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Abstract Human neuroimaging methods have provided a
number of means by which the connectivity structure of the

human brain can be inferred. For instance, correlations in

blood-oxygen-level-dependent (BOLD) signal time series
are commonly used to make inferences about ‘‘functional

connectivity.’’ Correlations across samples in structural

morphometric measures, such as voxel-based morphometry
(VBM) or cortical thickness (CT), have also been used to

estimate connectivity, putatively through mutually trophic

effects on connected brain areas. In this study, we have
compared seed-based connectivity estimates obtained from

four common correlational approaches: resting-state func-
tional connectivity (RS-fMRI), meta-analytic connectivity

modeling (MACM), VBM correlations, and CT correla-

tions. We found that the two functional approaches (RS-
fMRI and MACM) had the best agreement. While the two

structural approaches (CT and VBM) had better-than-ran-

dom convergence, they were no more similar to each other
than to the functional approaches. The degree of corre-

spondence between modalities varied considerably across

seed regions, and also depended on the threshold applied to
the connectivity distribution. These results demonstrate

some degrees of similarity between connectivity inferred

from structural and functional covariances, particularly for
the most robust functionally connected regions (e.g., the

default mode network). However, they also caution that

these measures likely capture very different aspects of
brain structure and function.

Keywords Multimodal comparison ! Cortical thickness !
VBM ! Resting-state fMRI ! MACM

Introduction

One of the promising aspects of neuroimaging methods,
such as MRI, PET, EEG, and MEG, is their use in com-

piling the human ‘‘connectome’’: in other words, how the

brain’s distinct regions are wired up via long-range axonal
projections to produce functional networks. Myriad

methodologies have been designed to obtain networks from

imaging data, and myriad analytic methods have been
introduced to analyze them. Graph theory has figured

prominently. Despite the understandable enthusiasm,

however, it is important to understand the assumptions and
limitations of these approaches; in particular, what do we
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mean by the term ‘‘connectivity,’’ and how does this defi-

nition differ (and converge) across imaging modalities,
methodologies, and analysis techniques?

One approach to this question is to characterize how

connectomes obtained via different approaches compare
with one another. Where do they agree and disagree? Is

there a systematic pattern to this correspondence that can

help us interpret it in biological or physical terms? Are
there specific factors that affect the degree of correspon-

dence? Such a characterization does not directly address
the question of how inferred connectivity relates to biol-

ogy, but it can help establish constraints on this question.

Recent studies have begun to approach this issue, finding a
good correspondence between resting-state functional

(Miranda-Dominguez et al. 2014) and diffusion-weighted

imaging (DWI)-based structural (Goulas et al. 2014) con-
nectivity estimates, and tract tracing evidence obtained

from macaque monkeys. Honey et al. (2009) similarly

found a substantial agreement between structural connec-
tivity, measured through DWI tractography, and both

empirical and simulated resting-state BOLD correlations.

More recently, Reid et al. (2015a) compared macaque tract
tracing evidence to human DWI, resting-state fMRI, and

structural covariance estimates of connectivity, and found a

fairly poor general correspondence, with fMRI/DWI hav-
ing the strongest agreement. In general, however, these

studies utilized relatively coarse parcellation schemes,

which limit the spatial specificity of the signals being
compared. In addition, while they provide useful global

characterizations of how connectivity compares across

modalities, they provide less insight into patterns specific
to particular regions of interest (ROIs). The use of seed-

based ROIs, on the other hand, allows the connectivity of a

specific parcel of cortical gray matter to be assessed with
respect to all other voxels or vertices in an imaging data

set, and the determination of these ROIs can be achieved

via principled functional, anatomical, and meta-analytic
approaches. Meta-analytic techniques, such as activation

likelihood estimation (ALE; Eickhoff et al. 2009), for

example, allow one to define a seed ROI based upon data
drawn from a large database of task-based fMRI results,

using a specific set of criteria and statistical contrasts.

The term ‘‘functional connectivity’’ (FC) is now ubiq-
uitous in the brain connectivity literature, but more accu-

rately refers to covariance or co-activation in functional

brain signals, most commonly the MRI-based blood-oxy-
gen-level-dependent (BOLD) signal. FC has been mea-

sured under both ‘‘task-free’’ resting-state conditions (RS-

fMRI), meant to capture intrinsic connectivity; and task-
based conditions, using a meta-analytic approach that

assesses the degree of co-activation between brain regions,

across many types of task. The latter is typically referred to
as meta-analytic connectivity mapping (MACM; Laird

et al. 2013; Eickhoff et al. 2010; Fox et al. 2014). While the

covariance structure of functional signals can certainly
carry information about the underlying physical networks

that mediate them, the interpretation of such covariance is

ambiguous, due to both the fact that correlations do not
support causal inference, and the poor temporal resolution

of the BOLD signal (typically 1–2 s, although new multi-

band acquisition techniques achieve as low as 370 ms; Xu
et al. 2013; Narsude et al. 2015), in relation to the rate at

which information is transferred along axons (the average
conduction delay of a myelinated corticocortical axon in

monkeys is estimated at 7 ms, and the generation of a

somatic postsynaptic potential requires approximately
5 ms; Swadlow and Waxman 2012; Roland et al. 2014).

The consequential temporal averaging of activation pat-

terns suggests that BOLD correlations are likely a convo-
lution of simultaneous and sequential activations, which

capture a general pattern of activation, rather than the

underlying physical connectivity directly (Messé et al.
2015). As such, FC measures are most useful for identi-

fying sets of regions which activate together over this

relatively coarse time interval, which are commonly
referred to as ‘‘networks’’ in the literature.

Structural covariance (SCov), which captures covari-

ance of gross morphological features (typically of gray
matter) across a population, in turn represents a much

coarser temporal scale (Alexander-Bloch et al. 2013; Evans

2013). The idea behind this approach is that covarying
structural features may capture long-term ‘‘mutually

trophic’’ influences on particular brain regions, a subset of

which likely reflects the physical connectivity structure
(Mechelli et al. 2005). This hypothesis is premised on the

notion that ‘‘form follows function’’; i.e., that the gross

morphological features measured by methods, such as
voxel-based morphometry (VBM; Ashburner and Friston

2000) or cortical thickness (CT; MacDonald et al. 2000;

Kim et al. 2005; Dale et al. 1999), are driven to some
extent by their rate of functional activation, in turn deter-

mined by long-range connectivity patterns. At the cellu-

lar/molecular level, there is certainly evidence of such a
relationship. It is well established, for instance, that the

success with which afferent signals produce excitatory

post-synaptic potentials (EPSPs) in their target neurons
drives the formation/retraction of synapses as a means of

modifying the strength of those specific connections (cf.

Engert and Bonhoeffer 1999; Bi and Poo 2001; Trachten-
berg et al. 2002). Moreover, blocking visual input via

prenatal enucleation (eye removal) in rats has been shown

to result in increased metabolism in somatosensory cortical
areas (barrel cortex), as well as significant growth in these

areas, as measured histologically (Zheng and Purves 1995).

Indeed, such relationships may be a key mechanism
through which developing nervous systems adapt to
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environmental conditions, although it remains unclear the

extent to which morphological plasticity remains in a
mature organism (reviewed in Li et al. 2006). At the

grosser scale of anatomical MRI, localized gray matter

increases have also been reported for experienced taxi
drivers (Maguire et al. 2000), adults learning to juggle

(Draganski et al. 2004), and bi-/multilingualism across the

lifespan (reviewed in Li et al. 2014).
The ‘‘mutually trophic’’ hypothesis suggests that SCov

may capture functional covariance on a much coarser time
scale. However, the empirical relationship between FC and

SCov remains largely uncharacterized. In a previous

analysis using whole brain parcellations, we reported a

modest agreement (r2 ¼ 0:2) between connectivity esti-

mates generated by RS-fMRI and cortical thickness

covariance (Reid et al. 2015a). In this study, we investigate
this relationship further, by comparing seed-based con-

nectivity inferred through four distinct approaches, two

measuring SCov and two FC. First, we estimated SCov
using: voxel-based morphometry, a volumetric method,

which estimates gray matter density from T1-weighted

intensities (Ashburner and Friston 2000); and surface-
based morphometry, which estimates the thickness of the

cortical gray matter by modeling the interface between

gray matter and its neighboring white matter and cere-
brospinal fluid (MacDonald et al. 2000; Kim et al. 2005;

Dale et al. 1999). Second, we estimated FC using: MACM,

in which functional co-activation patterns were obtained
across thousands of task-based fMRI experiments compiled

in the BrainMap database; and resting-state fMRI, captur-

ing average within-subject covariance across time in rest-
ing-state BOLD data obtained from a large, publicly

available data set (the Nathan Klein Institute Enhanced

Rockland Sample; NKI-E) (Nooner et al. 2012). This
approach allowed us to quantify the correspondence of

connectivity estimates both within structural and functional

modalities, and between them. We expected high agree-
ment between the two functional and the two structural

measures, since these methods are likely to capture highly

overlapping phenomena. Moreover, given the putative
associations between structure and function, we also

expected a lower but significant agreement between these

modalities.

Materials and methods

Data sets

For the MACM approach, we employed the BrainMap

database (Laird et al. 2009a, b, 2011) (http://www.brain

map.org), only including studies that reported group

analyses of functional mapping experiments with healthy

subjects. Studies, including clinical cohorts or testing drug
effects, were excluded from the analysis. No further

constraints (e.g., on acquisition and analysis details,

experimental design, or stimulation procedures) were
enforced. This resulted in an analysis of approximately

6500 experiments. Notably, this inclusive approach avoi-

ded bias which would otherwise have been imposed by
pre-selecting specific taxonomic categories. We elected

for this conservative approach, considering our currently
limited understanding of how specific psychological con-

structs, such as action and cognition, map onto regional

brain responses (Laird et al. 2011; Poldrack et al. 2011;
Poldrack 2006).

Resting-state fMRI and anatomical T1-weighted images

of 132 healthy volunteers (mean age 42.3 ± 18.08 years;
78 males) from the Enhanced NKI/Rockland sample

(Nooner et al. 2012) were obtained through the 1000

functional connectomes project (http://www.nitrc.org/pro
jects/fcon_1000/). These imaging data for this cohort were

collected using the same Siemens TimTrio 3T MRI scanner

(see below for a more detailed description), and have been
made publicly available for research.

Seed regions

In any seed-based connectivity analysis, the derivation of

the seed regions is a critical consideration. We selected
nine seed ROIs to maximize the spatial sampling of the

cortical sheet, as well as the variety of functional systems

which these regions likely subserve (see Fig. 1). Further-
more, we utilized ROIs derived from multiple distinct

approaches, to obtain a more generic set of regions, inde-

pendent of how they were derived. Accordingly, seed ROIs
were obtained from previous published studies, and were

derived using functional, anatomical, and meta-analytic

approaches. In the case of meta-analytic data, we obtained
images from the Archive of Neuroimaging Data (ANIMA;

Reid et al. 2015a), an open data source providing the

results of published meta-analytic studies, which is avail-
able at http://anima.fz-juelich.de. Table 1 lists each seed

region, along with the coordinates of their peak locations in

standard MNI-152 space, the study from which it was
derived, and its size in voxels.

A brief description of each ROI follows. Left primary

motor cortex (M1) was obtained through a bimanual
repetitive finger tapping task, as an fMRI contrast with

baseline (Roski et al. (2014). Right middle frontal gyrus

(MFG) was obtained through activation likelihood esti-
mation (ALE), showing convergence of fMRI activations

across studies investigating sustained attention (Langner

and Eickhoff 2013). Right middle temporal gyrus (MTG)
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was obtained from Bzdok et al. (2012), who performed an

ALE analysis across studies investigating theory of mind
and empathy. Left anterior insula (aINS) was isolated using

an ALE analysis of 14 functional paradigms known to

activate insula (Kurth et al. 2010). Hoffstaedter et al.
(2013) identified anterior middle cingulate cortex (aMCC)

bilaterally through a convergence of resting-state fMRI and
meta-analytic connectivity modeling (MACM) results. Left

anterior lateral prefrontal cortex (aLPFC) was obtained

through an ALE analysis of working memory (Rottschy
et al. 2012). Right ventromedial prefrontal cortex (vmPFC)

was obtained from a study showing convergence across

resting-state fMRI and MACM results focused on default
mode network (DMN) areas specifically associated with

social-affective processes (Amft et al. 2015). Schilbach

et al. (2012) identified the bilateral precuneus (PrC) using

an ALE approach to find a conjunction between regions

associated with emotional and social processing, and the
DMN. Finally, Malikovic et al. (2007) used observer-in-

dependent cytoarchitectonic mapping to identify the

boundaries of visual area V5.

Meta-analytic connectivity mapping

Meta-analytic connectivity mapping (MACM) assesses co-

activation of brain regions across a broad spectrum of task-
based fMRI experiments. To delineate co-activation of a

seed region, we first identified all experiments in the

BrainMap database (Laird et al. 2011) that reported group
analyses of functional mapping experiments of healthy

subjects, and which featured at least one focus of activation

in the respective seed. The convergence of foci reported in

Fig. 1 Seed regions for the analyses performed in this study (see Table 1 for list). All regions are expressed on the fiducial ICBM-152 symmetric
template surface, after projection from volumetric representations

Table 1 Seed regions used in this study, obtained using various methodologies

Region
[hemisphere]

Size
(vertices)

Name Derived from Study [ANIMA version] Centroid
(MNI-152)

X Y Z

M1 [L] 165 Left primary motor cortex Task-fMRI Roski et al. (2014) [n/a] -34 -26 56

MFG [R] 162 Right middle frontal gyrus ALE Langner and Eickhoff
(2013) [1]

44 40 20

MTG [R] 26 Right middle temporal gyrus ALE Bzdok et al. (2012) [1] 54 -8 -16

aINS [L] 99 Left anterior insula ALE Kurth et al. (2010) [1] -34 14 8

aMCC [B] 123 Bilateral anterior middle cingulate
cortex

MACM/task-
fMRI

Hoffstaedter et al. (2013)
[1]

-4 18 42

aLPFC [L] 146 Left anterior lateral prefrontal cortex ALE Rottschy et al. (2012) [1] -38 50 12

vmPFC [R] 51 Right ventromedial prefrontal cortex MACM/RS-
fMRI

Amft et al. (2015) [1] -2 48 -8

PrC [B] 122 Bilateral precuneus ALE Schilbach et al. (2012) [1] -2 -52 26

V5 [L] 65 Left middle temporal visual area
(MT)

Cytoarchitecture Malikovic et al. (2007) [n/a] -44 -72 0

For data retrieved from the ANIMA database (http://anima.fz-juelich.de), the corresponding version is also shown; otherwise ‘‘n/a’’ is indicated

ALE activation likelihood estimation, MACM meta-analytic connectivity modeling, RS-fMRI resting-state fMRI. Centroids are reported as
millimeter coordinates in MNI-152 space
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these experiments was quantified using the revised ALE

algorithm (Eickhoff et al. 2010) for coordinate-based meta-
analysis of neuroimaging results (Laird et al. 2009a, b;

Eickhoff et al. 2009). Reported activation foci are not

treated as single points, but rather as centers for 3D
Gaussian probability distributions capturing the spatial

uncertainty associated with each focus. The probabilities of

all foci reported in a given experiment are then combined
for each voxel, resulting in a modeled activation (MA) map

(Turkeltaub et al. 2012). Taking the union across these MA
maps yielded voxel-wise ALE scores describing the con-

vergence of results at each particular location of the brain.

To distinguish ‘true’ convergence between studies from
random convergence (i.e., noise), ALE scores were com-

pared to a null distribution reflecting a random spatial

association between experiments (Eickhoff et al. 2012).
Hereby, a random-effects inference was invoked, focusing

on the above-chance convergence between studies, rather

than clustering foci within a particular study. Significant
convergence of reported foci in other brain regions than the

seed indicates consistent co-activation, i.e., functional

connectivity with the seed.

Resting-state functional connectivity

Resting-state fMRI images of 132 healthy volunteers

(mean age 42.3 ± 18.08 years; 78 males) from the

Enhanced NKI/Rockland sample (Nooner et al. 2012) were
obtained through the 1000 functional connectomes project

(http://www.nitrc.org/projects/fcon_1000/). During the

resting-state scan, a fixation cross was presented, and
participants were instructed to: ‘‘Keep your eyes open and

stay awake’’ before each resting-state scan. For each sub-

ject, 260 resting-state EPI images were acquired on a
Siemens TimTrio 3T scanner using blood-oxygen-level-

dependent (BOLD) contrast [gradient-echo EPI pulse

sequence, TR = 1.4 s, TE = 30 ms, flip angle = 80", in
plane resolution = 3.0 9 3.0 mm2, 38 axial slices

(3.0 mm thickness) covering the entire brain]. The first

four scans were excluded from further analysis. The EPI
images were first corrected for movement artifacts by

affine registration using a two pass procedure in which the

images were first aligned to the initial volumes and sub-
sequently to the mean. The obtained mean EPI was then

spatially normalized to the MNI-152 template using the

‘unified segmentation’ approach (Ashburner and Friston
2000). The ensuing deformation was applied to all indi-

vidual EPI volumes. To improve signal-to-noise ratio and

compensate for residual anatomical variations, images
were smoothed by a 5-mm FWHM Gaussian. For each

voxel, the BOLD time series was pre-processed as follows.

To reduce spurious correlations, variance that could be
explained by the following nuisance variables was

regressed out: (1) six motion parameters derived from the

image realignment; (2) the first derivative of the realign-
ment parameters (Satterthwaite et al. 2013); (3) mean gray

matter, white matter, and CSF signal per time-point,

obtained by averaging across voxels attributed to the
respective tissue class in the SPM8 segmentation (Weis-

senbacher et al. 2009); and (4) coherent signal changes

across the whole brain, as reflected by the first five com-
ponents of a principal component analysis (PCA) decom-

position of the whole-brain time series [CompCor
denoising (Behzadi et al. 2007; Chai et al. 2012)]. All

nuisance variables entered the model as the first-order and

(with the exception of the PCA components) second-order
terms. Data were then bandpass filtered to preserve only

BOLD frequencies between 0.01 and 0.08 Hz (Cordes

et al. 2001).
For each subject, time series were extracted for all

voxels within a given seed region, and the first eigenvariate

of these was used as a region-wise time series. Pearson
correlation coefficients between this regional time series

and all other gray matter voxels in the brain were subse-

quently computed to quantify resting-state functional con-
nectivity (zu Eulenburg et al. 2012). These voxel-wise

correlation coefficients were then transformed into Fisher’s

Z scores and tested for consistency across subjects in a
random-effects analysis.

Voxel-based morphometry

To assess population-wise structural covariance with each

seed region, we used anatomical T1-weighted images from
the same subjects as described above for the RS-FC anal-

ysis. These images were acquired on a Siemens TimTrio

3T scanner using an MP-RAGE sequence (TR = 2.5 s,
TE = 3.5 ms, TI = 1200 ms, flip angle = 8",
FOV = 256 mm, 192 slices, voxel size 1 9 1 9 1 mm).

The anatomical scans were preprocessed using the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm) in SPM8 using

standard settings (DARTEL normalization, spatially

adaptive non-linear means denoising, a Markov random
field weighting of 0.15 and bias field modeling with a

regularization term of 0.0001 and a 60-mm FWHM cutoff).

The resulting normalized gray matter segments were
modulated only for the non-linear components of the

deformation; this ensured that only local, non-linear

deformations were used to estimate gray matter volume
(GMV). Normalized images were then smoothed using an

8-mm isotropic FWHM Gaussian kernel, and statistically

analyzed by non-parametrical permutation testing, using
the ‘‘permute’’ function in FSL. In particular, we first

computed the volume of the seed region by integrating the

modulated voxel-wise gray matter probabilities for each
subject. This vector of subject-specific local volumes
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represented the covariate of interest in the voxel-wise SPM

analysis, and age and sex were included as nuisance vari-
ables. Because we used only local, non-linear modulation,

total brain volume was not included in this analysis.

Cortical thickness

Cortical thickness measures the width of the cortical sheet
using a surface-based geometric modeling approach. Here,

thickness was computed using the CIVET pipeline (Zij-
denbos et al. 2002). This involves an initial N3 correction

for field non-uniformities (Sled et al. 1998), linear and non-

linear registration to the MNI152 population template
(Mazziotta et al. 2001), tissue classification with partial-

volume estimation (Tohka et al. 2004), and the approxi-

mation of GM/WM and GM/CSF boundaries using the
constrained Laplacian anatomic segmentation using prox-

imity (CLASP) algorithm (Kim et al. 2005; MacDonald

et al. 2000). CLASP uses a deformable surface model
approach to find the optimal surface mesh representing

borders between tissue classes. Cortical GM thickness is

then computed as the distance between the two surface
meshes along a pre-computed Laplacian field (tlaplace con-

straint). The resultant surface meshes contain 40,962 ver-

tices per hemisphere, and are subsequently co-registered to
a population average surface template using an iterative

vertex resampling approach, which finds an optimal fit

between the sulcal depth patterns of each individual sur-
face. This approach ensures vertex correspondence across

all subjects, allowing for intersubject comparisons (Lyt-

telton et al. 2007). Thickness values were smoothed with a
5-mm Gaussian kernel and adjusted for the age, sex, and

mean cortical thickness. Correlations in thickness were

then computed between each vertex in the seed region and
every other vertex in the surface.

Projection to cortical surface

Because cortical thickness is expressed on the cortical

surface, and to perform all comparisons in the same space,
we projected fMRI, MACM, and VBM statistical maps to

the iterative ICBM-152 middle template surface. Statistical

analyses performed in surface rather than volumetric space
have a number of benefits (Anticevic et al. 2008); perhaps,

most importantly, explicitly modeling the cortical sheet as

a surface prevents the attribution of spatial correspon-
dences to regions separated by sulci. Notably, both the

volumetric and surface representations were already co-

registered in ICBM-152 coordinate space. The volume-to-
surface transfer was done using an anisotropic Gaussian

projection, biased along the surface normal, as described in

Bojak et al. (2010). We used a Gaussian kernel with

ltangent ¼ 3 mm and lnormal ¼ 4 mm. The projection was

performed using ModelGUI software version 0.0.21-alpha

(http://www.modelgui.org). All subsequent comparisons
were performed in this surface space (i.e., vertices as

opposed to voxels). Since cortical thickness values are only

possible to estimate for neocortex, a medial wall and
brainstem mask was applied to all projected volumetric

stats, to ensure comparable distributions. Thus, all com-

parisons were exclusive to the cortical sheet.

Measures of comparison, thresholding,
and permutation testing

Bimodal similarity

For a comparison between two modalities, we required that

each distribution had an equal threshold density d (per-

centage of non-zero vertices). This is an important
requirement, as comparisons between matrices of unequal

density are known to produce trivial differences (van Wijk

et al. 2010). Thus, for a single comparison, connectivity
scores were thresholded to match a specific density, and a

bimodal similarity (BS) score was derived from the ratio of

the intersection and union of thresholded voxels (adjacency
matrix A) for the two modalities. To compute BS, we first

obtained the Jaccard index (Jaccard 1912), denoted U, for
each pair of modalities f and g:

Uðf ; g; dÞ ¼ jAf \Agj
jAf [Agj

:

In a typical fMRI/SCov analysis or meta-analysis, the

density of a distribution is determined by the application of
a statistical threshold, e.g., a ¼ 0:05, corrected for multiple

comparisons. However, while such an approach is suffi-

ciently conservative to limit Type I error, it does not likely
represent the ‘‘true’’ density, as far as such a quantity is

determinable. Indeed, the choice of any specific threshold

is more or less arbitrary, given our lack of direct knowl-
edge about the underlying physical connectivity of the

networks that we are investigating. Thus, to obtain a score

independent of a particular choice of threshold, U was
computed across the range of threshold densities [0.025

0.8], at intervals of 0.025. At each threshold, a certain

degree of agreement is expected by chance, with a proba-
bility determined by the connection density. Given a matrix

with a density d, the probability of any element being non-

zero is Px¼1 ¼ d (for all x 2 A). For a pair of matrices with
identical density d, we can derive the probabilities for

intersection (P\) and union (P[) as:

P\ ¼ P2
x¼1 ¼ d2

P[ ¼ 2 ! Px¼1 % P\ ¼ 2 ! d% d2:
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Thus, given that EðjAf jÞ ¼ Pf ! N, where N is the total

vertex count, the expected value of U, or Urand, is given by:

UrandðdÞ ¼
P\ ! N
P[ ! N ¼ d2

2 ! d% d2
¼ d

2% d
:

To characterize a null distribution (in other words, the
distribution of agreement expected between entirely random

distributions), we generated 500 random permutations of the

thresholded connectivity maps and computed U for each of
these, across all thresholds. Apermutationwas generated as a

randomly ordered binary distribution, at a fixed threshold

density. Notably, the mean of this null distribution will be
approximately equal to the theoretical expected value Urand.

The resulting distribution provides a point of comparison to

non-permuted U scores; specifically, the degree to which U
exceedsUrand indicates the magnitude of agreement between

two modalities above that expected by chance. This formu-

lation also allows us to characterize the relationship between
threshold and agreement. Accordingly, the final score BS

was normalized at each density from the range ½UrandðdÞ; 1' to
[0,1], where maximal agreement indicates P\ ¼ P[:

BSðf ; g; dÞ ¼ Uðf ; g; dÞ % UrandðdÞ
1% UrandðdÞ

:

Negative values of BS were clamped to 0. To obtain a

summary score of agreement between two modalities,

independent of threshold, we integrated BS across values of
d. The resulting value represents the area under the curve

(AUC), and gives an indication of the overall agreement

between modalities, above that expected by chance:

BStotalðf ; gÞ ¼
Z

BSðf ; g; dÞ dd:

Cross-modal similarity

While U and BS give an indication of how individual pairs
of modalities compare with one another, we are also

interested in summarizing agreement across all four

modalities. This score can be used, for instance, to char-
acterize each seed ROI with respect to the similarity of

connectivity estimates it generates. To obtain a summary

metric of agreement across all modalities, we used the
proportion W, defined for a given vertex i as:

Wðd; iÞ ¼ 1

M
j
XM

f¼1

Af ðiÞj;

where M is the total number of modalities (here, M ¼ 4).
W, thus, represents the degree of cross-modal correspon-

dence, for a given density d. Similar to the BS analysis, the

correspondence index CI was obtained by normalizingW to
the range ½Wrand; 1':

CIðd; iÞ ¼ Wðd; iÞ %WrandðdÞ
1%WrandðdÞ

;

where Wrand is equivalent to the probability of finding M

coincident above-threshold vertices by random chance.

This was determined numerically, using 500 randomly
generated distributions at each density. As for BS, negative

values of CI were clamped to 0. CI was computed across

the same range of thresholds [0.025 0.8], at intervals of
0.025. This allowed us to assess the degree of correspon-

dence across all modalities, and how this is associated with

density. A summary CI score was also computed as the
integral across densities:

CItotal ¼
Z

CIðdÞ dd:

Interhemispheric symmetry

Statistical parametric fMRI/SCov maps of the cortex tend to

have a high degree of interhemispheric symmetry (see, for

instance, Lyttelton et al. 2009). Thus, covariance in a left-
hemisphere cortical region confers a higher probability of

covariance with its homotopic right-hemisphere region, and

vice versa. It is thus interesting to examine the degree to
which intermodal correspondence can be explained by the

degree of symmetry in the corresponding maps. Interhemi-

spheric symmetry was measured by comparing seed-based
distributions across hemispheres, using the symmetric ICBM

152 surface template (40th generation; Lyttelton et al. 2009).

Symmetry was assessed simply as the ratio of corresponding
interhemispheric vertex pairs above threshold, to the total

above-threshold vertices per hemisphere. In other words,

given a density d, the average number of above-threshold
vertices per hemisphere will be d ! Nhemi, where Nhemi is the

number of vertices in a single hemisphere. Thus, the sym-

metry measure H is determined as:

HðdÞ ¼
jAleft \Arightj

d ! Nhemi
:

As for the comparisons above, we computed H across
all densities for 500 random permutations, using the mean

value at each d to obtain a normalized measure of sym-

metry, ranging from 0 (equal or worse symmetry than that
expected by chance) to 1 (perfect symmetry).

HnormðdÞ ¼
HðdÞ %Hrand

1%Hrand
:

Distance estimation

Since a large proportion of all distributions appear to occur
proximal to the seed ROI or its contralateral homotope, we
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were interested in assessing the association between the

cortical distance of a vertex from a seed ROI and its
bimodal similarity. To do this, we first computed, for each

seed region, an approximate geodesic distance map. This

was performed using a simple Matlab routine. Distances
were also computed for the contralateral hemisphere, by

mirroring the seed ROI onto this hemisphere and com-

puting geodesic distance from it. To make seed ROIs more
comparable, and to obtain subsurfaces with which to

compute individual similarity scores, we next discretized
these distance maps into octiles (Fig. 7, inset). Homotopic

ROI vertices, but not seed ROI vertices themselves, were

included in these octiles. Finally, BS scores were obtained,
as above, for the individual subsurfaces corresponding to

each octile. This yielded the same density-by-similarity

relationship as described above, but added a distance
dimension.

Specific agreement between structural
and functional covariance

Finally, to better quantify the patterns of systematic dis-
agreement between structural and functional covariance

measures, we compared instances where either both func-

tional modalities agreed that a connection existed, whereas
both structural modalities agreed that it did not, or vice

versa. This simple measure, hereafter referred to as specific

agreement, allowed us to better elucidate cases where the
correspondence index CI was worse than expected by

random chance (i.e., signifying a systematic rather than

random divergence).

Results

Connectivity distributions for individual modalities

The distributions for each modality and the aLPFC and

vmPFC seed regions (as exemplars) are shown in Fig. 2

(please refer to Supplementary Figure S1 for distributions
of all seed/modality combinations). Distributions are

thresholded at 10 and 30 %, to illustrate how they differ as

a function of density for different modalities. As a general
observation, we find that distributions for all modalities

include the region proximal to the seed, as well as its

homotopic contralateral region. The majority of distribu-
tions are symmetric (see below) and also include clusters

that are spatially distal from the seed and its homologue,

but these clusters tended to be tighter for both functional
modalities, and more dispersed and ‘‘noisy’’ for both

structural ones. Moreover, the functional distributions

appear qualitatively more similar to one another.

Correspondence index

Figure 2 shows the relationship between distributions
produced by individual modalities, and the cross-modal

correspondence W, for 10 and 30 % density. Increasing the

density increased the extent of agreement (red and orange),
but also increased disagreement (blue and green) across the

cortex. For all seed regions, full agreement (red) occurred

in regions proximal to the seed region, and its contralateral
homotope. For some (but not all) regions, full agreement

was also found in distal regions; for instance, in vmPFC

(bottom row of Fig. 2), full agreement was found in the
posterior cingulate and inferior parietal cortex, bilaterally,

as well as the ipsilateral inferior temporal cortex. The

existence of such distal correspondence depended both on
the specific seed region, and the threshold density, and

provides a more spatially intuitive representation of the

BS=d curves.
Figure 2 (rightmost plots) shows the correspondence W

for two selected seed regions, at two selected threshold

densities (10 and 30 %). This value gives an indication of
how convergence or divergence across modalities is dis-

tributed across the cortex. As a general observation, pat-

terns of full agreement (red) were mostly excluded to the
region proximal to the seed and its contralateral homotopic

region. In some cases (for instance, vmPFC, Fig. 2 at

bottom), full agreement extended to regions distant from
the seed/homotope. In most cases, there was partial (3-

modality) correspondence in distal regions. These rela-

tionships were also modulated by density, as is summarized
in line plots (Fig. 3, right column). Mean W (Fig. 4a) was

fairly stable across the density range ½0; 0:4', after which it

converged with random. CI also varied across seeds
(Fig. 4b), with vmPFC having the best correspondence,

and V5 the worst.

Bimodal comparisons

To obtain bimodal comparisons independent of any par-
ticular thresholding choice, we thresholded across a large

range of densities, [0.025,0.8]. This allowed us to plot the

U score as a function of density. U vs. d plots for four
selected seed regions are shown in Fig. 3 (please refer to

Supplementary Figure S2 for similar plots of all seed

regions). Importantly, because no statistical threshold was
applied to these data, many values—particularly at higher

densities—are likely to be spurious (i.e., not significantly

different from a null hypothesis of zero correlation). To
address this, we analytically determined random values

(i.e., values expected by random chance) at all densities
(Urand, see ‘‘Materials and methods’’). These values are

shown in Fig. 3 as a dashed line. The degree to which the
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curves for actual and random values differ indicates how

much better the similarity is between two modalities than

would be expected by chance. This can be represented as
the integral of U, minus the integral of Urand, across all

density values (orange region in Fig. 3). To remove any

bias toward a particular density range, the BS values were
further normalized such that random scores were set to

zero, and integrals were obtained for these normalized

scores. This yielded a summary measure of similarity,
which is interpretable as a continuum for which zero sig-

nifies no different from random chance, and one signifies

full agreement.
As shown in Figs. 3 and S3, the BS=d relationship dif-

fers remarkably across both seed regions and bimodal

comparisons. A summary of these patterns across all seed
regions is shown in Fig. 5. Figure 5a shows the average

and standard deviation (in gray) of U and Urand for each

bimodal comparison. These patterns differed somewhat
across comparisons, but as a general trend, agreement was

higher at lower densities and converged to random at

higher ones. The mean and standard deviation of the nor-
malized integral scores are shown in Fig. 5b. Notably, the

two functional modalities (fMRI and MACM) had the best

agreement, which was significantly higher than all other

scores (p\0:05, Bonferroni corrected). All other scores,
including the CT/VBM, were better than chance, but not

significantly different from one another.

Symmetry

Both functional and structural covariance patterns show
strong interhemispheric symmetry, and it is interesting to

investigate how this symmetry might relate to the degree of

correspondence across modalities. For instance, do some
modalities produce more symmetry than others? Does

symmetry predict the degree to which two patterns agree?

We find that distributions for all modalities are generally
symmetric, with average normalized symmetryHnorm being

stronger for functional than for structural modalities

(Fig. 6a, b), with the order RS-fMRI[MACM[
VBM[CT. In addition, when averaged across all com-

parisons involving a single modality, BS was strongly cor-

related withHnorm (Fig. 4c; r2 ¼ 0:5, p\0:001), indicating
that higher symmetry predicts higher bimodal similarity.

Fig. 2 Distributions of connectivity estimates (t- or z-valued statis-
tical maps) produced by the four modalities, for the aLPFC and
vmPFC seed regions as exemplars. Distributions are shown for
densities of 10 and 30 % (d ¼ 0:1 and 0:3). The rightmost renderings

show the cross-modal correspondence W, which illustrates the degree
to which thresholded distributions overlap across modalities, at these
densities
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Distance from seed region

The relationship between the distance from the seed ROI,
density, and bimodal similarity is shown in Fig. 7. For all

bimodal comparisons, the strongest similarity occurred in

the nearest octile, which corroborates observations from
visual inspection of individual surface distributions (cf.

Figs. 2 and Supplementary Figure S1), of consistent

agreement in areas proximal to the seed ROI or its
homotopic region. Generally, some similarity was also

Fig. 3 Seedwise cross-modal comparisons. a Similarity, measured as
the Jaccard Index U, between pairs of modalities, for four selected
seed regions (blue lines). Dashed lines show Urand, i.e., similarity as
expected by chance at a given density d. The orange area between
these lines represents the integrated difference between them, which
is proportional to bimodal similarity, BS, shown as a bar chart in (b).

c Cross-modal correspondence (W) plotted over densities. Dashed
lines indicate Wrand, the correspondence expected by random chance.
The orange area between these curves is proportional to the
correspondence index, CI, show in the insets. The blue areas
represent the proportion of disagreement (i.e., systematic differences)
below that expected by chance
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observed in the second octile, but only for higher densities

(i.e., consisting primarily of the weaker connectivity esti-

mates that survive only low threshold values). Most

notably, only for the RS-fMRI/MACM comparison did we

find substantial correspondence for distances beyond the

second octile. For this comparison, some degree of

Fig. 4 Summary measures of
the correspondence index CI,
quantifying agreement across all
modalities. a Correspondence W
averaged across seeds,
indicating the degree of
agreement across all modalities,
plotted across densities. The
dashed line indicates Wrand, and
the gray area represents
standard deviation. The
correspondence index CI and its
variance are shown in the inset.
b CI for each seed, sorted from
best to worst correspondence.
The dashed red line indicates
the average CI

Fig. 5 Summary measures
(across all seed regions) of
bimodal comparisons for each
modality pair. a The Jaccard
index U computed across the
density range [0.05, 0.8]. The
orange shading represents the
mean integral difference, across
modalities, between empirically
obtained connectivity estimates
and values expected from
random distributions of equal
density (Urand). The gray shaded
area represents the standard
deviation of this value. b
Bimodal similarity, BS,
computed as U normalized
between Urand and full
agreement (U ¼ 1). Bars show
the mean and standard deviation
of BS across all seed regions.
Significant differences were
found between the RS/MACM
scores and all other bimodal
comparisons, while no other
significant differences were
found (*significance at p\0:01,
Bonferroni corrected; ns
indicates no significance)
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similarity was found even at large distances for lower
densities, illustrating strong agreement between the two

functional modalities even at distal locations.

Divergence in structural and functional measures

Figure 8 shows the specific agreement for functional and
structural modalities, both using PrC as an exemplar, and

computed as a summary across all nine seed regions.

Specific agreement is defined as the case where the two

functional modalities show connectivity at a specific den-
sity, but the two structural modalities do not—or vice

versa. The line plot of Fig. 8 demonstrates that specific

agreement is substantially more frequent for the functional
modalities, and that this agreement is maximal at a density

of *0.25. The exemplar distribution for PrC was thus

obtained at a density of 0.25, and its general pattern is also
typical of the other seed ROIs. In particular, this distribu-

tion shows that specific functional agreement occurs for

larger contiguous regions—in this case for the medial

Fig. 6 Symmetry of connectivity patterns. a Normalized symmetry
Hnorm, integrated across all densities. The distribution across seed
regions is shown as boxplots, for each modality. b Hnorm shown as a
line plot across all densities. Shaded areas represent standard

deviation across seed regions. c Scatter plot showing the relationship
between Hnorm and BStotal; the correlation is highly significant with

r2 ¼ 0:50. AUC area under the curve

Fig. 7 3D surface plots
showing the relationship of
distance from seed ROI to
density and BS. Each plot
represents a pair of modalities,
as labeled, and color/height
shows BS, averaged across
seeds. Negative scores indicate
that similarity is lower than that
expected from random. Inset
division of the cortical surface
into distance octiles, which are
used to generate the BS scores.
Distances for the left aLPFC are
shown, as an exemplar
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prefrontal cortex, anterior middle temporal cortex, and the
angular gyrus—while the pattern for specific structural

agreement is comprised of smaller and more diffuse clus-

ters. The general pattern across seed regions is shown at the
bottom of Fig. 8, and shows consistency in the anterior

middle cingulate and superior medial prefrontal regions, as

well as the anterior insula, angular gyrus, and supplemen-
tary motor area. The structural agreement pattern is less

widespread, but shows consistency in the anterior medial

prefrontal cortex, posterior cingulate cortex, and the infe-
rior lateral parietal cortex.

Discussion

Summary

Both functional and structural covariances are popular

means of inferring ‘‘connectivity’’ in whole brain analyses
of human imaging data. For structural covariance in par-

ticular, the relationship to physical connectivity is

premised on the notion that mutually trophic functional
activation patterns can lead to covarying morphology

(Mechelli et al. 2005). This hypothesis suggests that

structural covariance patterns should have an association
with functional covariance, i.e., more robust functional

activations should drive coordinated morphological

growth. Evidence from histology (Zheng and Purves 1995),
VBM (Maguire et al. 2000; Draganski et al. 2004), and

cortical thickness (Lerch et al. 2006) lends support to this

possibility. However, our results suggest that this rela-
tionship is rather limited—both cortical thickness and

VBM covariance patterns had a better correspondence with

RS-fMRI and MACM than would be expected by random
chance, but only marginally so; with the most consistent

cross-modal correspondence occurring in regions proximal

to the seed region, or homotopic regions in the opposite
hemisphere. Perhaps, more surprisingly, the agreement

between covariance patterns produced by both morpho-

logical approaches was also quite low; indeed, it did not
statistically differ from the comparisons between structural

and functional modalities. In contrast, the agreement

Fig. 8 Specific agreement between structural and functional modal-
ities. Top left the blue line shows the number of vertices (above that
expected at random) for which the two functional modalities showed
significant connectivity, but the two structural modalities did not; the
red line shows the opposite relationship. Top right specific agreement
plotted on the average cortical surface for functional (blue) and

structural (red) modalities, for PrC as an exemplar. The pattern was
derived using a density d = 0.25, corresponding to the peak in the
line plot. Bottom proportion of seeds regions for which specific
agreement was found for either function or structure, at d = 0.25,
plotted on the average cortical surface
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between RS-fMRI and MACM was substantially higher

than for all other comparisons.

Spatial patterns of convergence and divergence

The correspondence index, CI, measures the degree to

which patterns from all four modalities agree. This measure

allows us to compare individual seed regions on how
consistently they generate a connectivity estimate, across

multiple modalities. We found significant variance across
seed regions on the CI measure, as an integral across

densities (Fig. 4b). Specifically, vmPFC and MTG showed

the highest correspondence, while V5 and aINS showed
relatively low correspondence. The reasons for these dif-

ferences are not readily interpretable. The relative sym-

metry of a seed region’s distribution is one likely factor
(see below). The specific methodological differences

between modalities are also likely a significant factor.

Interestingly, at very high densities, CI actually assumes
values which are less than those expected by random

chance (see Figs. 3, 4a). This observation may reflect

systematic differences between modalities, i.e., differential
patterns of ‘‘structured noise’’ which may result in a non-

random divergence at these high densities. These differ-

ences also vary by seed region, and thus may partly explain
the variation in correspondence across seeds.

The most consistent pattern of cross-modal convergence

across seed regions occurred in regions proximal to the
seed, as well as its contralateral homotope. The relation-

ships between distance from the seed ROI (or its homo-

tope) and bimodal similarity, BS, are summarized as an
average across seed ROIs in Fig. 7. Here, we divided the

geodesic distance from the seed ROI into eight quantiles,

and assessed similarity for each subsurface. In general, the
highest BS occurred for the first octile (i.e., vertices closest

to the seed ROI or its homotopic region), which substan-

tiates the qualitative observations shown in Figs. 2 and S1,
and described in more detail below. For further distances,

only the RS-fMRI/MACM comparison yielded a substan-

tially better than random BS. For this comparison, we
found substantial agreement even at higher distances, for

lower densities, indicating some consistency in the whole-

brain agreement of these two functional approaches. The
consistent agreement for proximal regions is not particu-

larly surprising, given the smoothness of each data set.

However, in many cases, the extent of the distribution went
beyond that expected from the intrinsic smoothness. It is

thus also likely that a large proportion of spatially proximal

agreement reflects a robust connectivity pattern for neigh-
boring regions. Such connectivity bias for short connec-

tions has been demonstrated in macaque tract tracing

(Markov et al. 2011), and may contribute to the spatial

smoothness of both the BOLD signal and brain

morphology.
Similarly, the robustness of cross-modal correspondence

for homotopic regions likely reflects the degree of func-

tional and structural symmetry of the cortex. For functional
activations, such symmetry is an ubiquitous observation,

and may reflect a combination of well-characterized par-

allel processing streams, and interhemispheric crosstalk via
callosal fibers (although such symmetry is also found in the

absence of callosal fibers; see Tyszka et al. 2011; Uddin
et al. 2008; Hinkley et al. 2012). The brain also exhibits a

high degree of morphological symmetry, consistent with

the patterns found here, which are likely due to a combi-
nation of genetic determination and symmetrical functional

co-activations which drive growth in a coordinated way.

Here, we here find a strong association between the relative
symmetry of the covariance distribution for a particular

seed/modality and the average BS of that modality

(r2 ¼ 0:5; Fig. 6c), which supports such a relationship. An
association between the symmetry of brain morphology

and function has also been reported in earlier studies. For

instance, Aboitiz et al. (1992) found a correlation between
corpus callosum size and symmetry of the Sylvian fissure,

while negative associations have been reported for corpus

callosum size and the degree of behavioral asymmetry in
language processing tasks (O’Kusky et al. 1988; Yazgan

et al. 1995). On the other hand, functional covariance was

generally more symmetric than structural (Fig. 4a, b).
Since RS-fMRI and MACM also had a higher similarity

with one another, the relationship with symmetry may also

be reflecting this difference. Future studies could address
the relationship between symmetry, correspondence, and

genetic influence using heritability analyses (cf. Winkler

et al. 2010).
Notwithstanding the average BS/distance relationships

described above, full convergence (W ¼ 1) was also

observed for some seed regions in spatially distal, non-
homotopic regions of cortex. As there is no a priori reason

to expect such distal correspondence, these patterns rep-

resent the strongest evidence of robust long-range con-
nectivity patterns captured both by structural and

functional covariance. These patterns of convergence and

divergence between distributions produced by each
modality varied according to seed region, and as a com-

plement to summarizing across seeds, it is also interesting

to consider patterns for each particular region. The left
aLPFC (Fig. 2, top), for instance, showed strong bilateral

cross-modal correspondence (orange and red regions) in

the aMCC and PrC. Corroborating this finding, several
lines of evidence have demonstrated dense structural con-

nectivity between LPFC and cingulate regions (medial

PFC), using tract tracing in non-human primates (Saleem
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et al. 2014), as well as DWI tractography in humans

(Beckmann et al. 2009). On the other hand, morphological
measures disagreed with functional ones in widespread

areas of the lateral temporal lobe and other parts of medial

PFC, resulting in poor general correspondence for this seed
region (green and blue regions). The morphological mea-

sures themselves diverged in their correlational patterns,

which reduces the confidence with which inferences about
connectivity can be drawn in these regions of cortex.

As a second example, the left vmPFC (Fig. 2, bottom)
showed strong correspondence for the posterior cingulate

and inferior parietal cortex bilaterally, with divergence

occurring primarily in lateral temporal and prefrontal
regions. These regions comprise the well-known default

mode network (DMN), which has been studied using

resting-state fMRI (Fox and Raichle 2007; Greicius et al.
2003), PET (Raichle et al. 2001), DWI, and macaque tract

tracing (Margulies et al. 2009). vmPFC had the best mean

CI, which likely reflects the robust connectivity of the
DMN, a network which has been topologically character-

ized as a ‘‘rich club’’ (Heuvel et al. 2011), comprised of

strongly interconnected ‘‘hub’’ regions, including PCC,
PrC (which also shows high correspondence as a seed

region), vmPFC, and inferior parietal cortex. The ubiqui-

tous activation of this network may account for the mor-
phological correlations observed here, and supports the

idea of gross-scale activity-dependent plasticity, being

most prominent for those regional pairs which are most
continuously co-activated across the lifespan.

Plotted as a function of density, BS differs remarkably

across individual comparisons (see Figs. 3, 7, and Sup-
plementary Figure S1, for reference). In some cases, BS

converges to zero (random) at higher densities (typically

d[ 0:4), while, in other cases, it remains fairly
stable across the entire range. As a general trend (see

summary in Fig. 5a), BS is highest at lower densities and

decreases progressively at higher ones. This is not partic-
ularly surprising, since, at higher densities, an increasing

number of above-threshold edges will be based on very

weak or spurious correlations. Similarly, at lower densities,
modalities are expected to have higher agreement based

mostly on the robust proximal and homotopic agreement

which are common to all modalities. However, the rela-
tionship between BS and density is not trivially linear, and

the present results help us to characterize the density ranges

over which the different modalities produce convergent
patterns of connectivity estimates. Based on the patterns,

we observe, considered on the whole, only fMRI/MACM

converge at rates substantially better than random. This is
not universally true, however, since similarity between

other modality pairs can be considerably higher for specific

seed regions (see, for instance, area M1 in Fig. 3).

Structural vs. functional covariance

Bimodal similarity was significantly higher between the
two functional modalities (RS-fMRI and MACM), whereas

there was no significant difference in agreement between

any of the other modality pairs, including the two structural
covariance approaches. This higher agreement for fMRI

likely reflects both functional and methodological factors.

Functionally, these results support the idea that seed
regions are robustly co-activated with a ‘‘core’’ set of other

regions, regardless of whether a specific task is presented to

the subject. This agrees with evidence from Smith et al.
(2009), who found a strong overlap between independent

components derived from RS-fMRI, and networks corre-

sponding to task activations from the BrainMap database.
Methodologically, the two modalities are based upon an

identical observation (the BOLD signal), while the mor-

phometric techniques may estimate substantially different
quantities. In addition, the overlap between functional

approaches may reflect the poor temporal resolution of the

BOLD signal, with respect to the time scales on which
neurons communicate. This temporal blurring likely cap-

tures only the accumulated activity as information is

propagated through a network, which is evident both in
task-driven and resting-state conditions.

Interestingly, we found that the structural and functional

modalities were no less similar than the two structural
modalities (Fig. 5b). All comparisons were better than

chance, but also exhibited a high degree of divergence. The

former observation suggests that structural covariance
indeed does capture functional co-activation, to some

degree, which is consistent with the notion that SCov

represents mutually trophic influences. The latter obser-
vation suggests that this similarity is limited, however. In

addition, we found that the pattern of specific agreement

(where functional modalities find connectivity but struc-
tural ones do not, or vice versa) is much stronger and more

widespread for the functional modalities, with a peak at

density d ¼ 0:25 (Fig. 8). This suggests that structural
covariance fails to capture functional associations across a

wide swathe of cortex, while only marginally adding

complementary information (i.e., in the form of specific
structural agreement). It is a notable caveat, however, that

we are summarizing on the basis of only nine selected seed

ROIs; a more global analysis would be necessary to more
thoroughly characterize this relationship.

Given the similar objective of both CT and VBM

analysis (i.e., an anatomical estimate of gray matter mor-
phology), the poor correspondence between them is

somewhat unexpected. However, there are a number of
distinct differences between these approaches which may

help elucidate this divergence. While cortical thickness has
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the advantage of explicitly modeling the cortical sheet, and

thus respecting its convoluted geometry, its accuracy
depends on the accuracy with which GM is estimated, since

this estimation determines the location of the modeled

interface between cortical GM and WM. At present, most
approaches—including CIVET—estimate GM using a

global intensity distribution. However, as the cellular

composition (e.g., the number of myelinated axons) of the
cortical mantle varies substantially across the cortex, this

estimate is likely to underestimate GM in some regions,
and overestimate in others. More critically, it is impossible,

using only T1-weighted information, to disambiguate the

relative contribution of myelinated axons, neuronal somata,
glia, and other cell types and supporting tissue, to an

observed difference or correlation in this estimated value.

In other words, given the heterogeneity of GM and WM
tissue across the cortex (Elston 2002; Glasser and Van

Essen 2011), the use of a single T1-weighted intensity

value to classify tissue is fundamentally limited.
VBM analysis, on the other hand, estimates the defor-

mation necessary to transform an individual T1-weighted

image to a pre-defined template image. First, this approach
is designed to estimate gray matter volume, rather than

thickness, which is conceptually a quite different quantity.

This transformation is limited by the fact that no prior
model (e.g., a cortical surface) is specified for the tissue of

interest, and thus, deformation is free to occur in three

dimensions equally. Due to this lack of definitive model,
VBM typically relies upon a smoothing kernel to better

ensure alignment between images, which often results in a

misalignment across individuals, particularly in regions
where gyral morphology varies substantially across indi-

viduals (cf. Zilles et al. 1997). Thus, while VBM escapes

the limitation of defining fast boundaries between tissue
classes, it loses spatial specificity and sensitivity to identify

localized effects, which are better captured using surface-

based alignment (Frost and Goebel 2012; Desai et al. 2005;
Anticevic et al. 2008). Moreover, discrepancies between

different VBM approaches (FSL vs. SPM) have been

reported, which suggest that this method is highly sensitive
to the statistical assumptions and specific methods used

(Rajagopalan and Pioro 2015).

The poor correspondence between structural and func-
tional covariance patterns suggests that SCov derived from

neither structural modality captures functional connectivity

patterns well. Using an ROI-based approach, we have
recently reported a similar lack of correspondence between

(cortical thickness) SCov and RS-fMRI (and indeed DWI-

and tract-tracing-based estimates as well; Reid et al.
2015a, b). SCov was also found to have a poor stability for

moderate correlations, measured as a signal-to-noise ratio

(SNR) across random subsamples of the data, relative to
RS-fMRI. SNR for individual ROI pairs was furthermore

strongly associated with the degree of cross-modal corre-

spondence in this study, which suggests that structural
covariance is less sensitive to moderate associations than

functional approaches, and may help account for the dis-

crepancies observed here. Notably, in both studies, we used
relatively large sample sizes (89 and 132). These findings

are not completely unexpected, given the numerous influ-

ences which likely contribute to brain morphology over
time. Both cortical thickness and volume have strong

genetic determinants, for instance (Panizzon et al. 2009;
Winkler et al. 2010), which may operate largely indepen-

dently of functional activations. Correlations in structural

morphometry may thus be driven by global variations
which are largely accountable to these genetic influences.

Moreover, the vastly different time scales of the BOLD

signal and morphological growth ensure that only very
robust and ubiquitous functional correlations are likely to

be captured by measuring the coordination of brain mor-

phology. Here, we find the best functional/structural cor-
respondence in regions of the DMN (vmPFC and PrC), as

well as MTG, which may reflect the robustness with which

these ‘‘hub’’ regions are activated across the lifespan. It is
likely that the utility of SCov to capture functional

covariance patterns is limited to such networks. Indeed,

while SCov patterns may be a useful means of differenti-
ating between groups on the basis of clinical or psycho-

logical scores (Lerch et al. 2006; Alexander-Bloch et al.

2013; Evans 2013), we would conclude that their useful-
ness for inferring functional brain connectivity, at least in

the healthy adult population considered here, is rather

limited.

Limitations and perspectives

Connectivity estimates from each modality considered here

are subject to the particular set of preprocessing steps

which were applied to the raw imaging data. Each pre-
processing regime entails a set of choices that a researcher

must make, and in many cases, there is a lack of consensus

in the neuroimaging community over which choice is most
ideal. For example, all four approaches considered here

require than some smoothing kernel be applied to the data,

which helps deal with noise and spatial uncertainty. The
choice of smoothing kernel (typically an isotropic Gaussian

with a specific full-width-at-half-maximum parameter, or

FWHM) differs between modalities, and is motivated by
various factors which are often unique to a particular

approach. Standard kernels generally reflect the degree of

spatial uncertainty in a given modality, thus leading to a
different inherent smoothness in each distribution being

compared here. Similarly, it is common in preprocessing

pipelines to include steps which attempt to remove nui-
sance factors from the raw image acquisitions. This is
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particularly pertinent for BOLD time series, for which

artifacts from subject motion, respiration, and cardiovas-
cular rhythms are well characterized (e.g., Birn et al. 2008;

Power et al. 2014). Numerous approaches have been pro-

posed for isolating the neural signal from these noise
components. However, each of these methods has limita-

tions in terms of how well it removes nuisance variance,

while not also removing the neural signal of interest
(Power et al. 2012) or even inducing spurious variance

(Murphy et al. 2009). For the sake of simplicity, we chose
in this study to select one particular set of smoothing,

artifact removal, and other preprocessing steps, for each

modality. A natural extension of the current approach
would be to systematically manipulate these parameters

with the goal of maximizing cross-modal correspondence.

Another necessary choice for this study was the selec-
tion of seed ROIs. For this purpose, we chose a set of ROIs

that have been previously derived through various

approaches, including meta-analysis, cytoarchitectonic
classification, and task-based fMRI experiments. Our

choice was further motivated by a desire to provide a good

representation of the whole cortex. This approach allowed
us to relate our results to the specific methodologies and

studies from which they were derived, but it also entails a

number of limitations. First, since the extent of each ROI
was determined by the specific methodology from which it

was derived, it varied in size and shape across ROIs.

Second, our choice of nine ROIs, while spatially diffuse,
does not provide substantial coverage of the cortical sheet.

It is likely that both ROI extent and coverage will provide

additional insight into how each connectivity estimate
behaves across the cortex, and another useful extension of

this study would be to systematically investigate how ROI

size and position influence cross-modal correspondence in
whole-brain parcellations with equal-sized parcels. These

can be derived, for instance, using a ‘‘patch’’ approach, as

in Hagmann et al. (2008).
The use of DWI-based tractography has become a

popular and promising means of estimating ‘‘structural’’

connectivity between brain regions, due to its relatively
more direct estimation of white matter microstructure. In a

recent study, we compared probabilistic DWI tractography

to both RS-fMRI and SCov based on cortical thickness,
finding a moderately high correspondence for the former,

and poor correspondence for the latter (Reid et al. 2015a).

However, in this study, we also highlight a number of
substantial biases in the tractography approach, which are

not trivial to address. Specifically, both the distance and

anisotropy profile of a given streamline will bias its
apparent connectivity (i.e., number of streamlines origi-

nating in region A and terminating in region B) in a way

that is difficult to model. While excellent methods have
been proposed to deal with complex fiber configurations

and allow a better sampling of potential streamline orien-

tations (e.g., Behrens et al. 2007), there remains an inherent
ambiguity in the relationship between tractography and the

structural connectivity it is meant to model. In this study,

we have chosen not to include DWI tractography or other
alternative estimates of brain connectivity. While this

limits the generalizability of our findings to alternative

estimation approaches, our intention was to specifically
investigate correspondence between functional and struc-

tural covariance estimates, to test and establish constraints
on the ‘‘mutually trophic’’ hypothesis. However, the

method we present is easily extensible to broader investi-

gations of any method with attempts to estimate connec-
tivity in a seed-based fashion.

Finally, while the NKI sample used here to obtain RS-

fMRI and T1 images has a fairly wide age range, it does
not include a representation of either early life neurode-

velopment, late life neurodegeneration, or disease states

associated with systematic cortical atrophy. Similarly, the
sample chosen for MACM analysis was filtered to exclude

studies of clinical populations. Focusing on such popula-

tions will likely alter the observed lack of correspondence
for our SCov-based connectivity estimates. Specifically,

the distribution of brain morphology across the population

considered here is expected to be relatively stable, and
individual differences are highly heritable (Baaré et al.

2001; Chouinard-Decorte et al. 2014). On the other hand,

in early life, the morphology of the brain changes
according to a stereotypical developmental pattern, and its

covariance can potentially help elucidate developmental

processes and abnormalities in these processes (Khun-
drakpam et al. 2013). Similarly, late life neurodegenerative

conditions, such as small vessel disease (de Laat et al.

2012; Reid et al. 2010), Alzheimer’s disease (Lerch et al.
2005; Reid and Evans 2013 for review), or Parkinson’s

disease (Xia et al. 2013; Fioravanti et al. 2015), also result

in stereotypical changes to brain morphology, which give
rise to observable changes in structural covariance (Tu-

ladhar et al. 2015; He et al. 2008; Zhou et al. 2012). Psy-

chiatric conditions, such as schizophrenia and depression,
have also been shown to have common patterns of gray

matter atrophy, focused mainly on ‘‘hub’’ regions (Good-

kind et al. 2015; Crossley et al. 2014). Thus, it is likely that
the poor cross-modal correspondence observed here might

improved if one was to apply the present methodology to

developing or specific clinical populations.

Conclusions

Our findings provide a number of insights into the use of

functional and structural covariance to infer brain con-
nectivity. First, while the two functional approaches had
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a substantially better correspondence than all other

comparisons, the same was not true of the two structural
covariance measures, which had a better-than-chance

agreement, but did not agree better than comparisons of

different modalities (i.e., structural vs. functional). While
this difference may reflect methodological and concep-

tual differences, these results indicate that the functional

and structural covariances do not generally capture the
same underlying phenomena, and call into question the

degree to which SCov analyses truly capture activity-
related ‘‘mutually trophic influences,’’ at least in the

healthy adult population. Second, the degree to which

connectivity inferred from different modalities corre-
sponds is highly dependent on how these distributions

are thresholded, and this relationship is not trivial. This

indicates that arbitrary thresholding (including statistical
p value thresholds) will likely bias seed-based connec-

tivity results in a way which is difficult to predict a

priori. Based on these observations, we recommend the
use of the approach introduced herein, whereby thresh-

olding was performed across all plausible threshold

densities, compared with random expected values, and
finally integrated to obtain a non-biased estimate of

connectivity and correspondence.
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Yacoub E, Uğurbil K (2013) Evaluation of slice accelerations

using multiband echo planar imaging at 3 T. Neuroimage
83:991–1001

Yazgan MY, Wexler BE, Kinsbourne M, Peterson B, Leckman JF
(1995) Functional significance of individual variations in callosal
area. Neuropsychologia 33:769–779

Zheng D, Purves D (1995) Effects of increased neural activity on
brain growth. Proc Natl Acad Sci USA 92:1802–1806

Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW (2012)
Predicting Regional Neurodegeneration from the Healthy Brain
Functional Connectome. Neuron 73:1216–1227

Zijdenbos AP, Forghani R, Evans AC (2002) Automatic ‘‘pipeline’’
analysis of 3-D MRI data for clinical trials: application to
multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291

Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P,
Palomero-Gallagher N, Schormann T, Mohlberg H, Burgel U,
Steinmetz H, Schlaug G, Roland PE (1997) Quantitative analysis
of sulci in the human cerebral cortex: development, regional
heterogeneity, gender difference, asymmetry, intersubject vari-
ability and cortical architecture. Hum Brain Mapp 5:218–221

zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-
analytical definition and functional connectivity of the human
vestibular cortex. Neuroimage 60:162–169

Brain Struct Funct (2017) 222:1131–1151 1151

123


