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a b s t r a c t

Principal submatrices of the controllability Gramian and their inverses are examined, for a network-
consensus model with inputs at a subset of network nodes. Several properties of the Gramian
submatrices and their inverses – including dominant eigenvalues and eigenvectors, diagonal entries,
and sign patterns – are characterized by exploiting the special doubly-nonnegative structure of the
matrices. In addition, majorizations for these properties are obtained in terms of cutsets in the
network’s graph, based on the diffusive form of the model. The asymptotic (long time horizon)
structure of the controllability Gramian is also analyzed. The results on the Gramian are used to study
metrics for target control of the network-consensus model.
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1. Introduction

Dynamical models for consensus or synchronization in net-
works have been exhaustively studied [1–3]. One focus of this
effort has been on open-loop control of the dynamics using in-
puts at a subset of the network’s nodes [4–9]. In particular,
graph-theoretic necessary or sufficient conditions for control-
lability have been obtained, and some characterizations of the
required control energy have also been obtained using analyses
of the controllability Gramian. Recently, researchers have begun
to study target control of network models, wherein inputs are
designed to manipulate a group of target nodes rather than the
whole network [10–14]. The target-control problem is of practical
interest in several application domains, in which stakeholders
need to use limited actuation capabilities to guide a few key
nodes’ states. In parallel with the general controllability analysis
for networks, the effort on target controllability has also yielded
graph-theoretic conditions and analyses of metrics. These stud-
ies demonstrate that limited-energy target control of network
processes is sometimes possible even when full-state control is
prohibitively costly or impossible.

Target control for network models can be analyzed in terms
of principal submatrices of the controllability Gramian [10,11].
Precisely, target controllability resolves to invertibility of a prin-
cipal submatrix of the Gramian, while the minimum energy re-
quired to achieve a desired target state and/or guide certain
state projections can be found in terms of quadratic forms of the
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Gramian-submatrix inverses. Thus, the study of target controlla-
bility motivates analysis of the Gramian matrix and its principal
submatrices for network consensus/synchronization models.

Because of the relevance of Gramian matrices to network
controllability as well as dual observability/estimation problems,
some structural and graph-theoretic results on the full Gramian
have been developed for canonical network-consensus models, as
well as for other dynamical network processes [9,11,15–17]. In
addition, explicit formulae for the Gramian inverse in terms of the
network model’s spectrum have been developed, using Cauchy
matrix properties [9]. These explicit computations give insight
into the relationship between the network model’s spectrum and
the required control energy.

The purpose of this study is to develop new characterizations
of the Gramian and its principal submatrices in the context of a
canonical discrete-time network consensus model, with the goal
of assessing target control metrics. Relative to the earlier studies
on the Gramian of network models, the main contributions of
this work are to: (1) characterize principal submatrices of the
Gramian and their inverse, in addition to the full Gramian matrix;
(2) give new insights into the sign patterns and eigenvalues of
Gramian- and Gramian-submatrix inverses; (3) develop graph-
theoretic majorizations on the Gramian’s entries; and (4) assess
target control metrics and optimal inputs using the results on
Gramian submatrices. The analyses primarily draw on the dif-
fusive structure of the network model, which imposes a spatial
pattern on the input response of the network. A main result
is that Gramian submatrix inverses exhibit a special sign pat-
tern as well as a dependence on cutsets of the network graph,
which allows majorization of the control energy and analysis of
minimum-energy inputs.

Although our focus here is on target control for a consensus
model, the analyses of Gramian submatrices are germane to
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the control and estimation of various network dynamical pro-
cesses with a diffusive or nonnegative structure. In particular,
the analyses are relevant to the controllability analysis of other
discrete-time models with nonnegative state matrices and
continuous-time models with Metzler state matrices (e.g., models
for infection spread, economic systems, etc.) [18,19]. The results
also inform other problems in network estimation and control
which require consideration of Gramians and Markov parameters,
including observability analysis and model reduction [20,21].

The article is organized as follows. The network consensus
model is presented in Section 2, and analysis of target control
metrics in terms of the Gramian is reviewed in Section 3. The
main results on the Gramian, and their implications on target
control, are developed in Section 4. Finally, the graph-theoretic
characterization of target control is illustrated in an example in
Section 5.

2. Model

A network with n nodes, labeled 1, . . . , n, is considered. Each
node i has a scalar state xi[k] which evolves in discrete time (k ∈

Z+). A set S containing m nodes, which we call the source nodes,
are amenable to external actuation. The nodes’ states evolve
according to:

x[k + 1] = Ax[k] + Bu[k], (1)

where the state vector is x[k] =

⎡⎢⎣x1[k]
...

xn[k]

⎤⎥⎦, A = [aij] is a row-

stochastic matrix (aij ≥ 0,
∑n

j=1 aij = 1 for each i), u[k] =⎡⎢⎣u1[k]
...

um[k]

⎤⎥⎦ specifies the input (actuation) signals at the m source

nodes, and B is an n×m matrix whose columns are 0–1 indicators
of the source nodes in S.

The manipulation of the states of p target nodes specified in
a set T is of interest. The target state vector y[k], defined as
containing the states of the p target nodes at time k, can be
expressed as:

y[k] = Cx[k], (2)

where C is a p × m matrix whose rows are 0–1 indicators of
the target nodes in T . We refer to the model as a whole as
the input–output network consensus model or simply the network
model.

A weighted digraph Γ is defined to represent the topology
of nodal interactions in the network model. Specifically, Γ is
defined to have n nodes labeled 1, . . . , n, which correspond to
the n vertices. A directed edge is drawn from vertex i to vertex
j if and only if aji > 0, and the weight of the edge is set to aji.
We note that the graph may include self loops (i.e., edges from
vertices to themselves). The sum of the weights of the incoming
edges to each vertex is 1. An edge in Γ from node i to node j
indicates that node j’s state at time k + 1 is directly influenced
by the node i’s state at time k. The vertices corresponding to
the source and target nodes are referred to as source and target
vertices, respectively.

Throughout the article, we assume that the graph Γ is ergodic,
which means that it is strongly connected (i.e. has a directed
path between each ordered pair of vertices) and also aperiodic
(i.e. the greatest common factor among path lengths between
any two vertices is 1). Equivalently, this assumption can be ex-
pressed as the matrix A being irreducible (having no permutation
which yields an upper triangular matrix) and aperiodic (in the

sense that there is a power of the matrix that is strictly pos-
itive), please see [22] for further details on these definitions.
Under this assumption, the unactuated model reaches consensus,
i.e. the manifold where all nodes’ states are identical is globally
asymptotically stable.

3. Preliminaries: Target control and the Gramian

Target control of the network model is primarily concerned
with two questions [10,11]: (1) deciding whether the input u[k]
can be designed to guide the target state vector y[k] to a desired
goal (i.e. analyzing target controllability); and (2) determining how
much actuation energy or effort is needed to do so (i.e. assessing
target control metrics). Our primary focus here is on assessing
target control metrics.

As a starting point, we consider the following definition of
target controllability:

Definition 1. The input–output network-consensus model is said
to be target controllable over [0, kf ] if, for any goal y ∈ Rp,
an input signal u[0], . . . ,u[kf − 1] can be designed to drive the
network model from a relaxed initial state x[0] = 0 to the target
state y[kf ] = y.

In the case that the network model is target controllable over
an interval [0, kf ], a number of metrics for the energy required
to guide the target state may be interest. Broadly, these various
metrics give an indication of the ease or difficulty with which
the external actuation can be used to guide the target, and hence
capture the manipulability of the dynamics through actuation.
These manipulability metrics may be interpreted as measures of
network flexibility, in the sense that they capture the ease with
which an operator can guide target states to desirable values.
Conversely, however, the metrics may be interpreted as measures
of security, in situations where they capture the ease/difficulty
with which an adversary can hijack the target state via actuation.
Our work in this area has largely been motivated by threat assess-
ment problems for infrastructural and social networks, hence our
definitions below reflect a security perspective. At the end of this
section, we present a couple of conceptual examples that further
illustrate the relevance of the definitions to security and threat
assessment problems.

The first metric of interest is minimum input energy required
to achieve a particular goal state. This notion is formalized in the
following definition:

Definition 2. The target-control energy for an interval [0, kf ]
and goal state y is defined as E(kf , y) = minu[0],...,u[kf −1]

∑kf −1
i=0

uT
[i]u[i], subject to the constraint that the input sequence drives

the system from a relaxed state to y[kf ] = y. We refer to an
argument (input sequence) that achieves the minimum as an
optimal target-control input.

Additionally, the energy required to drive a scalar projection of
the target state to a unit value may be important to characterize,
as an indication of the manipulability of key output statistics. This
notion is formalized as follows:

Definition 3. The projection-manipulation energy for an inter-
val [0, kf ] and projection vector α is defined as F (kf , α) =

minu[0],...,u[kf −1]
∑kf −1

i=0 uT
[i]u[i], subject to the constraint that the

input sequence drives the system from a relaxed state to αTy[kf ]
= 1. We refer to an input sequence that achieves the minimum
as an optimal projection-manipulation input.
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The projection-manipulation energy captures the effort re-
quired to alter output statistics, such as the average of the target
nodes’ states, or the difference between two target nodes’ states.

Often, it is of interest to characterize extremal values of the
target-control energy across goal states with a particular norm, or
of the projection-manipulation energy across projection vectors
of a certain norm. In particular, the minimum value of the target-
control energy across unit-norm goal states indicates the lowest
effort using which the target state can be driven away from its
equilibrium by a unit amount; thus, it is a holistic measure of
the difficulty that an adversary would have in manipulating the
target state, i.e. a security measure. This notion is formalized in
the following definition:

Definition 4. The minimum of the target-control energy over
unit-two-norm goal states, i.e. Emin(kf ) = miny s.t. ∥y∥2=1 E(kf , y),
is referred to as the target security of the network model. A goal
state y that achieves the minimum is denoted as ymin, and is
termed a minimally-secure goal.

Meanwhile, the minimum of the projection-manipulation en-
ergy across unit-norm projection vectors is an indication of the
easiest-to-manipulate statistic of the target state. Again, the min-
imum indicates in a holistic sense the difficulty that an adversary
would have in manipulating target statistics or projections, and
hence also can be considered as a security measure. This notion
is formalized next:

Two metrics across goal states and projection vectors, respec-
tively, are indications of the security of the network model to
manipulation. These global security notions are formalized in the
following definitions:

Definition 5. The minimum of the projection-manipulation en-
ergy over projection vectors with unit one-norm, i.e. Fmin(kf ) =

minα s.t. ∥α∥1=1 F (kf , α), is referred to as the projection security of
the network model. A projection vector α that achieves the mini-
mum is denoted as αmin, and is termed a minimally-secure projec-
tion.

Remark. Other norms may be used in the security definitions.
We have assumed a 1-norm constraint on the projection vector
in the projection-security definition, because the weighted sum
of nodal quantities is often of interest for diffusive processes.
Meanwhile, we have assumed a two-norm constrain on the goal
state in the target security definition, in keeping with standard
assessments of controllability/security of linear models.

Target controllability and the target-control metrics can read-
ily be characterized in terms of principal submatrices of the
controllability Gramian of the network model. The controllability
Gramian for the network model over the interval [0, kf ] is given
by:

W (kf ) =

kf −1∑
i=0

(AiB)(AiB)T . (3)

We define principal submatrices of the controllability Gramian
using a set B which lists a subset of the nodes 1, . . . , n in the
network. The B-controllability Gramian W (B, kf ) is defined as the
principal submatrix of W (kf ) in which the rows and columns
indicated in B are maintained.

The following lemma provides characterizations of target con-
trollability and the target control metrics in terms of the
T -controllability Gramian (i.e. the principal submatrix of con-
trollability Gramian associated with the target nodes T ). These
results follow directly from standard analyses of output control-
lability [23,24], hence the proof is omitted.

Lemma 1. The input–output network-consensus model is target
controllable if and only if the T -controllability Gramian W (T , kf )
is invertible.

If the network model is target controllable, then the target-control
energy is given by:

E(kf , y) = yTW (T , kf )−1y, (4)

and an optimal target-control input is

û[i] = (CAkf −i−1B)TW (T , kf )−1y (5)

for i = 0, . . . , kf − 1. Further, the target security is given by:

Emin(kf ) =
1

λmax(W (T , kf ))
, (6)

where λmax(W (T , kf )) refers to the largest eigenvalue of matrix
W (T , kf ). The minimally secure goal is given by

ymin = vmax(W (T , kf )), (7)

where vmax(W (T , kf )) is the right eigenvector of W (T , kf ) associated
with the largest eigenvalue.

The projection manipulation energy is given by:

Fmin(kf , α) =
1

αTW (T , kf )α
, (8)

The projection security is given by

Fmin(kf ) =
1

maxi[W (T , kf )]i,i
, (9)

The minimally-secure projection is given by αmin = ej, where j =

argmaxi[W (T , kf )]i,i.

Lemma 1 is the starting point for the main graph-theoretic and
structural analyses developed in the paper.

Conceptual examples

We conclude the formulation and preliminary analysis of the
target-control metrics with two conceptual examples, which il-
lustrate the relevance of the definitions to threat-assessment and
security problems.

Example 1: Industrial-process security. Industrial systems often
involve diffusive or flow processes, which take the form of the
consensus dynamics. For instance, industrial systems may include
mass-balance processes among reservoirs, which can be repre-
sented using a network synchronization or consensus model [25].
Likewise, chemical processes in industrial systems admit lin-
earizations which are consensus processes, to within a scaling
of the state variables (i.e. they are scaled consensus processes).
Controllers for these processes increasingly use networked cyber-
systems, leading to a growing concern that cyber attackers can
manipulate the physical states of the industrial systems; indeed,
several recent events have highlighted such vulnerabilities. A
cyber-attacker which has the ability to manipulate independent
components in these industrial processes can be modeled as
setting actuations at one or a small set of network components.
The attacker may be focused on modifying certain critical target
states (e.g. certain critical reservoir levels or chemical concen-
trations), with the intent of causing systemic failures or damage
to hardware. Furthermore, the ease with which the attacker can
manipulate the target can be abstractly measured by the required
size (energy) of the input. Thus, the analysis of cyber attacks
can be abstracted to a target control metric analysis. We note
that several of the defined metrics may be of interest, including
the target-control energy for certain sensitive goal states, the
projection-manipulation energy for certain key statistics, and the
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holistic security metrics. The highly abstracted formulation is
appealing because it can potentially give simple graph-theoretic
insights into the manipulability of industrial processes, in addi-
tion to allowing numerical computation using the Gramian-based
analysis presented above.

Example 2: Manipulation of information-diffusion processes. Con-
sensus models have been abstractly used to capture information
diffusion and decision-making in social networks [26]. While
these models are a significant abstraction of reality, they are
representative of some information-flow processes that occur in
social networks. They also provide a framework for characterizing
manipulation of decision-making processes by external adver-
saries, using a linear network consensus model with imposed
actuation [27]. The energy metrics defined above abstractly cap-
ture the effort needed by a stakeholder to manipulate remote
target states or state projections (e.g., the average opinion of a
group of target individuals). Thus, the Gramian-based analyses
of the consensus model are applicable in understanding manipu-
lation of information-diffusion processes from a graph-theoretic
perspective.

4. Main results

Per Lemma 1, target controllability and the target control
metrics are tied to properties of the controllability Gramian of
the network model. Our focus here is to develop structural and
graph-theoretic results on the Gramian, with the aim of giving
insights into target control. Because a number of graph-theoretic
results have already been developed for the binary question of
target controllability [10,11,28], we will primarily focus on the
target-control metrics.

First, we identify some matrix-theoretic properties of Gramian
submatrices and their inverses for the network model. These
properties depend on the diffusive structure of the network-
consensus model, but not on the specifics of the network’s topol-
ogy.

Theorem 1. Consider any principal submatrix of the Gramian for the
network model, say Q = W (B, kf ). Also, for invertible Q , consider
R = Q−1. The matrices Q and R have the following properties:

(1) Q is doubly nonnegative, i.e. it is symmetric, positive semi-
definite, and entry-wise nonnegative. For sufficiently large kf ,
Q is entry-wise strictly positive

(2) The eigenvalues of Q are real, nonnegative, and non-defective.
For sufficiently large kf , the largest eigenvalue λmax(Q ) has
algebraic multiplicity of 1, and its associated eigenvector
vmax(Q ) is strictly positive (to within a scale factor).

(3) λmax(Q ) ≤ λmax(W [kf ]). Furthermore, for sufficiently large kf ,
the inequality is strict.

(4) The matrix R is symmetric and positive definite. For suffi-
ciently large kf , R is irreducible.

(5) Consider any permutation T = PRP−1 of the matrix R, and

consider any block-partition of T as T =

[
T11 T12
T T
12 T22

]
where

T11 is square. Assuming that kf is sufficiently large, the matrix
T12 has at least one negative entry.

(6) For the special case that the cardinality of the set B (denoted
|B|) is 2, the matrix R is a nonsingular M matrix.

Proof. Proof of Item 1: The Gramian is symmetric and positive
semidefinite, hence it is immediate that the principal submatrix
Q is also symmetric and positive semidefinite. We characterize
the signs of the entries in Q = [qij] as follows. First, these
entries are expressed in terms of the impulse responses of the
network model at network nodes due to inputs at each source

node. To simplify indexing in this analysis, we assume without
loss of generality that the target nodes are the nodes 1, . . . , p,
and hence the Gramian submatrix of interest is a leading principal
submatrix. In this case, the entry qij can be written as qij =

∑
z∈S hT

zi,kf
hzj,kf , where hzl,kf =

⎡⎢⎢⎢⎣
eTl ez
eTl Aez

...

eTl A
kf −1ez

⎤⎥⎥⎥⎦, where the notation

ew is used for a 0–1 indicator vector with wth entry equal to
1. We notice that hzl,kf encodes the impulse response at node l
due to an input at node z. Since the matrix A is nonnegative, it
is immediate that hzl,kf is nonnegative, and hence qij ≥ 0. From
the fact that A is irreducible and aperiodic, it follows that the
final entry in the vector hzl,kf is strictly positive for all z and l, for
all sufficiently large kf (see [22]). Thus, qij is necessarily strictly
positive for sufficiently large kf .

Proof of Item 2: Since Q is symmetric and positive semidef-
inite, it is immediate that its eigenvalues are real, nonnega-
tive, and nondefective (i.e. each eigenvalue’s algebraic and geo-
metric multiplicities are identical). For sufficiently large kf , we
have shown above that Q is strictly positive. It thus follows
from the Frobenius–Perron theory that Q has a dominant eigen-
value (an eigenvalue with magnitude larger than any other eigen-
value) with algebraic multiplicity 1, whose eigenvector is strictly
positive (upon appropriate scaling) [22].

Proof of Item 3: The inequality λmax(Q ) ≤ λmax(W [kf ]) is an
immediate consequence of the fact that Q is a principal submatrix
of the positive semidefinite matrix W [kf ]. The strictness of the in-
equality for sufficiently large kf can be proved by contradiction. If
λmax(Q ) was equal to λmax(W [kf ]), then from the Courant–Fisher

theorem [29], maxv
vTW [kf ]v

vT v would equal λmax(Q ), and further the
argument maximizing the quadratic form would be the dominant
eigenvector of W [kf ]. However, notice that substituting v =[
vmax(Q )

0

]
into the quadratic form yields λmax(Q ), but this v

cannot be a dominant eigenvector since it is not strictly positive.
Hence, a contradiction is reached.

Proof of 4: Since Q is invertible, it is in fact positive definite
(in addition to being symmetric and positive semidefinite). It is
immediate that R = Q−1 is symmetric and positive definite. Since
Q is elementwise strictly positive, it follows that R = Q−1 is
irreducible.

Proof of 5: This result on the sign pattern of the inverse was
proved for the class of doubly-positive matrices (positive-definite
matrices with strictly-positive entries) by Fiedler in [30], and gen-
eralized to the class of irreducible doubly nonnegative matrices in
our recent work (see Theorem 1 of [31].

Proof of 6: R is positive definite matrix, and hence its diagonal
entries are positive as is its determinant. The off-diagonal entries
are seen to be negative from the matrix inversion formula for
2 × 2 matrices. Thus, the matrix is an M matrix. ■

Remark 1. The characterizations in Theorem 1 crucially depend
on the doubly-nonnegative structure of the Gramian, which is
a consequence of the nonnegative structure of the network-
consensus model (as defined by nonnegative state, input, and
output matrices). Doubly-nonnegative matrices also arise in other
contexts, such as semi-definite programming and covariance-
matrix analysis [32,33].

Item 5 of Theorem 1 indicates that inverses of Gramian sub-
matrices have a sophisticated sign pattern. While the diagonal
entries of the inverse are positive, the off-diagonal entries may
be of either sign. Item 5 indicates, however, that some of the
off-diagonal entries must be negative. The pattern of nonnegative
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off-diagonal entries can be given a graph-theoretic interpretation,
which helps to give insight into the target-control metrics. To
formalize this interpretation, it is helpful to define a graph that
represents the sign pattern of the inverse of a Gramian submatrix.
Specifically, we define the negative-inverse graph for the invert-
ible Gramian submatrix W (B, kf ) as an (unweighted, undirected)
graph on |B| vertices labeled 1, . . . , |B|, where the notation |B|

indicates the cardinality of the set. An edge is drawn between
vertex i and j if [W−1

]ij is negative. The following corollary is an
immediate consequence of Item 5 of Theorem 1:

Corollary 1. The negative-inverse graph for any invertible Gramian
submatrix W (B, kf ) is connected.

The matrix-theoretic properties of the Gramian’s principal
submatrices developed in Theorem 1 allow characterization of
the defined target-control metrics and associated optimal input
signals. Several results on the target-control metrics are listed
in the following theorem, and then interpreted in the following
discussion. The theorem and ensuing proof uses the notation |x|
to indicate the entry-wise absolute value of a vector x.

Theorem 2. Assume that the input–output network-consensus
model is target controllable. The target-control metrics and asso-
ciated optimal input signals have the following properties, for all
sufficiently large kf :

(1) The network model has a minimally-secure goal ymin which is
strictly positive. Additionally, the optimal input signal for the
minimally-secure goal is nonnegative for k = 0, . . . .kf − 1.

(2) When the network has two target nodes, the target control
energy satisfies E(kf , |y|) ≤ E(kf , y) for any goal state y.

(3) The projection-manipulation energy satisfies Fmin(kf , |α|) ≤

Fmin(kf , α) for any projection vector α. Further, the optimal
input signal for manipulation of any projection is nonnegative.

(4) The global security metrics satisfy the inequality: Emin,full(kf )
< Emin(kf ) < Fmin(kf ), where Emin,full(kf ) refers to the target-
security metric when the set of target nodes T contains all
nodes in the network.

Proof. Proof of Item 1: The minimally-secure goal ymin is the
dominant eigenvector ofW (T , kf ). From Item 2 of Theorem 1, this
dominant eigenvector is strictly positive. From Eq. (5), the optimal
target-control input for this goal is û[i] = (CAkf −i−1B)TW (T , kf )−1

ymin. Since ymin is an eigenvector of W (T , kf ), it is also an eigen-
vector of W (T , kf )−1. Thus, W (T , kf )−1ymin is positive, and it
follows that û[i] is nonnegative.

Proof of Item 2: The result follows immediately from the fact
that W (T , kf )−1 is an M-matrix in this case.

Proof of 3: Since W (T , kf ) is a nonnegative matrix, it fol-
lows that |αT

|W (T , kf )|α| ≥ αTW (T , kf )α. The inequality on the
projection-manipulation energy follows immediately. The non-
negativity of the input sequence then follows from a direct com-
putation of the optimal input sequence.

Proof of 4: The inequality relating Emin,full(kf ) and Emin(kf ) fol-
lows from Item 3 of Theorem 1. The inequality relating Emin(kf )
and Fmin(kf ) can be derived by noting that λmax(W (T , kf )) ma-
jorizes the diagonal entries of W (T , kf ); this follows using the
same argument as used to derive Item 3 of Theorem 1. ■

Item 1 of Theorem 2 indicates that the network model always
has a minimally-secure goal (the unit-norm goal that takes the
minimum energy to reach) in the positive orthant. Further, the
lowest-energy input needed to reach this goal is nonnegative. It is
worth noting, however, that the minimum-energy input needed
to reach other positively-valued goals need not be positive.

Because of the diffusive structure of the network dynam-
ics, one might postulate that goal states in the positive orthant
(i.e., goals with identically-signed entries) require less energy to
achieve. Item 2 in the theorem demonstrates that goal states in
the positive orthant indeed require less energy to reach com-
pared to their sign-reversed versions, when there are only two
target nodes. In other words, it is easier to move any pair of
nodes’ states to a more synchronized goal (with both nodes’ goal
states having the same sign), than to a comparable differentially-
signed goal. The low-energy characteristic of the positive orthant
results specifically form the M-matrix structure of the inverse
Gramian submatrix in the two-target case. However, the result
does not generalize to models with more than two target nodes:
as Theorem 1 indicates, the inverse Gramian submatrix has a
complicated sign pattern when the target set has more than
two nodes, which means that mixed-sign goals may sometimes
require less energy to reach than their positive orthant coun-
terparts. However, the connectedness of the negative-sign graph
(Corollary 1) does indicate that low-energy control is possible for
many goal states in the nonnegative orthant.

Per Item 3, projections defined by vectors in the first quadrant
are easier to manipulate than their sign-reversed counterparts,
regardless of the number of target states. This characterization
is a direct consequence of the nonnegative form of the Gramian
submatrix.

Finally, Item 4 provides a comparison of different global secu-
rity metrics. The inequalities follow immediately from the pos-
itive definiteness of the Gramian and its submatrices, however
the fact that they are strict is a consequence of the doubly-
nonnegative structure of the Gramian.

Remark. All goal states in the positive orthant require less energy
to reach than their sign-reversed counterparts if the correspond-
ing inverse Gramian submatrix is an M-matrix. Per the discussion
above, this is guaranteed when the network has two target nodes.
When the network has three or more target nodes, the inverse
Gramian submatrix may or may not be an M-matrix. The class
of nonnegative matrices whose inverses are M-matrices has been
characterized algebraically in the linear-algebra literature (see
e.g. [34], and these results can be brought to bear to check
whether positive-orthant goal states necessarily can be reached
with low energy.

Next, we study how the graph topology of the input–output
network consensus model constrains the associated Gramian sub-
matrix and its inverse. The main outcome of this analysis is
that the magnitudes of the entries in the Gramian submatrix are
small if the target nodes are far from the source. In fact, the
entries decrease monotonically as the target nodes are moved
further away from the source nodes, in a certain sense (related
to cutsets of the network graph). Conversely, metrics related to
the inverse Gramian are large if the target nodes are far from the
source nodes. To formalize these notions, we find it convenient
to consider vertex-cutsets in the network graph that separate the
source and target vertices. Formally, a set of vertices C in the
graph Γ (equivalently, nodes in the network) is referred to as a
separating cutset, if all directed paths between source and target
nodes in Γ pass through a vertex in C.

The following theorem characterizes the principal submatrix
of the Gramian associated with the network model (i.e. the
T -Gramian submatrix), and its inverse, in terms of a separating
cutset:

Theorem 3. Consider the Gramian submatrix W (T , kf ) for the
input–output network-consensus model. Also, let C be a separating
cutset of the network graph Γ . Then the following inequalities hold:
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(1) [W (T , kf )]ij ≤ maxl[W (C, kf )]ll. That is, all entries in the
Gramian submatrix associated with the target nodes are
smaller than at least one of the diagonal entries of the
Gramian matrix corresponding to the separating cutset nodes.

(2) Consider any vector α such that |α|
T1 = 1. Then αTW (T , kf )

α ≤ maxi[W (C, kf )]ii.
(3) λmax(W (T , kf )) ≤ pmaxi[W (C, kf )]ii, where p is the number

of target nodes.

Proof. From the proof of Theorem 1, the diagonal entries of
the Gramian Q = W (kf ) can be written in terms of the im-
pulse responses of the network model at the corresponding
nodes. Specifically, the lth diagonal entry can be written as qll =∑

z∈S hT
zl,kf

hzl,kf .
To prove the theorem, we first compare qll for l ∈ C with

qll for l ∈ T . The crux of the proof lies in recognizing that the
impulse responses hzl,kf for l ∈ T can be expressed in terms of
the impulse responses hzl,kf for l ∈ C. To express the impulse
response in this way, let us first define a set V which contains all
nodes that are isolated from the source nodes by C. (We note that
the set V contains T as well as all other nodes separated from the
source nodes by the cutset). The vector x̂[k] is defined to contain
the states of the nodes in V . Then notice that the response at any
node l within V due to an impulse input at node z can be found
by solving:

x̂[k + 1] = Â̂x[k] + B̂hz,kf [k] (10)

hzl,kf [k] = eTp x̂[k], (11)

where Â is the principal submatrix of A formed by maintaining the
rows/columns identified in V , B̂ is the submatrix of A with rows
specified by V and columns specified by C, hz,kf [k] concatenates
the impulse responses hzl,kf for l ∈ C at time k, and the 0–1
indicator vector ep is a 0–1 indicator vector which selects the re-
sponse at node l from the vector x̂[k], We note that the expression
holds for k = 0, 1, . . . , kf . We stress that this expression allows
computation of the impulse response at any node l in T without
requiring tracking of the states of nodes outside V , provided that
the impulse responses at nodes in C are known.

From Eq. (10), it follows that

hzl,kf [k] = eTp
[̂
Ak−1̂B . . . Â̂B B̂

]
hz,kf , (12)

where hz,kf =

⎡⎢⎣ hz,kf [0]
...

hz.kf [k − 1]

⎤⎥⎦. Now consider the sum of the

entries in each row of the matrix
[̂
Ak−1̂B . . . Â̂B B̂

]
. The sum

of each row in this matrix is less than or equal to the sum

of the corresponding row in the top-right block of
[̂
A B̂
0 I

]k−1

,

where the dimension of the identity matrix has been chosen
so that exponentiated matrix is square. However, as the matrix[̂
A B̂
0 I

]
has unity row sums, so does its powers. Thus, the vector

eTp

[̂
A B̂
0 I

]k−1

has entries that are nonnegative and sum to less

than 1. Considering Eq. (12) for k = 0, 1, . . . , kf , we thus find
that hzl,kf can be found by convolving the impulse responses hzi,kf
for i ∈ C with nonnegative signals, whose total sum is less
than 1, and then summing. Further, the same convolution can be
applied to find the impulse response for each source node z ∈ S.
However, it is known that convolution by a nonnegative signal
whose entries sum to less than 1 serves to decrease the energy
(two-norm) of a signal. We thus recover that qll =

∑
z∈S hT

zl,kf
hzl,kf

must be smaller for each l ∈ V as compared to at least one l ∈ C.

Since T ∈ V , we have thus shown that the diagonal entries of
W (T , kf ) are less than or equal to maxl[W (C, kf )]ll. Finally, from
the fact that W (T , kf ) is doubly nonnegative, it is immediate
that the off-diagonal entries are less than or equal to the largest
diagonal entry. Thus, Item 1 of the theorem statement is verified.
Items 2 and 3 then follow immediately from standard properties
of positive definite matrices. ■

The graph-theoretic analyses of Gramian submatrix proper-
ties in Theorem 3 immediately yield graph-theoretic bounds
on the defined target control metrics. In particular, the target
control metrics can be majorized in terms of the energy re-
quired to manipulate the nodes on any separating cutset of the
network graph. To present these comparisons, it is helpful to
explicitly define control energy metrics for the nodes on a sepa-
rating cutset. Specifically, first consider any vertex c contained
in a separating cutset C of the network graph. We refer to
the minimum input energy required to move the state of the
corresponding network node c to a unity value over the interval
[0, kf ] (assuming that the network is initially relaxed) as Ec(kf ).
In analogy with Definition 2, Ec(kf ) can be formally defined as
Ec(kf ) = minu[0],...,u[kf −1]

∑kf −1
i=0 uT

[i]u[i], subject to the constraint
that the input sequence drives the system from a relaxed state to
xc[kf ] = 1. We then define the cutset-control energy as EC(kf ) =

minc∈C Ec(kf ). The target-control metrics can be majorized in
terms of the cutset-control energy, as follows:

Theorem 4. Consider the input–output network consensus model.
The following inequalities hold for the target-control metrics, for any
separating cutset C of the network graph:

(1) The projection-manipulation energy satisfies F (kf , α) ≥ EC
(kf ) for any α such that |α|

T1 = 1.
(2) The projection security satisfies Fmin(kf ) ≥ EC(kf ).
(3) The target security satisfies Emin(kf ) ≥

1
pEC(kf ).

Proof. Item 1 in the theorem follows from Item 2 of Theorem 3,
together with the expression for the projection-manipulation en-
ergy in Lemma 1. Item 2 is verified by noticing that the inequality
in Item 1 holds for all α with unit one-norm, and hence holds for
the vector α that minimizes F (kf , α). Item 3 follows from Item 3
of Theorem 3, together with the expression for the target security
in Lemma 1. ■

Theorem 4 demonstrates that the target control metrics follow
a spatial majorization, with respect to cutsets in the network
graph away from the source nodes. Specifically, the energy re-
quired to manipulate any projection of the target state is larger
than the energy required to manipulate at least one of the nodes
on a separating cutset. Thus, state projections become more se-
cure (harder to manipulate) away from the source nodes. A simi-
lar result also holds for the target security metric, but with a scale
factor related to the number of nodes being manipulated.

Remark. The results in Theorems 3 and 4 based on separating
cutsets can be specialized for classes of graphs. One particularly
simple case is that of tree graphs (i.e. graphs where there is
a single directed path between any two vertices). In this case,
consider any connected subgraph of the network graph which
does not have any actuation vertices; since the graph is a tree, any
such subgraph can be separated from the actuation vertices via a
single-node cutset. It thus follows that the entries of the inverse
submatrix Gramian corresponding to the subgraph are majorized
by the inverse of the Gramian’s diagonal entry corresponding to
the single node cut. An immediate consequence is that the target-
control metrics are monotonically non-decreasing along paths
away from the actuation vertices. The results in the Theorem can
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be also specialized to characterize manipulation of nodes that are
at different distances from the actuation vertices, since the set of
nodes at a given distance form a separating cutset.

The values of the target-control metrics for long time horizons
(i.e., in the limit of large kf ) are of interest, since they serve
as lower bounds on energy requirements for arbitrary horizons.
Because the network-consensus process naturally asymptotes to
a synchronized state, one might expect that manipulation of
the dynamics to a desired synchronized state can be achieved
with a vanishingly-small energy requirement, given a long time
horizon. This notion can be formalized by characterizing Gramian
submatrices and their spectra for large kf . This characteriza-
tion of Gramian submatrices, and consequent analyses of the
target-control metrics, are formalized in the following theorem:

Theorem 5. Consider any principal submatrix of the Gramian for the
network model, say Q = W (B, kf ). The matrices Q has the following
properties:

(1) Q can be written as Q = (kf
∑

i∈S w2
i )11

T
+ H(kf ), where

the absolute values of the entries in the matrix H(kf ) have
an upper bound that is independent of kf . In the expression,
wi is ith entry in the left eigenvector of A associated with its
unity eigenvalue, where the eigenvector has been normalized
so that its entries sum to 1. Also, 1 represents a vector with
all entries equal to 1, of appropriate dimension.

(2) The dominant eigenvalue of the matrix Q is given by λmax(Q )
= |B|kf

∑
i∈S w2

i + λ̂(kf ), where |̂λ(kf )| has an upper-bound
that is independent of kf . The corresponding dominant eigen-
vector is given by v = 1 + c(kf ), where each entry in |c(kf )|
is upper bounded by an asymptotically-vanishing function of
kf .

Now consider target control for the input–output network-
consensus model. Provided that the model is target controllable, the
target security metric is given by: Emin(kf ) =

1
pkf

∑
i∈S w2

i
+ Ê(kf ),

where |̂E(kf )| is upper-bounded by an asymptotically-vanishing
function of kf . The minimally-secure goal is given by ymin = 1+c(kf ),
where each entry in |c(kf )| is upper bounded by an asymptotically-
vanishing function of kf .

Proof. The state matrix A for the network consensus model has
a single strictly dominant eigenvalue at 1, with a corresponding
right eigenvector of 1 and a left eigenvector which is entrywise
strictly positive. Thus, from the Jordan form of A, it follows im-
mediately that powers of the matrix can be expressed as An

=

1wT
+ Q (n), where wT is the left eigenvector of A associated

with the 0 eigenvalue (whose entries have been normalized to
sum to 1), and Q (n) is a matrix whose entries are each upper-
bounded by a decaying exponential function of n. Substituting
the expression for An into the Gramian formula, we find that
W (kf ) =

∑kf −1
n=0 (1wT

+ R(n))BBT (1wT
+ R(n)). With some algebra,

we find that W (kf ) = kf
∑

i∈S w2
i 11

T
+ J(kf ), where the entries

in J(kf ) each have an upper bound that is independent of kf . The
form of the principal submatrix Q of the Gramian given in the
theorem statement (Item 1) follows immediately.

To characterize the dominant eigenvalue/eigenvector for Q ,
notice that the matrix can be written as kf ((

∑
i∈S w2

i )11
T

+
1
kf
H(kf )). Next, notice that the matrix (

∑
i∈S w2

i )11
T has a non-

repeated eigenvalue equal to |B|
∑

i∈S w2
i , with corresponding

eigenvector equal to 1; the remaining eigenvalues of the matrix
are equal to 0. From standard eigenvalue and eigenvector pertur-
bation results for non-repeated eigenvalues [35], it follows that
the matrix (

∑
i∈S w2

i )11
T

+
1
kf
H(kf ) has a dominant eigenvalue

equal to |B|
∑

i∈S w2
i + g(kf ), where |g(kf )| is upper-bounded by

a function of the form g
kf

for some constant g . The corresponding
dominant eigenvector is equal to v = 1 + c(kf ), where each
entry in |c(kf )| is upper bounded by an asymptotically-vanishing
function of kf . The characterization of the dominant eigenvalue
and eigenvector in Item 2 of the theorem statement follows
immediately.

The characterization of the target security metric then follows
from Lemma 1. ■

Remark. The graph-theoretic analysis of Gramian submatrices
in Theorem 3 is relevant to myriad techniques which use the
Gramian, beyond assessment of the open-loop control energy. For
instance, the Gramian is used in several model reduction methods
such as the balanced truncation algorithm [21,36]. The graph-
theoretic analysis suggestion that, if the system being reduced
has a diffusive-network structure, these model reduction meth-
ods can be adapted to also maintain contiguous portions of the
network’s graph. We leave a careful study to future work.

Remark. The analyses of controllability-Gramian submatrices
developed in this letter (Theorems 1 and 3) can be immedi-
ately adapted for observability-Gramian submatrices for consen-
sus processes that are measured at a subset of nodes. However,
the results admit a different interpretation in the context of
target-state observability. As clarified in our previous work [11],
estimability of target states is related to submatrices of the in-
verse Gramian rather than inverses of Gramian submatrices. Thus,
the results developed here do not directly give insight into the
estimability of target states. Instead, inverses of observability
Gramian submatrices measure estimability of target states, when
the remaining states are known a priori.

5. Examples

We present two examples to illustrate the formal results on
Gramian submatrix inverses and target controllability.

Example 1. We illustrate matrix-theoretic properties of the
Gramian submatrix inverses developed in Theorem 1 and
Lemma 1, and discuss their implications on target control as
developed in Theorem 2. For this example, a network model with
5 nodes is considered, which has state matrix

A =

⎡⎢⎢⎢⎣
1/6 1/3 1/6 1/3 0
1/4 1/8 1/8 1/4 1/4

1/41/4 1/4 1/4 0
1/3 1/3 1/6 1/6 0
0 2/3 0 0 1/3

⎤⎥⎥⎥⎦. The network is as-

sumed to have a single source node, namely node 1, and control
over the time horizon [0, 50] is considered. The model dynamics
are representative of a time-sampled flow-balance process, such
as may occur in fluid flow among reservoirs or chemical reaction
processes.

First, we find the inverse of the 2 × 2 controllability Gramian
submatrix for the target set T = {3, 4}. The inverse is given

by
[

143.5 −142.4
−142.4 141.6

]
. As expected per Theorem 1, the inverse

matrix is seen to have negative off-diagonal entries. An imme-
diate consequence, as indicated in Theorem 2, is that goal states
in the first orthant require less energy than goal states in other
quadrants with the same-magnitude entries. Also of note, the

minimally-secure goal state is found to be
[
0.70
0.71

]
, which lies

close to the model’s equilibrium manifold wherein all nodes’
states are identical, which is in accordance the result on the
minimally-secure goal given in Theorem 5.
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Second, we also find the sign pattern of the inverse of the full
Gramian matrix (i.e., the submatrix inverse when the target set
includes all nodes). The sign pattern is as follows:⎡⎢⎢⎢⎣

+ + − + −

+ + + − −

− + + − −

+ − − + +

− − − + +

⎤⎥⎥⎥⎦ . (13)

We see that the inverse is in accordance with Lemma 1, in that
the negative-inverse graph is connected.

Example 2. The spatial majorization of target-control metrics, as
developed in Theorems 3 and 4, is illustrated in an example
50-node network. The example is inspired by problems related
to manipulation of opinion-dispersion processes in groups, such
as targeted advertisement of products in communities or social
networks [27]. Dynamic opinion-dispersion processes have been
represented using consensus-type models, and further targeted
manipulation of opinions has been studied within this context as
a target control problem [27]. These models are significant ab-
stractions of real-world opinion-dispersion processes. However,
they may be interesting as a means for obtaining graph-theoretic
insights into opinion manipulation – e.g., identifying vulnerable
locations and possible extent of impact of manipulators.

The example was constructed as follows. The network’s graph
Γ was formed by placing vertices randomly in the unit square,
and connecting vertices within a certain radius. The edge weights
of the incoming edges into each vertex were selected to be
identical, and were scaled to sum to 1. The consensus dynam-
ics considered in the study was instantiated on the graph (see
Fig. 1). We assume that the manipulative adversary can access
one node in the network, and can subject the node to actuation,
as indicated in red in Fig. 1.

We study the effort required by the adversary to manipulate
each individual node’s state in the network over a time period
of 200 steps. We do so by determining and comparing the target
security when each individual node is the target. Per Theorem 4,
the target security should improve along cutsets away from the
source node: specifically, the target security should be larger for
all nodes beyond a cutset as compared to the minimum target
security along the cutset. Computation of the target security
metrics for the example network show that this is the case.
Specifically, the target security metric when each node is the
target is displayed on the network graph in Fig. 1. Specifically,
the target security is indicated by the radius of the disk at each
node. It is seen that the nodes that are close to the source (actu-
ated) node in the graph can be manipulated with limited energy,
while distant nodes require significant energy to manipulate, as
formalized in Theorem 4. Interestingly, the target security grows
rapidly with distance in a neighborhood close to the source, but
grows only gradually at further distances. The example suggests
that manipulative actors have a sphere of influence where they
can alter opinions with limited effort, but also can gradually
manipulate opinions at remote locations with larger effort.

6. Conclusions and future work

A number of properties of controllability-Gramian submatrices
and their inverses have been determined, for a network con-
sensus model with actuation applied at a subset of network
nodes. Of particular note, we have shown that the submatrix
inverses display a sophisticated sign structure, which results
from their doubly positive (positive definite and also entry-wise
nonnegative) structure. We have also demonstrated that the
entries in the inverse matrices display a majorization with respect
to cutsets of the network graph. We have also demonstrated

Fig. 1. The energy required to manipulate each individual node in a network-
consensus process from a source node is shown, for a 50-node network. The
source node is colored red (see bottom right part of the plot). For each node,
the size of the disk indicates the energy requirement. Nodes near the source can
be manipulated with less energy. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

that these properties of controllability Gramian submatrices give
insight into target controllability metrics for network consen-
sus processes. The results are appealing from the perspective
of assessing threats and evaluating manipulation of network
processes, because they allow generic insights into the control
energy without requiring exhaustive numerical computation of
Gramian inverses.

The results developed here apply to a narrow class of linear
dynamical network models, which are significant abstractions
of real-world network processes. For instance, the models do
not capture the nonlinearities and stochastics that are typical
of many network processes, including most industrial processes
and social-network dynamics. Thus, the results developed here
are at best a starting point for assessing manipulation of many
real-world network processes. However, we believe that our anal-
ysis approach can be extended toward a much broader class of
models with diffusive structures. In particular, several key results
in our development only depend on the nonnegative structure
of the state matrix, and hence may naturally generalize to the
much broader class of linear and nonlinear positive systems.
Likewise, several graph-theoretic analyses primarily depend on
the diffusive or flow-like structure of the model, and hence may
be extensible to a broader class of stochastic and nonlinear dif-
fusive systems (e.g., queueing-network or stochastic automaton
models). We expect to pursue these generalizations as future
work.

Another interesting direction of future work is to study
whether actuation can be used to not only drive the target state
to a desired set, but to maintain the state in this set for a period
of time, as may be required in a number of applications. We note
that maintaining the state in a set may be infeasible even when
target control is feasible, and in general will take more effort than
simply driving the state to the target. The special structure of
the network consensus model may, however, allow maintenance
of the state with minimum additional effort in some cases, for
instance when the goal states are close to the consensus manifold.
We leave it to future work to delineate these cases.
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