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Occupant-Location-Catered Control of IoT-Enabled Building HVAC Systems

Amirkhosro Vosughi , Mengran Xue , and Sandip Roy

Abstract— This article studies about the catered controls
for building heating-ventilation-air-conditioning (HVAC) systems,
which react to the changing location of an occupant. A Markov
jump-linear system model is developed which captures the build-
ing’s thermal processes, HVAC system, occupant movement, and
proposed proportional-integral-derivative feedback. A statistical
analysis of the closed-loop dynamics is used to confirm moment
boundedness and tune the control gains to improve temperature
regularity with limited actuation, in the face of disturbances. The
control strategy is demonstrated in an example.

Index Terms— Home automation, heating-ventilation-air-
conditioning (HVAC) systems, Markovian jump-linear systems
(MJLSs), network control, stochastic Markov process.

I. INTRODUCTION AND MOTIVATION

INTERNET-OF-THINGS (IoT) technologies are enabling
new paradigms for thermal regulation of buildings [1]–[3],

which exploit customized control of heating-ventilation-air-
conditioning (HVAC) systems. One direction of particular
interest is to design occupant-location-catered control schemes
for temperature regulation. The main idea is to design
HVAC controls to react to the occupants’ current locations,
to improve temperature regularization while possibly avoiding
the excess energy use. Such controls can readily be deployed
in new IoT-enabled buildings, e.g., using sensor networks and
handheld mobile devices [4]–[7]. However, for these schemes
to be effective, models and control designs are required that
account for the building’s thermal dynamics and weigh the
benefits and drawbacks of reacting to the occupants’ location
profile.

In this article, occupant-location-catered building tempera-
ture regulation is studied, focusing on the base case with one
occupant and a centralized HVAC system (or single control
zone). The problem is phrased as a feedback-control task
for a Markov jump-linear system (MJLS), which captures
building heat flow in the presence of unmodeled disturbances,
and the occupant’s stochastic movement among the building’s
rooms. A proportional-integral (PI)-derivative (PID) controller
is considered, which uses temperature measurements at the
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occupant’s location to set the HVAC control input. A two-
moment analysis of the closed-loop dynamics is developed and
used to verify stochastic stability. Also, control-gain tuning
is pursued, to shape a performance metric which combines
the regularity of the occupied room’s temperature and control
effort.

The research described here connects to a wide literature
on monitoring, control, and fault diagnosis of building ther-
mal processes, using model-based approaches (see [8]–[17]).
Recently, one focus in this literature has been to explore
using new networking and IoT technologies to optimize
HVAC systems, to improve control efficiency, support power-
grid operations, or refine fault monitoring [18]. In a parallel
track, monitoring and statistical analysis of occupant loca-
tions in buildings have been pursued, to support efficient
operation [19]–[21]. An important recent effort on zone cli-
mate control in buildings has merged these tracks, by studying
how occupancy information (whether measurements or pre-
dictions) can be used to save energy [20]. Relative to these
studies, the main contribution of our work is to design controls
for HVAC systems, which react to the changing location of a
building occupant in real time. The proposed control scheme
uses real-time sensing of temperatures and occupant locations,
together with merged models for building thermal processes
and occupant movement. The study demonstrates that catered
controls of this type can be tuned for effective temperature
regularization at the occupant’s current location, while also
requiring less actuation effort compare to control based on the
thermostat in a fixed location.

Methodologically, this study draws on and contributes to the
wide literature on MJLSs [22]–[26]. Specifically, our closed-
loop analysis uses the two-moment analysis of MJLS. In addi-
tion, the special diffusive structure of the heat-flow dynamics
is exploited to verify moment stability and obtain refined
statistical characterizations for control tuning [25], [26].

Preliminary results in this direction were presented in [27].
In comparison, this study: 1) uses a detailed model for building
thermal processes and HVAC operations; 2) captures distur-
bances; 3) generalizes the stability analysis to PID controllers;
4) includes proofs; and 5) further interprets gain tuning.

II. MODELING AND PROBLEM FORMULATION

Thermal processes in buildings are modeled at multi-
ple resolutions. Here, an intermediate-resolution resistive
capacitive (RC) network-type model is considered, which has
previously been used for design of HVAC controls [8], [9],
[14]–[16], [28]. The model represents a building as a network
of walls and rooms (collectively, nodes), which act as thermal
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reservoirs [15]. It tracks nodal temperatures, which evolve
through thermodynamic interactions deriving primarily from
convection and conduction processes. Disturbances, including
heat leakage to the outside, solar radiation, and indoor heat
gains, are modeled as stochastic inputs.

Thermal regulation using a dual-duct variable air volume
(VAV) HVAC system is modeled. In a VAV HVAC system,
two constant-temperature air flows are used for heating and
cooling the building [14], [16]. The air flow volume from each
duct can be controlled, with only one duct being used at a time.
The mass-transfer equations governing the dual-duct VAV are
nonlinear. With the further assumption that the two air-flow
temperatures are balanced around the desired temperature
setpoint, the control can be modeled as a single two-way
continuous-valued input and can be reasonably approximated
as linear. Even when this assumption is relaxed, a single-input
linear model is apt, so long as the setpoint temperature is
sandwiched by the two air-flow temperatures [14].

Formally, a network with n nodes labeled 1, 2, . . . , n,
is considered. The first r nodes (1, . . . , r ) represent rooms,
while the remaining nodes represent w1 exterior walls (nodes
r + 1, . . . , r + w1) and w2 interior walls (nodes r + w1 +
1, . . . , r +w1 +w2 = n). The temperature xi (t) of each node
i is tracked in continuous time. For the VAV HVAC system,
the node (room and wall) temperatures xi (t) can be modeled
as follows [14]:

ẋi (t)= 1

mi

⎛
⎝ n∑

j=1

wi j (x j −xi)−wioxi +γiρV cp(T0−xi)+di(t)

⎞
⎠

(1)

where mi > 0 is the thermal capacitance of node i , wi j = w j i

is the thermal conductance between nodes i and j , wio is
the equivalent thermal conductance to the outside of node i ,
V is the volume flow rate from the HVAC system (which is the
control input), T0 is the constant temperature of the HVAC air
flow, ρ is the density of the air, cp is the specific heat capacity
of the air, γi specifies the fractions of the HVAC air volume
that flow to each node (where γi ≥ 0 for i = 1, . . . , n and
γi = 0 for other i ), and di (t) indicates the disturbance at
node i . In addition, the thermal conductances wi j and wio are
greater than zero only if there is a direct thermal link between
the nodes (or to the outside), and are zero otherwise.

The following disturbances di (t) are considered. The rooms
(nodes i ∈ {1, . . . , r}) are modeled as being subjected to
unmeasured heat gains. Exterior walls (nodes i ∈ {r +
1, . . . , r + w1} are subject to solar radiation and heat flow
due to the outside temperature. The total disturbance input for
the exterior walls can be expressed in more detail as di (t) =
αq ′′

radi
ai + T∞wio where q ′′

radi
is total radiative energy that

impinges on the exterior wall i per unit area, α is absorptivity
of surface, ai is area of exterior wall i exposed to sun, woi =
wio is the thermal conductance between exterior wall i and the
outside, and T∞ is the outside temperature. We stress that the
heat flows into the building due to the external temperature is
modeled as a disturbance; this thermal flow is sometimes alter-
nately represented directly in the second term on the right side
of (1), as a temperature differential. For the remaining nodes

(interior walls), we assume that the disturbances are minimal
(di(t) = 0), however, the analysis allows for the represen-
tation of disturbances if desired. Broadly, the disturbances
impacting the building thermal dynamics can be modeled as
stochastic processes with slowly varying parameters, summed
with gradually varying deterministic signals. For our analysis,
we represent the disturbance over the time horizon of interest
as a stationary two-moment-bounded stochastic process but
include time-varying disturbances in simulations.

Remark 1: Several simplifications in our formulation should
be noted. We have not modeled time-varying mass flows
between rooms, which could be captured as stochastic vari-
ations in the conductance. Although such variations are not
considered in our formal analyses, they can be captured
in simulations. In addition, we have ignored variations in
temperatures within nodes, assumed a constant specific heat
for the air, and excluded latent loads.

Remark 2: More detailed formulations of the building
HVAC model present separate equations for the thermal
dynamics of rooms and walls [29]. These formulations are
instructive for understanding parameterization and model iden-
tification but are omitted here to save space.

Equation (1) is nonlinear, since the heat input from the
HVAC system in (1) involves a product of a control and state
variable (the volume flow rate and temperature). The model
can be linearized around the equilibrium point at which the
room temperatures equal a typical setpoint, see [14] for details.
The linearized dynamics can be expressed in a matrix form as
ẋ = Ax(t)+ Bu(t)+ D(t), where x = [x1 · · · xn−1 xn]T. The
matrix A is an n × n matrix where Aij = (wi j /mi ) for i =
1, . . . , n, j = 1, . . . , n, j �= i ; and the diagonal elements Aii ,
i = 1, . . . , n are given by Aii = − ∑

j �=i (wi j /mi )−(wio/mi ).
The input matrix B is an n × 1 matrix with entries Bi =
γi (cp/mi)(T0 − yref) for i ∈ {1, . . . , r}, and the remainder
of the entries equal to zero, yref is the setpoint temperature
around which the linearization has been done, the input u(t)
is the volume flow rate out of the HVAC system (V ). Also,
D(t) is the disturbance vector with n entries, whose i th
element is equal to (di(t)/mi ).

The movement of a single occupant among the building’s
rooms is considered. The occupant’s room location is modeled
as a Markov process. Several models for the building-occupant
mobility have been developed, primarily in the indoor sensor
networking literature [30]. Markov-chain models for occupant
locations are also consistent with Markov models for occu-
pancy counts in rooms. While a Markov representation is
approximate, it is apt for the statistical analysis of HVAC
control considered here. The HVAC controller is assumed
to be alerted to the occupant’s location (room) at the times
t = kT for k = 0, 1, 2, . . ., where T is a sampling period.
Furthermore, accurate temperature measurements at the occu-
pant’s current location are available to the HVAC controller
at these times (with minimal delay). A finite-state Markov
chain can be used to model the room location s[k] at the
data-transmission times t = kT . Note that s[k] may take on
values among 1, . . . , r , corresponding to the r rooms. The
r × r transition matrix for the room-location Markov chain
is denoted by P = [

pi j
]
, and is assumed to be ergodic.
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Also, we define the temperature observation y[k] as the
temperature of the occupied room sampled at time t = kT ,
i.e., y[k] = xs[k](kT ). For our analysis, it is more convenient
to express the observed temperature as a time-varying pro-
jection of the state x(t). Specifically, we have that y[k] =−→v T [k]x(kT ), where −→v T [k] = [−→e T [k] −→

0 T ], where e[k] is
a 0–1 indicator vector for the occupant’s room location s[k]
and

−→
0 is zero row vector with length w1 +w2. The occupant

location chain is assumed to be independent of the disturbance.
The HVAC controller aims to regulate the temperature at

the occupant’s current location (room) at a desired reference
temperature yref, by adjusting the air flow input u(t). Here,
a PID control scheme is considered, based on the need
for portable, robust, and easy-to-implement solutions. Data
transmission and computation for networked control schemes
are typically clocked, and data rates for building controls are
sufficiently fast compared to the thermal dynamics of the
building. With this in mind, it is natural to apply a zero-order-
hold control, for which the control input is updated after each
data transmission and held constant in between. The following
PID control scheme of this form is proposed: u(t) = u[k]
for kT ≤ t < (k + 1)T , where u[k] = K p(yref − y[k]) −
Kd (y[k]−y[k−1])/T+Ki

∑k
0(yref−y[k])×T , and where K p ,

Kd and Ki are proportional, derivative, and integral gains.
Remark 3: Multiple occupants can be represented using an

expanded Markov chain that tracks occupant-location configu-
rations. Likewise, multiple zone controllers can be represented
with a multi-input plant model. These generalizations admit
the same statistical analyses as the model considered here;
however, the controller design becomes more sophisticated,
and computation also increases.

III. CONTROLLER ANALYSIS AND DESIGN

The main focus of this work is to: 1) develop a statistical
analysis of the closed-loop dynamics of the HVAC system
in the face of disturbances and 2) pursue tuning of the
control gains to shape a combined temperature-regularity-
and actuation-effort-based performance metric. To enable this
analysis, the closed-loop state dynamics are reformulated as
a discrete-time MJLS (Section III-A). Then, a two-moment
statistical analysis is undertaken by drawing on standard
machinery for MJLS (Section III-B). Then stability (statistical
boundedness of the temperature deviation) is confirmed, using
an eigenanalysis of the moment recursion (Section III-C).
Finally, the quadratic performance metric is characterized, and
gain tuning to shape the metric is pursued (Section III-D).

A. Reformulation as an MJLS

The linearized closed-loop dynamics at the data-
transmission times are reformulated as a discrete-time MJLS.
This reformulation requires defining an extended state
vector

−→
ξ with l = n + r + 1 entries, as

−→
ξ [k] =

⎡
⎣

−→
θ [k]−→κ [k − 1]

Acc[k]

⎤
⎦

where
−→
θ [k] = x[k] − yref

−→
1 is a temperature tracking error

vector from to the reference (goal) temperature,
−→
1 is a vector

with all unity entries, κ[k] is the first r entries of θ [k],
Acc[k] = ∑k

m=1 z[m] is an accumulator for the integral
controller, and z[m] = −→v T [m]−→θ [m] indicates the temperature
of the occupied room in the shifted coordinates.

The extended state vector
−→
ξ [k] is governed by a discrete-

time Markovian jump linear process, which can be obtained
by solving the continuous-time dynamics over intervals of
duration T for each underlying occupant-location state

−→
ξ [k + 1] = GPID

c (i)
−→
ξ [k] + D̄[k] (2)

where the l × l matrix GPID
c (i) is a function of the underlying

Markov chain state i (the room where the occupant is located),

and D̄[k] =
[

D[k]−→
0

]
where D[k] is an n-element vector. The

matrices GPID
c (i), i = 1, . . . , r , and D[k] can be calculated as

GPID
c (i) = GPID

A (i)+GPID
p (i)+GPID

d (i)+GPID
i (i) (3)

D[k] =
∫ T

0
eAτ D(kT + τ )dτ (4)

where

GPID
A (i) =

⎡
⎣ Ā 0n×r 0n×1

Ir×n 0r×r 0r×1

vT (i) 01×r 1

⎤
⎦

GPID
p (i) = −K p	β̄

⎡
⎣S2(i) 0n×r 0n×1

0r×n 0r×r 0r×1
01×n 01×r 0

⎤
⎦

GPID
d (i) = −Kd

T
	β̄

⎡
⎣S2(i) −S3(i) 0n×1

0r×n 0r×r 0r×1
01×n 01×r 0

⎤
⎦ , and

GPID
i (i) = −Ki T	β̄

⎡
⎣S2(i) 0n×r 1n×1

0r×n 0r×r 0r×1
01×n 01×r 0

⎤
⎦ .

Here, Ā = eAT and 	β̄ is l × l diagonal matrix whose
j th diagonal element is equal to j th entry of the vector
	β = 	B for j = 1, . . . , n and is equal to zero other-
wise, 	 = ∫ T

0 eA(τ )dτ , and S2 is an n × n matrix whose
i th column is a unity vector while all other entries are 0.
Similarly, S3 is n × r matrix that i th column is a unity vector
while all other entries are 0 and Ir×n = [Ir×r , 0r×(n−r)]. Note
that the matrix GPID

A (i) in the above expression describes
the internal heat-exchange dynamics and the evolution of
the accumulator state Acc[k], while GPID

p (i), GPID
d (i), and

GPID
i (i) describe the effects of the proportional, derivative, and

integral control terms, respectively. We note also that D[k] is
stationary and two-moment bounded.

B. Two-Moment Analysis

The reformulation developed above allows the application
of the standard machinery for MJLS, see [22]–[24]. First,
the analysis of state moments for MJLS can be directly
applied to the closed-loop model [22]–[24]. In particular,
a two-moment analysis can be developed by considering
the Kronecker product vectors ψ1[k] = −→v T [k] ⊗ ξ [k] and
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ψ2[k] = −→v T [k] ⊗ ξ [k]⊗2, which contain products of the
extended state vector entries with an indicator of the underly-
ing Markov chain’s status and the notation (Q)⊗2 refers to the
self-Kronecker product of the matrix Q. The vectors ψ1[k] and
ψ2[k] have lengths lr and l2r , respectively. Per the standard
analysis of MJLS [22]–[24], the first-moment vector E(ψ1[k])
and the second-moment vector E(ψ2[k]) are governed by
the following linear time-invariant dynamics or recursions:
E(ψ1[k + 1]) = H PID

1 E(ψ1[k])+ D̃1[k], where

H PID
1 =

⎡
⎢⎣

p11GPID
c (1) · · · p1r GPID

c (r)
...

. . .
...

pr1GPID
c (1) · · · prr GPID

c (r)

⎤
⎥⎦

r is the number of states in the underlying Markov chain (the
number of indoor rooms). Also, D̃1[k] = P̄l D1[k] where

D1[k] =
⎡
⎢⎣

E(D̄[k])P(s[k] = 1)
...

E(D̄[k])P(s[k] = r)

⎤
⎥⎦ .

P̄l = P ⊗ Il , Il is an identity matrix of dimension l,
E(D̄[k]|s[k] = j) is the expectation of the disturbance vector,
P(s[k] = j) is the observer’s location probability, and we
have used the independence of the disturbance signal and the
occupant’s location.

Likewise, we have that E(ψ2[k + 1]) = H PID
2 E(ψ2[k]) +

H12E(ψ1[k])+ D̃2[k],
where

H PID
2 =

⎡
⎢⎣

p11GPID
c (1)⊗2 · · · p1r GPID

c (r)⊗2

...
. . .

...

pr1GPID
c (1)⊗2 · · · prr GPID

c (r)⊗2

⎤
⎥⎦ and

H PID
12 =

⎡
⎢⎣

p11GPID
D (1) · · · p1r GPID

D (r)
...

. . .
...

pr1GPID
D (1) · · · prr GPID

D (r)

⎤
⎥⎦

D̃2[k] = P̄l2 D2[k]

D2[k] =

⎡
⎢⎢⎣

E(D̄[k]⊗2
)P(s[k] = 1)
...

E(D̄[k]⊗2
)P(s[k] = r)

⎤
⎥⎥⎦ .

Also, GPID
D (i) = GPID

c (i)⊗E(D̄[k]) + E(D̄[k])⊗GPID
c (i),

P̄l2 = P ⊗ Il2 and Il2 is the identity matrix with dimension l2.
Note that the independence of the disturbance from the occu-
pant location has again been exploited. Also, from the fact that
the disturbance is assumed to be mean-stationary, the matrices
GPID

D (i) are seen to be fixed rather than time-varying.
The entries in the first- and second-moment vectors identify

the conditional moments of the extended state vector. For
example, the first moment vector can be written as

E(ψ1[k]) =
⎡
⎢⎣

E(ξ [k]|s[k] = 1)P(s[k] = 1)
...

E(ξ [k]|s[k] = r)P(s[k] = r)

⎤
⎥⎦ (5)

where E(ξ [k]|s[k] = j) is the conditional expectation of the
extended state given the observer’s location. Also

E(ψ2[k]) =
⎡
⎢⎣

E(ξ [k]⊗2|s[k] = 1)P(s[k] = 1)
...

E(ξ [k]⊗2|s[k] = r)P(s[k] = r)

⎤
⎥⎦ . (6)

Thus, the first two moments of the temperature in the
occupant’s current room as well as of the input can be
directly computed from the first- and second-moment vectors,
at either the data-transmission times or at intermediate times.
In this way, the deviation of the occupied room’s temperature
from the desired value and control effort can be statistically
characterized, for the closed-loop system.

C. Stability Analysis

Evaluation and design of the occupant-location-catered con-
trol require characterization of the closed-loop performance.
As a first step, closed-loop stability in the sense of asymptotic
moment boundedness is verified. One would expect a low-
gain control scheme to achieve moment boundedness, since
the open-loop process is strictly stable. However, the stability
analysis has some subtlety because: 1) the control is governed
by an underlying stochastic process (occupant-location chain)
and 2) sampled data is used. In general, the stability analysis
of MJLS models is sophisticated, entailing verification of a
set of linear matrix inequalities [22]. Here, we exploit the
diffusive structure of the thermal dynamics at the sample times
to verify moment boundedness when a low-gain PID control is
used. We thus demonstrate that the expected squared deviation
of the temperature at the occupant’s current location from the
goal temperature E((y(t)− yref)

2) remains bounded over time.
The stability result is developed via an eigenanalysis of the
recursion matrices H PID

1 and H PID
2 , which draws on properties

of nonnegative matrices [31], [32] and eigenvalue sensitivity
notions [33]. The result is formalized in the following theorem:

Theorem 1: Consider the closed-loop heat-flow dynamics
in the case that the rooms are thermally connected, and the
occupant-location Markov chain is ergodic. Assume that a PID
control is used. For all sufficiently small negative feedback
gains (0 ≤ K p ≤ K̄ p , 0 ≤ Kd ≤ K̄d , and 0 ≤ Ki ≤ K̄i ,
for some K̄ p > 0, K̄d > 0, and K̄i > 0), the first- and
second-moment vectors ψ1[k] and ψ2[k] are bounded for all k.
Furthermore, the expected squared deviation E((y(t)− yref)

2)
is bounded for all t ≥ 0.

The proof of Theorem 1 can be found in Appendix IV.
Theorem 1 demonstrates that low gain PID controllers achieve
first- and second-moment boundedness and, hence, provides
a baseline verification that occupant-location-catered controls
can be developed for building HVAC systems.

Remark 4: The proof of Theorem 1 can be extended to
obtain bounds on the gain parameters guaranteeing stability.
However, bounds obtained in this way are typically conserv-
ative. Alternately, insight into the domain of stabilizing gains
can be obtained by recognizing that stability is primarily mod-
ulated by three factors: 1) intrinsic bandwidth limits placed
by the transfer functions from the HVAC input to each room’s
temperature (which depend on the thermal dynamics); 2) the
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sampling period T ; and 3) the transition rate of the Markov
chain describing the occupant’s location. Because of these
factors, the gains that achieve stability are upper bounded.
Specifically, the largest allowed gains are decided by the worst
stability margin among transfer functions from the input to the
possible occupant locations, provided that the transition rate
of the occupant Markov chain is sufficiently slow compared
to the time constants of the thermal process, and the sam-
pling rate is sufficiently fast. However, a fast-switching occu-
pant or slow sampling rate causes degradation in the allowed
gains.

D. Performance Analysis and Tuning

Building thermal control is primarily concerned with main-
taining adequate temperature regularity at a manageable actua-
tion cost, in the face of disturbances. While low-gain controls
maintain moment boundedness when the occupant-location-
based control is used, larger gains or bandwidth may be
required to adequately attenuate disturbances and track the
reference. There is a need to understand whether occupant-
location-catered controls can adequately regulate temperature
with moderate actuation effort. In tandem, techniques are
needed for tuning the PID controller’s gains to meet regularity
and actuation requirements. Thus, we consider tuning the
control gains to optimize a quadratic performance metric
which abstractly captures: 1) temperature regularity and 2) the
effort expended for control. Specifically, the performance-
tuning method optimizes a relative temperature-regularity plus
actuation-effort metric. Specifically, the following quadratic
metric is considered: J = (1/T2 − T1)

∑T2−1
k=T1

(α1z[k]2 +
α2u[k]2), where z[k] = yref− y[k] is the temperature deviation
of the occupied room from the reference, and u[k] is the HVAC
control input (volume flow rate from the HVAC system into
the rooms). [T1, T2] is the time interval of interest, and α1
and α2 are weighting factors. We note that energy required for
the HVAC’s air flow should roughly scale with u[k]2, which
suggests that a quadratic metric may be reasonable for energy
expenditure in some settings. Likewise, a quadratic metric is
used for the temperature regularity error.

Our primary interest is to characterize time-averaged
metric J over a long horizon [T1, T2]. If the closed loop is two-
moment-bounded, the underlying Markov chain is ergodic, and
the disturbances are stationary, it can be shown that the time-
averaged cost metric J approaches the steady-state ensemble
average of the squared deviation cost in a probability-1 sense.
Thus, the closed-loop performance can be computed as J̃ =
limk→∞ E[α1z[k]2+α2u[k]2], which can be expressed as: J̃ =
limk→∞

∑r
i=1 E[α1z[k]2 + α2u[k]2 | s[k] = i ]Pr(s[k] = i).

The summands in the expression for J̃ can be computed from
entries in the first and second moments of the extended state
vector, evaluated in steady state. In particular, the steady-state
moments can be computed as the fixed point of (8), provided
that the eigenvalues of H PID

1 and H PID
2 are strictly inside the

unit circle and the disturbances are first- and second-moment
stationaries. This fixed point is �̃ = (I − H PID)

−1
D̃ where

I is an identity matrix of appropriate size. The metric can then

be computed as

J̃ =
r∑

i=1

α1 F1(i)+ α2 F2(i) (7)

where F1(i) = �lr+ī+(i−1)Ã−l+i and F2(i) = (K p +
(Kd/T ) + Ki T )2�lr+ī+(i−1)Ã−l+i + ((Kd/T ))2

�lr+ī+(n+i−1)Ã−l+n+i + (Ki T )2�lr+ml2 + (−2(Kd/T ))
(K p + (Kd/T ) + Ki T )�lr+ī+(i−1)Ã−l+n+i + (2T Ki )(K p +
(Kd/T ) + Ki T )�lr+ī+il + (−2 Kd Ki )�lr+ī+(n+i)Ã−l , and
where ī = (i − 1)Ã − l2.

The above explicit analysis of the expected metric allows
evaluation, comparison, and tuning of the PID control, as illus-
trated in Section IV.

Remark 5: The proposed quadratic metric only aims to
compare the relative performance of different control schemes
with regard to temperature regularity and actuation effort,
in an approximate sense. It does not aim to represent the
full operating cost of the HVAC system, which may include
fixed costs and operation-specific cost scalings. Likewise,
an occupant’s thermal comfort is decided by factors other than
temperature, including personal choices and additional unmod-
eled environmental variables (e.g., humidity, air flow) [34], and
hence, the metric also does not capture occupant comfort fully.
Although the quadratic cost function is a significant abstraction
of reality, it captures relevant tradeoffs in building thermal
control and can provide an initial design which can be further
tuned through simulation. If desired, similar analyses can be
conducted for higher degree-polynomial metrics, using higher
moment analyses of the MJLS.

IV. EXAMPLE

The occupant-location-catered HVAC control scheme is
evaluated in an example. A building with five thermally
connected rooms, with topology shown in Fig. 1, is considered.
The following parameters are assumed: the capacitances mi

are 8.94 e+4 J/K for the air in each room and 1.08 e+6

J/K for each wall, the thermal resistance of each wall face is
Rw = 5.71 e−2 K/W, the convection resistance between each
indoor room’s air and a wall face is Rci = 6.67 e−3 K/W the
convection resistance between the outdoor air and each wall
face is Rco = 1.33 e−2 K/W. The conductances wi j between
different nodes are inverses of these thermal resistances. The
sampling interval is T = 1 second, and the occupant’s location
Markov chain has parameters Pii = 0.99975 for i = 1, . . . , 5,
Pij = 6.25 e−5 for i �= j . The reference signal (desired
temperature) is yref = 21 ◦C, and the initial temperatures
are xi [0] = 25 ◦C for i = 1, . . . , 15. The system injects
a larger air volume to the central room 4 as compared to
the other rooms (specifically, γ4 = 0.5 and γi = (1/8) for
i = 1, 2, 3, 5). The HVAC cold air temperature is 12 ◦C
and it has a maximum capacity to inject 1 m3/s cold air
into the building. The following disturbances are modeled.
The unmeasured heat gain in each room is modeled as a
stationary process with mean 1 W and variance 1 in each
room. The outside temperature is assumed to be sinusoid with
a 24-h period, with a mean of 35◦C and a peak of 42◦C. Solar
radiation is modeled as a rectified sine wave with a 24 h period,
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Fig. 1. Building diagram for the heat-flow model.

with an amplitude of 2 (Wm2/). The thermal parameters of the
model are chosen to be similar to those used in other studies
of building heat control systems, with the thermal capacitances
and conductances (resistances) derived from typical material
properties [14], [35]. The Markov chain for the occupant’s
location is chosen so that the occupant switches rooms on
roughly an hourly basis, on average.

The following analyses were undertaken. Moment bound-
edness was determined as a function of the PID control
gains, and the steady-state performance (cost) metric E[ J̃ ]
was also evaluated. The gains were then tuned to optimize the
performance metric. For the performance analysis, the cost
function weightings were chosen as α1 = 5 and α2 = 1.
Note that the performance analysis requires stationarity of the
disturbances, and we approximated the periodic disturbances
(outside temperature, solar radiation) as stationary processes
with mean and variance computed from one period of the
signal, for the purpose of gain tuning. However, the periodic
disturbances were exactly simulated in testing the design.

For this example, the derivative term in the optimal PID con-
troller was found to be unimportant, in the sense it introduced
a filter of high bandwidth which had a negligible effect on the
closed-loop dynamics. For this reason, the analysis and gain
tuning were repeated for a PI-only control. Sufficiency of PI-
only control is understandable since regulation and disturbance
rejection are primary needs for the control. However, our
methodology allows for the inclusion of a derivative controller,
as needed. In the following, we present results for the PI
controller analysis and design.

Fig. 2 shows the performance metric and stability (moment-
boundedness) region as a function of K p and Ki . Unsta-
ble gains are indicated with a dark color, while the metric
is shown on a logarithmic scale in the stable region. As
expected, moment boundedness is achieved for gains below
a threshold. Fig. 3(a) shows simulations of the room tem-
peratures for the optimally tuned control. The controller is
able to regulate the temperature of the occupied room near
the desired reference temperature, even as the temperatures
in the other rooms deviate significantly from the reference.
For example, room 4 is often overcooled because of the large
volume flow into the room (we note that the deviations in
nonoccupied rooms are somewhat exaggerated in this example
because of the unequal volume flows). The input signal,

Fig. 2. Stability region and metric versus K p and Ki . The dark-shaded areas
correspond to unbounded moments, while the lighter shades show the metric
on a logarithmic scale.

Fig. 3. Sample temperature dynamics for the optimal design (K p = 2.44
and Ki = 2.86e−6 for (α1/α2) = 5). (a) Temperature of rooms: dashed line
indicates the occupied room. (b) Control input of system for optimal gains.
(Total mass flow into the building.)

shown in Fig. 3(b), demonstrates that a persistent input is
provided to maintain the desired temperature, with a larger
input applied when the occupant changes rooms; the response
time when the occupant switches rooms is primarily governed
by the bandwidth of the building thermal dynamics. The
simulations suggest that the occupant-location-catered scheme
is able to adequately regulate the temperature at the occupant’s
location.
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The dependence of the stability region on model parameters
was also studied, by determining the maximum stabilizing
proportional gain K p upon scaling up of the optimal design.
We determined the dependence of this maximum gain on:
1) the room-transition probability; 2) the sampling time T ;
and 3) the volume air flow fractions. For this example,
the maximum allowed gain was found to be unchanging over
a wide set of transition probabilities and sampling times. This
insensitivity is understandable since the nominal sampling time
is short, and the room-transition times are long compared to
the building thermal processes. To study the dependence of the
stability region on the volume air flow fractions, the percentage
of the volume air flow to the central room (Room 4) is changed
and the other percentages were correspondingly altered. For
the baseline, the maximum allowed gain (with the ratio of
K p to Ki fixed at the optimal) was K p = 354.75. If the
air flow is distributed equally to all rooms, the maximum
allowed gain increases to K p = 886.25. On the other hand,
if the air flow ratio fraction to the central room increases
to 75%, the maximum allowed gain decreases to K p = 236.5.
Thus, we see that the stability region grows with more equally
distributed volume air flow.

The dependence of the gain tuning on the cost-function
parameters α1 and α2 was determined. We found that the
optimal tuning required larger integral gains, when α1 was
increased. Specifically, for (α1/α2) =1,5, 10, 50, and 100,
the optimal integral gains were found to be Ki = 2.23e−8,
2.68 e−6, 1.6 e−3, 5.3 e−3, and 8 e−3, respectively. This
increase in the integral gain matches the intuition that increas-
ing α1 would prefer accurate regulation rather than low input
cost.

Finally, the optimal occupant-location-catered design has
been compared with an optimal fixed PI control scheme, where
a thermostat in Room number 4 is used for control. The
actuation effort and temperature regularity metric values for
the occupant-location-catered scheme are 374.97 and 41.49,
and are 1.08e+4 and 1.64e+3 for the fixed scheme. Thus,
the catered scheme is found to significantly improve regularity,
with modification in actuation effort simultaneously.

V. CONCLUSION

Thermal regularization strategies for buildings that cater to
the changing location of an occupant have been studied. Sto-
chastic stability of the closed-loop dynamics was verified using
an MJLS formulation of the model. Also, controller parameter
tuning to optimize a quadratic cost function, which encom-
passes regularization and control-effort terms, was considered.
The control strategy was applied to a case study, which
demonstrated that the occupant-location-catered approaches
may have considerable performance benefits compared to the
traditional fixed-thermostat-based controls.

APPENDIX

PROOF OF THEOREM 1

Proof: First, we show that given bounded disturbances
the eigenvalues of H PID

1 and H PID
2 decide boundedness of the

extended state vector’s moments. Consider

ψ̃[k] =
[
ψ1[k]
ψ2[k]

]
.

We can show the first and second moments of ψ̃[k] are
bounded if all eigenvalues H PID

1 and H PID
2 are inside the unit

circle. For that, let us combine the first- and second-moment
recursions as

E(ψ̃[k + 1]) = H PIDE(ψ̃[k])+ D̃[k] (8)

where

H PID =
[

H PID
1 Ō

H PID
12 H PID

2

]
, D̃[k] =

[
D̃1[k]
D̃2[k]

]

and Ō is zero matrix of appropriate dimension. Equation ((8))
specifies a linear time-invariant dynamics. Further, since
E(D̄[k]) and E(D̄[k]⊗2) are bounded, it also follows that
D̃1[k] and D̃2[k] are bounded. Thus, E(ψ̃[k]) is bounded
provided that all eigenvalues H PID are inside the unit cir-
cle, or equivalently the eigenvalues H PID

1 and H PID
2 are inside

the unit circle.
Next, we need to show that all eigenvalues of H PID

1 and
H PID

2 are strictly inside the unit circle for sufficiently small
K p , Kd , and Ki . The eigenanalysis is achieved according to
the following five steps.

Step 1: Several properties of the matrices GPID
c (i) are

determined. The principal submatrix of GPID
c (i) consisting of

the first n rows and columns is considered. We call this matrix
G P

c (i). We note G P
c (i) = Ā−K p	̄β̄S2(i)−(Kd/T )	̄β̄S2(i)−

Ki T 	̄β̄S2(i), where 	̄β̄ is the principal submatrix of	β̄ made
up of its first n rows and columns, and Ā = e−T A. The matrix
A is an (asymmetric) grounded Laplacian matrix or nonsin-
gular M-matrix. Furthermore, from the assumption that all
rooms are thermally connected, the digraph associated with
A has a directed spanning tree with vertex n as the root.
It is immediate that eigenvalues of A are strictly in the
open right half-plane. Since A is a nonsingular irreducible
M-matrix, Q̄ = e−AT is strictly positive [31], [32]. Also,
note that K p	̄β̄S2(i), (Kd/T )	̄β̄S2(i), and Ki T 	̄β̄S2(i) have
strictly negative entries in the i th column, and are zero
otherwise. Furthermore, for any sufficiently small K p , Kd ,
and Ki (less than some K̄ p ,K̄d , and K̄i ), the entries in the
i th column of −K p	̄β̄S2(i)−(Kd/T )	̄β̄S2(i)− Ki T 	̄β̄S2(i)
are strictly less than the entries in the i th column of Ā in
magnitude. Thus, it follows immediately that G P

c (i) is strictly
positive with row sums strictly less than 1.

Step 2: Now consider another principal submatrix of GPID
c

consisting of its first n + r rows and columns, which we call
G P D

c . The matrix can be written as[
G P D

c
Kd

T
	̄β̄S2(i)

Ir×n 0r×r

]
.

We argue that the eigenvalues of the substochastic matrix G P D
c

are strictly inside the unit circle. To do so, we note that the
first n rows of the matrices have row sums strictly less than
1. Considering the graph associated with this substochastic
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matrix, we see immediately that there is a path from every
vertex to a vertex whose outdegree (corresponding matrix row
sum) is strictly less than 1. It thus follows that the eigenvalues
of the matrix are strictly within the unit circle.

Step 3: The closed-loop MJLS state matrix when the PID
controller is used can be expressed in terms of G P D

c , as
follows:

GPID
c (i) =

[
G P D

c (i) ε̄(i)−→̄
V (i) 1

]
.

Here, ε̄(i) is column vector with n + r entries which all
equal zero except the i th entry, which is equal to −ε, where

ε = Ki T . Also,
−→̄
V (i) is the row vector with n + r entries,

whose i th entry is equal to 1 and remaining entries are zero.
Step 4: Substituting the above form of the matrix GPID

c (i)
into H PID

1 , we have

H PID
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11

[
Ḡ P D

c (1) ε̄(1)−→̄
V (1) 1

]
· · · p1b

[
Ḡ P D

c (n) ε̄(n)−→̄
V (n) 1

]
...

. . .
...

pb1

[
Ḡ P D

c (1) ε̄(1)−→̄
V (1) 1

]
· · · pbb

[
Ḡ P D

c (n) ε̄(n)−→̄
V (n) 1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

By permuting H PID
1 appropriately, we can simplify the

eigenanalysis of the matrix. Specifically, the matrix H̃ PID
1

is defined as a permutation of H PID
1 , where the rows lz1,

z1 = 1, . . . , r , are placed at the bottom of the matrix and
likewise the columns lz2, z2 = 1, . . . , r are placed at the right
of the matrix (in order). The permuted matrix is given by

H̃ PID
1 =

[
F1 ε̃

Ṽ P

]
(10)

where

F1 =
⎡
⎢⎣

p11Ḡ P D
c (1) · · · p1nḠ P D

c (n)
...

. . .
...

pn1Ḡ P D
c (1) · · · pnnḠ P D

c (n)

⎤
⎥⎦

and ε̃ =
⎡
⎢⎣

p11ε̄(1) · · · p1n ε̄(n)
...

. . .
...

pn1ε̄(1) · · · pnn ε̄(n)

⎤
⎥⎦

and Ṽ =

⎡
⎢⎢⎣

p11
−→̄
V (1) · · · p1n

−→̄
V (n)

...
. . .

...

pn1
−→̄
V (1) · · · pnn

−→̄
V (n)

⎤
⎥⎥⎦ .

If ε is equal to zero (i.e., no integral term is used), then H̃ PID
1

has lower triangular structure and its eigenvalues are equal to
the union of the eigenvalues of F1 and P . It is easy to show
all eigenvalues of F1 are inside the unit circle using the same
graphical argument used in step 2 for the eigenvalues G P D

c .
Also, P has one eigenvalue equal to one, while the remaining
eigenvalues are strictly inside the unit circle. Now, from the
eigenvalue perturbation theory, the eigenvalues of H̃ PID

1 can be
contained in circles in the complex plane around the eigenval-
ues prior to perturbation, whose radii approach 0 as ε. Thus,

by scaling down Ki , all eigenvalues except the eigenvalue
at 1 necessarily remain within the unit circle. It remains to
show that the eigenvalue of H̃ PID

1 which equals 1 for ε = 0,
moves into the unit circle for sufficiently small positive ε. This
can be shown using an eigenvalue sensitivity analysis. Using
the fact that the matrix H̃ PID

1 is nonnegative for ε = 0, both
left and right eigenvectors associated with the unity eigenvalue
are seen to be nonnegative. Indeed, it can be seen from the
reducibility structure of H̃ PID

1 that the final r entries of the
right eigenvector are strictly positive, while all entries of
the left eigenvector are strictly positive. Also, ε̃ is nonpositive
for nonzero ε. Therefore, from the eigenvalue sensitivity
formula, the first-order sensitivity of the eigenvalue is seen to
be strictly negative. It thus follows that all eigenvalues of H̃ PID

1
and H PID

1 are strictly within the unit circle for sufficiently
small Ki .

Step 5: An entirely analogous argument can be used to prove
that eigenvalues of H PID

2 are strictly within the unit circle
for small control gains. These properties follow immediately
from an expansion of the Kronecker product, whereupon the
analogous logic as steps 1–4 can be used to characterize
the spectrum. According to the discussion at the beginning
of the proof, since the eigenvalues of H PID

1 and H PID
2 are

within the unit circle, ψ1[k] and ψ2[k] are bounded. Since
the first and second moments of x[k] are linear functions of
ψ1[k] and ψ2[k], the moments of x[k] are also verified to
be bounded. It remains to show that the expected squared
deviation E((y(t) − yref)

2) is bounded for all t ≥ 0. This
can be evident when y(t)− yref is a linear function of x[k∗],
where k∗ is greatest integer less than t

T . Since y(t) − yref is
computed from x[k∗] by solving the closed-loop system over
the interval [k∗T, t], where t < (k∗ + 1)T , it follows that
the linear mapping between x[k∗] and y(t)− yref is uniformly
bounded. Thus, it follows that the expected squared deviation
E((y(t)− yref)

2) is a linear function of ψ1[k] and ψ2[k] which
is uniformly bounded. Hence, the expected squared deviation
is bounded. �
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