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Abstract—1In this work, we characterize the finite-zero and
infinite-zero structure of a multi-input multi-output channel in
a standard model for network synchronization. To do so, we
first develop an algebraic analysis of the zeros based on a input-
to-output transformation known as the special coordinate basis.
This decomposition then allows us to develop topological results
on the zeros, i.e. characterizations in terms of the network
graph and the input/output locations relative to the graph.
Specifically, our results show how the relative locations and
interactions among multiple input-output pairs in a network
influence the locations of the finite and invariant zeros. As
a whole, the study contributes to the analysis of dynamical
networks from an input-output perspective, rather than only
in terms of internal or emergent behaviors.

I. INTRODUCTION

Researchers have studied the dynamics and control of
complex networks, for applications ranging from distributed
decision-making or consensus in autonomous-agent systems
to wide-area management of large-scale infrastructures [1]—
[4]. Although the analysis and control of large scale networks
is based the traditional systems and control theory, it also
requires methods to combat the inherent complexity and and
high dimensionality of the dynamics [5], [6]. One common
theme in network analysis and control has been to develop
simple insights in terms of the network’s topology or graph,
which can be used in lieu of numerical procedures for
analysis/design. Indeed, it has been shown that the network’s
graph topology plays a central role in the intrinsic dynamics
of complex networks, and also modulates controller design,
closed-loop performance, and state/parameter estimation.
These graph-theoretic results are useful for a number of
engineering tasks, including new technology deployment
(e.g. sensor/actuator placement), model development and
identification, and threat or risk assessment [7]-[9].

In the literature, the graph-theoretic analysis of network
dynamics has largely focused on internal modal behav-
iors (including stability and stabilization notions) [10]-[13],
input-to-state properties such as controllability [10], [14],
and state-to-output properties such as observability [10],
[15], [16]. However, input-output properties of a control
channel are also of importance in control design as well as
state estimation, and hence graph-theoretic analyses of these
properties are also needed. Among various input-output prop-
erties, the invariant-zero structure is critical for controller
design, because it imposes fundamental limits on control and
estimation in linear systems [17]-[20]. Recently, single-input
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single-output channels (SISO) in canonical network models
have been characterized in terms of the network’s graph
and the measurement/actuation locations [21]—-[32]. These
analyses demonstrate that the zero structure, and particularly
the presence or absence of non-minimum-phase zeros, ex-
hibit a sophisticated dependence on the paths in the network
graph between the input and output. Although these analyses
are a promising starting point for an input-output analysis
of networks, control channels in many network analyses
are multi-input multi-output (MIMO), i.e. they involve the
coordination of distributed sensing and actuation resources.
Input-output analyses of MIMO network dynamics from a
graph-theoretic perspective are limited: some graph-theoretic
results on relative degree and generic number have been
obtained [33]-[35], but control-relevant properties such as
zeros have not been studied from a graph-theoretic perspec-
tive. In this work, we focus on characterizing the invariant-
zero structure for a multi-input multi-output channel in a
canonical dynamical network model.

In this work, we focus on a standard model for network
synchronization or consensus or diffusion, wherein inputs
are provided at a subset of nodes, and outputs are taken
at a (possibly different) subset. Our goal is to characterize
the zero structure of this multi-input multi-output channel.
Specifically, we exploit an algebraic analysis of the ze-
ros based on the special coordinate basis, as a means to
develop graph-theoretic results of the zeros. Specifically,
the invariant-zero structure of the linear network dynamics
(including the presence or absence of nonminimum-phase
dynamics) is characterized in the terms of the network graph
and input/output locations. The results can be used both for
analysis and design purposes. From a design perspective, the
developed results are a starting point for sensor and actuator
placement to shape the zero structure, and hence facilitate
control and estimation. In a broad sense, our results indicate
that the topology of the network graph, and certain of its
induced sub-graphs, specify the zero locations and hence
modulate control and estimation.

II. MODELING AND PROBLEM FORMULATION

We consider a standard linear diffusive network model
defined on a digraph, where the model is augmented to
represent a multi-input multi-output (MIMO) channel of
interest. Our goal is to analyze the input-output properties
of the MIMO channel. In particular, we are interested in
characterizing the finite-zero and infinite-zero structures of
the MIMO channel.

Formally, a network with n components or nodes, specified
by the set N' = {1,2,...,n}, is considered. Each node j
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is associated with a scalar state x; that evolves in contin-
uous time. The nodes’ states are nominally governed by a
linear dynamical model with diffusive state matrix A. The
diffusive network model is defined by x = Ax, where
X = [acl .. .CL‘,JT is the full state of the network. The state
matrix A, which need not be symmetric, is assumed to have
a diffusive form (i.e., to be the negative of a M-matrix or
an essentially-nonnegative matrix). That is, the off-diagonal
entries of A are assumed to be nonnegative, while the diago-
nal entries are negative and satisty A4;; < — Z;;Lj#l A ;.
Since the state matrix A encodes the network’s topology, it is
referred to as the graph matrix. The diffusive-network model
encompasses standard models for synchronization/consensus,
diffusion, and spread in dynamical networks (e.g., [36]-[38]),
in which nodes have scalar states.

The goal of this paper is to characterize the input-output
properties of a channel of interest. A multi-input multi-
output channel is considered, which is defined by m inputs
Uy,..., U, and m outputs yi,...,y,, where: 1) each input
u; is applied at one network component 7; € N, and each
network component is actuated directly by at most one input,
i.e. 4; # u; for i # j; 2) each output y; measures the state
of one component 3; € A, and each node’s state is measured
by at most one output, i.e. y; # ¥; for ¢ # j. The full model
of the system, with the MIMO channel of interest included,
is thus given by:

%x = Ax + Bu (D
y=0Cx
U1 U1 eyTl
where u = ,y = E,C: |, B =
u7n ym Z—j"

€i,  ,€q, |, and e; is 0-1 indicator vector ywlith length
n and ith entry equal to 1.

Since topological results are sought, it is convenient to
associate a graph with the network dynamics. Specifically,
a weighted digraph G with n vertices is defined, where
each vertex [ = 1,2,...,n in the graph corresponds to the
network node [. For simplicity, we use the same label for a
node and its corresponding vertex in graph G. Formally, an
arc (directed edge) is drawn from vertex [ to vertex j in the
graph (I,j distinct) if and only if A;; # 0, and is assigned a
weight of A;;. The vertices corresponding to the input and
output network nodes are referred to as the input and output
vertices. The state matrix A can be viewed as a grounded
Laplacian matrix associated with the directed graph. In this
paper, the notation d,; is used for the distance from vertex
a to vertex b in the digraph G (i.e., the minimum number of
edges among directed paths from a to b).

We focus on a restricted set of models, where the number
of inputs and outputs are equal, and each input and output
pair is in some sense local or regional. General models are
very complicated to study, and the results developed here do
not extend to the general case. Nevertheless, the restricted
model class considered in this study is interesting because
in many application domains, controls are initially developed
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with regional goals in mind; however, as control interactions
become more pronounced and network-wide management
becomes critical, there is a need to consider the merged
control channel. For instance, in the electric power grid, it is
natural that substations or regional control authorities may
have traditionally used limited measurement and actuation
to enact a control. However, given more stress on the grid
and also new technological advances, there is a motivation to
assimilate these measurement and actuation capabilities from
different substations to design and implement a wide-area
MIMO controller to improve the performance of the network.
To formalize this notion, we impose some constraints on the
locations of the inputs and outputs relative to the network
graph. Specifically, in this paper, considering the input-output
model (1) with corresponding graph G, we assume that there
exist a set of m independent special input-output pairs, as
specified by the following two definitions:

Definition 1: In graph G, we consider a pair consisting of
an input vertex ; and an output vertex y; as a special input-
output pair (4;,Y;), if the distance from the input vertex «; to
the output vertex ; is strictly less than the distance from the
input vertex u; to any other output vertex. Also, we consider
a special input-output path (i;,y;) as a directed path with
shortest distance for the special input-output pair (u;, y/;).

Definition 2: In graph G, we call a set of special input-
output pairs as independent, if these pairs have no common
input or output vertices.

Remark: It can easily be shown that special input-output
paths corresponding to a set of independent special input-
output pairs do not have any vertices or edges in common,
i.e. the paths are disjoint.

Next, without loss of generality, we assume a specific or-
dering for inputs, outputs, network nodes, and graph vertices
to simplify the analysis of the network model.

Special Ordering: Consider input-output model (1) with
corresponding graph G, and assume that there exist a set
of m independent special input-output pairs. Without loss
of generality by reordering the inputs and outputs, we
consider the set of m independent special input-output pairs
as P = {(U1,%1), (G2,92)," , (Um, Um)}. Additionally,
without loss of generality, we assume a particular ordering
of the original state vector and the corresponding network
nodes and graph vertices as follows:

1) Label vertices not included in any special input-output
paths as {1,2,--- n,} where n, = n — ng where
Ng = Z?;l(dﬂiﬁi + 1)'

Label vertices in the special input-output path (i, 31)
as {ng+1,nq+2, -+ ,ng +dg, 4, + 1} starting from
output vertex ¢; as n, + 1 and incrementally label
others by increasing their distance from output vertex
71, up to label n, + ¢; for input vertex 4, where ¢; =
dﬁﬂ?l +1

Similarly for ¢ = 2,---,m, label vertices on the
special input-output path (;, ;) as {na+22;11(qj)+
Lna+ 3074 0) 42, o+ S0 () +dayg, +1)

1 1
starting from output vertex y; as na—i—zz;ll (gj)+1and

2)

3)
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incrementally label others by increasing their distance
from output vertex ¢;, up to label n, + Z;;ll(qj) +q;
for input vertex w; where ¢; = dg, g, + 1.

The focus of our study is to characterize the finite zeros
and infinite zeros of the MIMO channel with input vector
u and output vector y. This channel of interest may be
a control channel in the network, or may capture other
input-output behaviors (e.g., a disturbance response that is a
concern to network operators). We notice, while the modes
of the system are internal properties of the network, the
zeros are particular to the channel of interest. Crucially, the
finite zeros are invariants to feedback on the same channel,
and hence they place limits on control performance and
constrain channel response characteristics [17]. The presence
of nonminimum-phase zeros (i.e., zeros in the right half
plane) is of special concern, since these zeros place hard

the result directly uses the procedure in [39], a detailed proof
is not given, however a brief sketch of the proof which
highlights some subtleties is included.

Theorem 1: Consider the MIMO LTI system defined in
(1), and assume it has m independent special input-output
pairs as defined in Definitions 1 and 2. Also assume that
the special label ordering for the network nodes, inputs,
and outputs has been used. There exists a non-singular
state transformation matrix I's which decomposes the state
space into two sub-spaces X =

Xd
finite- and infinite-zero structure of the system. The state

transformation matrix I'g and the system in the transformed
coordinates x = I'y;x is described by the following set of
equations:

corresponding to the

limits on control performance (e.g., reference tracking or %x = A% + Bi )
disturbance rejection error). Thus, we seek to characterize the —Ox
finite-zero and infinite-zero structure of the MIMO channel y=
of interest. Our primary effort here is to develop a topological  where:
understanding of the zeros, by analyzing them in terms of %
the network graph G and the input/output locations relative X = [XO} 1Xg € R"; x4 € R™ 3)
to the graph. -
Prus
III. RESULTS = ,Bfl _ F;IBU (4)
In this section, we characterize the infinite- and finite- Bt
zero structures of the introduced MIMO network model. We :}_1m "LA
first develop algebraic characterizations of the zeros, using a A = A‘m Aad] = Fs—l AT Age € Ra*Ma: 4,0 € R™4*(8)
transformation known as the special coordinate basis. These [“da £2dd
. . . o . A A _ _
algebraic resu'lts are a starting p01nt’ for characterlzlr.lg the 4 _ Ana A’I’Lad:| : A, €RM™XMa [ ¢ RMXNd (6)
zero structure in terms of the network’s graph topology; these [ Angq ng
topological results are the main contribution of the work. r. - [Zo] ™
s =
Z
A. Algebraic and Structural Characterizations p . d 0 g
We obtain algebraic characterizations of finite-invariant- ~° Lo Onyscnd] ®)
zeros and infinite-zero structures of the introduced MIMO Zgy
network model, and also use these to gain basic structural Zgy
o : , : Zg=| . ©))
insights into the network model’s dynamics. To develop :
this analysis, we decompose the model dynamics using the A
. . . . . qm
special coordinate basis (SCB) transformation, in the case o
where the model has m independent special input-output Ui
. . . . [Alg,
pairs. The procedure of developing the special coordinate [ AQJ “
basis decomposition is explained in detail in [39]. We do not Zq; = Yio: (10)
present most of the details here, but maintain the notations :
used in [20], [39] and refer the readers to these studies for [ Aqi—l]a

the details. The key step in developing the structural de-
composition is to find a nonsingular state transformation I',
a nonsingular output transformation I',, and a nonsingular
input transformation I'; which together expose the finite- and
infinite- zero structure. The iterative procedure for finding
the transformations is quite complicated in the general case,
see [20], [39], [40]. Here, based on the special ordering
assumption (without loss of generality), it turns out that the
transformation is achieved using I'; = I and I'; = I. The
state transformation I'g needed to place the dynamics in the
special coordinate basis, and the decomposed dynamics in
this new basis, is given in the following theorem. Because
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Sketch of Proy(l)]" for Theorem 1: This theorem follows from
the iterative procedure to develop the special coordinate basis
transformation described in [39]. Crucial to the transforma-
tion, the existence of m independent special input-output
pairs guarantees that the submatrices Z,, fori € {1,...,m}
are full row rank, and also the matrices Z; and I'; are full
rank, hence a state transformation matrix I'; that is non-
singular is found which yields the desired decomposition of
the dynamics. l

Remark: From the properties of the special coordinate
basis, the finite invariant zeros of the MIMO channel of
interest are the eigenvalues of zero-dynamics state matrix
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Aqq. By simplifying Equation (5), this matrix can be written
as:

Ao = 20AT;VZ = Ay, — Anuu 201 20, (11)

where Z,,,, and Z,,, are submatrices of Z; = [ana an]
for Z,,, € R"*" and Z,, € R"™*" and A,, is a
submatrix of matrix A.

In Theorem 1, we developed the special coordinated basis
decomposition for the system, and characterized the finite-
invariant-zero structure of the system from an algebraic
standpoint. In the following two theorems, by using the
properties of special coordinate basis representation, the
invertibility structure as well as the infinite-zero structure
of the system is clarified. Before presenting the results,
let us review the definition of invertibility given in [20],
in the context of the model considered here. Consider the
system (1), and let u; and u, be any inputs to the system,
and consider y; and y» as the corresponding outputs (for
the same initial conditions). The system is said to be left
invertible, if y1(f) = y2(¢) for all ¢ > 0 implies that
uy(t) = ug(t) for all ¢ > 0. The system is said to be
right invertible if, for any y,.¢(t) defined on [0, 00), a u(t)
and a choice of x(0) exist such that y(t) = y,s(¢) for all
t € [0,00). The system is said to be invertible if the system
is both left and right invertible. The special coordinate basis
representation provides a tool for examining invertibility as
discussed in following theorem; again, the proof of the result
is only sketched, as it follows from the standard methodology
for the special coordinate basis.

Theorem 2: Consider the MIMO LTI system defined in
(1). Assume that the network model has m independent
special input-output pairs, as indicated in Definitions 1 and
2. Also assume that the special label ordering for the network
nodes, inputs, and outputs has been used. The described
system is invertible (i.e. both left and right invertible).
Sketch of Proof for Theorem 2: The transformed dynamics
given in Theorem 1 indicates that the model does not contain
either a non-left-invertible subspace or a non-right-invertible
subspace. In particular, in the notation of [40], the special
coordinate basis representation does not contain either a
set of states x, which correspond to a non-right-invertible
dynamics, nor a set of states z. which correspond to a
non-right-invertible dynamics. Thus, it is both left and right
invertible, and hence invertible. l

Theorem 2 shows that a sufficient condition for system (1)
to be invertible is for the network to have m independent
special input-output pairs. This theorem thus connects the
invertibility properties of the network to the location of
inputs and outputs in the network graph, and hence implicitly
provides a graph-theoretic characterization of invertibility.
The result shows how a MIMO channel in the network can be
designed to be invertible, or extra inputs or outputs (actuators
or sensors) can be added to an existing channel to make it
invertible.

The next theorem relates the length of the special input-
output paths to the infinite-zero structure of the MIMO
channel of interest. Again, a sketch of the proof is given.

Nad da

225

Theorem 3: Consider the MIMO LTI system defined in

(1). Assume that the model has m independent special input-
output pairs, as indicated in Definitions 1 and 2. Also, assume
that the special label ordering for the network nodes, inputs,
and outputs has been used. The system has m infinite zeros
of order equal to the numbers of vertices on each of the m
special input-output paths, i.e. q1,q2, ..., G@m.
Proof of Theorem 3: According to [39], [40], in the special
coordinate basis representation of the system, the number
of integrators in the integrator chain from an input ug to
its corresponding output y4 determines the infinite zero
structure. From Theorem 1, it is immediate that q; is the
number of integrators in the chain between input wu; and
output y;. H

Theorem 3 characterizes the infinite-zero structure — i.e.
number of infinite zeros and their corresponding orders — in
terms of the graph topology, and specifically the distances
between the input and output vertices in the graph. This result
can be used to design input/output locations in the network
graph to such that the MIMO channel has a specific infinite-
zero structure, as may be required for the control design
process.

B. Graph-Theoretic Characterizations

In the previous section, using the SCB decomposition,
algebraic and structural characterizations of the network
model’s invariant-zero dynamics was given. These charac-
terizations also enable a simple graph-theoretic analysis of
the infinite-zero structure. The purpose of this section is to
develop a graph-theoretic analysis of the finite zeros of the
network model, including whether the model is minimum-
phase or non-minimum phase; these results are a primary
contribution of the work.

Broadly, the analysis of finite zeros is undertaken as
follows. The analysis is based on Equation (11), which
indicates that finite invariant zeros of the channel are equal
to the eigenvalues of a certain matrix Aguq. This matrix A4,,
is equal to a matrix A,, which is a submatrix of the state
matrix A, plus some perturbation (equal to —A,,, Z, 1 Z,,,.).
The matrix A,,, is specified by the subgraph of G which
includes all vertices except those on the special input-output
path, and hence its zero-nonzero pattern is known from
the graph. We undertake to characterize the entries in the
perturbation A,,_, Z;:ana in terms of the graph topology,
which thus gives a graph-theoretic characterization of the
matrix A,,. This analysis then allows us to characterize
the finite-invariant-zero structure from a graph theoretic
perspective.

The following theorem gives structural insights into the
zero-dynamics state matrix Aaa, and hence enables us to
develop graph-theoretic results on the zeros. More specifi-
cally, this theorem determines the dependence of the entries
in A,, on the network’s graph topology.

Theorem 4: Consider the MIMO LTI network model de-
fined in (1). Assume that the network has m independent
special input-output pairs, as indicated in Definitions 1
and 2. Also assume that the special label ordering for
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the network nodes, inputs, and outputs is used. Consider
Ay = —An,,Zy 1 Z,,,, which is the perturbation matrix in
the algebraic expression developed for zero-state matrix in
Equation (11). Then [A,];; = 0 if one of the following

conditions hold for the graph G:

1) There is no directed edge to vertex ¢ from any of
vertices included in the special input-output paths.

2) For Vk € {1,---,m}: if there is a directed edge to
vertex ¢ from any vertices included in special input-
output path (dy, ¥x), then d; 5, > d; g, holds, where:

a) Vj is a set of all vertices included in the special
input-output path (uy,yx) such that there is a
directed edge from them to vertex <.

b) vertex r € V; is the vertex with minimum dis-
tance from the input vertex ty, i.e. dg, » < dg, 1
for VI € V.

Proof of Theorem 4: In the case that there is no directed
edge to vertex ¢ from any of vertices included in special
input-output paths, all entries in the ith row of matrix 4,
are equal to zero. Hence, all entries in the ¢th row of matrix
A, Zyl Zy,, are equal to zero.

Now, consider the case that there are directed edges
to vertex ¢ from some vertices included in special input-
output path (g, yx). Consider the ith row of matrix A4, ,,
and consider entries corresponding to special input-output
path (tx, Jx), i,e, entries at columns Zf;ll (¢¢) + 1 through
Zz:_ll(qt) + gr. Among these entries, the ones at columns

t;l(qt) +1+4d, 4, to Zf;ll(qt) + gy, are all equal zero. In
addition, the matrix Z,, is a block diagonal matrix, which
has m lower triangular blocks associated with the special
input-output paths; these blocks have dimensions g1 X g1, g2 X
q2,** yqm X qm. Consequently, Z;dl is a block diagonal
matrix including m lower triangular blocks. Hence, in the
ith row of matrix AnadZ;dl, among entries corresponding
to special input-output path (tg, k), i.e. entries at columns
Zl’f:::li(qt) + 1 through Zf%lll(%) + ¢, the ones at columns

i1 (@) +1+d, 5, to > (q:) +q are all equal to zero.

On the other hand, in the jth column of matrix
Zn,,, among entries corresponding to special input-output
path (g, yx), i.e. entries at rows Zf;ll(qt) + 1 through
Zzzi(qt) + qu, the entries at Tows Zf:_ll(qt) + 1 through

t—1(q¢) +dj g, are all equal to zero.

In conclusion, if the second assumption in theorem
statement holds, based on our discussion on two ma-
trices A, Z,! and Z,, . it follows that [A/]
[_AnadZ;;ana]i,j =01

Theorem 4 gives a graphical interpretation for the entries
of the matrix A,, relative to those of A, . Specifically, the
theorem shows that entry [A,,];; is different from entry
[An,]i,; only if vertex ¢ is next to one of the special input-
output paths, and the distance from vertex j to the associated
output vertex is sufficiently small. This interpretation pro-
vides a tool to characterize the finite zeros by relating the
finite-zero dynamics with the network graph topology.

The following theorems characterize the zeros state matrix

Aqq and the perturbation matrix A, from a graph topological

,J
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perspective for classes of network models, and hence give
insight into channel zeros for these models. First, we discuss
cases where the condition in Theorem 4 holds for all entries
in Aq, and hence the perturbation matrix Aq = 0. In this case,
the finite zeros of the channel are equal to the eigenvalues of
a submatrix of the state matrix A; this submatrix is negative
of a M-matrix and hence has stable eigenvalues, so the
channel is minimum phase. Theorem 5 shows that, if each
special input-output path is connected to the rest of the graph
through only one of its vertices, then the perturbation matrix
Ay = 0. Thus, in this case, the zeros state matrix is equal a
submatrix of state matrix A, i.e. Ayy = A, . We note that
for a collocated special input-output pair, its special input
output path includes only one vertex and is connected to the
rest of the graph through one vertex, and hence the condition
holds automatically in this case. Here is the result:

Theorem 5: Consider the MIMO LTI network model de-
fined in (1). Assume that the network has m independent
special input-output pairs, as indicated in Definitions 1 and
2. Also assume that the special label ordering for the network
nodes, inputs, and outputs is used. Suppose that each special
input-output path is connected to the rest of network graph
only through one of its vertices, then:

[ Aaa = Ana’ ie. Aq =0.

o The system is minimum phase.

Proof of Theorem 5: Consider each special input-output
pairs g, yr with Yk € {1,---,m}. Then consider any
1,7 € {1,--+ ,ny} and consider the corresponding vertex r
as defined in Theorem 4. We always have d; g, > dr g, +1
since each special input-output path is connected to the rest
of network graph only through one of its vertices (which is
necessarily the vertex r). Hence the condition in Theorem 4
holds for all entries in matrix A,, and we have A, = 0. B

Now, we discuss cases where some entries of A, are non-
zero but eigenvalues of A,, are the same as the eigenvalues
of matrix A, . In this case, the finite zeros of the channel can
be simply obtained from a submatrix of the state matrix A
which is negative of a M-matrix and has stable eigenvalues,
so the channel is minimum phase. Before presenting the
theorem, let us define a new notation.

Definition 3: Consider the MIMO network model, and
assume that it has m independent special input-output pairs
as indicated in Definition 1 and 2. Consider the network
graph G. For a non-collocated input-output pair (i, 3;), we
define an independent input-output path (u;,7y;) as a path
from vertex u; to vertex 1; which does not cross neither
1) any directed edge which is part of other special input-
output paths, or 2) a vertex with collocated special input-
output pair. It is obvious that any special input-output path
is an independent input-output path.

Next, we present the theorem.

Theorem 6: Consider the MIMO LTI network model de-
fined in (1). Assume that the network has m independent
special input-output pairs, as indicated in Definitions 1 and
2. Also assume that the special label ordering for the network
nodes, inputs, and outputs is used. Suppose that each non-
collocated special input-output pair (u;,7y;) has only one
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independent input-output path (as indicated in Definition 3),
which is the same as its special input-output path. In this
case:

o The eigenvalues of matrix A,, are equal to the eigen-

values of the matrix A,,,.

e The system is minimum phase.

Proof of Theorem 6: The submatrix A,,, corresponds to the
subgraph G of graph G. Graph G includes anything except the
special input-output paths’ vertices and their adjacent edges
in graph G. Note that vertices in subgraph G are the vertices
in the graph G which are not included in any special input-
output paths and are labeled as {1, ...,n,} (based on special
ordering).

Now, consider the assumption that each non-collocated
special input-output pair (;,y;) has only one independent
input-output path. This assumption follows that 1) graph
G consists of several separated subgraphs which we label
them as Gi,Go, -, and 2) if there is any directed edges
between vertices in graph g‘j (for any j) and vertices in the
special input-output path (1, ¢;) (for any ¢), then all of these
directed edges are connected only to one of the vertices in the
special input-output path (u;, y;). Based on this assumption
and the result presented in the Theorem 4, one can show in
the perturbation matrix A,, entries that both their row and
column is corresponding to the vertices in the same separated
subgraph G, are equal zero.

Consider notation ng, representing the number of vertices
in graph G;. Next, without loss of generality, let us label
vertices included in graph G in following order: 1) label
vertices in separated subgraph G; as {1,2,--- Gt 2)
label vertices in separated subgraph Gy as {ng, + 1,ng, +
2,---,ng, +ng,}, 3) label other separated subgraphs in
similar way. Considering this ordering assumption in node
labeling as well as the assumption of special input-output
paths have only one independent input-output path, it follows
that matrix A, is block diagonal and entries corresponding
to each separated subgraph are located in each of these
block diagonal submatrices. Previously, we discussed that in
the perturbation matrix A,, entries that both their row and
column is corresponding to the vertices in the same separated
subgraph G; are equal zero. This follows that in matrix Aq,
entries corresponding to block diagonals in matrix A,,, are
equal zero. Considering ordering assumption discussed be-
fore, one can show that the matrix Ay = —A,,,,Z, ' Zy,,, is
a strictly block upper-triangular (or lower-triangular) matrix,
and further that its nonzero entries have no overlap with
block diagonal entries of A, . Hence, the eigenvalues of
matrix A,, are equal to the eigenvalues of matrix A4,,,. W

Theorem 6 shows that if alternative input-output paths
between each special input-output pair are blocked by other
special input-output paths, the finite invariant zeros are the
eigenvalues of matrix A,,,, which are in the left half plane.
This result also suggests means for adding new inputs and
outputs to the network, so as to make the MIMO chan-
nel minimum phase. For example, this can be added by
adding collocated input-output pairs at locations that block
alternative paths between non-collocated special input-output
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pairs. The next theorem shows that, if the special input-
output paths are sufficiently strong (have large enough edge
weights) compared to alternative paths, the finite invariant
zeros are arbitrarily close to the eigenvalues of A,, . Since
the eigenvalues of A, are in the left half plane, it follows
that the network model is minimum phase in this case.

Theorem 7: Consider MIMO LTI network model as de-
fined in (1). Assume that the network has m independent
special input-output pairs, as indicated in Definitions 1 and
2, Also assume that the special label ordering for the network
nodes, inputs, and outputs is used. For special input-output
pairs that have more than one independent input-output path,
suppose that the weights of edges included in their special
input-output paths are scaled by a positive factor . For
sufficiently large factor «:

o The eigenvalues of the zeros state matrix Au. are

arbitrary close to the eigenvalues of the submatrix A4,, .

o The system is minimum phase.

Proof of Theorem 7: The matrix A,, has no dependence
on the scaling factor x. Similarly, the matrix A, , has
no dependence on k. The matrix Z,,, is a block diagonal
which includes m lower triangular blocks associated with
the special input-output paths that have dimensions ¢; X
41,92 X Q2,- -+ ,Gm X Gm. The entries in row ¢ in each of
these blocks corresponding to special input-output pairs with
more than one independent input-output path, are bounded
by «'~'. Consequently, matrix Z,! is a block diagonal
matrix including m lower triangular blocks with dimensions
Q1 X q1,92 X q2,°* yQm X Qm. Entries in column ¢ in
each of those blocks that corresponds to special input-output
pairs with more than one independent input-output path, are
bounded by £~ ("1). On the other hand, the matrix Z,,,
consists of m submatrices associated with the special input-
output paths with dimensions g1 X ng, g2 X Ng, -, Gm X Ng
assembled in vertical order. Entries in row ¢ in each of those
submatrices associated with special input-output pairs with
more than one independent input-output path are bounded
by x(*~2). Hence, it can be shown that all entries in rows
associated with special input-output pairs with more than one
independent input-output path are bounded by x(~1).

Now consider subgraph G of graph G as described in the
proof for theorem 6. Graph G consists of several separated
subgraphs which we label them as Gy, Gs, - - -. Considering
this ordering assumption in node labeling as well as the
assumption of special input-output paths have only one
independent input-output path, it follows that matrix A,
is block diagonal and entries corresponding to each sepa-
rated subgraph are located in each of these block diagonal
submatrices.

Since the assumption in theorem 6 does not hold here,
hence for some of the graphs Q_j specified with set ® (for
some j € ®) we have: if there is any directed edges between
vertices in graph G; and vertices in the special input-output
path (;,9;) (for any @), then all of these directed edges are
connected only to one of the vertices in the special input-
output path (;, ;). This discussion only holds for the graphs
Qj when j € ®, and does not hold for j ¢ ®. Next, without
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loss of generality, let us label vertices included in graph g‘j
in the same order as discussed in the proof for theorem 6.

Based on previous discussions and the result presented in
the Theorem 4, one can show in the perturbation matrix A,,
entries that both their row and column is corresponding to
the vertices in the same separated subgraph G for j € ® are
equal zero. Similarly, one can show that in the perturbation
matrix A,, entries that both their row and column is corre-
sponding to the vertices in the same separated subgraph g"j
for j ¢ ® are bounded by x(=D. In general we can say in
the perturbation matrix Aq, entries that both their row and
column is corresponding to the vertices in the same separated
subgraph G, for Vj are bounded by x(~V). On the other
hand, considering ordering assumption discussed before, one
can show that in the matrix A, = —A, ,Z, 1 Z,,, entries
that are not bounded by x(~1) are at a strictly block upper-
triangular (or lower-triangular) matrix form, and further that
these entries have no overlap with block diagonal entries of
Ay, . Hence, entries of matrix A, which correspond to the
block diagonal entries of matrix A,,, are arbitrarily close to
zero for sufficiently large scaling factor x, and other entries
are in the form of a strictly block upper-triangular (or lower-
triangular) matrix form. Hence, the eigenvalues of matrix
A are equal to the eigenvalues of matrix A,,,. Since each
diagonal block of A,,, is a strict M matrix, it follows that
the system is minimum phase for sufficiently large . B

Theorem 7 shows that if input and output locations are
chosen such that there are sufficiently strong paths between
them, the obtained channel is assured to be minimum phase.
Alternately, if the network’s edge weights can be designed,
strengthening the direct (shortest) path between each input
and output compared to other independent paths ensures
minimum-phase dynamics.

IV. EXAMPLE

An example is used to illustrate the developed results
developed in previous section. A network model of the
form (1) with 9 nodes, 3 inputs ,and 3 outputs and model
is considered. The network graph for this example, with
vertex numbers (equivalently network node numbers) and
input and output locations labeled, is shown in Figure 1.
In this graph, there are 3 independent special input-output
pairs (u1,91), (G2, Y2), (i3, y3). The inputs, outputs, and
graph vertices (network nodes) are labeled according to the
special ordering. Also, the special input-output paths and
their corresponding vertices are shown by green and red
colors respectively. The state matrix A, input matrix B, and
output matrix C' are shown below:

-5 1 0 0 1 1 1 0 07
2 -3 0 0 0 0 0 0 1
0 0 —4 2 1 0 1 0 0
0 0 1 -4 0 0 0 1 0
A=10 0 2 0 -5 1 0 0 0
1 0 0 0 2 =3 0 0 0
2 0 1 0 0 0 -4 0 0
0 0 0 2 0 0 0 -4 1
LO 2 0 0 0 0 0 2 —4]
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Fig. 1: Graph I' associated with a network that has 9 nodes
and 3 independent special input-output pairs.

0 0 07
0 0 0
0 0 O
0 0 O
B=1(0 0 O
1 0 0
0 1 0
0 0 O
L0 0 1]
00 0 0 1 0 0 0 O
c=|0 0 0O OOO 1 0O
00 0 0 0 0 O0 1 0

Using Theorem 2, we know that the system is invertible.
The lengths of there special input-output paths are 1,0, 1, so
q1 = 2, g2 = 1, and g3 = 2. Theorem 3 indicates that this
system has 2 infinite zeros of order 2, and 1 infinite zero of
order 1. From theorem 1, a non-singular state transformation
matrix I'y; (as shown below) can be used to transform the
system to the special coordinate basis.

,1

w

I
ccocococococor
coococococor~o
coomoo~oO
MOoOOoOOoOOoO~OOO
oooéj»—loooo
coo~ococococo
coroococooco
—~oococococoo
—~ooococococoo

|
W~

By calculating the matrices A,,, and A, we have:

-5 1 0 0

2 -3 0 0
Ana=109 o -4 2
0 0 1 -4
00 -2 0
oo 0 -2
A=1g 0 0 o0
00 0 O

Based on the result presented in Theorem 4, only entries
[A4]1,3 and [A4]2.4 can be non-zero. In addition, based on
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the

result presented in in Theorem 6, matrix A, consists

of two diagonal blocks and matrix A, is strictly block
upper-triangular relative to the non-zero diagonal blocks in

Ap,.

Consequently, eig(Aq.,) = eig(Ay,), so the finite

zeros of the channel are equal to the eigenvalues of A,
matrix. These eigenvalues, and hence the finite zeros, are
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7321, -2.2679, —2.5858, —5.4142.
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