperbolic structures. In order to establish the above results, we
provide some new structural theorems about hierarchically hyperbolic spaces.

One of the key technical innovations in this paper is provided in Section 3. There we prove
Theorem 3.7 which allows us to modify a given hierarchically hyperbolic structure (X, &)
by removing CU for some U € & and, in their place, enlarging the space CS. For instance,
this is how we construct the space on which a hierarchically hyperbolic group has its largest
acylindrical action.

Another important tool is Theorem 4.4 which provides a simple characterization of con-
tracting geodesics in a hierarchically hyperbolic space.
The following is a restatement of that result in the case of groups:

Theorem D (Characterization of contracting quasigeodesics). Let G be a hierarchically
hyperbolic group. For any D > 0 and K > 1 there exists a D' > 0 depending only on D and
G such that the following holds for every (K, K)—quasigeodesic v < X : the quasigeodesic 7y
has D-bounded projections if and only if v is D'—contracting.

Since the presence of a contracting geodesic implies the group has at least quadratic
divergence, an immediate consequence of Theorem D is that any hierarchically hyperbolic
group has quadratic divergence whenever X projects to an infinite diameter subset of CS.

As a sample application of Theorem D and using work of Taylor—Tiozzo [TT16|, we prove
the following in Section 6.4 as Theorem 6.8.
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Theorem E (Random subgroups are stable). Let (X, &) be an HHS for which CS has
infinite diameter, where S is the =—maximal element, and consider G < Aut(X, &) which
acts properly and cocompactly on X. Then any k—generated random subgroup of G stably
embeds in X wia the orbit map.

We note that one immediate consequence of this result is a new proof of a theorem of
Maher—Sisto: any random subgroup of a hierarchically hyperbolic group which is not the direct
product of two infinite groups is stable [MS19]|. The mapping class group and right-angled
Artin groups cases of this result were first established in [TT16].

Finally, at the end of the paper we discuss a technical condition on hierarchically hyperbolic
structures, called having clean containers. While in Proposition 7.2 this hypothesis is shown
to hold for many groups, it does not hold in all cases. This condition was used in earlier
versions of this paper in which it was assumed for the proof of Theorem 3.7, and then the
general result was bootstrapped from there. In light of Theorem A.1 in the Appendix, this
property is no longer required for this paper. We keep the contents of this section in the paper
nonetheless, since they have found independent interest and already been used elsewhere, e.g.,
[BR, HS16, Rus19], as well as in several papers in progress.
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2. BACKGROUND

We begin by recalling some preliminary notions about metric spaces, maps between them,
and group actions. Given metric spaces X, Y, we use dx,dy to denote the distance functions
in X,Y, respectively. A map f: X — Y is K—Lipschitz if there exists a constant K > 1
such that for every z,y € X, dx(z,y) < Kdy(g(x),g(y)); it is (K, C)—coarsely Lipschitz if
dx(z,y) < Kdx(z,y) + C. The map f is a (K, C)—quasi-isometric embedding if there exist
constants K > 1 and C = 0 such that for all z,y € X,

dx(a,y) ~ C < dy (@), f(y)) < Kdx () + C.

If, in addition, Y is contained in the C-neighborhood of f(X), then f is a (K, C)—quasi-
isometry. For any interval I € R, the image of an isometric embedding I — X is a geodesic
and the image of a (K, C')—quasi-isometric embedding I — X is a (K, C)—quasigeodesic.

If any two points in X can be connected by a (K, C)—quasigeodesic, then we say X is a
(K, C)—quasigeodesic space. If K = C, we may simply say that X is a K—quasigeodesic space.
A subspace Z < X is K—quasi-convez if there exists a constant K > 0 such that any geodesic
in X connecting points in Z is contained in the K—neighborhood of Z. For all of the above
notions, if the particular constants K, C' are not important, we may drop them and simply
say, for example, that a map is a quasi-isometry.

Throughout this paper, we will assume that all group actions are by isometries. The
action of a group GG on a metric space X, which we denote by G —~ X, is proper if for every
bounded subset B € X, the set {g € G | gB n B # (J} is finite. The action is cobounded
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(respectively, cocompact) if there exists a bounded (respectively, compact) subset B < X such
that X = UgeqgB. If a group G acts on metric spaces X and Y, we say amap f: X - Y
is G—equivariant if for every x € X, f(gx) = gf(x). A quasi-action of G on X associates to
each g € G a quasi-isometry A,: x — gz of X with uniform quasi-isometry constants, such
that Ay o Ay is within uniformly bounded distance of Agy,.

2.1. Hierarchically hyperbolic spaces. In this section we recall the basic definitions and
properties of hierarchically hyperbolic spaces as introduced in [BHS17b, BHS19].

Definition 2.1 (Hierarchically hyperbolic space). A ¢—quasigeodesic space (X, dy) is said to
be hierarchically hyperbolic if there exists § = 0, an index set &, and a set {CW | W € &} of
d—hyperbolic spaces (CU,dy), such that the following conditions are satisfied:

(1) (Projections.) There is a set {my: X — 2°W | W e &} of projections sending
points in X to sets of diameter bounded by some £ > 0 in the various CW € &.
Moreover, there exists K so that each my is (K, K)—coarsely Lipschitz and my (X) is
K—quasiconvex in CW.

(2) (Nesting.) S is equipped with a partial order =, and either & = ¢ or & contains
a unique E—maximal element which is larger than all other elements; when V & W
we say V is nested in W. For each W € &, we denote by Gy the set of V € & such
that V = W. Moreover, for all VW € & with V & W there is a specified subset
ply = CW with diamcw(p%) < &. There is also a projection pVVV: CW — 2¢V.

(3) (Orthogonality.) & has a symmetric and anti-reflexive relation called orthogonality:
we write VLW when V, W are orthogonal. Also, whenever V £ W and W LU, we
require that V LU. Finally, we require that for each T' € & and each U € & for
which {V € &7 | VLU} # &, there exists W € & — {T'}, so that whenever VLU
and V E T, we have V E W; we say W is a container associated with T' € & and
U € &p. Finally, if V1W, then V,W are not =E—comparable.

(4) (Transversality and consistency.) If VW € & are not orthogonal and neither is
nested in the other, then we say V, W are transverse, denoted VhW. There exists
ko = 0 such that if VAW, then there are sets pj;; € CW and p}Y < CV each of
diameter at most £ and satisfying;:

min {dw (mw (z), piv/), dv (v (2), pt¥ ) } < Ko
for all z € X.
For V, W € & satisfying V £ W and for all z € X', we have:

min {dw (7w (z), pyy), diamey (v (z) U pV (7w (2)))} < Ko.

Finally, if U © V, then dW(p%7 p[‘,/v) < ko whenever W € & satisfies either V ¢ W
or VAW and W +U.

(5) (Finite complexity.) There exists n > 0, the complezity of X (with respect to &),
so that any set of pairwise-=—comparable elements has cardinality at most n.

(6) (Large links.) There exist A > 1 and F > max{¢, ko} such that the following holds.
Let W e & and let z,2" € X. Let N = A\d,, (mw (), 7w (z')) + A. Then there exists
{Ti}ica,..|v) € Sw — {W} such that for all T' € Gy — {W}, either T' € &7, for some
i, or dp(mp(x), mr(2')) < E. Also, dw (mw (2), pi) < N for each i.

(7) (Bounded geodesic image.) For all W e &, all V e Gy — {IWW}, and all geodesics
v of CW, either diamey (oY (7)) < E or v n NE(ply) # &.

(8) (Partial Realization.) There exists a constant « with the following property. Let
{V;} be a family of pairwise orthogonal elements of &, and let p; € my,(X) < CV}.
Then there exists € X so that:

e dv.(z,pj) < a for all j,
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e for each j and each V € & with V; = V, we have dv(l‘,p“;j) < «, and
o if WAV for some j, then dW(x,pgj}) < a.
(9) (Uniqueness.) For each k = 0, there exists 6, = 6,(x) such that if z,y € X and
d(z,y) = 0, then there exists V € & such that dy (z,y) > k.

Notation 2.2. Note that below we will often abuse notation by simply writing (X, &) or
G to refer to the entire package of an hierarchically hyperbolic structure, including all the
associated spaces, projections, and relations given by the above definition.

Notation 2.3. When writing distances in CU for some U € &, we often simplify the notation
slightly by suppressing the projection map my, i.e., given x,y € X and p € CU we write
dy(x,y) for dy(my(x), ny(y)) and dy(z,p) for dy(my(z),p). Note that when we measure
distance between a pair of sets (typically both of bounded diameter) we are taking the
minimum distance between the two sets. For distance/diameter, if the space in which the
measurement is being made is not clear from the context, we will denote it by a subscript.
Given A c X and U € & we let my(A) denote Ugeamy(a).

Remark 2.4. In the setting of hierarchically hyperbolic spaces, we often encounter maps
which are well-defined only up to uniformly bounded error, in the following sense. Given a
map f: X — Y between quasi-geodesic spaces X, Y, there may be multiple possible points
in Y that one could define as f(x) for a particular z € X. If the diameter of such possible
points f(x) is uniformly bounded in Y over all € X, then we say that the map is coarsely
well-defined, since we could arbitrarily make a choice for each f(x) and the map would be
well-defined up to uniformly bounded error. For example, pg gives a coarsely well-defined
map CU — CV.

An important consequence of being a hierarchically hyperbolic space is the following
distance formula, which relates distances in X to distances in the hyperbolic spaces CU for
U € 6. The notation {z}, means include = in the sum if and only if z > s.

Theorem 2.5 (Distance formula for HHS; [BHS19]). Let (X, &) be a hierarchically hyperbolic
space. Then there exists sg such that for all s = sq, there exist C, K so that for all x,y € X,

d(ZL‘,y) =K,C Z {{dU(l‘ay)}}s'

UeG

We now recall an important construction of subspaces in a hierarchically hyperbolic space
called standard product regions introduced in [BHS17b, Section 13| and studied further in
[BHS19|. First we define a consistent tuple, which will be used to define the two factors in
the product space.

Definition 2.6 (Consistent tuple). Fix x> 0, and let b € [Tyes 2V be a tuple such that
for each U € &, the coordinate by is a subset of CU with diamey (by) < k. The tuple b is

k—admissible if dy (by, 7y (X)) < k for all U € &. The k—admissible tuple b is k—consistent if,
whenever VAW,

min {dw (bw, pyy,), dv (bv, pv )} < &
and whenever V = W,
min {dW(bW,p“,/V),diamcv(bv U pVVV(bW))} < k.

Definition 2.7 (Nested partial tuple (Fr)). Recall 5y = {V € & |V C U}. Fix k > ko and
let Fiy be the set of k—consistent tuples in HVEGU 20V,
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Definition 2.8 (Orthogonal partial tuple (Egy) ). Let &5 = {V € & | VLU} U {A}, where A
is a C-minimal element W such that V' £ W for all V LU (note that A exists by the container
axiom for an HHS, i.e., Definition 2.1.(3)). Fix k > kg, let Ey be the set of k—consistent

; cv
tuples in HVEGé—{A} 2

Definition 2.9 (Product regions in X'). Given X and U € G, there is a coarsely well-defined
map ¢y : Fy x Ey — X which restricts to coarsely well-defined maps ¢= qﬁL FU, Ey - X.
Indeed, for each (@,b) € Fy x Ey, and each V € &, the projection Wv(¢U(a b)) is defined
as follows. If V = U, then my(¢y (@, b)) = ay. If VLU, then my (¢y (@, b)) = by. If VAU,
then 7y (¢y (@, b)) = Pl Finally, if U = V, and U # V, let 7y (éy(a, b)) = p%). The tuple
(mv (¢u(@,b)))ves € [Tyes 2V is k—consistent (see [BHS19, Construction 5.10]), and therefore
[BHS19, Theorem 3.1] provides a point # € X such that dyy (my (z), 7w (¢u(@, b)) < . for
all W e &. Moreover, the point x is coarsely unique in the sense that the set of all x which
satisfy dyy (mw (@), 7w (pu (@, 5))) < 6. for each W € & has diameter at most 6, in X. We
define ¢y (a, 8) = x; the coarse uniqueness of x shows that this map is coarsely well-defined.
Fixing any e € Ey yields a map ¢;: Fyy x {e} — X, and ¢+ is defined analogously. We refer
to Fy x Ey as a product region, which we denote Py.

We often abuse notation slightly and use the notation Ey, Fry, and Py to refer to the image
in X of the associated set. In [BHS19, Construction 5.10] it is proven that these standard
product regions have the property that they are “hierarchically quasiconvex subsets” of X.
We leave out the definition of hierarchically quasiconvexity, because its only use here is that
product regions have “gate maps,” as given by the following in [BHS19, Lemma 5.5]|:

Lemma 2.10 (Existence of coarse gates; [BHS19, Lemma 5.5|). If Y € X is k-hierarchically
quasiconvex and non-empty, then there exists a gate map for Y, i.e., for each x € X there
exists g(x) € Y such that for all V € &, the set my(g(x)) (uniformly) coarsely coincides with
the projection of wy (z) to the k(0)-quasiconver set my(Y). The point g(x) € Y is called the
gate of x in V.

Remark 2.11 (Surjectivity of projections). As one can always change the hierarchical
structure so that the projection maps are coarsely surjective [BHS19, Remark 1.3|, we will
assume that & is such a structure. That is, for each U € &, if 7y is not surjective, then we
identify CU with 7y (X).

We also need the notion of a hierarchy path, whose existence was proven in [BHS19,
Theorem 4.4| (although we use the word path, since they are quasi-geodesics, typically we
consider them as discrete sequences of points):

Definition 2.12. For R > 1, a path v in X is a R-hierarchy path if
(1) v is a (R, R)—quasigeodesic,
(2) for each W € &, my oy is an unparametrized (R, R)—quasigeodesic. An unbounded
hierarchy path [0,00) — X is a hierarchy ray.

We call a domain relevant to a pair of points, if the projections to that domain are larger
than some fixed (although possibly unspecified) constant depending only on the hierarchically
hyperbolic structure. We say a domain is relevant for a particular quasi-geodesic if it is
relevant for the endpoints of that quasi-geodesic.

Proposition 2.13 (|[BHS19, Proposition 5.17|). There exists v = 0 such that for all x,y € X,
all Ve & with V relevant for (x,y), and all D-hierarchy paths ~y joining x to y, there is a
subpath o of v with the following properties:

(1) a < N,,(Py);
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(2) myly is coarsely constant on vy —a for all U € Gy U GJ‘;, i.e., it is a uniformly bounded
distance from a constant map.

Remark 2.14. Let z,y € X, and suppose V is relevant for (z,y). As Fy and Ey consist of
k—consistent tuples (for a fixed k) and ¢y : Fy x Eyy — X is only coarsely well-defined, by
appropriately increasing k to accomodate for the chosen constant v in Proposition 2.13, we
may assume that « is actually a subset of Py, .

It is often convenient to work with equivariant hierarchically hyperbolic structures, we now
recall the relevant structures for doing so. For details see [BHS19|.

Definition 2.15 (Hierarchically hyperbolic groups). Let (X', &) be a hierarchically hyperbolic
space. An automorphism of (X,&) consists of a map g: X — X, together with a bijection
g°: & — & and, for each U € &, an isometry g*(U): CU — C(g®(U)) so that the following
diagrams commute up to uniformly bounded error whenever the maps in question are defined
(i.e., when U,V are not orthogonal):

X X’
ﬂUl g*(U) oo
CU ——— C(g%(U))

and
*(U
cv Y9, (s (V)
g™ (U)

pgl 7 (V) Poov)

CV ———— C(¢%(V))

Two automorphisms f, f’ are equivalent if f© = (f')® and for all U € & we have ¢y = ¢};. The
set of all such equivalence classes forms the automorphism group of (X, &), denoted Aut(X, S).
A finitely generated group G is said to be a hierarchically hyperbolic group (HHG) if there is
a hierarchically hyperbolic space (X, &) and a group homomorphism G — Aut(X,S) so that
the induced uniform quasi-action of G on X is metrically proper, cobounded, and & contains
finitely many G-orbits. Note that when G is a hyperbolic group then, with respect to any
word metric, it inherits a hierarchically hyperbolic structure.

2.2. Acylindrical actions. We recall the basic definitions related to acylindrical actions;
the canonical references are [Bow08| and [Osil6]. We also discuss a partial order on these
actions which was recently introduced in [ABO19].

Definition 2.16 (Acylindrical). The action of a group G on a metric space X is acylindrical
if for any € > 0 there exist R, N > 0 such that for all x,y € X with d(z,y) > R,

{ge G |d(z,gr) < e and d(y,gy) <e}| < N.

Recall that given a group G acting on a hyperbolic metric space X, an element g € G is
loxodromic if the map Z — X defined by n — ¢"x is a quasi-isometric embedding for some
(equivalently any) x € X. However, an element of G may be loxodromic for some actions and
not for others. Consider, for example, the free group on two generators acting on its Cayley
graph and acting on the Bass-Serre tree associated to the splitting Fo ~ (x) * (y). In the
former action, every non-trivial element is loxodromic, while in the latter action, no powers
of x and y are loxodromic.

Definition 2.17 (Generalized loxodromic). An element of a group G is called generalized
lozodromic if it is loxodromic for some acylindrical action of G on a hyperbolic space.
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Remark 2.18. By [Osil6, Theorem 1.1|, every acylindrical action of a group on a hyperbolic
space either has bounded orbits or contains a loxodromic element. By [Osil6, Theorem
1.4.(L4)| and Sisto [Sis16, Theorem 1], every generalized loxodromic element is Morse, i.e.,
every quasi-geodesic with endpoints on the axis of the element lies uniformly close to that
axis (see Definition 2.22). Therefore, if a group H does not contain any Morse elements,
it does not contain any generalized loxodromics, and thus H must have bounded orbits in
every acylindrical action on a hyperbolic space. This is the case when, for example, H is a
non-trivial direct product, that is, a direct product of two infinite groups.

Definition 2.19 (Universal acylindrical action). An acylindrical action of a group on a
hyperbolic space is a universal acylindrical action if every generalized loxodromic element is
loxodromic. Such an action is sometimes called a lozodromically universal action.

Notice that if every acylindrical action of a group GG on a hyperbolic space has bounded
orbits, then G does not contain any generalized loxodromic elements, and the action of G on
a point (which is acylindrical) is a universal acylindrical action.

The following notions are discussed in detail in [ABO19]. We give a brief overview here.
Fix a group G. Given a (possibly infinite) generating set X of G, let | - |x denote the word
metric with respect to X, and let I'(G, X) be the Cayley graph of I with respect to the
generating set X. Given two generating sets X and Y, we say X is dominated by Y and
write X <Y if

sup |y|x < o0.
yeyY

Note that when X <Y, the action G —~ I'(G,Y') provides more information about the group
than G —~ I'(G, X), and so, in some sense, is a “larger” action. The two generating sets X
and Y are equivalent if X <Y and Y < X; when this happens we write X ~ Y.

Let AH(G) be the set of equivalence classes of generating sets X of G such that I'(G, X)
is hyperbolic and the action G —~ I'(G, X) is acylindrical. We denote the equivalence class of
X by [X]. The preorder < induces an order on AH(G), which we also denote <.

Definition 2.20 (Largest). We say an equivalence class of generating sets is largest if it is
the largest element in AH(G) under this ordering.

Given a cobounded acylindrical action of G on a hyperbolic space S, a Milnor-Schwartz
argument gives a (possibly infinite) generating set Y of G such that there is a G—equivariant
quasi-isometry between G —~ S and G —~ I'(G,Y). By a slight abuse of language, we will
say that a particular cobounded acylindrical action G —~ S on a hyperbolic space is largest,
when, more precisely, it is the equivalence class of the generating set associated to this action
through the above correspondence, [Y], that is the largest element in AH(G).

Remark 2.21. By definition, every largest acylindrical action is a universal acylindrical action.
To see this, notice that if [X] < [Y], then the set of loxodromic elements in G —~ I'(G, X)
must be a subset of the set of loxodromic elements in G —~ I'(G,Y).

2.3. Stability. Stability is strong coarse convexity property which generalizes quasiconvexity
in hyperbolic spaces and convex cocompactness in mapping class groups [DT15]. In the
general context of metric spaces, it is essentially the familiar Morse property generalized to
subspaces, so we begin there.

Definition 2.22 (Morse/stable quasigeodesic). Let X be a metric space. A quasigeodesic
v < X is called Morse (or stable) if there exists a function N : Rio — R>q such that if g is a
(K, C)—quasigeodesic in X with endpoints on 7, then

q < Nnk,c)(7)-
We call N the stability gauge for v and say vy is N—stable if we want to record the constants.
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We can now define a notion of stable embedding of one metric space in another which is
equivalent to the one introduced by Durham and Taylor [DT15]:

Definition 2.23 (Stable embedding). We say a quasi-isometric embedding f: X — Y
between quasigeodesic metric spaces is a stable embedding if there exists a stability gauge
N such that for any quasigeodesic constants K,C and any (K, C)—quasigeodesic v < X,
then f(v) is an N (K, C)-stable quasigeodesic in Y. We say a subset X € Y is stable if it is
undistorted and the inclusion map 7: X — Y is a stable embedding.

The following generalizes the notion of a Morse quasigeodesic to subgroups:

Definition 2.24 (Subgroup stability). Let H be subgroup of a finitely generated group G.
We say H is a stable subgroup of G if some (equivalently, any) orbit map of H into some (any)
Cayley graph (with respect to a finite generating set) of G is a stable embedding.

If for some h € G, H = (h) is stable, then we call h stable. Such elements are often called
Morse elements.

Stability of a subset is preserved under quasi-isometries. Note that stable subgroups are
undistorted in their ambient groups and, moreover, they are quasiconvex with respect to any
choice of finite generating set for the ambient group.

3. ALTERING THE HIERARCHICALLY HYPERBOLIC STRUCTURE

The goal of this section is to prove that any hierarchically hyperbolic space satisfying a
technical assumption—the bounded domain dichotomy—admits a hierarchically hyperbolic
structure with unbounded products, i.e., every non-trivial product region in the ambient space
has unbounded factors; see Theorem 3.7 below.

In particular, this establishes that all hierarchically hyperbolic groups admit a hierarchically
hyperbolic group structure with unbounded products. It is for this reason that our complete
characterization of the contracting property in spaces with unbounded products in Section 4
yields a characterization of the contracting property for all hierarchically hyperbolic groups,
as stated in Theorem D.

3.1. Unbounded products. Fix a hierarchically hyperbolic space (X, S).

Let M > 0 and let & < & be the set of domains U € & such that there exists V € &
and W e & satisfying: U £ V, diam(CV) > M, and diam(CW) > M.

Recall that a set of domains 4 < & is closed under nesting if whenever U € i and V E U,
then V e 4.

Lemma 3.1. For any M > 0, the set &M is closed under nesting.

Proof. Let U € 8™ and V = U. By definition of U € &M | there exists Z € &M with U = Z
and satisfying: diam(CZ) > M and there exists W € &% such that diam(CW) > M. Since
V C Z, it follows that V € &M | as desired. O

Definition 3.2 (Bounded domain dichotomy). We say (X, &) has the M -bounded domain
dichotomy if there exists M > 0 such that any U € & with diam(CU) > M satisfies diam(CU) =
0. If the value of M is not important, we simply refer to the bounded domain dichotomy.

Recall that for every hierarchically hyperbolic group (G, &), the set of domains & contains
finitely many G—orbits and each g € G induces an isometry CU — C(g°(U)) for each U € &
(see Definition 2.15). It thus follows that every hierarchically hyperbolic group has the
bounded domain dichotomy. (Also, note that this property implies the space is “asymphoric”
as defined in [BHS17¢].)
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Definition 3.3 (Unbounded products). We say that a hierarchically hyperbolic space (X, &)
has unbounded products if it has the bounded domain dichotomy and the property that if
U e & — {S} has diam(F;) = oo, then diam(Ey) = .

3.2. Almost hierarchically hyperbolic spaces. In this section we introduce a tool for
verifying a space is hierarchically hyperbolic.
The following is a weaker version of the orthogonality axiom:

(3') (Bounded pairwise orthogonality) & has a symmetric and anti-reflexive relation
called orthogonality: we write V. L W when V, W are orthogonal. Also, whenever
VEWand W L U, we require that V' L. W. Moreover, if V' 1L W, then V,W are
not E—comparable. Finally, the cardinality of any collection of pairwise orthogonal
domains is uniformly bounded by &.

By [BHS19, Lemma 2.1|, the orthogonality axiom (Definition 2.1, (3)) for an hierarchically
hyperbolic structure implies axiom (3'). However, the converse does not hold; that is, the last
condition of (3") does not directly imply the container statement in (3), and thus this is an a
priori strictly weaker assumption. However, as is proven in the appendix in Theorem A.1,
this weakened version of the axiom is enough to produce a hierarchically hyperbolic structre.

We now introduce the notion of an almost hierarchically hyperbolic space:

Definition 3.4 (Almost HHS). If (X, &) satisfies all axioms of a hierarchically hyperbolic
space except (3) and additionally satisfies axiom (3'), then (X, &) is an almost hierarchically
hyperbolic space.

In the appendix, Berlyne and Russell prove Theorem A.1, establishing that if a space is
almost hierarchically hyperbolic, then the associated structure can be modified to obtain a
hierarchically hyperbolic structure on the original space. This result is used in our proof of
Theorem 3.7.

3.3. A new hierarchically hyperbolic structure. In this section we describe a new
hierarchically hyperbolic structure on hierarchically hyperbolic spaces with the bounded
domain dichotomy. We first describe the hyperbolic spaces that will be part of the new
structure.

Let (X, &) be a hierarchically hyperbolic space with the M~bounded domain dichotomy.
Recall that we define & < & to be the set of U € & such that there exists U = V with
diam(CV') > M for which there exists a W € &y satisfying diam(CW) > M. For each U € &,
define 6]1\]/[ c Gy similarly.

Remark 3.5 (Factored spaces). As defined in [BHS17a/|, given (X, &) and T < & the factored
space f‘g is the space obtained from X by coning-off each Fy x {e} for all V € T and all
e € Ey. Sometimes we abuse language slightly and refer to this as the factored space obtained
from X by collapsing . In particular, when S is the E—maximal element of &, then CS can
be taken to be the space fe_{s}, which is obtained from X by coning-off Fy; x {e} for all
Ue® —{S}and all ee Ey.

We often consider the case of a fixed (X', &) and U € & and then applying this construction
to the hierarchy hyperbolic structure (Fy,Syr). For this application, note that my (X)) is
quasi-isometric to f‘gU_{U}, by [BHS17a, Corollary 2.9|, and thus so is CU, by Remark 2.11.
Lemma 3.6. Let (X,8) be a hierarchically hyperbolic space and consider ¥ < & which is
closed undir nesting. Let ~y be a hierarchy path in (X, &). Then, the path obtained by including

v < X < Fg is an unparametrized quasi-geodesic. Moreover, if for each W € T which is a
relevant domain for ~ and for each e € Eyy, we modify the path through Fy x {e} by removing
all but the first and last vertex of the hierarchy path which passes through Fyy x {e}, then the

new path obtained, 4 is a hierarchy path for (f‘g, S —-9%).
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Proof. The proof is by induction on complexity. Consider all the nest-minimal elements 4 < ¥
which are relevant for ; by Proposition 2.13 and Remark 2.14 for each such U there is a
subpath of v which passes through a collection of slices Fyy x {e} within the product region
associated to U. By [BHS19, Lemma 2.14| there is a bounded (in terms of &) coloring of i
with the property that all the domains of a given color are pairwise transverse. Starting from
(X,6), we take one color at a time, together with all the domains nested inside domains
of that color, and create the factored space by coning off those domains. At each step, we
obtain a new hierarchically hyperbolic space with the property that in this space the relevant
domains for v are exactly the original ones except for those in the colors we have coned off thus
far. Since this path still travels monotonically through each of the relevant domains, it is an
unparametrized quasi-geodesic in the new factored space. Thus the path 4 is a parametrized
quasi-geodesic and thus a hierarchy path in the new factored space (with constants depending
only on the constants for the original hierarchy path). Once the colors of i are exhausted,
repeat one step up the nesting lattice. Since the complexity of a hierarchically hyperbolic and
the coloring are both bounded, this will terminate after finitely many steps. Finally we cone
off any domains in ¥ which are not relevant for  to obtain the space (IAT‘T, S — %). Through
this final step 4 remains a uniform quality hierarchy path since it is still a quasigeodesic. []

The next result uses the above spaces to obtain a hierarchically hyperbolic structure with
particularly nice properties from a given hierarchically hyperbolic structure.

Theorem 3.7. Every hierarchically hyperbolic space with the bounded domain dichotomy
admits a hierarchically hyperbolic structure with unbounded products.

Proof. Let (X, &) be a hierarchically hyperbolic space. Let T denote the E—maximal element
S together with the subset of & consisting of all U € & with both Fyy and Ey unbounded.

We begin to define our new hierarchically hyperbolic structure on & by taking ¥ as our
index set. For each U € T — {S} we set the associated hyperbolic space Ty to be CU. For
the top-level domain, S, we obtain a hyperbolic space, Ts, as follows. By Lemma 3.1, &M is
closed under nesting and hence Xgm is a hierarchically hyperbolic space. Moreover, since
this hierarchically hyperbolic space has the property that no pair of orthogonal domains both
have diameter larger than M, by [BHS17¢, Corollary 2.16] it is hyperbolic for some constant
depending only on (X, &) and M; we call this space Tg.

To avoid confusion, we use the notation dg for distance in 7g and the notation deg for
distance in CS.

When U # S, the projections are as defined in the original hierarchically hyperbolic space.
We take the projection mg to be the factor map X — Tg. If U € ¥ and U # S, then the
relative projections are defined as in (X', &). For the remaining cases the relative projections
are as follows: ,0‘5/ is defined to be 7y and pg is defined to be the image of Fy under the
factor map X — Tg.

We now check the axioms to verify that (X', %) is an almost hierarchically hyperbolic space
(i.e., all the conditions of a hierarchically hyperbolic space except for a weakened version of the
orthogonality axiom). Once these axioms have been verified, we can then invoke Theorem A.1
to conclude that the almost hierarchically hyperbolic structure ¥ can be modified to yield
an actual hierarchically hyperbolic space. By construction, (X, ¥) satisfies the hypothesis of
Corollary A.8, and therefore the associated modified hierarchically hyperbolic structure will
have unbounded products, as desired.

Projections: The only case to check is for the top-level domain S. Since 7g is a factor
map, it is coarsely Lipschitz and coarsely surjective.

Nesting: The partial order and projections are given by construction. The diameter
bound in the case of nesting projections is immediate from the bound from (X, &), except in
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the case of pg for V e €. The bound on the diameter of pg follows from the construction of
Ts as a factor space and the fact that T c &M,

Orthogonality: We now verify axiom (3') is satisfied by this new structure. Tthe first
three conditions are clear, since T € & and thus they are inherited from the hierarchically
hyperbolic structure (X, &). For the last condition, any collection of pairwise orthogonal
domains in ¥ is also a collections of pairwise orthogonal domains in &, and thus by [BHS19,
Lemma 2.2] has uniformly bounded size, verifying the axiom.

Transversality and consistency: This axiom only involves domains which are not nest-
maximal, and hence holds using the original constants from the hierarchically hyperbolic
structure on (X, S).

Partial realization: This axiom only involves domains which are not nest-maximal, and
hence holds using the original constants from the hierarchically hyperbolic structure on
(X,6).

Finite complexity: This clearly holds by construction.

Large link axiom: Let A and F be the constants from the large link axiom for (X, &), let
W e ¥, and let x, 2’ € X. Consider the set {T;} < Sy — {W} provided by the large link axiom
for (X, &). Since T; = W, it follows that Ez, is unbounded for each i. Let T' € Ty — {W}. If
dr(z,2') > E - M, it follows that Fr is unbounded. Furthermore, der(z,2’) > E, whence
T C T; for some i by the large link axiom for (X, &). Therefore Fr, is unbounded, and so
T; € €. The result follows.

Bounded geodesic image: For all domains in T — {S}, the corresponding hyperbolic
spaces are unchanged from those in the original structure and thus the axiom holds in these
cases.

Hence the only case which it remains to check is when W = S. Suppose 7 is a geodesic in
Ts, and V € T — {S} such that diamcy (p{r(7)) > E. The partial realization axiom implies
that there exists a hierarchy path ¥ € X whose end-points project under g to the end-points
of . This projected path is a quasigeodesic by Lemma 3.6. Since Tg is hyperbolic, the
projected path lies uniformly close to v. By [BHS19, Proposition 5.17|) we can replace 4 by
an appropriate subpath for which the only relevant domains are all nested in V; thus ¥ < Py.
By definition, there is a bounded distance between p¥% and mg(Py); thus 75(¥) (and hence )
is a bounded distance from pg, as needed.

Uniqueness: Let £ > 0. We can take 0, > max{6,(x), M}, where 6,(r) is the original
constant from the uniqueness axiom for (X, &). Then if z,y € X with d(x,y) > 0., then
uniqueness for (X, &) implies there exists U € & with dey(z,y) > M. Either U € ¥ or
diam(CU) = o and Ey is bounded. We are done in the first case. In the second case,
by construction the factor space U of Fy obtained by factoring Ty is quasi-isometrically
embedded in Tg and there is a 1-Lipschitz map from U to CU. Thus the lower bound on
distance in CU provides a lower bound on the distance in U , which, in turn, provides a lower
bound in Tg, as desired. O

Corollary 3.8. FEvery hierarchically hyperbolic group admits a hierarchically hyperbolic group
structure with unbounded products.

Proof. Recall that every hierarchically hyperbolic group has the bounded domain dichotomy.
Accordingly, if we start with a hierarchically hyperbolic group, (G,&), then Theorem 3.7
yields a hierarchically hyperbolic structure with unbounded products, (G, %), where ¥ is the
structure from the proof of Theorem 3.7 with the additional “dummy domains” added as
provided at the end of that proof via Theorem A.1. It remains only to show that this is a
hierarchically hyperbolic group structure. The action of G on itself, by left multiplication, is
clearly metrically proper and cobounded, and thus it only remains to show that T contains
finitely many G-orbits. If U € & but U ¢ ¥, then either Fy or Ey must be bounded.
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Then for each g € G, the same will be true for Fyy or Eyy, which shows that gU ¢ <.
Thus G-U < & —%. The now result follows from the fact that & has only finitely many
G-orbits and that any dummy domains added fall into only finitely many orbits, as noted in

Remark A.7. O

4. CHARACTERIZATION OF CONTRACTING GEODESICS

For this section, fix a hierarchically hyperbolic space (X', &) with the bounded domain
dichotomy; denote the E-maximal element S € &.

Definition 4.1 (Bounded projections). Let Y < X and D > 0. We say that ) has D-bounded
projections if for every U € & — {S}, we have dy()) < D.

Definition 4.2 (Contracting). A subset 7 in a metric space X is said to be D—contracting if
there exist a map 7y: X — v < X and constants A, D > 0 satisfying:

(1) For any x € v, we have diamx (z, 7, (z)) < D;

(2) If x,y € X with dx(z,y) < 1, then diamx (7 (z), 7y(y)) < D;

(3) For all z € X, if we set R = A -d(x,7), then diamx (7y(Bgr(z))) < D.

In this section, we will focus our attention to the case of Definition 4.2 where ~ is a
quasigeodesic. In Section 6 we will consider results about arbitary subsets with the contracting
property.

We note that sometimes authors refer to any quasigeodesic satisfying (3) as contracting.
Nonetheless, for applications one also needs to assume the coarse idempotence and coarse
Lipschitz properties given by (1) and (2), so for convenience we combine them all in one
property.

A useful well-known fact is stability of contracting quasigeodesics. Two different proofs of the
following occur as special cases of the results [MM99, Lemma 6.1] and [Beh06, Theorem 6.5[;
this explicit statement can also be found in [DT15, Section 4].

Lemma 4.3. If v is a D—contracting (K, K)—quasigeodesic in a metric space X, then ~y is
D’ —stable for some D' depending only on D and K.

The following result and argument both generalize and simplify the analogous result for
mapping class groups in [Beh06].

Theorem 4.4. Let (X,8) be a hierarchically hyperbolic space. For any D >0 and K > 1
there exists a D' > 0 depending only on D and (X,8) such that the following holds for
every (K, K)-quasigeodesic v < X. If v has D-bounded projections, then ~ is D’~contracting.
Moreover, if (X,6) has the bounded domain dichotomy, then X admits a hierarchically
hyperbolic structure (X, %) with unbounded products where, additionally, we have that if 7y is
D—contracting, then v has D'-bounded projections.

Proof. First suppose that v has D-bounded projections. It follows immediately from the
definition that ~ is a hierarchically quasiconvex subset of X'. Hierarchical quasiconvexity is
the hypothesis necessary to apply [BHS17a, Lemma 5.5] (see Lemma 2.10), which then yields
existence of a coarsely Lipschitz gate map g: X — ~, i.e., for each x € X, the image g(x) € 7y
has the property that for all U € & the set m7(g(x)) is a uniformly bounded distance from
the projection of 7y (z) to my (7).

We will use g as the map to prove 7 is contracting. Gate maps satisfy condition (1) of
Definition 4.2 by definition and condition (2) since they are coarsely Lipschitz. Hence it
remains to prove that condition (3) of Lemma 4.3 holds.

Fix a point x € X with dy(x,7) = By and let y € X be any point with dy(z,y) <
Bidx(z,7) for constants By and Bj as determined below.
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Since g is a gate map and  has D-bounded projections, for all U € & — {S} we have
du(g(z),8(y)) < D. Thus, by taking a threshold L for the distance formula (Theorem 2.5)
larger than D, we have

dx(a(z),8(y)) =(x.c) ds(a(2),8(y)),
for uniform constants K, C. Thus it suffices to prove that dg(g(z), g(y)) is bounded by some
uniform constant By. We also choose L to be larger than the constants in Definition 2.1.(4).

By Definition 2.1.(1), the maps 7y are Lipschitz with a uniform constant. Taking By
sufficiently large, it follows that there exists U € & so that dy(x, g(z)) > L. By choosing B;
to be sufficiently small, and applying the distance formula to the pairs (x,y) and (x, g(x)), the
fact that the projections my are Lipschitz implies that the sum of the terms in the distance
formula associated to (z,g(x)) is much greater than the sum of those associated to (z,y).
Having chosen B; < 1, we have > dy(z, g(z)) > 2> duy(z,y) > >(du(z,y) + L). Thus, there
exists W e & for which dw (x,g(x)) > dw(z,y) + L.

If W = S, then having dg(z,g(z)) > ds(z,y) + L (where we enlarge L if necessary)
would already show that the C.S—geodesic between x and y was disjoint from mg(7y) and then
hyperbolicity of C.S would yield a uniform bound on the dg(g(x), g(v)).

Otherwise, we may assume W # S. By the triangle inequality, we have dy (y, g(x)) > L.
Further, since, as noted above, the CW projections between g(z) and g(y) are uniformly
bounded, by choosing By large enough and Bj small enough, we also have dw (y, g(y)) > L.

By the bounded geodesic image axiom (Definition 2.1.(7)), any geodesic in CS either has
bounded projection to CU or satisfies 75(y) N Ng(p%) # & for any U € & — {S}. For any
geodesic from wg(z) to mg(g(z)) (or from wg(y) to ms(g(y)), the above argument implies that
the first condition doesn’t hold for W. Thus, in both cases, we know that any such geodesic
must pass uniformly close to pgv. Hence the hyperbolicity of C.S implies 7y is contracting, and
the first implication holds.

We prove the second implication by contradiction. By Theorem 3.7, we obtain a new
structure (X, %) which has unbounded products. For every U € ¥ — {S} we have that both
Fy and Ey are unbounded, hence every U € T — {S} yields a non-trivial product region
Py = Ey x Fy which is uniformly quasi-isometrically embedded in X.

Suppose 7 is contracting but doesn’t have D-bounded projections. Then we obtain a
sequence {U;} € T — {S} with diam(m¢y, (7)) — o0. Thus there is a sequence of pairs of points
xi, Yi € 7, so that dy,(z;,y;) = K;, with K; — 0o. For each i, let ¢; be a R-hierarchy path
between z;,y;. By [BHS19, Proposition 5.17|, there exists v > 0 depending only on R and
(X, 6), such that

diamUZ. (qi ﬁNy(PUZ.)) = Ki.

Since 7 is contracting, it is uniformly stable by Lemma 4.3. Since v is uniformly stable and
the ¢; are uniform quasigeodesics, it follows that each g; is contained in a uniform neighborhood
of . Hence arbitrarily long segments of v are uniformly close to the product regions Py;,.
This contradicts the assumption that ~ is contracting and completes the proof. O

5. UNIVERSAL AND LARGEST ACYLINDRICAL ACTIONS

The goal of this section is to show that for every hierarchically hyperbolic group (G, &)
the poset AH(G) has a largest element. Recall that the action associated to such an element
is necessarily a universal acylindrical action.

We prove the following stronger result which, in addition to providing new largest and
universal acylindrical actions for cubulated groups, gives a single construction that recovers
all previously known largest and universal acylindrical actions of finitely presented groups
that are not relatively hyperbolic.

The following is Theorem A of the introduction:
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Theorem 5.1. FEvery hierarchically hyperbolic group admits a largest acylindrical action.

Before giving the proof, we record the following result which gives a sufficient condition for
an action to be largest. This result follows directly from the proof of [ABO19, Theorem 4.13];
we give a sketch of the argument here. Recall that an action H — S is elliptic if H has
bounded orbits.

Proposition 5.2 (JABO19|). Let G be a group, {Hi, ..., H,} a finite collection of subgroups
of G, and F be a finite subset of G such that F' u (| J;—, H;) generates G. Assume that:

(1) T(G, F v (U, H;)) is hyperbolic and the action of G on it is acylindrical.

(2) Each H; is elliptic in every acylindrical action of G on a hyperbolic space.

Then [F U (Ui, Hi)] is the largest element in AH(G).

Proof. First notice that by assumption (1), I'(G, F u (| J;—, H;) is an element of AH(G). Let
G — S be a cobounded acylindrical action of G on a hyperbolic space, S, and fix a basepoint
s € S. Then there exists a bounded subspace B < S such that .S © Ugec g-B. By assumption
(2), the orbit H; - s is bounded for all i = 1,...,n. Since |F| < o0, we know diam(F - s) < o0
and thus

K = max{diam(B),diam(H; - s),...,diam(H,, - s),diam(F - s)}
is finite. Let C' = {s' € S | d(¢,s) < 3K}, and let
Z={9geG|g-CnC# T}

The standard Milnor-Schwartz Lemma argument shows that Z is an infinite generating set
of G and there exists a G—equivariant quasi-isometry S — I'(G, Z). It is clear that Z contains
F, as well as H; for all i = 1,...,n and thus [Z] < [F U (|J;_, Hi]. The result follows. [

Proof of Theorem 5.1. Let (G, &) be a hierarchically hyperbolic group with finite generating
set F'. By Corollary 3.8, there is a hierarchically hyperbolic group structure (G,¥) with
unbounded products. Recall that S is the E-maximal element of ¥ with associated hyperbolic
space Tg. The action on Tg is acylindrical by [BHS17b, Theorem K].

Moreover, the action of G on Tg is cobounded, so let B be a fundamental domain for

G —~ Tg and
U={Ue%|ng(Fy) € B and U is T-maximal in T — {S}}.

Notice that U will contain exactly one representative from each G—orbit of domains, and so
must be a finite set. Indeed, for a hierarchically hyperbolic group, this follows from the fact
that the action of G on ¥ is cofinite.

Let H; < G be the stabilizer of Fy, for each U; € U. By a standard Milnor-Schwartz
argument (see [ABO19] for details) there is a G—equivariant quasi-isometry between I'(G, F' U
(Ui, Hi)) and Tg, where n = |U|. Therefore condition (1) of Proposition 5.2 is satisfied.

By definition, each H; sits inside a non-trivial direct product in G, the product region Py,
associated to each U; € U. It follows that H; must be elliptic in every acylindrical action of G
on a hyperbolic space (see Remark 2.18), satisfying condition (2).

Therefore, by Proposition 5.2, the action is largest. O

Remark 5.3. The proof of Theorem 5.1 can be extended to treat a number of groups
which are hierarchically hyperbolic spaces, but not hierarchically hyperbolic groups. For
example, it was shown in [BHS19, Theorem 10.1] that every fundamental group of a compact
3—manifold with no Nil or Sol in its prime decomposition admits a hierarchically hyperbolic
space structure, which is constructed by first putting an HHS structure on each geometric
piece in the prime decomposition. However, as explained in [BHS19, Remark 10.2] it is likely
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that such fundamental groups don’t all admit hierarchically hyperbolic group structures.
Nonetheless, the proof of the above theorem works in this case by replacing the use of the fact
that the action of G on ¥ is cofinite, with the fact that for 7 (M), the set U is precisely the set
of E-maximal domains in the hierarchically hyperbolic structure on each of the Seifert-fibered
components of the prime decomposition of M, and so is finite.

Remark 5.4. There is an instructive direct proof of the universality of the above action,
using the characterization of contracting quasigeodesics in Section 4, which we now give. We
call an infinite order element contracting if its orbit is a contracting quasigeodesic in the
Cayley graph. Now, let g € G be an infinite order element and consider the geodesic {g) in
(G, F).

If {g) is contracting in I'(G, F'), then by Theorem 4.4 all proper projections are bounded,
and thus by the distance formula, g is loxodromic for the action on 7g.

If {g) is not contracting in I'(G, F'), then there exists some U € ¥ such that 7y ({g)) is
unbounded. Thus for any increasing sequence of constants (K;) with K; — oo, there are
sequences of pairs of points x;, y; € (g) such that d(x;,y;) — c© as i — o and dy(x;,y;) = K;.
For each i, let v; be an R-hierarchy path between z; and y;. By definition, ; is a uniform
quasigeodesic. Then by [BHS19, Proposition 5.17], there exists v > 0 depending only on R
and (X, %) such that diamy (v n N, (Py)) = K;. If g is a generalized loxodromic, then {(g) is
stable, by [Sis16], and so the subgeodesic [z;,y;] stays within a uniform bounded distance of
~i- Thus arbitrarily long subgeodesics of {g) stay within a uniformly bounded distance of a
product region, Py;. This contradicts {(g) being Morse, and therefore g is not a generalized
loxodromic element.

This remark directly implies that the action on Tg is a universal acylindrical action. (The
universality of the action can also be proven using the classification of elements of Aut(S)
described in [DHS17].)

Another immediate consequence of the above remark is the following, which for hierarchically
hyperbolic groups strengthens a result obtained by combining Osin [Osil6, Theorem 1.4.(L4)]
and Sisto [Sis16, Theorem 1], which together prove that a generalized loxodromic element in
an acylindrically hyperbolic group is quasi-geodesically stable.

Corollary 5.5. Let (G,8) be a hierarchically hyperbolic group. An element g € G is
generalized loxodromic if and only if g is contracting.

The next result provides information about the partial ordering of acylindrical actions. Of
the groups listed below, the largest and universal acylindrical action of the class of special
CAT(0) cubical groups is new; the other cases were recently established to be largest in

[ABO19].

Corollary 5.6. The following groups admit acylindrical actions that are largest (and therefore

universal):

(1) Hyperbolic groups.

(2) Mapping class groups of orientable surfaces of finite type.

(8) Fundamental groups of compact three-manifolds with no Nil or Sol in their prime decom-
position.

(4) Groups that act properly and cocompactly on a special CAT(0) cube complex, and more
generally any cubical group which admits a factor system. This includes right angled-Artin
groups, right-angled Cozeter groups, and many other examples as in [HS16].

Proof. With the exception of (3), by [BHS17b, BHS19, HS16] the above are all hierarchically
hyperbolic groups and therefore have the bounded domain dichotomy. In case (3), where G is
the fundamental group of a compact three-manifold with no Nil or Sol in its prime decompo-
sition, then while G is not always a hierarchically hyperbolic group, it has a hierarchically
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hyperbolic structure (X, &). To see this, we use the fact that there is a group G’ which is
quasi-isometric to G and has a hierarchically hyperbolic structure with all of the associated
hyperbolic spaces infinite [BHS19, Theorem 10.1 & Remark 10.2|; thus by quasi-isometric
invariance of hierarchically hyperbolic structures [BHS19, Proposition 1.10|, G does as well.
Since all of the associated hyperbolic spaces are infinite, (X, &) has the bounded domain
dichotomy, so the result follows. O

We give an explicit description of these actions for each hierarchically hyperbolic group in
the corollary, in the sense that we describe the set 2J of domains which are removed from
the standard hierarchical structure of the group and whose associated hyperbolic space is
infinite diameter. Recall that the space Tg is constructed from X by coning off all elements
of ¥ which consists of those components of & whose associated product regions have both
factors with infinite diameter. Coning off all of ¥ yields a space which is is quasi-isometric to
the space obtained by just coning off & — 20.

(1) Hyperbolic groups have a canonical simplest hierarchically hyperbolic group structure
given by taking & = {S}, where CS is the Cayley graph of the group with respect to a
finite generating set. For this structure, 20 = ¢, and the action on the Cayley graph is
clearly largest.

(2) For mapping class groups, the natural hierarchically hyperbolic group structure is & is the
set of homotopy classes of non-trivial non-peripheral (possibly disconnected) subsurfaces
of the surface; the maximal element S is the surface itself, and the hyperbolic space CS'is
the curve complex. For this structure 20 = &§. (Note that to form T one must remove
the nest-maximal collections of disjoint subsurfaces; the hyperbolic space associated to
each of these, except S, has finite diameter). Additionally, we emphasize that although
the new hyperbolic space Tg is not CS, it is quasi-isometric to C.S, the action on which
is known to be universal. Universality of this action was shown by Osin in [Osil6], and
follows from results of Masur-Minsky and Bowditch [Bow08, MM99].

(3) If M is a compact 3—manifold with no Nil or Sol in its prime decomposition and G = 71 M,
then 20 is exactly the set of vertex groups in the prime decomposition that are fundamental
groups of hyperbolic 3-manifolds (each of which has exactly one domain in its hierarchically
hyperbolic structure).

(4) If G is a group that acts properly and cocompactly on a special CAT(0) cube complex
X, then by [BHS17b, Proposition B|, X has a G—equivariant factor system. This factor
system gives a hierarchically hyperbolic group structure in which & is the closure under
projection of the set of hyperplanes along with a maximal element .S, where CS' is the
contact graph as defined in [Hagl4]. In this structure, 20 is the set of indices whose
stabilizer in GG contains a power of a rank one element.

In the particular case of right-angled Artin groups, no power of a rank one element will
stabilize a hyperplane, so 20 = ¢ZJ. In this case, the contact graph CS is quasi-isometric
to the extension graph defined by [KK14|. That the action on the extension graph is a
universal acylindrical action follows from the work of [KK14] and the centralizer theorem
for right-angled Artin groups. This action is also shown to be largest in [ABO19].

We give a concrete example of the situation in the case of a right-angled Coxeter group.

Example 5.7. Let G be the right-angled Coxeter group whose defining graph is a
pentagon. Then G = {a,b,c,d,e | [a,b],[b,c],[c,d], [d,e], [a,e],a?,b? c?, d?, e?), and the
Cayley graph of G is the tiling of the hyperbolic plane by pentagons. We consider the
dual square complex to this tiling. To form the contact graph CS, we start with the
square complex and cone off each hyperplane carrier, which is equivalent to coning off the
hyperplane stabilizers in the Cayley graph. The result is a quasi-tree. Thus a fundamental
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domain for the hierarchically hyperbolic group structure of G is {U,, Uy, U, Uy, Ue, S}
where U, is associated to the stabilizer of the hyperplane labeled by v and S is associated
to the contact graph described above.

Consider the hyperplane Jp, that is labeled by b. Then the stabilizer of J, is subgroup
generated by the star of the vertex b, that is {a, b, ¢). This subgroup contains the infinite
order element ac. As G is a hyperbolic group, all infinite order elements are generalized
loxodromic, but ac is not loxodromic for the action on the contact graph since its axis
lies in a hyperplane stabilizer that has been coned-off. Thus the action on the contact
graph is not universal.

Let U, € & be the element associated to Stab(Jp). Then Stab(J,) = {a,b,c |
[a,b],[b,c]) >~ Dy x Z)2Z ~ Fy, x Ey, is a product region, and the maximal orthogonal
component Ey;, is bounded. Thus U, € 2, as is U, for each vertex v of the defining graph.
The contact graph associated to (Fy,,Sy,) is a line, and the element ac is loxodromic
for the action on this space.

Note that once 20 has been removed from &, the resulting hierarchically hyperbolic
structure is (G, {S}), the canonical hierarchically hyperbolic structure for a hyperbolic
group, in which CS =T'(G,{a,b,c,d,e}).

6. CHARACTERIZING STABILITY

In this section, we will give several characterizations of stability which hold in any hierar-
chically hyperbolic group. In fact, we will characterize stable embeddings of geodesic metric
spaces into hierarchically hyperbolic spaces with unbounded products. One consequence of
this will be a description of points in the Morse boundary of a proper geodesic hierarchically
hyperbolic space with unbounded products as the subset of the hierarchically hyperbolic
boundary consisting of points with bounded projections.

6.1. Stability. While it is well-known that contracting implies stability [Beh06, DMS10,
MM99], the converse is not true in general. Nonetheless, in several important classes of spaces
the converse holds, including in hyperbolic spaces, CAT(0) spaces, the mapping class group,
and Teichmiiller space [Sull4, Beh06, DT15, Min96]. We record the following corollary of
Theorem 4.4 which gives a relationship between stability and contracting subsets that holds
in a fairly general context.

Corollary 6.1. Suppose that (X, &) has unbounded products, Y is a hyperbolic metric space,
and i: Y — X is a (K, C)—quasi-isometric embedding. Then i()) is N —stable if and only if
i()) is D—contracting, where N and D determine each other.

Proof. First assume that i())) is D—contracting. Since i: Y — X is a (K, C')—quasi-isometric
embedding, to show that i()) is N—stable for some gauge N = N(D), we need only show
that the (quasigeodesic) image i(7y) of every geodesic v in ) is N (K, C)-stable. Since i(})
is D—contracting and () is hyperbolic, i(y) is D'—contracting for some D" depending only
on D, K,C, and the hyperbolicity constant of ). Lemma 4.3 shows that i(v) is therefore
N-stable, with NV depending only on D, as desired. (Note that the assumption on unbounded
products is not necessary for this implication.)

For the other direction, the fact that X has unbounded products implies that i())) has
bounded projections, since otherwise one could find large segments of quasigeodesics contained
inside product regions with unbounded factors, contradicting stability. The result now follows
from Theorem 4.4. ]

The following provides a general characterization of stability in HHSs, a special case of
which is Theorem B.
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Corollary 6.2. Leti: Y — X be a quasi-isometric embedding from a metric space into a
hierarchically hyperbolic space (X, &) with unbounded products. The following are equivalent:

(1) i is a stable embedding;
(2) i(Y) has uniformly bounded projections;
(8) mgoi:Y — CS is a quasi-isometric embedding.

Proof. That item (2) implies (3) follows from the distance formula and the assumption that i
is a quasi-isometric embedding.

The hypothesis of item (1) implies that ) is hyperbolic. Moreover, since (2) implies (3),
the hypothesis of (2) also implies that ) is hyperbolic. Thus items (1) and (2) are equivalent
via Corollary 6.1 and Theorem 4.4.

We now prove that (3) implies (2). Suppose for a contradiction that for any integer N there
exists U € & — {S} and z,y € i(}) satisfying dy(z,y) > N. Now, we consider a hierarchy
path v between x and y. Applying the bound geodesic image axiom (Definition 2.1.(7)) to
the associated CS—geodesic between mg o i(z) and mg o i(y) it follows that this CS—geodesic
has non-trivial intersection with the radius F ball about the point pg. Indeed, this yields
that there exist points z’,3’ on the geodesic which are both distance at most F from pg;
by [BHS19, Lemma 5.17] we can assume that x and y were chosen so that z’ and ¥y’ also
satisfy dg(z,2') < F and dg(y,y’) < E. Thus, we have that dg(z,y) < 4F. The hypothesis
in (3) implies that there is a uniform bound on dy(z,y). The distance formula then implies a
uniform bound on dy (z,y) for any W € &, contradicting the fact that we chose dy(z,y) to
be large. O

6.2. The Morse boundary. In the rest of this section, we turn to studying the Morse
boundary and use this to give a bound on the stable asymptotic dimension of a hierarchically
hyperbolic space. We begin by describing two notions of boundary.

In [DHS17|, Durham, Hagen, and Sisto introduced a boundary for any hierarchically
hyperbolic space. We collect the relevant properties we need in the following theorem:

Theorem 6.3 (Theorem 3.4 and Proposition 5.8 in [DHS17]|). If (X, &) is a proper hier-
archically hyperbolic space, then there exists a topological space 0X such that 0X U X = X
compactifies X, and the action of Aut(X,&) on X extends continuously to an action on X.

Moreover, if Y is a hierarchically quasiconvex subspace of X, then, with respect to the induced
hierarchically hyperbolic structure on Y, the limit set of AY of YV in 0X is homeomorphic to
0Y and the inclusion map i: Y — X extends continuously an embedding 0i: 0 — 0X.

Building on ideas in [CS15], Cordes introduced the Morse boundary of a proper geodesic
metric space [Corl7], which was then refined further by Cordes—Hume in [CH17|. The Morse
boundary is a stratified boundary which encodes the asymptotic classes of Morse geodesic
rays based at a common point. Importantly, it is a quasi-isometry invariant and generalizes
the Gromov boundary of a hyperbolic space [Corl7].

We briefly discuss the construction of the Morse boundary and refer the reader to [Corl?7,
CH17] for details.

Consider a a proper geodesic metric space X with a basepoint e € X. Given a stability

gauge N : R;O — Ry, define a subset Xe(N) c X to be the collection of points y € X such that

e and y can be connected by an N—stable geodesic in X. Each such XéN) is d y—hyperbolic
for some Jy > 0 depending on N and X [CH17, Proposition 3.2]; here, we use the Gromov
product definition of hyperbolicity, as XéN) need not be connected. Moreover, any stable
subset of X embeds in Xe(N) for some N [CH17, Theorem A.V].

The set of stability gauges admits a partial order: N; < Ny if and only if Ni(K,C) <

No(K,C) for all constants K, C. In particular, if N; < Na, then Xe(Nl) c XéNQ).
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Since each XE(N) is Gromov hyperbolic, each admits a Gromov boundary 6X5(N). Take the
direct limit with respect to this partial order to obtain a topological space 0sX called the
Morse boundary of X.
We fix (X, &), a hierarchically hyperbolic structure with unbounded products.

Definition 6.4. We say A € 0X has bounded projections if for any e € X, there exists D > 0
such that any R-hierarchy path [e, A] has D-bounded projections. Let 0.X denote the set of
points A € 0X with bounded projections.

The boundary X contains ¢CU for each U € &, by construction. The next lemma
shows that the boundary points with bounded projections are contained in 0CS, as a subset
of 60X, where S is the =—maximal element. In general, the set of boundary points with
bounded projections may be a very small subset of dCS. For instance, in the boundary
of the Teichmiiller metric, these points are a proper subset of the uniquely ergodic ending
laminations and have measure zero with respect to any hitting measure of a random walk on
the mapping class group.

Lemma 6.5. The inclusion 0.X < 0CS holds for any (X,S) with unbounded products where
S is the E—mazximal element of &. Moreover, if X is also proper, then for any D > 0 there
exists D' > 0 depending only on D and (X, &) such that if (x,) < X is a sequence with
Tp — X € OX such that [e,x,] has D—bounded projections for some e € X and each n, then
[e, A] has D'~bounded projections.

Proof. Let A € 0.X. If [e,\] is an R-hierarchy path, then [e, A\] has an infinite diameter
projection to some CU, see, e.g., [DHS17, Lemma 3.3]. As A has bounded projections, we
must have U = S. Since 7g([e, A]) = CS is a quasigeodesic ray, the first statement follows.
Now suppose that X is also proper. For each n, let v, = [e, ;] be any R-hierarchy path
between e and x,, in X. The Arzela-Ascoli theorem implies that after passing to a subsequence,
~n converges uniformly on compact sets to some R’~hierarchy path v with R’ depending only
on R and (X,&). Hence v has D’~bounded projections for some D’ depending only on D
and (X, &). Moreover, since x,, — A in CS, it follows that 7wg(7y) is asymptotic to A in CS.
If [e, A] is any other R'-hierarchy path, it follows from uniform hyperbolicity of the CU
and the definition of hierarchy paths that dff%“%(v, [e, A]) is uniformly bounded for all U € &.
Since v has D'-bounded projections, the distance formula implies that [e, A] has D”~bounded
projections for some D” depending only on D and (X, &), as required. ]

6.3. Bounds on stable asymptotic dimension. The asymptotic dimension of a metric
space is a coarse notion of topological dimension which is invariant under quasi-isometry.
Introduced by Cordes—Hume [CH17]|, the stable asymptotic dimension of a metric space X is
the maximal asymptotic dimension a stable subspace of X.

The stable asymptotic dimension of a metric space X is always bounded above by its
asymptotic dimension. Behrstock, Hagen, and Sisto [BHS17a] proved that all proper hier-
archically hyperbolic spaces have finite asymptotic dimension (and thus have finite stable
asymptotic dimension, as well). The bounds on asymptotic dimension obtained in [BHS17a|
are functions of the asymptotic dimension of the top level curve graph.

In the following theorem, we prove that a hierarchically hyperbolic space (X', &) has finite
stable asymptotic dimension under the assumption that asdim(CS) < oo, where CS is the
hyperbolic space associated to the E-maximal domain S in &.

Recall that asymptotic dimension is monotonic under taking subsets. Thus, if X is assumed
to be proper, so that asdim(CS) < o, then X' (and therefore its stable subsets) have finite
asymptotic dimension by [BHS17a|. Here, using some geometry of stable subsets we obtain a
sharper bound on asdimg(&X') than asdim(X).
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Theorem 6.6. Let (X, S) be a hierarchically hyperbolic space with unbounded products such
that CS has finite asymptotic dimension, where S is the E—maximal element of &. Then
asdimy(X) < asdim(CS). Moreover, if X is also proper and geodesic, then there exists a
continuous bijection i: 0sX — 0.X.

Proof. By [CH17, Lemma 3.6], for any stability gauge N there exists N’ such that Xe(N) is

N'-stable. Hence, there exists D’ > 0 depending only on N’ and (X, &) such that XN has

D’-bounded projections. By Corollary 6.2, it follows that the projection 7g: Xe(N) — CS'is
a quasi-isometric embedding with constants depending only on D" and (X, &). Since every

stable subset of X embeds into some Xe(N) [CH17, Theorem A.V], the first conclusion then
follows from the definition of stable asymptotic dimension.
Now suppose that X is proper.

Since each Xe(N) is stable in X', these sets have bounded projections by Corollary 6.2;

from this it follows that Xe(N) is hierarchically quasiconvex for each N. Hence by [DHS17,

Proposition 5.8], the canonical embedding i) Xe(N) — X extends to an embedding
i ox™N < ox
By Corollary 6.2 and Lemma 6.5, we have 7) (axe(N )) C 0.X C OCS. Let i: 0.X — 0.X

be the direct limit of the 7). Since it is injective on each stratum, 7 is injective.

To prove surjectivity, let A € d.X. Let e € X and fix a hierarchy path [e, A]. Since
A € 0.X, [e,A\] has D-bounded projections for some D > 0. Let x,, € [e, A\] be such that
T, — Ain X. If [e, 2,,] is a sequence of geodesics between e and x,, then, by properness, the
Arzela—Ascoli theorem, and passing to a subsequence if necessary, there exists a geodesic ray
v:[0,00) —> X with v(0) = e such that [e,x,] converges on compact sets to 7. Since each
[e, z,] has D-bounded projections, it follows that v has D’~bounded projections for some D’
depending only on D and (X, &). Moreover, by hyperbolicity of CS and the construction of
v we have that df¢**(mg(), [e, A]) is uniformly bounded and thus, by the distance formula,
so is dif2us (v, [e, A]). Since [(z,)] = [v] by construction, it follows that i(y) = A, as required.

Continuity of i) for each N follows from [DHS17, Proposition 5.8], as above. This and

the definition of the direct limit topology implies continuity of 7. O
The following corollary is immediate:

Corollary 6.7. If G is a hierarchically hyperbolic group, then G has finite stable asymptotic
dimension.

6.4. Random subgroups. Let G be any countable group and p a probability measure on G
whose support generates a non-elementary semigroup. A k—generated random subgroup of G,
denoted T'(n) is defined to be the subgroup (w}, w2, ..., wk) = G generated by the n'” step
of k independent random walks on GG, where k € N. For other recent results on the geometry
of random subgroups of acylindrically hyperbolic groups, see [MS19].

Following Taylor-Tiozzo [TT16|, we say a k—generated random subgroup I'(n) of G has a
property P if

P['(n) has P]—1 as n — 0.

Theorem 6.8. Let (X,S) be an HHS for which the E—mazimal element, S, has CS infinite

diameter, and consider G < Aut(X, &) which acts properly and cocompactly on X via the
orbit map. Then any k—generated random subgroup of G stably embeds in X.

Proof. By [BHS17b, Theorem K|, G acts acylindrically on CS. Let I'(n) be generated by
k independent random walks as above. Now, [TT16, Theorem 1.2]| implies that I'(n) a.a.s.
quasi-isometrically embeds into CS, and hence I'(n) is hyperbolic. Moreover, the distance
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formula implies that I'(n) is undistorted in G and any orbit of I'(n) in X has bounded
projections by the distance formula. By Theorem 4.4, having bounded projections implies
contracting; thus any orbit of I'(n) in X is a.a.s. contracting, which gives the conclusion by
Corollary 6.1. (Note that the directions of Theorem 4.4 and Corollary 6.1 used here do not
require that (X, &) has unbounded products.) ]

In particular, one consequence is a new proof of the following result of Maher—Sisto. This
result follows from the above, together with Rank Rigidity for HHG (|[DHS17, Theorem 9.14])
which implies that a hierarchically hyperbolic group which is not a direct product of two
infinite groups has C.S infinite diameter.

Corollary 6.9 (Maher-Sisto; [MS19]). If G is a hierarchically hyperbolic group which is not
the direct product of two infinite groups, then any k—generated random subgroup of G is stable.

7. CLEAN CONTAINERS

The clean container property is a condition related to the orthogonality axiom. In Propo-
sition 7.2 this property is shown to hold for many groups, though it does not hold for all
groups. Unlike earlier versions of this paper, this condition is no longer needed to prove the
main theorems of the earlier sections. However, we keep the content in this paper since this
property has found independent interest and is used elsewhere.

Definition 7.1 (Clean containers). In a hierarchically hyperbolic space (X, &) for each
T e & and each U € &7 with {V € &7 | V L U} # J the orthogonality axiom provides a
container. If, for each U, such a container can be chosen to be orthogonal to U, then we say
that (X, &) has clean containers.

We first describe some interesting examples with clean containers. Then we show that this
property is preserved under some combination theorems for hierarchically hyperbolic spaces.
We refer the reader to [BHS19, Sections 8 & 9] and [BHS17a, Section 6] for details on the
structure in the new spaces.

Proposition 7.2. The following spaces admit hierarchically hyperbolic structures with clean
containers.
(1) Hyperbolic groups
(2) Mapping class groups of orientable surfaces of finite type
(3) Special cubical groups, and more generally, any cubical group which admits a factor
system.
(4) m (M), for M a compact 3—manifold with no Nil or Sol in its prime decomposition.

Proof. Hierarchically hyperbolic structures for these spaces were constructed in [BHS17b]
and [BHS19).

(1) The statement is immediate for hyperbolic groups, as they all admit hierarchically
hyperbolic structure with no orthogonality, and thus the container axiom is vacuous.

(2) For mapping class groups, in the standard structure, a container for domains orthogonal
to a given subsurface U is the complementary subsurface, which is orthogonal to U.

(3) The statement follows immediately from [BHS17b, Proposition B| and [HS16, Corol-
lary 3.4].

(4) Given a geometric 3-manifold M of the above form, 7 (M) is quasi-isometric to
a (possibly degenerate) product of hyperbolic spaces, and so has clean containers
by Proposition 7.3. Given an irreducible non-geometric graph manifold M, the
hierarchically hyperbolic structure comes from considering 71 (M) as a tree of hierar-
chically hyperbolic spaces with clean containers and hence has clean containers by
Proposition 7.5. Finally, the general case of a non-geometric 3—manifold M follows
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immediately from Proposition 7.4 and the fact that 71 (M) is hyperbolic relative to
its maximal graph manifold subgroups.

O

Proposition 7.3. The product of two hierarchically hyperbolic spaces which both have clean
containers has clean containers.

Proof. Let (Xp, Sp) and (X7, S1) be hierarchically hyperbolic spaces with clean containers.
In the hierarchically hyperbolic structure (Xy x &7, &) given by [BHS19, Theorem 8.27] there
are two types of containers, those that come from one of the original structures and those
that do not. Containers of the first type are clean, as both original structures have clean
containers.

The second type of domain consists of new domains obtained as follows. Given a domain
U € 6;, a new domain Vj; is defined with the property that it contains under nesting any
domain in &; which is orthogonal to U and also any domain in &;1. Thus, by construction
V17 is a container for everything orthogonal to U. As Viy L U, the result follows. O

Proposition 7.4. If G is hyperbolic relative to a collection of hierarchically hyperbolic
spaces which all have clean containers, then G is a hierarchically hyperbolic space with clean
containers.

Proof. That G is a hierarchically hyperbolic space follows from [BHS19, Theorem 9.1]. In
the hierarchically hyperbolic structure on G, no new orthogonality relations are introduced,
and thus all containers are containers in the hierarchically hyperbolic structure of one of the
peripheral subgroups. As each of these structures have clean containers, it follows that G
does, as well. O

The following example relies on the combination theorem [BHS19, Theorem 8.6]. We
provide this as another example of hierarchically hyperbolic spaces with clean containers, but
since we don’t rely on this elsewhere in the paper, we refer to that reference for the relevant
definitions. Nonetheless, we include a full proof for the expert, since it is short. (We note
that after this paper was circulated, Berlai and Robbio proved a combination theorem under
weaker conditions than [BHS19, Theorem 8.6] and, in the process, also proved that if all the
vertex spaces have clean containers, then so does the combined space, see [BR, Theorem A].)

Proposition 7.5. Let T be a tree of hierarchically hyperbolic spaces satisfying the hypotheses
of |IBHS19, Theorem 8.6|, so that X(T) is hierarchically hyperbolic. If for each v € T, the
hierarchically hyperbolic space (X, S,) has clean containers, then so does X (T).

Proof. This follows immediately from the proof of [BHS19, Theorem 8.6] and the fact that
edge-hieromorphisms are full and preserve orthogonality. In the notation from that result, we
note that, if &, has clean containers for each v € T, then the domain A, € &, described in
the proof also has the property that A, L U,. Therefore, as edge-hieromorphisms are full and
preserve orthogonality, [A4,] L [U]. O

The following uses the notion of hierarchically hyperbolically embedded subgroups introduced
in [BHS17a]; see also [DGO17] for the related notion of hyperbolically embedded subgroups.

Proposition 7.6. Let (G,S) be a hierarchically hyperbolic group with clean containers, and
let H be a hierarchically hyperbolically embedded subgroup of (G,&). Then there exists a finite
set ' H — {1} such that for all N< H with F n N = & and H/N is hyperbolic, the group
G/N , obtained by quotienting by the normal closure, is a hierarchically hyperbolic group with
clean containers.
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Proof. Recall that in the hierarchically hyperbolic structure (G/N, & y) obtained in [BHS17a,
Theorem 6.2] (and in the notation used there), two domains U,V € &y satisfy U =& 'V
(respectively U L V) if there exists a linked pair {U, V} with U € U and V € V such that
UcV (respectively U L V). Let Te Gy and U € (6n)r withV ={V e &1 |V L U} # 7.
To prove the container axiom, we consider domains T, U,V € & such that T € T, U € U
and V e V for all V € V, and such that any pair is a linked pair. Then the orthogonality
axiom for (G, &) provides a domain W such that W 23V and W = T. As (G, &) has clean
containers, we also have that W L U. This implies that pg and ngV are coarsely equal by
[DHS17, Lemma 1.5], and so {U, W} is a linked pair. Therefore, W 1 U. O

APPENDIX A. ALMOST HHSs ARE HHSSs.
By DANIEL BERLYNE AND JACOB RUSSELL

The main result in this appendix is that every almost HHS structure can be promoted
to an HHS structure. Recall that, as introduced in Section 3.2, an almost HHS is a space
which satisfies all the axioms of an HHS except for the orthogonality axiom, which is instead
replaced by a weaker axiom without a container requirement. In Theorem A.1, we show that
an almost HHS structure can be made into an actual HHS structure by adding appropriately
chosen “dummy domains” to serve as the containers. This result provides a useful method
for producing an HHS structure while only needing to verify the weaker axioms of an almost
HHS. This method is used in the main text in the proof of Theorem 3.7, where it is shown
that every hierarchically hyperbolic space with the bounded domain dichotomy admits an
HHS structure with unbounded products.

Theorem A.1. Let (X,S) be an almost HHS. There exists an HHS structure R for X so
that © € R, and if W € R — & then the associated hyperbolic space for W is a single point.

To prove Theorem A.1, we will need to collect three additional tools about almost HHSs.
Each of these tools was proved in the setting of hierarchically hyperbolic spaces, but they
continue to hold in the almost HHS setting. Indeed, the only use of the containers in their
proofs is [BHS19, Lemma 2.1], which proves that the cardinality of any collection of pairwise
orthogonal domains is uniformly bounded by the complexity of the HHS.

The first tool says the relative projections of orthogonal domains coarsely coincide. Note,
pg/ and pg are both defined when WhQ or W £ @ and VAQ or V & Q.

Lemma A.2 ([DHS17, Lemma 1.5]). Let (X, &) be an almost HHS. If W,V € & with W LV,
and QQ € & with pg and pg both defined, then dQ(pg,pg) < 2k where kg is the constant
from the consistency axiom of &.

The second tool we will need is the realization theorem for almost HHSs. The realization
theorem characterizes which tuples in the product [ [{,.g CV are coarsely the image of a point
in X. Essentially, it says if a tuple (by) € [ [,og CV satisfies the consistency inequalities of an
almost HHS (see Definition 2.6), then there exists a point x € X such that 7y (z) is uniformly
close to by for each V € &.

Theorem A.3 (The realization of consistent tuples, [BHS19, Theorem 3.1]). Let (X, &) be
an almost HHS. There exists a function T: [0,00) — [0,00) so that if (by)ves is a K—consistent
tuple, then there exists x € X so that dy(x,by) < 7(k) for all V € &.

The last result we need is that the relative projections of an almost HHS also satisfy the
inequalities in the consistency axiom.

Lemma A.4 (p—consistency, [BHS19, Proposition 1.8|). Let & be an almost HHS structure
for X and V,W,Q € &. Suppose WhQ or W £ Q and WAV or W = V. Then we have the
following, where kg is the constant from the consistency axiom of (X, S).
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(1) If QAV, then min{dg (o, ply), dv (p, YY)} < 20
(2) If Q =V, then min{dy (pi?, p}l'), diam(pl} U pt (o} )} < 2k0.

We are now ready to prove that every almost HHS is an HHS (Theorem A.1). If (X, &) is
an almost HHS, then the only HHS axiom that is not satisfied is the container requirement of
the orthogonality axiom. The most obvious way to address this is to add an extra element to
G every time we need a container. That is, if VW € & with V & W and there exists some
Q = W with Q L V, then we add a domain D“,/V to serve as the container for V in W i.e.,
every () nested into W and orthogonal to V' will be nested into D“,/V. However, this approach
is perilous as once a domain @ is nested into DY,, we may now need a container for @ in
D“,/V! To avoid this, we add domains D}/}V where V is a pairwise orthogonal set of domains
nested into W; that is, DVW contains all domains @ that are nested into W and orthogonal to
all Ve V. This allows for all the needed containers to be added at once, avoiding an iterative
process.

Proof of Theorem A.1. Let (X,&) be an almost HHS and let E > 0 be the maximum of all
the constants in &. Let V denote a non-empty set of pairwise orthogonal elements of G and
let W e &. We say the pair (W, V) is a container pair if the following are satisfied:

e forallVey Ve W,

e there exists Q = W such that Q L V for all V e V.
Let D denote the set of all container pairs. We will denote a pair (W, V) € © by Dy},

Let R = G u®. We will prove X has a hierarchically hyperbolic space structure with
index set R. Since (X, &) is an almost HHS, we can continue to use the spaces, projections,
and relations for elements of &. Thus we only define new projections, relative projections,
and relations when elements of © are involved. If D}/)V € ®, then the associated hyperbolic
space, CDY,, will be a single point.

Projections: For D% € ®, the projection map is just the constant map to the single
point in CD%,)V.

Nesting: Let Q € & and DY ,D}z eD.

° DeﬁneQED}fV fQEWinGand Q@ LV forall VeV.

. DeﬁneDVWEQifWEQiHG.

e Define DVW = DQB if W ETin 6 and for all R € R either R L W or there exists
VeVwithReV.

These definitions ensure E is still a partial order and maintain the E-maximal element of
G as the E—maximal element of fR.

Since the hyperbolic spaces associated to elements of © are points, define pg\v,v = CD‘V}V for
every @ € R and D},’V e® with Q = D}fv. The downwards relative projection pg“i’ : CD% —
CQ can be defined arbitrarily.

If DVW e® and Q € & with DV C @, then V = @ in G for each V € V. Thus we define

pQ = UVeV pQ Lemma A.2 ensures that pQW has diameter at most 4F. In this case, we
define pDv :CQ — CD as the constant map to the single point in CDV

Finite complexity: First consider a nesting chain of the form DV1 = DV2 =2 D%}L.
Claim A.5. The length of DI‘/}‘} = D}f‘? c...C DI‘//‘}L is bounded above by E? + E.

Proof. For each V e |J_; Vi, we have V. = W and hence V &£ W. As D:,)[j‘l C DI‘/)I}' for
each i € {2,...,n}, every element of V; must therefore be nested into an element of V;_;.
Denote the elements of V; by Vy,... V. . Since each V; is a pairwise orthogonal subset of
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S, we have k; < FE for each i € {1,...,n} by the bounded pairwise orthogonality axiom
of an almost HHS (Definition 3.4). We define a V-nesting chain to be a maximal chain
of the form V" & V;::ll ... lel for some m € {1,...,n} and j; € {1,...,k;}, with
i€ {l,...,m}. Since the elements of V; are pairwise orthogonal for each i € {1,...,n}, if vin
is the =—minimal element of a V—nesting chain, then V" is nested into exactly one element
of V; for each ¢ < m. This implies that each V-nesting chain is determined by its E—minimal
element. Further, the set of E—minimal elements of V—nesting chains is pairwise orthogonal.
By the bounded pairwise orthogonality axiom of an almost HHS, this implies there exist at
most E V-nesting chains.

In order for D“,}[} # D%“, either k;y1 < k; or there exists j; € {1,...,ki}, jit1 €
{1,...,ki+1} such that V;:i C VJZZ Thus, every step up the chain D‘],}[} C Dg,}[f C...C D%/)[;L

results in either a strict decrease in k; (the cardinality of V;) to k;11 (the cardinality of
Vit1) or a strict step down one of the V-nesting chains. Note that k; may increase when
we encounter a strict step down one of the V—nesting chains, since multiple elements of V;11
may be nested into the same element of V;. Such an increase in k; corresponds to the nesting
chain branching into multiple chains, which may only happen at most F — k; times, as there
are at most E V-nesting chains. Hence, the length of Dw C DI)/{? C...C D%j[}l is bounded by
k1 + (E — k1) = E plus the total number of times a strict decrease can occur across all of the
V-nesting chains.

Each V-nesting chain V" & Vm 1 .E V1 contains at most F distinct elements of &
by the finite complexity of 6 Bounded pa1rw1se orthogonality implies there are at most F
different V—nesting chains, thus the number of steps of the chain D]V)I} C D},}[E C...C D%,}[}1
where there is a strict decrease within one of the V-nesting chains is at most £2. This bounds
the length of Dyt = D)2 © ... & Dy by E? + E. O

We now consider a nesting chain of the form DV1 C DV2 C ... D%}L . In this case,

Wiy Wy E ... W,, but not all of these nestings must be proper Letl =11 <9 < - - < ip
be the minimal subset of {1,...,n} such that if i; < i < d;41, then W;, = W;. Thus
Wi, = Wi, = ... = W;,, and k < E by finite complexity of &. Claim A.5 estabhshed that
lij —ij11] < E* + E, son < k(E? + E) < E® + E?, that is, any Z-chain of elements of D
has length at most E3 + E2.

Finally, since any E—chain of elements of R can be partitioned into a E—chain of elements
of ® and a T=—chain of elements of &, any Z=—chain in R has length at most E3+ E2+ E.

Orthogonality: Two elements DY ,D}z € ® are orthogonal if W 1L T'in &. Let Q € &
and D%/)V € ®. Define Q L D}fv if, in &, either W L @ or Q = V for some V € V. These
definitions, plus the definition of nesting imply for all WV, Q e R, if W L V and Q =V,
then W 1 V. We now verify that R satisfies the container requirements of the orthogonality
axiom.

Let W,V € & with V= W and {Q € Rw : Q L V} # &, e, (W,{V}) is a container
pair. In this case, the container of V in W for R is D‘{,[‘,/ }. We now show containers exist for
situations involving elements of ©. We split this into three subcases.

Case 1: DVW e® and Qe G with DVW C Q. Since (W,V) is a container pair, there
exists Pe & with P= W and V L P for all V € V. Suppose that DVW requires a container in
Q, that is, there is an element U of R that is orthogonal to D}fv and nested in ). We verify
that (@, {P}) is a container pair and Dg)} is a container of DY, in Q.

fTeSG withT L D% and T E Q, then T L W or T £E V for some V € V. In either case,
we have T' L P, so (Q,{P}) is a container pair and T' = ng}. If DI} € ® with DF = Q and
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DR L DY, then T L W and T = Q. Since P = W, this implies T L P and so (Q, {P}) is
again a container pair, and D7Ta = D{QP}.

Case 2: DVW,DZ% € ® where D%V = DZE. Since (W, V) is a container pair, there exists
PeGsothat P=E W and P L V for all V € V. Since D% = D?, it follows that for all
R e R, either R L W or there exists V € V so that R © V. In both cases, R 1 P. Thus
P =R u {P} is a pairwise orthogonal collection of elements of &. Suppose that D“fV requires
a container in DQE, that is, there is an element U of R that is orthogonal to D},’V and nested
in DX. We verify that (T,P) is a container pair and DY & DF is a container for DY, in DX.

If Q € G satisfies Q = DIE and D%,)V 1 @, then either @ L W or Q@ E V for some V € V. In
both cases, @ L P. Further, we must have ) & T and @) 1 R for each Re R as Q = D?.
Thus (7,P) is a container pair and @ = DZFJ . On the other hand, if DS € ® satisfies
DS L D% and DS = D?, then Q@ L W, Q E T, and for each R € R either R | @ or there
exists Z € Z with R & Z. Since (Q, £) is a container pair, there exists U € & such that
Uz Qand ULZ forall Ze Z. Since Q 1L W, we also have U L PasU = @Q and P& W.
For each R € R, either R 1 @ or there exists Z € Z with R = Z. In both cases, R 1 U.
Thus, U is orthogonal to all elements of P = R u {P} and moreover U £ Q = T, so (T, P) is
a container pair. Furthermore, DS = D? = D7T2 VY ince DS = DQE and P1@Q. We have
therefore shown that D7T> is a container for D%fv in D:,E.

Case 3: DX e® and Q € & with Q = DF. This implies @ = R U {Q} is a pairwise
orthogonal set of elements of &. Further, suppose that ) requires a container in D77§, that is,
there is an element of R that is orthogonal to ) and nested in Dgpz. We verify that (T, Q) is
a container pair and D% is a container for @) in D}z.

Suppose there exists V € & with V &= D% and V L . Then V £ T and V is orthogonal
to all the elements of R U {Q}. Thus (T, Q) is a container pair, so D% exists and V & D%.
Now suppose there exists D%/)V = Dgpz such that D},)V 1 @. Since (W,V) is a container pair,
there exists U € & with U £ W and U orthogonal to each element of V. As D‘V}V = D?, for
each R € R either R 1. W or there exists V € V such that R © V. In both cases, R 1L U.
Further, as Q L DI‘//V’ we have Q L W or Q = V for some V € V. In both cases, Q L U.
Therefore U is orthogonal to every element of Q, and moreover U & W & T since D%,jv = D}z.
Thus (7, Q) is a container pair and U = D%. Now, for each Re R, either R1L W or REV
for some V € V. Since @ = R u {Q} and QLW this implies D% c D%. Thus, (T, Q) is a
container pair and D% is a container for @) in D?.

Transversality: An element of R is transverse to an element of © whenever it is not
nested or orthogonal. Since the hyperbolic spaces associated to elements of ® are points, we
only need to define the relative projections from an element of ® to an element of &. Let

4
D},}V € ® and Q € & and suppose D},}V AQ. This implies W & @ and W & Q). We define pgw
based on the G-relation between () and the elements of V.

e [fQ L Viforall VeV, then @& W as @ E W would imply @ = D}fv. Thus we must
4
have QAW so we define pgw = pg.
4
o If VANQ or V & Q for some V € V, then pg exists and we define pgw to be the union

4
of all the pg for VeV with VAQ or V & . Lemma A.2 ensures pgw has diameter
at most 4F in this case.
e If Q= V for some V, then Q) | DI‘//V which contradicts QA DY, , so this case does not
occur.
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Consistency: Since the only elements of R whose associated spaces are not points are in G,
the first two inequalities in the consistency axiom for (X', &) imply the same two inequalities
for (X,R). To verify the final clause of the consistency axiom, we need to check that if
Q, R, T € R such that Q = R with p& and pg both defined, then dT(p?,pﬁ) is uniformly
bounded in terms of . We can assume T € & as CT has diameter zero otherwise. We can
further assume at least one of () and R is an element of ®, as we already have the consistency
axiom for elements of &.

Case 1: Q- R T.

e Assume Q € & and R = D}j, € ®. Fix V € V. Since D) :RETandp?%:

Upey A%, we have p¥. < pg% = pf. Since V L @, Lemma A.2 says dT(pg,pg) <
dT(ﬂ%ﬂP?) < 2E.

e Assume Q) = D% e ®and Re & Fix V e V. In this case, p¥ - p? since
DVW = Q= T. Since DY, = Q = R, we have V = W = R. Thus, the consistency
axiom for & says dp(p%, pi) < dr(p¥., pf) < E.

e Assume Q = D}j, € © and R = DVW,, €®. Thus W = W’ © T and consistency in
G implies dr(pl¥, ') < E. Fix V € V and V' € V'. Consistency in & also implies
dr(p¥, o) < E and dr(p¥, p¥') < E. Since pY¥. < p? and pYf < pk, we have
dr(pF. o) < dr(pl, oY) < dr(p¥. plY) + diam(plY) + dr (P}, pi¥") + diam(p}l") +
dr(py . py) < BE.

Case 2: Q= R, RAT, and Q £ T. In this case we have either QhT or Q = T

e Assume Q € G and R = D% € ®. Since D“,’V = R is transverse to T" we cannot have
T £V for any V e V (this would imply DY, L T). If V. L T for all V € V, then W T

4
(as shown in the proof of transversality) and p& = p?w = p¥. Since Q = R = DY,
we have Q £ W and consistency in & implies dT(pg,pg) = dT(pg,p:,W) < E.If
v

instead there exists V € V so that VAT or V & T, then p¥ < p?w = ,0%. Since
Q= R=DY,Q LV and Lemma A.2 gives dT(p%pg) < dT(pCT?,p¥) < 2F.

Assume Q = D% €® and Re &. As before, T V for all V € V. First assume there
exists V € V so that VAT or V = T. This occurs when either D% =Q =T or QAT

and not every element of V is orthogonal to T'. In both cases, ,0¥ c p?“”)" = pg and
consistency in & implies dT(pTQ,pg) < dr(p¥, p%) < 2E because V = W & R. Now
assume 1" 1 V for all V € V. This can only occur when DVW = () is transverse to T
In this case, WAT and pg = pg% = pIW . Since W £ R, consistency in & implies
dr(pf, pF) = dr(pft, pl¥) < E.

Assume @ = D}/)V e® and R = D%/ €®. As before, T £ V forall Ve VU V. If
Pl = plV ', then we have the first case of transversality, that is, W’AT and V/ L T for
all V' € V. Thus, if p¥ = pgy ", then the result reduces to the previous bullet, replacing
R with W’. We can therefore assume p¥ # ,OQW ', meaning we have the second case of
transversality where there exists V’ € V' so that V' is either transverse to or properly
nested into 7.

Suppose p? # pIW too. This implies there also exists V € V so that V is either
transverse to or properly nested into 7. Furthermore, p‘T/ c p? and p¥, c p?. Now,
DY, DVW/, implies V! L W or V' is nested into an element of V. If V' L W, then
V 1L V' and Lemma A.2 implies dT(p%pg) < dr(p¥, p¥') < 2E. Tf V' is nested into
an element of V, then either V! £ V or V/ L V since V is a pairwise orthogonal subset
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of &. By applying consistency in & when V/ £ V or Lemma A.2 when V' 1 V, we
have dT(p?,pg) < dr(p¥, p¥') < 2.

Now suppose pg = p¥. Then DY, = D%, implies V/ L W or V' is nested into
W. Applying Lemma A.2 if V' LW, or consistency in & if V/ & W, we again obtain
dr (7, plf) < dr(p}Y . p¥') < 2E.

Uniqueness, bounded geodesic image, large links: Since the only elements of R
whose associated spaces are not points are in &, these axioms for (X', R) follow from the fact
that they hold in (X, S).

Partial realization: Let 17, ..., T, be pairwise orthogonal elements of R, and let p; € CT;
foreach i € {1,...,n}. Without loss of generality, assume 71, ...,T; € & and Tg41,..., T, €D
where k € {0,...,n}. If K =0 (resp. k = n), then each T; € © (resp. T; € ).

Vi

Forie{k+1,...,n},let T; = D‘]j[ji and let ¢; be any point in psv‘:/i c CW;. Since Ty, ..., T,
are pairwise orthogonal, it follows that Wy 1,..., W, are pairwise orthogonal too, and for
each j € {1,...,k}, Tj is either nested into an element of some Vi, or orthogonal to all
Wi, ..., Wy. Without loss of generality, assume that 77,...,7; are nested into elements
of Vijpyrr v ---u ¥V, and Tyq, ..., T, Wi, ..., W, are pairwise orthogonal, where [ < k,
m < n,andn—m <. Ifl =0, then n = m and each T} is orthogonal to every Wj;.
Otherwise, for each j € {1,...,l}, T} is nested in some W; for i € {m + 1,...,n}. In both
cases, 11, ..., Ty, Wgy1, ..., Wy, are pairwise orthogonal elements of &. We can therefore use
the partial realization axiom in & on the points p1, ..., Dk, @kt1, - - -, ¢m to produce a point
x € X with the following properties:

(1) dp(x,p;) < Eforie{1,...,k};

(2) dw,(z,q;)) < Eforie{k+1,...,m};

(3) for allie {1,...,k} if QANT; or T; = Q, then dQ(.’L‘,pgi) < E;

(4) for allie {k+1,...,m} if QhW; or W; = @, then dQ(x,pZ)Vi) < E.

Now, for @ € &, define by € CQ as follows. Let V = (J ., Vi and Vg = {V € V :
VAQ or V o Q}. If Vg # &, then define by to be any point in UVer pg. Since V is a
collection of pairwise orthogonal elements of &, the diameter of UVer pg is at most 2F by
Lemma A.2. If either Q = V for some V e V or Q LV for all V € V then define bg = mg(z).
Since V is a collection of pairwise orthogonal elements of &, these two cases encompass all
elements of &.

Claim A.6. The tuple (bg)ges is 3E-consistent.

Proof. Let R, Z € &. Recall that if by = mz(x) and bp = wr(x), then the E-—consistency
inequalities for br and by are satisfied by the consitency axiom of (X,&). Thus we can
assume that there exists V € V so that either V& Z or VAZ. Fix V € V so that by € p‘Z/.
We need to verify the consistency inequalities when RhZ, R& Z, and Z & R.

Consistency when RhZ: Assume RhZ. If R L V,V £ R, or R = V then either Lemma
A.2 or consistency in & implies dZ(pg,plg) < 2F. Since by € pg, we have dZ(bz,plg) < 3F.
Now suppose RAhV so that Vg is non-empty. In this case, br € UUeVR p% and so bg is within
2F of p%. Now, if dz(bz, p%) > 3E, then dz(p%,p%) > 2E. Thus p-consistency (Lemma
A.4) implies dr(pk, p2) < E. It follows that dr(br, p%) < 3E by the triangle inequality.

Consistency when R = Z: Assume R Z. As before, if R 1LV, V E R, or RE V then
dz(pY, p%) < 2E and we have dz(bz, p%) < 3E. Thus, we can assume RAV so that bg is
within 2F of pY. Now, if dz(bz, p%) > 3E, then dz(pY, p%) > 2E, and p-consistency implies
diam(p}; U pZ4(py)) < E. However, this implies diam(bg U p%4(bz)) < 3E since bz € p} and
dr(br, pp) < 2E.



ACYLINDRICAL ACTIONS AND STABILITY IN HHG 32

Consistency when Z & R: Assume Z & R. If R is orthogonal to all elements of V, then
R 1 V implies V 1 Z which contradicts the assumption that V = Z or VAZ. On the other
hand, if there exists V' € V so that R £ V’, then either R L V (if V/ L V) or R V (if
V! = V). But this implies either V' 1 Z or Z & V, both of which give a contradiction if
VAZ or V& Z. There must therefore be an element of V that is either properly nested in or
transverse to R, and we can repeat the same argument as in the previous case, switching the

roles of R and Z. O

Let y € X be the point produced by applying the realization theorem (Theorem A.3) in &
to the tuple (bg). We claim y is a partial realization point for pq,...,p, in fR. Since CDK}Z_
is a single point, y satisfies the first requirement of the partial realization axiom in R for
Dk+1s- - -, Pn- For i < k, T; is either nested into an element of V11 U -+ - U V, or orthogonal
to all Wi.1,...,W,. This implies 7T; is either nested into an element of V or orthogonal to
all elements of V. In both cases by, = 7, (x), and we have that 77, (y) is uniformly close to
71, (), which is in turn E—close to p;.

Now, let @ € & with QMT; or T; & @ for some i € {1,...,n}. We verify dQ(y,pg) is
uniformly bounded when ¢ < k and ¢ > k separately.

Assume ¢ < k, so that T; € &. If i < k and by = mg(x), then dQ(y,pg) is bounded

by item (3). If i < k and by # mg(z), then bg € pg for some V' € V and T; is either
orthogonal to or nested into V. If T; LV then dQ(bQ,pg) < 3E by Lemma A2 If T, = V

then dg(bg, pgz) < 2F by consistency. The result then follows from the triangle inequality

since 7@ (y) is uniformly close to bg.
\Z

D 7
Now assume ¢ > k, so that T; = D%/)I}'i e®. If Dg/}[}i C @, then pg c pQW" for all V € V.

D
Since bg is within 2E of any pg for V € V;, this bounds dg(y, pQWi) uniformly. On the other
hand, if D},)[}imQ, then either @ L V for all V € V; or there exists V € V; so that VAQ or

Vi
W;

V = Q. In the latter case, pg S pg ' and we are finished since bg is within 2E of pg, giving

Vi
W;

D
a uniform bound on the distance from 7g(y) to py"*. In the former case, we must have

Dy

W;h@Q and pQWi is equal to pgi. If bg = mg(x) than we are done by item (4). Otherwise,
there exists V' € V — V; so that V'hQ or V' & @Q and bg € pg. Since V' 1L W;, it follows
Vi

Wi

that pgl is within 2F of pg/". Thus bg, and hence 7g(y), is uniformly close to pg/i =g
This concludes the proof of Theorem A.1. Il

Remark A.7. We say G is an almost HHG if there exists an almost HHS (X', &) such that G
and (X, &) satisfy the definition of a hierarchically hyperbolic group where ‘HHS’ is replaced
with ‘almost HHS’. The above proof shows that if (G, &) is an almost HHG, then the structure
R from Theorem A.1 is an HHG structure for G.

The following corollary gives criteria for the HHS structure from Theorem A.1 to have
unbounded products. This is the version of Theorem A.1 that is applied in Theorem 3.7 to
prove that every hierarchically hyperbolic space with the bounded domain dichotomy admits
an HHS structure with unbounded products.

Corollary A.8. Let (X,T) be an almost HHS with the bounded domain dichotomy. If for
every non-E—-maximal domain V € X, there exist W, QQ € T so that W 2V, Q LV, and
diam(CW) = diam(CQ) = oo, then the HHS structure R obtained by applying Theorem A.1 to
T has unbounded products.
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Proof. Assume for every non-=E—maximal domain V € ¥, there exist W, Q) € T so that W £ V|,
@ L V and diam(CW) = diam(CQ) = . Let R be the HHS structure obtained from ¥
using Theorem A.1. If V € ¥ and V is not E—maximal, then the above property implies that
Fy and Ey are both infinite diameter. Thus, we need only verify unbounded products for
elements of R — ¥. Using the notation of Theorem A.1, let D = D% € R — T and assume
diam(Fp) = 0. Now, V' L D}fV for all V € V, and by construction of ¥, there exists Q € ¥
so that @ = V and diam(CQ) = oo. Since @ L Dva this implies diam(Ep) = oo. Therefore
(X,2R) is an HHS with unbounded products. O
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