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a b s t r a c t 

Navigation in GPS-denied environments is a critical challenge for autonomous mobile platforms such as 

drones. The concept of simultaneous localization and mapping (SLAM) addresses this challenge through 

real-time mapping of the platform’s surroundings as it explores its environment. The computational re- 

sources required for traditional SLAM implementations (e.g. graphical processing units) require large size, 

weight, and power overheads; making it infeasible to employ them in resource-constrained applications. 

This work proposes a self-learning hardware architecture utilizing a novel gated-memristive device to 

address the implementation of SLAM in an energy-efficient manner. The gated-memristive devices are 

implemented as electronic synapses in tandem with novel low-energy spiking neurons to create a spik- 

ing neural network (SNN). This work shows how the SNN allows for navigation through an environment 

via landmark association without needing GPS. In the simple environment in which the network exists, it 

can successfully determine a direction in which to navigate while only consuming 36 μW of power and 

only needing to be exposed to each landmark within the environment for 1-2ms in order to remember 

that location. 

© 2019 Elsevier B.V. All rights reserved. 
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. Importance of tackling SLAM with neuromorphic circuits 

As technology advances, mobile robots and drones are widely

sed in industrial, defense, and aerospace applications. Smaller

obots such as micro-drones have even become more prevalent

s technology has become compact and power efficient. These

ypes of technology can either be piloted via remote control, or pi-

oted autonomously via either onboard or off-board software. Au-

onomously piloting vehicles through dynamic environments is es-

ecially challenging and requires a robust navigation system. The

ystems that navigate these varied environments must be robust

o the point of managing micro and macro-level tasks. The navi-

ational system for a drone requires real-time control tasks such

s auto-balancing with varying wind speed conditions, performing

tandard obstacle avoidance, and controlling the system’s altitude

nd velocity. Simultaneously, the navigational system must com-

lete macro-level tasks including reaching its next objective and

ow to navigate around obstacles efficiently. 
∗ Corresponding author. 

E-mail address: jones2a5@mail.uc.edu (A. Jones). 
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Many mobile systems that must make complex, macro-level

ecisions to reach objectives require GPS or supplementary off-

oard sensing equipment [1–3] . While GPS can be very useful in

acro-level navigation, constantly using it requires large amounts

f power [4 , 5] . All autonomous flight systems have tremendous

ower requirements devoted to flight, onboard systems, etc. [6] .

hese power requirements leave very little space in the system’s

ower capacity for tasks such as computation and navigation.

herefore, those systems must be made as power efficient as possi-

le. Processing navigational decisions could be offloaded to a com-

uter not on the drone, but this exposes additional problems. If the

obotic system or drone requires remote communication for navi-

ation, this prevents the system from moving into places where

t loses the signal, or the signal does not exist (e.g. indoors, sub-

erranean environments, or extraterrestrial bodies where GPS does

ot exist). The system also allows itself to be vulnerable to signal

amming. 

These issues create an application space where making local,

ower-efficient decisions for navigation are necessary. One exam-

le of such an application space would be the rovers NASA has

ent to Mars. These systems need to be extremely power efficient,

s their only current methods of recharging are via solar energy

https://doi.org/10.1016/j.neucom.2019.09.098
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.09.098&domain=pdf
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example of SLAM. 
or radioisotope power systems [7 , 8] . Making quick and local deci-

sions proves useful the Mars rovers, as signals sent to and from

Mars have an average round-trip latency of 14 minutes [9] . The

Mars rovers Spirit and Opportunity used such local-decision navi-

gation systems to navigate between waypoints dictated by NASA

engineers back on Earth [10] . Other use-case examples for energy-

efficient, local-decision making for navigation include drones per-

forming search and rescue missions in underground or indoor en-

vironments, reconnaissance missions in war zones, and deep-sea

exploration. 

The concept of navigating an environment via local decisions

can be solved by answering the simultaneous localization and

mapping (SLAM) problem [11 , 12] . The problem has been studied

for several decades [11] , and at a basic level describes how a sys-

tem navigating an unknown environment should create a map of

its surroundings. In addition to creating a map, the system should

also be able to localize itself within the mapped environment

when given previously observed stimuli. 

Historically, some of the most common methods of solving the

SLAM problem include the extended Kalman filter and particle fil-

ters [11] . The extended Kalman filter is a nonlinear mathemati-

cal method to estimate a system’s location within an environment.

Particle filters have many derivative versions [11] , but are primar-

ily a Monte Carlo approach to state estimation within an environ-

ment. These type of classical methods of solving SLAM typically

involve populating a graph (data structure) with nodes and edges

or creating full 3D meshes of the environment’s terrain. These pro-

cesses are assisted by external sensors such as odometers, range-

finders, and cameras to interpret information about how far the

vehicle has traveled and what objects/obstacles can be seen [13] .

Some SLAM methods even use external information such as GPS

to help improve the precision of the system’s location [14] . A lot

of these methods of solving SLAM have specific types of environ-

ments where they excel, but they often run into similar issues of

having performance constrained by the systems they serve. If all

the information for the graph, terrain mesh, etc. has to be pro-

cessed or stored on the robotic/drone system, extensive memory

is required to store this information and the power to process the

information obtained is limited. These limitations clash with the

classical methods of solving SLAM to obtain accurate state estima-

tion [15] . Recently, other methods of solving SLAM have been stud-

ied to circumvent this issue. 

Over billions of years, living organisms have developed complex

neural systems to navigate their environment. Recently, the SLAM

community has started to use these naturally-occurring navigation

systems as inspiration to develop neural networks that can solve

SLAM. Many of these neural network solutions involve implement-

ing networks that use the neuronal concepts seen in mammals

such as place cells [16 , 17] and grid cells [17 , 18] . Place cells act as

randomly organized networks of neurons that have unique com-

binations of neurons fire within the network when the organism

is near specific landmarks within its environment [16] . Grid cells

act as a “mesh” of the organism’s environment, and can track how

far an organism has traveled in space (similar to the classical SLAM

models using odometer data to estimate the system’s current state)

[18] . These two systems can be cross-referenced to localize the or-

ganism [19] . Previous neural network systems/algorithms that use

concepts such as place/grid cells to solve SLAM include RatSLAM

[20] and BatSLAM [21] . 

In the past, most of these neural network solutions for SLAM

have been implemented using artificial neural networks (ANNs)

[20–25] . These are neural networks that exist purely in simula-

tion on von Neumann hardware, such as graphics processing units

(GPUs), field-programmable gate arrays (FPGAs), or application-

specific integrated circuits (ASICs). These systems often consume

large amounts of power and memory as previously mentioned.
he data bottlenecks to/from memory when reading and updat-

ng so many weight values can also bog down processing times

26–28] . Performance in these areas could improve if neural net-

orks could transition from traditional computing frameworks to

on-von Neumann architectures that are specifically tailored to

andle neural networks. This concept is the primary goal of the

eld of neuromorphic computing, which aims at designing hard-

are architectures that can efficiently implement neural networks.

mplementing neuromorphic networks that specifically solve SLAM

ould overcome the issues that plague von Neumann designs of

eural networks. 

Neurons and synapses are the two core building blocks to neu-

al networks and are represented in many ways within different

rchitectures. Synapses act as memory devices to store informa-

ion within the network as it learns over time, and neurons act as

onlinear processing elements that analyze the information passed

hrough synapses. 

Many different methods have been explored over the years to

epresent neurons and synapses within hardware. One of the most

ommon methods of representing neurons typically involves de-

igning a CMOS-based device that generates an event or voltage

pike on its output node when given enough stimuli on its input

ode. Receiving more input at the circuit’s input node causes its

utput node to spike more frequently. These types of neurons are

he core of the research area of spiking neural networks (SNNs)

ithin the field of neuromorphic computing, and will be the type

f neuron circuits used to build the neuromorphic architecture de-

cribed in this work. 

For representing synapses in neuromorphic architecture, the

ynapse device is usually implemented in either a single device

r in a CMOS circuit [29 , 30] . The single device or CMOS circuit

ill hold either a binary state of 0 or 1 to indicate if the synap-

ic connection is excited or not, or it can possess an analog state

ithin a range of possible values to indicate a degree of exci-

ation. When built using a non-CMOS implementation, the most

ommon synaptic design is usually a memristive device such as

wo-terminal resistive RAM (ReRAM) ( Fig. 1 (a)) or phase-change

emory (PCM) devices [31] . The basic concept that drives the

unctionality of the two-terminal (2T) device is shifting the dis-

ribution of charged defects (such as ions or dopants) within a

witching oxide (SOx) channel to change the overall resistance

f the device [32] . This distribution of dopants can be changed

y applying biases to the device’s top electrode (TE) and bottom

lectrode (BE). The device’s resistance is then used within the

euromorphic architecture as the synapse’s potentiation level. A

ighly potentiated two-terminal synaptic device has a low resis-

ance, while a synaptic device that hasn’t been excited has a high

esistance. Despite 2T memristive devices being widely used in

euromorphic computing, they suffer from large, state-dependent

ower consumption, variability, state-drift during inferencing, and

he issue of sneak current when implemented into crossbar arrays

33] . To address these issues, gated-memristive devices have been

eveloped [34–38] , which is the type of memristive device the ar-

hitecture within this work will use for its synaptic devices. 

The primary goal of this work is to show the implementa-

ion of neuromorphic SLAM architecture with gated-memristive

ovel memories and its performance impact in GPS-denied envi-

onments. To show this capability, this work will use three novel

oncepts to construct its neuromorphic architecture: 

• A double gated-memristive devices; a device that inherently

detects spike coincidence. 

• A novel design for a CMOS-based neuron circuit. 

• A novel low-power architecture specifically aimed at solving an
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Fig. 1. (a) Diagram (sideview) depicting a classic design for a two-terminal memristive device along with a top-down diagram for the device in a 3 × 3 matrix architecture. 

Dopants within the device channel extend/retract in the SOx channel via applied potential to V in and V out . (b) Diagram showing design of the gated-memristive device 

from Herrmann et al. [34 , 35] along with a top-down diagram of the devices in a 3 × 3 matrix architecture if they were built in a planar fashion (rotated 90 ° from the 

sideview diagram). Oxygen vacancies within the SOx channel are moved away/toward the left side of the device to create a conductive path between TE and BE by applying 

a voltage to V gate . Positive voltage pushes vacancies toward the left side of the device, while negative bias brings the vacancies toward the gate. (c) The proposed double 

gated-memristive device for the architecture proposed in this work along with a top-down diagram of a 3 × 3 matrix architecture of the devices built in planar fashion 

(rotated 90 ° from the sideview diagram). It should be noted that the Gate 1 and BE lines exist in parallel above and below the device. A high count of vacancies is placed 

along one side of the SOx channel and a high negative bias is applied across V p and V n to initially place the device in a higher resistive state. During operation, positive bias 

from V p to V n will potentiate the device, while negative bias will depress it. The bias applied from V p to V n must be greater than the SOx channel’s threshold voltage (V t ), 

otherwise no change in the device’s state will occur. 
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. Gated-memristive devices 

Gated-memristive devices operate in a slightly different fashion

han their two-terminal counterparts. Previous gated-memristive

evices developed by Herrmann et al. [34 , 35] operated by mod-

lating the local concentration of oxygen vacancies (V o2 + ) in SOx

etween TE and BE by applying appropriate bias to its extra gate

erminal ( Fig. 1 (b)). This gate is isolated from the SOx channel via

 layer of gate oxide (GOx). To lower the resistance, positive bias

ould be applied to V gate which forces V o2 + towards the TE/BE side

f the device. This process increased the conductivity of the path

etween TE and BE by increasing the concentration of charged car-

iers at the interface. Negative bias can be applied to V gate to pull

 o2 + towards the gate, increasing the device’s resistance. 

When compared to 2T ReRAM, gated-memristors offer addi-

ional features such as simultaneous read and write operations,

ower write currents, state-independent write operations, and
acilitating advanced learning via the additional gate [35] .

errmann et al.’s work on strontium-titanate (SrTiO 3 ) gated-

emristive devices provided measured device data along with a

ehavioral mathematical model for the devices to show these ben-

fits, but offered no physics-based modeling approach in how the

evice operates. To develop a physics-based understanding of the

riginal gated-memristive device, Appendix B describes a physics-

ased model of the devices in Verilog-A using Frenkel-Poole and

hmic conduction along with material parameters obtained from

revious SrTiO 3 studies [39–42] . 

While this form of the gated-memristive device is useful, the

esign of the gated-memristive device could be further enhanced

ia the addition of a second gate. In the original gated-memristive

evice, resistive modulation of the device was via the gate on the

evice. If the circuit was required to detect simultaneous spikes

rom two separate neurons using only the gate, additional circuitry

ould be required. This circuitry would increase the size and add
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additional active circuit elements to the architecture, which would

go against the primary goals of the objective presented in this

paper of solving SLAM in a space and power efficient manner.

Adding an additional gate opposite of the original gate and plac-

ing the TE and BE on the top and bottom of the device ( Fig. 1 (c))

would allow for coincidence detection to be done within the de-

vice structure while still maintaining the benefits of the original

gated-memristive design. Using a more conductive material for the

SOx channel could also further enhance the device by allowing it

to have a higher maximum output current to drive the CMOS cir-

cuitry that often is the common method for implementing spiking

neuron circuits. A candidate for a more conductive channel oxide

that won’t change the core behavior of the gated-memristive de-

vice is Nb 2 O 5 as previous work by Rush and Jha [43] and Bailey

and Jha [40] has shown both Nb 2 O 5 and SrTiO 3 to have similar

analog memristive qualities. 

A diagram of this double gated-memristive device can be seen

in Fig. 1 (c). Prior to device operation, a potential can be applied to

V p to shift defects to one side of the SOx channel. Negative voltage

can then be applied to V n to initially place the device in a high

resistive state. A positive voltage bias from V p to V n at this point

will cause the device to enter a lower resistive state (as long as

the bias is above the SOx’s threshold voltage for being modified,

V t ), while a negative bias from V p to V n will shift the device to a

higher resistive state. The benefit of the added gate comes in the

form of enabling the device to perform coincidence detection with

no additional circuitry required. For this work, the concept of coin-

cidence detection is defined as two applied potentials (of opposite

polarity) from two independent sources occurring simultaneously.

For neuromorphic systems, these applied potentials come in the

form of two spikes (one positive and one negative) from two sep-

arate neurons. 

Top-down schematics for each of the memristive devices in a

3 × 3 matrix architecture can be seen at the bottom of Fig. 1 . The

double gated-memristive device will be the largest of the three de-

signs with an area of 12F 2 (where F is the minimum feature size of

the device). However, the double gated-memristive device does al-

low for the removal of external circuits needed for detecting spik-

ing events applied to the device. It also still brings the benefits of

gated-memristive devices over two-terminal devices. 

Just like the original gated-memristive device, a compact model

can be created to model the new double gated-memristive device’s

behavior. This model considers a pair of series resistances within

the device in the form of bulk-limited (relies on the properties of

the dielectric [44] ) Frenkel-Poole conduction and a reconfigurable

Schottky/ohmic contact resistance at the device’s TE and BE con-

tacts. The simulated output current of the double gated-memristive

device under different gate potentials as a function of time can

be seen in Fig. 2 (a). More conductance behavior of this model is

shown in Appendix I . 

The full double gated-memristive device model consists of a set

of calculations to obtain the device’s synaptic current (For a step

by step process to the model described below, see the flowchart

that describes the model in Fig. 2 within Appendix F .). To calculate

the current through the device, the total resistance through the de-

vice is modeled as two series resistances. The first resistance is a

bulk Frenkel-Poole resistance and the second is a Schottky/Ohmic

contact resistance. The current is then calculated by 

I syn = 

V e f f 

R f p + R SO 

(1)

where R fp and R SO are the Frenkel-Poole and Schottky/Ohmic re-

sistances, respectively. In this model, V eff is calculated by the

equation 

 e f f = V p − V n (2)
 i  
An addition to the double gated-memristive model is the con-

ept of an internal threshold voltage (V t ) for the switching oxide

or potentiation to occur. This is included since previous work has

hown that NbOx has a threshold voltage for potentiation to occur

45] . If V eff < V t , V eff is treated as 0V. 

Frenkel-Poole resistance is given by the equation 

 f p = 

V in − V out 

qμN c 
V in 
L ch 

exp 

(
− q 

kt 

(
ϕ t −

√ 

q V TE 

L ch ε 0 ε i π

))
w 

2 
max 

(3)

This equation is the Frenkel-Poole current density equation seen

rom before but converted into a current by multiplying it by

he square of the conductive region’s maximum potential width

w max ). That current is then used in tandem with the voltage drop

cross the TE/BE of the device to calculate the resistance. All un-

escribed parameters are described in Appendix E (as are all other

ubsequently undescribed parameters for the Nb 2 O 5 double gated-

emristive model). 

Schottky/ohmic resistance is the second resistance factored into

he model. Its purpose is to model the Schottky/ohmic contact re-

istance at the contacts between the top and bottom electrodes

nd the switching oxide. It is defined by the equation [46] 

 so = R B exp 

(
ϕ t − V in 

kt 

)
exp 

(
2( ϕ t − V in ) 

√ 

ε i ε 0 m 

∗

h̄ 

√ 

N c 

)
(4)

The N c term represents the density of states value for the oxide

hannel for the double gated-memristive model. To calculate N c ,

he equation is 

 c = 

w max 

w max + exp 
(
−
(

w c 

w max 
− w max 

))N c,max + N c,min (5)

hich represents the density of states as a function of the current

elative width of the conductive region (w c ) with respect to w max .

 c (a modified version of the traditional drift equation) is given by

he equation 

 c = w c,t−1 + 

t step μo2 v ac V e f f 

W ch 

− d, (6)

here the added term to the drift equation, d , is a decay term that

s dependent on the device’s current conductance state. The term

 c,t-1 is simply the value of w c at the previous timestep within the

imulation. w ch is the width of the SOx device channel. 

Over time, the diffusion of V o2 + out of the conductive path re-

ion in the device is assumed to occur. Previous work has shown

hat in niobium oxide two terminal ReRAM devices, this tempo-

al decay of the device’s state appears Gaussian [43] , where the

eak of the device’s decay occurs at some midpoint conduction

alue between its highest and lowest states. It can be hypothesized

hat this decay is due to vacancy diffusion. In lieu of this previous

tudy, a Gaussian decay term ( d ) was added to the double gated-

emristive model to mimic this behavior when calculating w c . The

ecay term is calculated with the equation 

 = 

d max 

σn 

√ 

2 π
exp 

(
−( N c − M n ) 

2 

2 σ 2 
n 

)
(7)

here d max is a scaling term to cap the maximum decay rate, σ n 

s the standard deviation of defects within the SOx (N c ), and M n 

s the mean value of N c . The effect of this decay term on the out-

ut current of the device can be seen in Fig. 2 (b). It should be

oted that the d max term for this figure was increased by several

rders of magnitude to observe the influence of the decay in a

easonable timeframe and that the decay defined by d is usually

uch slower in the remainder of this work than what is shown in

ig. 2 (b). As the figure shows, the conductive state of the device

ecays at varying rates depending on when the applied gate bias

s released. Ensuring this decay rate matches the requirements for
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Fig. 2. (a) Output current as a function of time with a constant bias applied to V p and V n . The current is in the form of a sigmoid, as the equation for N c describes. (b) 

Plot showing how the conductance state of the gated-memristive device affecting the decay of the device’s conductance in a Gaussian fashion. (c) Conceptual description of 

how the device’s resistance changes via spike-coincident detection and decay due to diffusion of vacancies. R syn of the device will decrease whenever pulses on V p and V n 
overlap. If no overlap occurs, there is no change in the device’s resistance. 
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he design in which they’re used is a critical step in using double

ated-memristive devices within a neuromorphic architecture. 

The resistance (R syn ) of the double gated-memristive device is

nversely related to the synapse’s weight value (higher resistance

s a lower weight, while a lower resistance is a higher weight).

hen the resistance of the device is changed via application of

oltages to V p and V n (positive on V p and negative on V n as shown

n Fig. 2 (c)), the change is proportional to the time the overlap

ccurs and the change in vacancies within the conduction region,

N c , 

R syn ∼ �N c ∗ t (8) 

This change in vacancies is proportional to two key factors de-

ending on the stimuli applied to the device’s gates (V eff). If V eff

 V t , the change in vacancies is proportional to the difference be-

ween V and the rate of diffusion decay within the conductive
eff
egion, defined as d . If V eff < V t , the change in vacancies is only

roportional to the decay rate in the conduction region, 

N c ∼
{

−d, V e f f < V t 

V e f f − d, V e f f ≥ V t 
(9) 

Since d is a Gaussian term within the model, the decay rate is

roportional to a negative exponential term where the exponential

ossesses N c , 

 ∼ exp ( −N c ) (10) 

On a longer scale of time for the memristive device, the overall

hange in resistance with respect to time can be seen as propor-

ional to the average frequency of pulses applied to V p and V n (de-

ned as f ), the average duty cycle of the pulses applied to V p and

 n (defined as D ), the phase match between the pulses applied to

 p and V n (Defined as ϕ, where 0 ≤ϕ≤1. A value of 0 corresponds
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Fig. 3. (a) Schematic of the SR Octopus Retina neuron. Circuit components highlighted in red are components from the original Culurciello et al. circuit. (b) Frequency and 

Duty Cycle as a function of input curent (I in ) for the SR Octopus Retina neuron. Under 20 pA, the frequency of the neuron falls below 1 Hz. (c) Power consumption of voltage 

sources as a function of input current for the SR Octopus Retina neuron. Total power consumption is shown as well. (d) Comparison of the SR Octopus Retina neuron to 

previously published neurons and notable CMOS neuron architectures [48-51] . 
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to no phase match and 1 corresponds to a perfect match) minus

the decay rate of vacancies from before, d , 

d R syn 

dt 
∼ f Dϕ − d (11)

3. CMOS spiking neuron circuit 

This work employs a modified version of the octopus retina-

inspired neuron design proposed by Culurciello et al. [47] . The

original neuron performs a spike on the falling edge of a simulta-

neous current spike on its I in node and a voltage spike on its V reset 

node. This feature limited the circuit to relying upon the externally

applied V reset signal to reset its V out node, which meant the circuit

was unable to self-reset. This feature from the original circuit was

undesirable as each neuron in the architecture proposed in this

work is required to be able to be continuously spiking in a dy-

namic fashion depending on its input current (I in ) value. To achieve

this functionality, a modified design called the self-resetting (SR)

octopus retina neuron has been designed ( Fig. 3 (a)). 

To expand the original neuron’s functionality and make it re-

set without external input, a series of inverters connect the neu-

ron’s original output node with the original circuit’s V reset node.

Additionally, another pair of inverters is used as a buffer on the

neuron output node to reduce loading of the reset signal. The volt-
ge on the neuron’s capacitor is set to V DD upon application of an

ctive-low reset signal to M4. Then, the input current leaks charge

ff of C mem 

via the M1/M2 current mirror, reducing V in . A posi-

ive feedback loop is enabled once V DD -V in reaches M9’s thresh-

ld and the output of the M9/M10 inverter reaches M8’s threshold.

eaching this threshold causes the rest of the charge on the input

ode to quickly be drained, minimizing any short-circuit current

n the M9/M10 inverter. This feedback loops also generates a tran-

ient voltage spike at V out . Sizings of all transistors in the circuit

an be found in the Appendix G . The bias voltages (V b ) are used

o control the time constant of the reset operation. A plot showing

he circuit’s input current vs. frequency/duty cycle profile is shown

n Fig. 3 (b) (an example output waveform for the circuit can be

een in Appendix J ). 

One of the primary reasons this neuron was chosen was due to

he original neuron’s low power consumption, which is an attrac-

ive trait for power-conscious applications such as navigation sys-

ems. The low power consumption also applies to the SR octopus

etina neuron. When power consumption is measured over its op-

ration range, it on average consumes ∼1.07pJ/spike. This low en-

rgy requirement places it in a competitive spot when compared

o other CMOS neurons. The power profile over the neuron’s oper-

tion range can be seen in Fig. 3 (c), and a comparison of the SR

ctopus retina neuron’s operation features compared to other re-

ent neuron circuits can be seen in Fig. 3 (d). 
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. Architecture concepts 

One of the core concepts in neural networks and neuromorphic

omputing is the capability of doing pattern recognition through

ssociative actions embedded in memories. This concept is called

ssociative learning. When multiple inputs are shown simultane-

usly to a neural system, an association between those pieces of

nfo is formed. After the association is formed, observing just one

nput from the set enables the neural system to recall all correlated

nputs from the set. Using the previously defined synaptic devices

nd the SR Octopus Retina Neuron circuit, this concept of associa-

ive learning can be realized within hardware for a neuromorphic

ircuit. 

One of the most common associative memory neural networks

urrently in use is the attractor network [52–54] . Attractor net-

orks are recurrently connected sets of neurons through a ma-

rix of synapses. A “memory” is usually formed within the network

y giving direct input stimuli to two or more neurons within the

ttractor network. Forcing two or more neurons within the net-

ork to fire simultaneously will cause the synaptic connections

hat bind those neurons together to increase in conductance [53] .

ost common single attractor networks use the concepts of both

ctive excitation and inhibition to form the attractors (memories)

ithin the network. 

It is desired for the architecture in this work to store multi-

le memories. With the setup shown in Fig. 4 (a), the network will

e able to possess multiple memories in associated synaptic con-

ections simultaneously. If inhibition was used on the synapses to

reate memories in the multiple memory design proposed here,

ld memories would be erased each time a new memory would

e formed. Due to this issue, only active excitation can be relied

pon to form and maintain multiple memories. The only way for

hem to be forgotten in this setup is for the transient decay of

he synaptic devices to eventually place them back into a low con-

uctance state if the synapses aren’t potentiated for some time. If

he synaptic devices are eventually potentiated to near their min-

mum resistance value however, the memories become effectively

on-volatile. This is a design choice specific to the architecture de-

cribed here and is not a general feature of attractor networks.

he only way to remove the memory at that point is to apply a

ong, negative bias to the device to depress it to a higher resis-

ance value. If saturation of weights in such a network becomes an

ssue, an occasional global depression signal could be sent to the

ntire network to keep it from saturating. 

To place two memories into the network that have no common

eatures/neurons between them, the stimuli for the two memories

hould be shown one after another. For example, the first two neu-

ons in the network could first be fed external stimuli, followed

y the third and fourth neurons being given stimuli. This training

rocess will cause the first two neurons to be associated with one

nother and likewise for the third and fourth neurons. This asso-

iation is created by taking the output signals from each neuron

nd running them through a pair of positive and negative voltage

mplifiers. These buffered neuron signals are connected to the gate

erminals of the synaptic devices as described in Fig. 4 (a). The neg-

tive amplifiers have their signals routed to the V n gates of each

ynapse while the positive amplifiers have their signals routed to

he V p gates of each synapse. For every synaptic device, it will po-

entiate when both neurons connected to its positive and negative

ates are firing simultaneously. If only one of the two neurons is

ring, the synapse will not potentiate, as the voltage applied across

he gate terminals of the synaptic device is designed to not be high

nough to cross the internal threshold voltage of the synaptic de-

ice in order to cause potentiation (V t ). 

Once the two memories are placed into the attractor network,

hey can be recalled at any point by simply providing external
timuli to one of the network’s neurons. If the first neuron is stim-

lated after training, the network can recall that the first and sec-

nd neurons are associated by causing the second neuron to fire.

his concept of recall also applies to the third and fourth neu-

ons if only the third neuron is given stimuli. This entire process of

raining the attractor network and recalling memories as described

n this section can be seen in Fig. 4 (b) and (c). 

In the results shown in Fig. 4 (b) and (c), it can be seen that cre-

ting the memories within the network takes time ( ∼2ms each).

espite the longer potentiation time, this feature adds robustness

o the network. Since each synaptic device gradually decreases its

esistance with each spike coincidence event it receives, this allows

he network to be robust against spurious stimuli/noise. For exam-

le, if N1 and N2 are being shown deliberate stimuli to form an

ssociation with one another, but then N3 emits a small number

f spikes from itself due to charge build-up on its input node over

ime, this will not affect the state of the system. It requires many

pike-coincident events between two or more neurons to form an

ssociation. If a low frequency of spikes occurs over a long period,

he self-decay of the synaptic devices passively depresses any in-

orrect memories forming in the network. 

. SLAM architecture 

The concept of forming associative memories within attractor

etworks can be utilized to solve more complex learning problems

uch as SLAM. In SLAM, the navigational system must be able to

reate a map of its local environment during initial exploration, lo-

alize itself within that map when revisiting the environment, and

e able to make localization-based decisions. The attractor network

s a system that can be used to create a collection of memories

hat correspond to key landmarks in the system’s environment to

imultaneously map key environment features and localize itself

ithin the landmark map (similar to the place and grid cells in

ammals previously discussed). This architecture can be elabo-

ated into a larger architecture that can achieve the objectives of

LAM. 

The proposed architecture is designed to navigate a three-

imensional, cylindrical environment. The initial test system con-

rolled by the architecture in this work can move up and down

ithin its environment and rotate left and right. The system can

rack six unique head directions (0 ̊, 60 ̊, 120 ̊, 180 ̊, 240 ̊, 300 ̊) and

our different z-axis altitudes (Z1, Z2, Z3, Z4). The system is also as-

umed to be able to identify key landmarks in its environment that

t can place in its internal map. This identification process is han-

led by an external algorithm capable of landmark/image recogni-

ion. For the architecture proposed here, the system will be able to

istinguish between four different colored landmarks: red, orange,

reen, and blue. 

Of the landmarks the system can identify, one of them is de-

ned as its “target.” This landmark is predefined for the system to

e the navigational goal within its environment. In this work, the

arget is predefined as the blue landmark. Once the target is seen,

he system can navigate from any previously seen landmark to its

arget in the shortest path. A diagram of this environment can be

een in Fig. 5 (a). 

The neuromorphic SLAM architecture can be split into three

ain sections: the input layer, the associative layer, and the motor

ayer. The overall system layout can be seen in Fig. 5 (b). The in-

ut layer will take external head direction, altitude, and recognized

andmark data as input and output a spike pattern from each of

ts modules to the associative layer. The Z-axis/head direction neu-

omorphic module within this layer consists of a decoding circuit

hat runs to an array of SR Octopus Retina neurons that each cor-

espond to one of the positions/head directions the system is ca-

able of tracking (the stimuli fed to these neurons puts them into
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Fig. 4. (a) Schematic of the proposed four-neuron attractor network that uses the double gated-memristive devices for synapses. (b) Running frequency of the four neurons 

from the attractor network with respect to time during a two memory training/recall test. (c) Snapshots of the synaptic heat map for the four-neuron attractor network 

evolving over time as the two memories are programmed into the network. The typical off state resistance shown in these snapshots (synaptic cells shown in black) is ∼3.3 

G Ω . 
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their maximum frequency state). This allows the positioning/head

direction data to be encoded into the system as a spike train to be

sent to the associative layer. It’s important to note that only one

head direction neuron, one z-axis neuron, and one landmark in-

put is ever firing at any given time (as defined by the setup of
he decoders within the input module and the assumed incom-

ng landmark data). Landmark data (e.g. the colored landmarks) is

ssumed to be coming as a spike train from an external system

oing image recognition. The associative layer then takes the data

iven by the input layer and associates the inputs with one another
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Fig. 5. (a) Diagram showing the test environment for the SLAM architecture to explore. (b) System-level diagram for the neuromorphic architecture to approach SLAM. The 

system is split into an input layer, associative layer, and motor layer. (c) Diagram of the layout of the associative layer and its three interconnected attractor networks to 

create the landmark map of the system’s local environment. (d) Diagram describing the layout of the neuromorphic architecture’s motor layer. All V p terminals with multiple 

signals sent to them are preceded by two or three input OR gates to unify the signals. All signals attached to V p are positively amplified prior to application, and all signals 

attached to V n are negatively amplified prior to application. 
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sing a set of attractor networks. Finally, the motor layer acts as a

rogrammable attractor network which receives its programming

ignals from the associative layer (instead of itself) when a target

s observed. The motor layer then takes all non-target data from

he associative layer to control the system’s motion. 

The associative layer uses a set of attractor networks discussed

n the previous section to remember the locations of landmarks

ithin its environment. The associative layer is comprised of three

nterconnected attractor networks. A separate attractor network

xists for each of the three parameters the system is tracking

landmark being observed, z-axis position, and head direction). The

ttractor networks are interconnected as described in Fig. 5 (c). This

etup allows the associative layer to associate each landmark to a

-axis and head direction, thereby allowing the system to localize

tself when it sees this landmark later. 

The motor layer contains four neurons to create the layer’s out-

ut ( Fig. 5 (d)). These neurons correspond to the drone’s four move-

ents: move up, down, left, and right. Target (blue) outputs from

he associative layer are connected to the negative gates of the

ynaptic devices (V n ) in the motor layer. Z-axis and head direction

eurons from the associative layer have their outputs connected to

ne synapse per neuron per signal from the associative layer. The

ositively amplified versions of those signals are also sent to the

ositive gates (V p ) of the synapses as shown in Fig. 5 (d). To send

ignals to the positive gates of the synaptic devices for synapses
ith two or more input signals to the gate, an OR gate is used to

onnect the signals from the associative layer to the V p node of the

ynapse. 

An experimental setup for a test environment is shown in

ig. 6 (a). Different colored landmarks are placed throughout the

nvironment. In simulation, the system explores its environment

ntil its target is observed. When placed into its previously ex-

lored environment, it can identify the shortest path to its target

hen only shown the color of a previously seen landmark (5ms-

ms in Fig. 6 (b)). Heat maps for the associative and motor layers’

ynapses are in Fig. 6 (c) and (d), respectively. 

The architecture was simulated in two halves to obtain the re-

ults shown in Fig. 6 . The first half involved simulating the input

ayer and the associative layers of the architecture. Output patterns

f the associative layer were then recorded and replicated for use

n the second half of the simulation. Figs. 6 (c) and (d) were ob-

ained from the first simulation. The second half of the simulation

hen took inputs from a small array of SR Octopus Retina neurons

esigned to replicate the output of the associative layer from the

rst simulation and places them into the motor layer. 

One final thought for an architecture focused on a task such

s navigation is power. Most navigational systems must rely on

ery limited power. In the simulation conducted in Fig. 6 , the sys-

em consumed an average of 36μW of power during operation. The

mall array of neurons designed to replicate the behavior of the
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Fig. 6. (a) Diagram showing the test pattern that will be given to the SLAM architecture for analysis. (b) Running Frequency plot showing how the system explores the 

environment as shown in Fig. 20. After the system explores its environment, it revisits a previously seen landmark to verify it knows the shortest path to its target. (c) 

Synaptic heat map for the associative layer in the SLAM architecture after the system fully explored its environment and found its target. (d) Synaptic heat map for the 

motor layer of the SLAM architecture after the system found its target. The cause of the up/down synapses being not set as far as the left/right synapses is due to the Z3 

signal from the associative layer was more out of phase with the blue signal from the associative layer than the 180 ̊ signal. 
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associative layer in the second simulation was not factored into the

measured power consumption of the circuit. For a simple compar-

ison, the STA8089FGA GPS module from STMicroelectronics con-

sumes an average of 25-90mW during normal operation [5] . The

comparison isn’t exactly on par in terms of functionality (as the

architecture shown here hasn’t been scaled up to something that

would be in an implemented system), but it shows the promise a

system such as the architecture shown in this paper has for tack-

ling navigational tasks such as SLAM. 

6. Future design direction 

The architecture proposed in this work is a proof of concept.

The architecture does not include more advanced features such as

moving in the X-Y plane, environments with operational ceilings

that vary in height, etc. These types of features are planned to

be further implemented in a future work focusing more on the

system-level functionality and abstraction of the SLAM architec-

ture. Evaluating the architecture at a system level is critical to un-

derstanding how the network would respond in a closer-to-reality

environment. One of the limitations in the area of SLAM is a lack

of standard training datasets. Many papers have their own meth-

ods of showing how they can evaluate a SLAM problem. Some im-

plementations give test environments [24 , 55 , 56] while others will

take images of a real world location such as an office or bedroom

in an attempt for the system to identify its location within that

environment [19 , 57] . Other test environment data also isn’t nor-

mally set up for direct compatibility with hardware-based sim-

ulators such as SPICE. Observing how the network behaves in a

long term versus short term operation time span is planned to see

how the network navigates to landmarks more efficiently as times
asses. This functionality can be tested in a real world or simulated

nvironment. 

In addition to the extra functionality, fabrication of the devices

hat create the architecture such as the CMOS neurons is planned

or verification of a physically realizable architecture. This testing

rocess will include testing on the fabricated CMOS neurons and

ated-memristive devices along with simulations to test the archi-

ecture’s robustness to process variation that will naturally exist in

 physically realized network. 

. Conclusion 

This work has demonstrated a neuromorphic architecture using

ovel device models capable of localization within space and solv-

ng for the shortest path to a target within a cylindrical environ-

ent. To our knowledge, this is the first neuromorphic architec-

ure using gated-memristive devices to tackle the navigational task

f SLAM. The architecture uses an adapted SR octopus retina neu-

on that outperforms other existing neuron circuits by consuming

nly 1.07pJ per spike and having a maximum output frequency of

9 MHz. The neurons are used in tandem with gated-memristive

evices that act as synaptic memory for the system to remember

he locations of landmarks within the navigational system’s envi-

onment. The system can recognize the location of targets within

ts environment and use its localization state to navigate to a pre-

iously seen target while only consuming an average of 36μW of

ower during operation. 
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ppendix A – Simulation environment 

All simulations were conducted in HSPICE N-2017.12 on a Win-

ows 10 operating system. All MOSFETs used utilized Arizona

tate’s Predictive Technology Models [58] 180nm bulk technology

le (180nm_bulk.pm). All circuit components used excluding the

ynaptic devices were constructed in HSPICE spice netlist files (file

xtension 

∗.sp). The models for synaptic devices were written in

erilog-a (file extension 

∗.va) and then had the models instantiated

s circuit components within the HSPICE spice netlist files. Any

utput data needed to be read was read with the Synopsys tool

ustom WaveView Version O-2018.09, which is a standard wave-

orm viewer tool for HSPICE simulations. 

One important thing to note within HSPICE is when simulat-

ng oscillating circuits such as neurons during transient analysis,

nsure that the simulator is using initial conditions. This is done

y appending the “uic” token to the end of any transient analysis

ommand as shown in the following example. 

tran 1 ns 1 ms uic 

Without the added token, the HSPICE simulator won’t interpret

he neuron circuit as oscillating if the neuron circuit is being given

 DC input voltage or current as its external stimuli. Therefore, it

ill appear as if the neuron isn’t firing at all. 

ppendix B – SrTiO 3 -memristive device theoretical model 

The Verilog-A model for the SrTiO 3 gated-memristive device is

ased off a parallel current calculation through the switching oxide

hannel within the device. Although this model uses similar device

arameters as the device used in [34] , the model differs from the

ne in [34] as it more closely follows device physics instead of a

ehavioral model. Having this physics-based model of the previ-

usly designed gated synaptic device is key to show the step by

tep process in improving the device for future use. For a step by

tep process to the model described below, see the flowchart that
escribes the model in Fig D1 . To calculate the current through the

ated-memristive device, the equation 

 syn = 

(
J ohm 

+ J f p 

)
w 

2 
max (B.1) 

s used where J ohm 

is the ohmic current density through the

witching oxide, J fp is the Frenkel-Poole current density through

he switching oxide, and w max is the maximum width of the con-

uctive path that can form within the oxide. Both current density

erms can be calculated using Eqs. (2 ) and ( 3 ), which are taken

rom Chiu [44] . 

 ohm 

= 

qμN c V in 

L ch 

exp 

( 

−
(
E c − E f 

)
kT 

) 

(B.2) 

 f p = 

qμN c V in 

L ch 

exp 

( 

− q 

kT 

( 

ϕ t −
√ 

q V in 

L ch ε 0 ε i π

) ) 

(B.3) 

In the current density calculations, E f is the Fermi level within

he oxide, and N c is the density of states value for the oxide

hannel that describes the amount of oxygen vacancies along

he conductive path from the device’s top electrode to its bot-

om electrode. All other parameters are described in Table C1 in

ppendix C (as are all other subsequently undescribed parameters

or the SrTiO 3 gated-memristive model). 

To obtain the values for the Fermi level and N c , the following

air of adapted equations from Chiu [44] are used. 

 c = 

w c 

L ch 

N c,max + 

(
1 − w c 

L ch 

)
N c,min (B.4) 

 f = 

E c 

2 

+ 

N c E c 

2 N c,max 
(B.5) 

To calculate V eff, which is the effective voltage applied to the

ate of the device, the equation [34] 

 e f f = V gate − V in + V out 

2 

(B6) 

s used. The w c and d terms are calculated in the exact same man-

er as the model for the Nb 2 O 5 device. 

ppendix C – Gated-memristive model (SrTiO 3 ) parameters 

Below is a list of all parameters and constants needed to model

he gated-memristive device in addition to a description and the

ariable’s value. Derivations for any values that require derivation

re shown following the list. 

To obtain the value of M n , M n was defined as 

 n = 

N c,min + N c,max 

2 

= 

1 e 22 + 1 e 25 

2 

= 5 e 24 

here M n was then used to calculate σ n 

n = 

M n 

6 

= 

5 e 24 

6 

= 8 . 33 e 23 . 

It should be noted that the equation for d in this model acted as

 fitting parameter for ensuring the hysteresis matched the mea-

ured SrTiO 3 gated-memristive device. Therefore, all parameters

ithin the equation for d should be treated as fitting parameters. 
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Table C1 

Parameters used in simulation of SrTiO 3 gated-memristive device. 

Parameter Description Value 

q Charge of an electron 1.6e-19 C 

μ Electron mobility of SrTiO 3 0.001 m 

2 /(V ∗s) [39] 

L ch Length of oxide channel in 

gated-memristive device 

1e-8 m 

ϕt Trap height in oxide 1.35 [40] 

ε0 Vacuum permittivity 8.85e-12 F/m 

εi Dielectric constant of SrTiO 3 130 [41] 

k Boltzmann constant 8.62e-5 eV/K 

T Temperature 300 K 

m 0 Mass of an electron 9.109e-31 kg 

E c Bandgap of SrTiO 3 3.3 eV [42] 

w max Maximum width of filament in SOx 1e-9 m 

N c,max Defined maximum density of states in 

SOx 

1e25 

N c,min Defined minimum density of states in 

SOx 

1e22 

t step Time step in drift calculation 1e-6 s 

μo2vac Mobility of oxygen in vacuum 4e-17 m 

2 /(V ∗s) 

W ch Width of SOx 2e-8 m 

d max Fitting parameter to control decay 1.5e10 

σ n Standard deviation of N c 8.33e23 

M n Mean value of N c 5e24 

 

 

 

 

Table E1 

Parameters used in simulation of the Nb 2 O 5 double gated-memristive device. 

Parameter Description Value 

q Charge of an electron 1.6e-19 C 

μ Electron mobility of Nb 2 O 5 2e-5 m 

2 /(V ∗s) [59] 

L ch Length of oxide channel in 

gated-memristive device 

2e-8 m 

ϕt Trap height in oxide 0.62 eV [60] 

ε0 Vacuum permittivity 8.85e-12 F/m 

εi Dielectric constant of Nb 2 O 5 28 [59] 

k Boltzmann constant 8.62e-5 eV/K 

T Temperature 300 K 

m 

∗ Relative mass of Nb 2 O 5 4m 0 [59] 

m 0 Mass of an electron 9.109e-31 kg 

w max Maximum width of filament in SOx 1e-9 m 

N c,max Defined maximum density of states in 

SOx 

1e27 

N c,min Defined minimum density of states in 

SOx 

1e24 

t step Time step in drift calculation 1e-6 s 

μo2vac Mobility of oxygen in vacuum 4e-17 m 

2 /(V ∗s) 

W ch Width of SOx 1e-8 m 

d max Fitting parameter to control decay 1.6e8 

σ n Standard deviation of N c 8.33e25 

M n Mean value of N c 5e26 

V t Threshold Voltage for Potentiation in 

SOx 

6.5V ∗

∗ The value of V t was adjusted to a higher value to allow for faster acceleration 

time above the usual value of 1.8V [45] . 

s  

o

Appendix D – Gated-memristive model (SrTiO 3 ) 

To model the gated-memristive device within Verilog-a, the

equations shown in the discussion section are executed in simula-

tion as shown in Fig. D1 . At the very start of the simulation, every

gated-memristive device has its parameters put into their initial
Fig. D1. Flow of model for gated-memristive device implemented in Verilog-a. 
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tate. At every time step, each gated-memristive device executes

ne pass through the Fig. D1 (ending with the calculation of I syn ). 

ppendix E – Double gated-memristive model (Nb 2 O 5 ) –

arameters 

Below is a list of all constants and parameters used in the

odel for the double gated-memristive device in addition to a

escription and its value. Derivations for any values that require

erivation are shown following the list. 

The values for M n and σ n for this model were obtained in the

ame manner as they were in the SrTiO 3 model. It should also be

oted that some of the simulations shown in the main paper ex-

ggerated the value of d max to 1.4e13 to easily show the pattern

f decay in the device when not being potentiated in a viewable

mount of time. 

ppendix F – Double gated-memristive model (Nb 2 O 5 ) 

The model for the double gated-memristive model is ran in an

lmost exact manner as the original model. The only addition to

he model is the extra step in checking the value of V eff. If that

alue doesn’t exceed the value of V t , V eff is made zero for the w c 

alculation so no potentiation is caused within the oxide channel.

he chart for the double gated-memristive model can be seen in

ig. F1 . 

ppendix G – SR octopus retina neuron transistor sizings 

To obtain proper behavior from the neuron circuit used, tran-

istors must be of appropriate size. Any resizings beyond the min-

mum feature size are done in multiples of the minimum features

ize (e.g. 360 nm, 540 nm, 720 nm, etc.). Table G1 shows a full list

f dimensions used for every transistor in the neuron circuit. In

ddition to proper trasnsistor sizings, C mem 

within the circuit was

efined as 120fF. All transistors within the circuit possess a mini-

um feature of size of 180 nm. 
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Fig. F1. Flow of model for double gated-memristive device implemented in 

Verilog-a. 

Table G1 

Sizings of all transistors used in the implementation of the SR oc- 

topus retina neuron. 

Transistor Length (nm) Width (nm) 

M1 720 180 

M2 720 180 

M3 180 180 

M4 180 180 

M5 180 180 

M6 180 180 

M7 180 180 

M8 180 180 

M9 720 180 

M10 720 180 

M11 180 180 

M12 720 180 

M13 720 180 

M14 720 180 

M15 720 180 

M16 720 180 

M17 720 180 

M18 720 180 

M19 720 180 

M20 180 180 

M21 180 180 

M22 180 180 

M23 180 180 

A

 

b  

s  

c  

d  

i  

g  

l  

t  

Fig. H1. Output current (I syn ) as a function of gate bias (V gate ) and time of a SrTiO 3 
gated-memristive device from Herrmann et al. [21] . 

Fig. I1. Output current (I syn ) as a function of gate bias (V eff) and time of a Nb 2 O 5 
double gated-memristive device proposed in this work. 

Fig. J1. Example output waveform of the SR Octopus Retina neuron. 
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ppendix H - Comparing the SrTiO 3 model to measured data 

In Herrmann et al., a test was performed to show the hysteretic

ehavior within the SrTiO 3 gated-memristive device [34] . This test

wept a voltage applied to V gate from -5V to 5V and back over the

ourse of 60 seconds. This test showed that the gated-memristive

evice could be used as a synaptic device, as it confirmed it was

ndeed resistive RAM. A similar test can be performed on the

ated-memristive model discussed in this work to show its simi-

arity to the original device. The same exact test was performed on

he gated-memristive model, and the comparison can be seen in
ig. H1 . The hysteresis curve between the measured and modeled

evice are close in behavior. The shifting of the hysteresis curve

etween the two curves is noticeable but could be attributed to

evice fabrication variance for the measured device. 

ppendix I – Sweeping the Nb 2 O 5 model 

Taking the adapted double gated-memristive model and per-

orming a similar test on it to the test performed in Herrmann

t al. does indeed show hysteresis in the model. This result can
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Fig. L1. (a) Running frequency of the four neurons from the attractor network with respect to time during a two-memory training/recall test when 100 pA is provided to N4 

to simulate noise given to the attractor network during the first 3ms of the simulation. (b) Snapshots of the synaptic heat map for the four-neuron attractor network evolving 

over time as the two memories are programmed into the network in log scale. (c) Snapshots of the synaptic heat map for the four-neuron attractor network evolving over 

time as the two memories are programmed into the network in linear scale. The noise given to N4 can be seen to begin to potentiate the synapse wired to itself, but then 

watch it depress from 2ms to 3ms. 
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e  
be seen in Fig. I1 . The curve does not look the same in comparison

to the original model, however that is expected. The internal struc-

ture and functionality of the device has changed from one model

to the next. The device now spends must less time transitioning

between its lowest and highest conductance states. 

Appendix J – Example output of SR octopus retina neuron 

If the SR octopus retina neuron is given external stimuli such

as a DC current on its input node, the neuron will begin to spike.
he neuron’s output waveform is in the form of a square wave in-

tead of the abrupt spike seen in other CMOS circuits that have

een designed (including the original version of this neuron de-

ign by Culurciello et al.) [47] . The output waveform this neuron

ould be that original spike waveform if it were not for the final

uffer before the output node of the circuit. This buffer is needed

n this design to separate the implemented self-reset mechanism

art of the circuit with any external load applied the output

ode of the neuron. Without this buffer, any external load would

liminate the self-reset mechanism, and prevent the neuron from
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scillating. Both V b terminals were set to 0.4V for all simulations

n this work. A sample square waveform output from the neuron

ircuit can be seen in Fig. J1 . 

ppendix K – Matching the synaptic devices and neuron 

ircuits 

Before performing associative learning in hardware, the neuron

nd synaptic devices must be paired properly to work with one

nother. This pairing process primarily involves matching the oper-

tion range of the neuron being used to the output current range

f the synaptic device being used to ensure the operation ranges

verlap. 

For example, if the desire was to create a very simple associa-

ive learning architecture that consisted of four neurons that were

onnected to form a four-neuron attractor network ( Fig. 4 (a)), the

euron would have to be properly paired to a set of four synap-

ic devices. In this case, this pairing means that the moderate to

aximum conductance value of a single synaptic device is enough

o excite its post-synaptic neuron. It also means that the output

urrent of an array of synaptic devices when at a low conductance

alue is not sufficient to place the neuron above a firing rate that

ould not cause any measurable change in the network’s state. 

ppendix L – Behavior of attractor network when given noise 

nput 

When the four-neuron attractor network is given input that is a

mall non-zero value (100 pA in this case) to neurons not intended

o fire, it will cause the neuron(s) given the noisy input to output

purious sequences of spikes. By design, the attractor network is

uilt to handle such unintended noise due to the robust nature of

he double gated-memristive devices. When the experiment from

ig. 4 is repeated with 100 pA provided to N4 while N1 and N2

re being associated with one another, the spurious spikes gener-

ted by N4 are not enough to cause any real association with N1

nd N2. This behavior can be seen in the following figure where

he network has a weak response to the spikes from N4, but they

egin to decay over time. The memory recall is still successful for

oth sets of associated neurons despite the noise interference dur-

ng the first memory association. 
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