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Abstract
The human brain atlases that allow correlating brain anatomywith psychological and cognitive functions are in transition from
ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human
brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important
connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based
parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity
architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained,
cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further
mapped the delineated structures tomental processes by reference to the BrainMap database. It thus provides an objective and
stable starting point from which to explore the complex relationships between structure, connectivity, and function, and
eventually improvesunderstandingof how thehumanbrainworks. ThehumanBrainnetomeAtlaswill bemade freelyavailable
for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional datawill be readily
available for researchers to use in their investigations into healthy and pathological states.
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Introduction
The human brain contains hundreds of anatomically and func-
tionally distinct cortical and subcortical structures, accurately
defining these parcellations and mapping their functions and
connections pose massive challenges. However, a reliable brain
atlas reflecting this subdivision is essential to quantitatively
investigate the functional and structural characteristics of the
human brain. Such an atlas would then allow brain network ana-
lyses in an informedway using a priori defined nodes rather than
resorting to arbitrary brain divisions or using data-driven parcel-
lations specific to the specific subjects at hand (de Reus and van
den Heuvel 2013; Sporns 2015). In addition, it would also offer a
powerful framework for synthesizing the results of different
imaging studies (Devlin and Poldrack 2007; Van Essen 2013;
Amunts et al. 2014).

Consequently, there has been a long-standing effort to parcel-
late the brain into areas based on microstructural, macrostruc-
tural, or connectional features (Toga et al. 2006; Amunts and
Zilles 2015). Early parcellation efforts aimed at defining regional
boundaries, including the widely used Brodmann atlas, relied
on postmortem architecture using limited samples (Brodmann
1909; Zilles and Amunts 2010). Although such atlases have pro-
vided invaluable information, their microscale cytoarchitecton-
ics is insufficient to completely represent brain organization
(Van Essen 2013). In particular, microstructural heterogeneity
represents only one aspect of cortical differentiation, namely,
local features, while being insensitive to the secondmajor deter-
minant of regional specialization, that is, heterogeneity in long-
range connections (Passingham et al. 2002). Although histologic-
al examination is currently the only technique that actuallymaps
the brain directly (rather than inferring parcellations from
recorded data), systematic cytoarchitectonical mapping proce-
dures are extremely time-consuming and must be complemen-
ted by information on the heterogeneity of connectivity patterns.

In the past 2 decades, information gained from advanced
brain mapping technologies, in particular multimodal magnetic
resonance imaging (MRI), including structural, functional, and
diffusion MRI, has offered alternative ways to tackle the
challenge of cortical cartography (Behrens et al. 2003; Johansen-
Berg et al. 2004; Cohen, Fair, et al. 2008; Cohen, Lombardo, et al.
2008; Kim et al. 2010; Eickhoff et al. 2011). Most of these still rap-
idly developing approaches are based on the aforementioned
concept that each cortical area has a unique pattern of inputs
and outputs (a “connectional fingerprint”), which, together with
the local infrastructure provided bymicrostructural properties as
mentioned above, represent the second major determinant of
the function of that area (Passingham et al. 2002). Therefore,
the basic idea of connectivity-based parcellation is to suppose
that those voxels belonging to a given brain area share similar
connectivity profiles. In turn, brain areas should thus be defin-
able by aggregating voxels showing similar connectivity patterns
into larger clusters. A considerable number of studies have
already used connectivity-based parcellations to form carto-
graphic maps of specific regions of the brain or even the entire
cortex (Eickhoff et al. 2015); however, there are several inconsist-
encies between themand in particular awhole-brain parcellation
scheme based on structural connectivity information is still
missing.

The Brainnetome Project was launched to investigate the
hierarchy in the human brain from genetics to neuronal circuits
to behaviors (Jiang 2013), conceptualizing 2 components (nodes
and connections) as the basic research unit. One of the key prere-
quisites of this project is thus to establish a new human brain
atlas, that is, the Brainnetome Atlas, defining these nodes
based on structural connectional architecture. Importantly, the
Brainnetome Atlas should follow the concept of a multimodal
characterization providing not only fine-grained subregions
based on structural connectivity patterns but complement
these by detailed functional connectivity patterns for each area.
Furthermore,mapping cognitive processes onto thesemodules is
central to understanding the functional organization of the
human brain and hence a comprehensive structure-to-function
mapping of the subregions forming the Brainnetome Atlas
should likewise be performed. Together these types of informa-
tion would then establish a new framework for the allocation of
activations and the investigation of whole-brain connectivity
matrices. This article describes the current progress in forming
this new human brain atlas based on connectional architecture
and its ability to link brain connectivity to function, which
together could help reveal the neurophysiological substrates of
various diseases and cognitive functions.

Materials and Methods
Subjects and Data Acquisitions

Data from40healthy, unrelated adults (age: 22–35, 17males)were
obtained from the Q3 data release from the Human Connectome
Project (HCP) database. The multimodal MRI data consisted of
structural MRI, resting-state functional MRI (rfMRI), and diffusion
MRI (dMRI), collected on a 3 T Skyra scanner (Siemens, Erlangen,
Germany) using a 32-channel head coil. Because subjects 209 733
and 528 446 displayed structural brain abnormalities, they were
replaced by 2 other subjects, 100 408 and 106 016, from the unre-
lated 80 subjects’ group. All scanning parameters are detailed
and motivated in Van Essen et al. (2013) and also provided in
the supplement. Multimodal MRI data from the database were
downloaded in a preprocessed form, that is, after the images
had undergone the minimal preprocessing pipeline (v. 3.2). The
details of this pipeline have been described previously (Jenkinson
et al. 2002, 2012; Glasser et al. 2013; Smith et al. 2013) and are only
summarized in the supplement for completeness.

In addition, another independent group of healthy subjects
were included to do the repeatability validation. The dataset in-
cluded 40 (20 males, age range, 17–20 years, age, 19.10 ± 0.80
years, mean ± SD) right-handed participants. The multimodal
MRI data of 40 healthy adults were acquired using a 3.0 T GE MR
Scanner (see Zhuo et al. (2016) for a full description of the data
sample and acquisition parameters).

Initial Seed Masks Definition

First, each subject’s T1 image was parcellated into 34 cortical re-
gions of interest (ROIs) per hemisphere and 14 subcortical ROIs
based on the Desikan–Killiany (DK) atlas (Desikan et al. 2006).
We then combined ROIs representing (arbitrary) subdivisions of
a larger gyrus as well as those whose boundaries are determined
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by sulci that are highly variable (cf. Supplementary Table 1). In
addition, we combined the basal ganglia into a single region of
interest for subsequent parcellation (Tziortzi et al. 2014). The
full name and abbreviation of each initial cortical and subcortical
seed mask are listed in Supplementary Table 1. All the cortical
and subcortical volumetric ROIs were extracted in MNI space
based on the preprocessed individual structural data. These ini-
tial seed masks in each subject were then used to create popula-
tion probability maps that were binarized using a threshold of
25% to obtain the volumetric ROIs. These ensuing masks were
used as a starting point for the connectivity-based parcellation
analysis (Fig. 1A).

Probabilistic Diffusion Tractography

The (HCP minimally preprocessed) diffusion MRI data were
further processed using the FMRIB Diffusion Toolbox. First,
fiber orientation and associated uncertainties in each voxel
were estimated using FSL’s BEDPOSTX algorithm, estimating
probability distributions for multiple fiber directions at each
voxel (Behrens et al. 2007). Second, skull-stripped T1-weighted
images for each subject were co-registered to the subject’s non-
diffusion-weighted image (b = 0 s/mm2). On the basis of these
aligned T1 images, we derived (forward and inverse) nonlinear
transformations between the diffusion space and the MNI 152

Figure 1. Framework of the Brainnetome Atlas construction based on connectivity-based parcellation. (A) Initial parcellation using automatic surface parcellation and
subcortical segmentation. The FreeSurfer DK atlas produced the initial parcellations based on gyri and sulci. (B) Tractography-based parcellation with in vivo
connectional architecture. Taking the parcellation of the human paracentral lobule by diffusion tensor imaging as an example, the paracentral lobule was first
extracted from the DK atlas. The connectional architecture was then mapped with probabilistic tractography using diffusion MRI, after which, by calculating the
similarity/dissimilarity between the connectivity architecture, the paracentral lobule was divided into subregions with distinguishing anatomical connectivity
patterns. The stability across the population and the interhemispheric anatomic homology were evaluated to determine the final cluster number. (C) Subregional
anatomical and functional connections and functional behavioral decoding. Diffusion MRI combined with tractography was used to reconstruct the major fiber
bundles, while functional connectivity analysis of resting-state functional MRI was used to provide the in vivo large-scale connectivity in the human brain. We also
mapped the functions to each paracentral lobule subregion via the behavioral domain and paradigm analysis using the BrainMap Database.
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structural template, which were then used to transform the seed
masks into the diffusion space for each subject. We checked the
registration accuracyof each seed region in the coronal, axial, and
sagittal planes slice-by-slice in native diffusion space andmanu-
ally modified themasks following the DK protocol (Desikan et al.
2006) where necessary. Then, the probabilistic tractography was
applied by sampling 5000 streamline fibers for each voxel in the
seed region to estimate its whole-brain connectivity profile.
A small threshold value was then used to remove connectivity
information of voxels that were only reached by no more than
2/5000 samples and hence most likely represent stray connectiv-
ity, that is, noise (Heiervang et al. 2006; Johansen-Berg et al. 2007;
Makuuchi et al. 2009).

Connectivity-Based Parcellation Through Tractography

To facilitate data storage and analysis, the whole-brain connect-
ivity profiles for each voxel were down-sampled to 5 mm isotrop-
ic voxels. Cross-correlation matrices between the connectivity
patterns of all the voxels in the seed mask were calculated and
used for automatic parcellation (Johansen-Berg et al. 2004). The
cross-correlation matrix was then permutated using spectral
clustering to define distinct clusters (Liu et al. 2013; Fan et al.
2014). Importantly, the number of clusters must be defined by
the experimenter when using this method. In the current
study, we explored parcellations from 2 up to 12 (depending on
the size of the seed region) clusters (Fig. 1B; see Supplementary
Figs 2–7). All (per subject) solutions were transformed into the
MNI template space using the nonlinear transformations
described above.

Owing to the random labeling of clusters by clustering algo-
rithm across subjects, we try to find the most consistent labeling
scheme across subjects by the following steps. First, the labeling
schemes of each subject’s clusters were pooled into a thre-
sholded group-level cross-correlation matrix where each entry
represents the connectional similarity of any 2 voxels in the
ROI (Zhang et al. 2015). Then, the spectral clustering algorithm
was applied again on this similarity matrix, and a group-level
labeling scheme was, thus, yielded. Last, the labeling pattern
was propagated back to each subject’s clusters by maximization
of spatial overlap using Munkres’ assignment algorithm
(Munkres 1957).We then calculated probabilisticmaps represent-
ing the overlap of these clusters across the subjects and hence
interindividual variability. Further, a maximum probability map
(MPM) across all the subjects was created for each solution (num-
ber of clusters) by assigning each voxel to the most likely cluster
at this position (Eickhoff et al. 2005). In addition, if 2 parcels
representing the same region across hemispheres are given, the
consistent labeling pattern across hemispheres is also achieved
before propagation of the labeling pattern.

Determination of the Optimal Clustering Solution K

To avoid arbitrarily choosing the number of clusters, we used
cross-validation to determine the number of clusters that yielded
the optimal consistency across the subjects. We considered 2
general strategies for defining the optimized cluster number,
that is, stability across the population and interhemispheric con-
sistency of topographic arrangement (Fig. 1B; see Supplementary
Figs 2–7).

The suitable number of subregions was first assessed by
evaluating the reproducibility of the parcellation across ran-
dom-split half sets as measured by Cramer’s V (Liu et al. 2013;
Fan et al. 2014). Participants were divided into 2 random groups,
and the MPMs of the 2 randomly assembled groups were

evaluated. The random-split half was then repeated 100 times
to compute the average (and standard deviation) consistency.
The optimal Kwas defined by the (local) peak of Cramer’s V, indi-
cating a better split-half reproducibility than the surrounding
solutions.

We also evaluated the topological distance (TpD) to quantify
the similarity in topological arrangement of putatively homolo-
gous areas on either hemisphere (Tungaraza et al. 2015). To this
end, we computed a K × K topology matrix for a given parcella-
tion. The (i, j) entry of this matrix was the number of voxels
from region i that were spatially in contact (26-nearest neighbor)
with voxels from region j. The TpD between the left and right
given subregions in each hemisphere was defined as the cosine
distance of the 2 matrices (normalized to a sum of 1 and vector-
ized), yielding TpD scores that range from0 (identical topology) to
1 (completely incongruent topology).

Mapping Anatomical Connectivity Patterns

Tomap thewhole-brain anatomical connectivity pattern for each
subregion of the atlas, we performed probabilistic tractography
by drawing 5000 samples from each voxel in each subregion
(thresholded at 25% probability) to all the other voxels of the
whole brain. To reduce the noise in fiber tracking, the raw trace
counts for each subject were thresholded at a trace count of ≥2.
Next, we obtained a population map of the major fiber bundles
for each subregion by binarizing the obtained per-subject tracto-
grams, normalizing them into standard space, computation of a
probabilistic fiber-tract map, and thresholding the latter at 50%
probability. In addition, we also computed the structural connec-
tome between all identified subregions, again binarized them
using a threshold for stray connectivity of ≥2 and then employed
a nonparametric 1-tailed sign test to determine the connections
that are consistent across subjects (Gong et al. 2009). To reduce
the chances of obtaining false-positive connections, a Bonferroni
correction was used to adjust for multiple comparisons (i.e., 246
× 245/2 = 30 135 pairs of subregions) at P < 0.001.

Mapping Resting-State Functional Connectivity Patterns

To map the whole-brain resting-state connectivity pattern for
each atlas subregion, we resampled each subregion (thresholded
at 50% probability) at the 2 mm resolution of the resting-state
data and computed its average time series per subject. A func-
tional connectivity map was then provided by the Pearson’s cor-
relation coefficient between the mean time series of each
subregion and that of each voxel in thewhole brain. The obtained
correlation coefficients were normalized using Fisher’s z-trans-
formation and tested for statistical significance on the group
level using a 1-sample t tests (FDR corrected inference at P < 0.05
with an additional extent-threshold of 50 voxels).

Function Decoding Using the BrainMap Database

The functional characterization of the connectivity-based parcel-
lation-yielded subregions was based on behavioral domain and
paradigm class meta data labels of the BrainMap database
(cf. http://www.brainmap.org/taxonomy) using forward and
reverse inferences (Eickhoff et al. 2011; Cieslik et al. 2013; Clos
et al. 2013; Fox et al. 2014). Forward inference indicates the prob-
ability of observing activity in a brain region given knowledge
of the psychological process, whereas reverse inference is the
probability of a psychological process being present given infor-
mation about activation in a particular brain region. For the
forward inference approach, a subregion’s functional profile
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was determined by identifying the taxonomic labels for which
the probability of finding activation in a specific subregion was
significantly higher than the overall chance (across the entire
database) of finding activation in that particular subregion as es-
tablishedusing a binomial test (P < 0.05 corrected). For the reverse
inference, a subregion’s functional profile was determined by
identifying the most likely behavioral domains and paradigm
classes given activation in this subregion using Bayes’ rule. Sig-
nificance (P < 0.05 corrected) was assessed by means of a χ2 test.

Results
Parcellation Scheme of the Human Brain in the
Brainnetome Atlas

On the basis of the connectivity architecture derived from prob-
abilistic tractography using in vivo dMRI data, we subdivided
the brain into a total of 210 cortical areas and 36 subcortical re-
gions based on the reproducibility of the parcellation between
the subjects, characterized using Cramer’s V, and the interhemi-
spheric consistency of topological relationships between clus-
ters, characterized by the topographic distance (TpD).

Given that the anatomical connectivitymaps of each identified
subregion at whole-brain level were generated, we used the re-
maining 245 subregions as seed targets to construct a 246 × 246
connectivity matrix in which each item represents the structural
connectivity of all subregions, and each row represents the finger-
print of a subregion. To supplement the validity of topological dis-
tance (TpD), here, we compared the similarity of connectivity
fingerprint of each putative pair across the 2 hemispheres. Given
a specified ROI, a K ×K matrix was derived from the connectivity
matrix of each subject. In this matrix, K denotes the label number
of subregions, row and column represent the label number of
subregions in ascending order in the left and right hemisphere, re-
spectively, and each entry represents the similarity (1 − cosine
distance) between the fingerprints of 2 subregions in this ROI
(see details in Supplementary Figs 2–7). From the nomenclature
relating label number and the corresponding name, we can
conclude that TpD is an effective index that is able to find the
contralateral part with the most similar connectivity profile of a
subregion. For the final atlas, the MPM including all of these sub-
regions was created in a standard MNI space (Fig. 2; see Supple-
mentary Fig. 1). The details of the parcellation results for each
initial region (and the repeatability validation results using an
independent dataset) are listed in Supplementary Figures 2–7.

One of the challenges that arise in the context of new brain
parcellation schemes is the naming of the ensuing subregions
in the Brainnetome Atlas. To denominate the identified subre-
gions at the Brainnetome Atlas, we hence employed 2 kinds of
nomenclature (cf. Supplementary Table 1). In particular, we fol-
lowed the primary strategy of using the DK atlas labels providing
the initial macroanatomic parcellation, followed by a numeric
labeling of the clusters. While preferable for not implicating po-
tentially unwarranted correspondence with previous (micro-
structural) brain maps, this solution has the disadvantage of
being rather hard to follow. Acknowledging that most research-
ers will be more familiar with labeling schemes (broadly) based
on the Brodmann atlas, we thus provide tentative labels follow-
ing this nomenclature, incorporating more recent refinements
where available (Vogt et al. 1995; Petrides and Pandya 1999,
2002; Ongur et al. 2003; Caspers et al. 2008; Scheperjans et al.
2008; Amunts et al. 2010; Morel et al. 2013). To facilitate using
the current atlas and comparing it with other atlases, we have
taken our parcellation results into careful consideration for max-
imum consistency with existing cyto-, myelo-, or receptor-based

architectonic parcellations as follows. The naming of subregions
in frontal lobe is similar to that of Ongur et al. (2003), Petrides and
Pandya (1999), Petrides and Pandya (2002), andAmunts et al. (2010).
The naming of subregions in insular lobe is similar to that of Morel
et al. (2013). The naming of subregions in parietal lobe is similar to
that of Caspers et al. (2008) and Scheperjans et al. (2008). The nam-
ing of subregions in cingulate gyrus is similar to that of Vogt et al.
(1995). The naming of subregions in temporal lobe is similar to that
of Brodmann’s descriptions. Because of themismatchwith the ex-
isting architectonic maps, we have kept the macroanatomical de-
scriptions to name the subregions in occipital lobe.

Taking the parcellation results from the right middle frontal
gyrus (MFG) and right insular cortex as an example, we identified
7 subregions in the right MFG and 6 subregions in the right insula
based on the assessment of split-half reliability (Cramer’s V
shown in Figs 3B and 4B). MPMs for the ensuing subregions
(Figs 3A and 4A) across the 40 subjects indicate the topography
of the defined subregions. The MFG was found to contain
MFG-1(dorsal division of area 9/46), MFG-2 (inferior frontal junc-
tion, IFJ), MFG-3 (area 46), MFG-4 (ventral division of area 9/46),
MFG-5 (ventrolateral area 8, A8vl), MFG-6 (ventrolateral area 6,
A6vl), and MFG-7 (lateral area, 10l). The insular cortex was com-
posed of INS-1 (the hypergranular insula, G), INS-2 (ventral agra-
nular insula, vIa), INS-3 (dorsal agranular insula, dIa), INS-4
(ventral dysgranular and granular insula, vId/vIg), INS-5 (dorsal
granular insula, dIg), and INS-6 (dorsal dysgranular insula, dId).
In addition, the probability distribution for each subregion of
the MFG and insula was calculated to characterize the individual
variance (Figs 3C and 4C).

Anatomical and Functional Connectivity Patterns
in the Brainnetome Atlas

To reveal the connectivity patterns of the identified subregions in
detail, we first delineated themajor fiber bundles connecting the
respective subregion with the rest of the brain using the whole-
brain probabilistic fiber tractography (Figs 3D and 4D). All ana-
tomical connectivitymapswill be releasedwith the Brainnetome
Atlas Viewer (Fig. 6C4,7) and presented on the interactivewebsite
(Fig. 6B2). Second, we obtained a connectivity matrix represent-
ing the structural connectivity between all identified subregions
as shown in Figure 5A,B for intrahemispheric and Figure 5C for
interhemispheric connections. The anatomical and functional
connectivity maps as well as the detailed connectogram for
each brain subregion are shown on the website (http://atlas.
brainnetome.org; Fig. 6B2,4). Taking the right MFG-5, that is,
area 8vl, as an example, we found that this area showed connec-
tions with the major frontal subregions (including areas 44v, 45c,
inferior frontal sulcus (IFS), 6vl, 8vl, 9/46d, 9m, 6m, 6dl, 9l, 8m, and
8dl), the limbic area 24rv, the parietal subregions (including areas
7pc, 39rv, and 40rd), and the subcortical connections with the
thalamus and basal ganglia subregions (Fig. 5D).

Furthermore, we acquired whole-brain rfMRI connectivity
maps for all the subregions in the Brainnetome Atlas. The func-
tional connectivity maps are shared online (Fig. 6B2) and will be
released for use with the Brainnetome Atlas Viewer (Fig. 6C5,8).
For example, Figs 3D and 4D illustrate the functional connectivity
maps of the right MFG subregion (MFG-5, A8vl) and the right
insular subregion (INS-3, dIa).

Mapping the Region-to-Tasks Associations of the
Brainnetome Atlas

The functional characterizations of each subregion in the Brain-
netome Atlas are illustrated based on their behavioral domain
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and paradigm class meta data labels following the BrainMap tax-
onomy (http://www.brainmap.org/taxonomy). For the 2 macroa-
natomic brain regions used to illustrate the Brainnetome Atlas
process (MFG and INS, cf. above), the functional characterization
of one of the ensuing subregions is shown in Figures 3D and 4D,
respectively. It showed that A8vl was significantly associated
with cognitive, for example, reasoning, explicitmemory, working
memory, and action-related processes, such as inhibition. In
terms of paradigm classes, this area was significantly associated
with flanker tasks, n-back tasks, and cued explicit recognition.
The dIa was involved in perception, for example, pain some-
sthesis, action, such as inhibition, and cognition. This insular
subregion was observed to be significantly activated by para-
digms associated with pain monitoring/discrimination, reward
tasks, and Sternberg tasks. The functional characterization for
all Brainnetome Atlas subregions will again be available through
the atlas viewer on our website.

Automatic Tractography-Based Parcellation Pipeline

As part of this work, we developed an integrated “Automatic
Tractography-based Parcellation Pipeline (ATPP)” to realize the

parcellation using automatic processing and massive parallel
computing (Fig. 6A) that we share with the atlas. ATPP is a plat-
form that combines tractography using FMRIB’s diffusion toolbox
with in-houseMATLAB scripts for parcellation. It uses Oracle Grid
Engine and MATLAB’s Parallel Computing Toolbox for parallel
computing across and within machines. Both a command line
version and a graphical user interface (GUI) version are available.
The GUI version is single-ROI oriented and therefore a user
friendlymethod that allows the targeted analysis of any brain re-
gion defined, for example, by functional or structural findings
(Cieslik et al. 2013; Muhle-Karbe et al. 2015). That is, while the
Brainnetome Atlas provides a whole-brain parcellation at a
(necessarily) coarser level, the distribution of the ATPP will
allow researchers to use the same framework to address specific
questions on local brain organization.

Interactive Website Viewer

The Brainnetome Atlas website, available at http://atlas.
brainnetome.org, allows to fully explore the atlas and the various
information associated with each subregion (Fig. 6B). To improve
user interaction, the following functionalities were included: 1)

Figure 2. Parcellation scheme of the human brain in the Brainnetome Atlas. The MPM for each of the cortical subregions was created in standard MNI space ((A) lateral
view, (B) medial view, (C) ventral view) and visualized using ITK-SNAP (www.itksnap.org). The atlas primarily combines ontological and nomenclature information from 2
sources, that is, anatomical and modified cytoarchitectonic descriptions. For convenience, these 2 types of descriptions are separately displayed in the left and right
hemispheres. The details of the parcellation results for each subregion are listed in Table 1, and the online version is available at http://atlas.brainnetome.org/bnatlas.
php. See also Supplementary Figures 1–5.
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Clicking a structure name in the tree will reveal that subregion in
the slice viewer. At the same time, the behavioral domain and
paradigm class analysis results, together with the anatomical
and functional connectivity patterns, are updated in the atlas
viewer. 2) Structural and functional connectivity maps are dis-
played with the possibility of full angle rotation. 3) By picking a
bar that indicates another structure in the connectogram viewer,
the user can navigate the connected structure and visualize the
related information in the atlas viewer. 4) Users can search for
a structure of interest. All branches with related keywords are
highlighted so that the user can click to visualize the node.

StandAlone Brainnetome Atlas Viewer

We likewise provide a standalone Brainnetome Atlas Viewer run-
ning under MATLAB with a user friendly GUI (Fig. 6C), featuring
subregion selection, template/surface selection, and connectiv-
ity visualization. The entire Brainnetome Atlas can be viewed
as a maximum probabilistic map in a triplanar view. Navigation
through the Brainnetome Atlas can be synchronized with a

collection of widely used canonical templates/atlases. Once a
subregion is selected, various information about this structure
are displayed. Publications related to the selected subregion, if
any, can be visited on PubMed. Subregions can be viewed as a
2D overlay of the MPM representation or the probabilistic map
on the selected structural template and a 3D patch can be ren-
dered on the cortical surface. Probably the key feature, however,
is the possibility to generate ROI mask for further analyses by
selecting atlas structures and probability thresholds.

Discussion
Capitalizing on the high resolution imaging data provided by the
Human Connectome Project (Van Essen et al. 2013) and following
the fundamental concept that long-range connectivity should
represent 1 crucial determinant of regional specialization
(Felleman and Van Essen 1991; Passingham et al. 2002; Jbabdi
et al. 2015), we here present the Brainnetome Atlas representing
of a connectivity-based parcellation of the brain into 246
subregions. Importantly, these subregions are extensively

Figure 3. Brainnetome Atlas of the right middle frontal gyrus. (A) The right MFG ROI (on the left) and the MPM of the 7 subregions using a connectivity-based parcellation
(on the right). We identified area 10l, area 46, dorsal and ventral divisions of area 9/46, area 6vl, area 8vl, and the IFJ subregion in theMFG. (B) Themean Cramer’s V for each
cluster number from 2 to 12. Cramer’s V shows that 7 was the most stable solution for the right MFG. The TpD showed the similarity of the 7 solution for the topological
arrangement between the 2 hemispheres. (C) The population probabilitymaps for eachMFG subregion. (D) Using theMFG-5, that is, A8vl, as an example: This figure shows
the resting-state functional connectivity patterns (left), the tractographic signatures of the A8vl (middle), and the functional behavioral decoding (right).
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characterized in terms of their structural and functional connect-
ivity patterns as well as the associated functions as revealed by
task-based neuroimaging. The Brainnetome Atlas thus provides
a new framework for humanbrain research and in particular con-
nectome analysis that overcomes several drawbacks of previous
parcellation schemes: 1) it establishes a priori, biologically valid
brain parcellation scheme of the entire cortical and subcortical
gray matter into subregions showing a coherent pattern of ana-
tomical connections, 2) it provides detailed characterizations of
the structural and functional connectivity patterns for these,
and 3) it decodes brain functions by establishing those tasks
and contrasts that activated the respective area above chance
in previous task-based functional neuroimaging studies.

Brainnetome Atlas: Towards a Framework for
Multimodal Information Integration

Because of the variety of needs of different fieldswithin neurosci-
ence and the shortcomings of existing brain atlases, a new
human brain atlas with a framework for integrating multimodal
information is urgently needed (Evans et al. 2012; Amunts et al.
2014). Consequently, many studies have used different MRI
modalities to identify individual brain region or provide more
comprehensive maps of the cerebral cortex (Tzourio-Mazoyer
et al. 2002; Desikan et al. 2006; Cohen, Fair, et al. 2008; Cohen,
Lombardo, et al. 2008; Eickhoff et al. 2011; Wang et al. 2012;
Fan et al. 2014; Wig et al. 2014; Laumann Timothy et al. 2015;

Figure 4. Brainnetome Atlas of the right insular cortex. (A) The right INS ROI (on the left) and the MPM of the 6 subregions using connectivity-based parcellation (on the
right). Six subregionswere identified in the insular cortex, including areasG, vIa, dIa, vId/vIg, dIg, and dId. (B) Cramer’s V indicated that 6was a local peak comparedwith the
nearby solutions for the right INS. The TpD showed the similarity of the 6 solution for the topological arrangement between the 2 hemispheres. (C) The population
probability maps for each INS subregion. (D) Using the INS-3, that is, area dId, as an example, this figure shows the resting-state functional connectivity patterns (left),
the tractographic signatures of the area dId (middle), and the functional behavioral decoding (right).
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Liu et al. 2015; Yang et al. 2015). While acknowledging that there
is no consensus on which modality or aspect of brain organiza-
tion may be most reflective of the brains’ “true” organization
(and in fact, there may be no single answer to this question),
brain atlases are crucial to advance understanding of the
human brain given that macroanatomical landmarks or coordin-
ate systems are not valid indicators of regional specialization
(Brett et al. 2002; Bohland et al. 2009; Evans et al. 2012). The Brain-
netome Atlas addresses this need by providing a whole-brain
parcellation of the human brain into distinct subregions based
on the local structural connectivity architecture, that is, by iden-
tifying subregions that are maximally different from each other
and maximally homogeneous internally in terms of their white
matter connections. It thus provides an objective and stable
starting point from which to explore the complex relationships
between structure, connectivity, and function featuring the fol-
lowing advantages.

1. Robust and biologically plausible anatomical parcels: An in-
creasing number of in vivo neuroimaging studies have de-
monstrated that fine-grained parcellations of large regions
of the human brain are needed. The Brainnetome Atlas not
only confirmed several differentiations from earlier cyto-
architectonic maps but also revealed numerous anatomical
subdivisions that were not previously described (Liu et al.
2013; Fan et al. 2014). For example, in the atlas, the insular cor-
tex has been subdivided into 6 subregions (Fig. 2; see Supple-
mentary Fig. 5A). Although the correct parcellation of the
human insular cortex has been disputed (Cauda and Vercelli
2013), the current parcellation, showing the highest split-half
reliability of all cluster solutions, relates well to previous
functional and histological maps of the insular cortex
(Kurth, Eickhoff, et al. 2010; Kurth, Zilles, et al. 2010; Kelly
et al. 2012; Chang et al. 2013; Morel et al. 2013), identifying a
dorsal and ventral aspect of the anterior insula, a central

Figure 5. Connectionmatrices and connectogram of the Brainnetome Atlas. (A) The intrahemispheric connectionmatrix of the left hemisphere. (B) The intrahemispheric
connection matrix of the right hemisphere. (C) The interhemispheric connection matrix across the 2 hemispheres. (D) Examples of the subregional connectograms for
areas of the right MFG-5, that is, A8vl. The connectograms are represented using the Circos data visualization tool, with the left half depicting the left hemisphere and the
right half depicting the right hemisphere. The hemispheres are divided into the frontal lobe, insular cortex, limbic lobe, temporal lobe, parietal lobe, occipital lobe, and
subcortical structures.
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cluster, a more ventral component, and (2) posterior subre-
gions. As another example, the inferior frontal gyrus contains
6 subregions that were robustly identified across subjects: the
dorsal/ventral portions of area 44, the rostral and caudal sub-
divisions of area 45, the inferior fontal sulcus, and 1 cluster on
the frontal operculum, which correspond to a combination of
areas op8 and op9 (Fig. 2; see Supplementary Fig. 2C). This
parcellation compares well with a parcellation scheme that
was proposed based on the differential distribution of trans-
mitter receptors (Amunts et al. 2010) and the differential
inclusion in task activation networks (Clos et al. 2013).

2. Detailed description of anatomical and functional connec-
tions: One of the major drawbacks of several previous atlases

is that they present rather isolated information, that is, are
only reflective or brain organization froma single perspective.
The Brainnetome Atlas in turn has been designed to enrich
our understanding of human brain organization fromamulti-
modal perspective. Combining diffusion MRI with tractogra-
phy could allow reconstruction of the major fiber bundles,
while functional connectivity analyses of BOLD functional
MRI data could also provide a noninvasive way to assess
in vivo the large-scale connectivity of the human brain.
These approaches should enable researchers to identify con-
nectivity patterns and relate this information to the parcella-
tions in the Brainnetome Atlas. This should be useful in
detailed investigations of particular subsystems.

Figure 6.Resources of the BrainnetomeAtlas: pipeline, BrainnetomeAtlas Viewer, and interactivewebsite. (A) Automatic Tractography-based Parcellation Pipeline (ATPP):
The GUI version is single-ROI oriented; thus, it is a user friendlymethod that canmodify some parameters to parcellate a specific brain region. The command line version
is multi-ROI oriented, which can be used to parcellate many brain regions simultaneously. (B) The Brainnetome Atlas interactive website: The website makes all the
information in the Brainnetome Atlas available to researchers. It provides a hierarchical tree of brain structures in the left panel (B1). The right panel contains an atlas
viewer (B2 and B3) that shows slice views together with a connectogram viewer (B4). (C) The Brainnetome Atlas Viewer (V1.0): The main window of the software contains
push buttons, pull-down lists, and checkboxes for different functionmodules (C1), such as subregion selection, template/surface selection, and connectivity visualization.
The entire Brainnetome Atlas contains 246 subregions and can be viewed as amaximum probabilistic map in a tri-planar view (C2). The subregion can be viewed as a 2D
overlay on the selected structural template (C3) and a 3D patch can be rendered on the cortical surface (C6). Using the checkboxes, the structural and functional
connectivities of the selected subregion can be viewed in both 2D tri-planar views (C4 and C5) and 3D renderings (C7 and C8) as probabilistic maps.
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3. Functional interpretation of the Brainnetome Atlas: One of
the key challenges in human brain research is to reconcile
the regional segregation of the cortex into distinct modules
with the representation of mental functions as provided by
task-based neuroimaging data. Because it was designed as a
framework for a variety of resources, the Brainnetome Atlas
is suitable for integrating a wealth of information from exist-
ing neuroimaging studies. In this study, we used BrainMap
(Laird et al. 2009, 2011; Fox et al. 2014), currently the largest
database of brain activation studies, to provide an initial as-
sessment of the mental processes that may be sustained by
each subregion of the Brainnetome Atlas. These descriptions,
which are shared with the community, thus provide an
objective guideline to the functional interpretations of any
effects observedwithin a given Brainnetome Atlas subregion.

4. Data sharing: The Brainnetome Atlas can be flexibly wrapped
into common reference spaces, such as the volumetric MNI
space, the vertex-based FreeSurfer, or the Caret surface
template. The atlas together with its related software is avail-
able for download to serve as a shared community resource
(http://atlas.brainnetome.org, Fig. 6B). The pipeline software
is open to the community to facilitate the parcellation of
specific brain regions of interest (Fig. 6A). The Brainnetome
Atlas Viewer was coded in MATLAB so that it can easily be im-
plemented into commonly used brain MRI processing pipe-
lines (Fig. 6C). In addition, the atlas will be useful for the
definition ofmasks for seeding specific a priori cortical regions
or networks of interest in prospective neuroimaging studies.

Relationship Between Connectivity Architecture
and Microstructural Organization

Animal studies have indicated that connectivity architecture and
microstructural organization are 2 complementary anatomical
properties of the brain (Scannell et al. 1995; Barbas and Rempel-
Clower 1997; Passinghamet al. 2002; Hilgetag andGrant 2010). For
example, by observing the laminar organization of areas in the
monkey prefrontal cortex, Barbas and Rempel-Clower (1997)
found that the cortical structure could predict the pattern and
relative laminar distribution of cortico-cortical connections. Fur-
thermore, it has been shown that cortico-cortical connectivity
patterns exert strong effects on both the anatomical and func-
tional characteristics of a specific brain region (Rempel-Clower
and Barbas 2000; Glickfeld et al. 2013). Assessing the relationship
between microstructure and connectivity is important to ad-
vance our understanding of brain organization, but a direct com-
parison between functional in vivo and anatomical postmortem
studies is possible only in experimental animals. In turn, studies
on the relationship between microstructure and function or
connectivity in humans need to rely on across-subject analysis
by means of probabilistic cytoarchitectonic maps in standard
space (Eickhoff et al. 2005; Zilles and Amunts 2010). Such ana-
lyses have provided evidence for distinctions between (neighbor-
ing) histologically defined areas in terms of their structural and
functional connectivity patterns (Eickhoff et al. 2010; Bludau
et al. 2014; Palomero-Gallagher et al. 2015).

The importance of connectivity in determining functional
specialization, however, suggests that parcellating brain regions
based on their connectional architecture may provide important
complementary information on human brain organization.
For example, a recent study predictedwhich parts of the fusiform
gyrus are involved in face recognition based on structural con-
nectivity patterns (Saygin et al. 2012). In addition, it has beenT
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shown that connectivity-based parcellation may closely follow
histological subdivisions (Anwander et al. 2007; Klein et al.
2007) but also reveal additional subdivisions (Liu et al. 2013; Fan
et al. 2014). The latter case is actually not particularly surprising,
considering that intrinsic (cyto- or receptorarchitecture) and ex-
trinsic (long-range connectivity) conjointly define the functional
property of a given brain location (Eickhoff and Grefkes 2011).
That is, it may be the intersection between microstructural and
connectivity maps that defines specialization.

Closing the gap between these 2 approaches to parcellation
still needs to be addressed. Specifically, additional work is
needed to untangle the complex relationship between the brain’s
microstructural organization and its connectivity architecture as
well as their roles in determining the brain’s functional organiza-
tion. In a recently published study (van den Heuvel et al. 2015),
researchers performed a cross-scale examination and found
that the organization of macroscale connectivity derived from
diffusion MRI data correlates with cortical variation in cytoarchi-
tectonics, in particular with the size of neurons in cortical layer
3. Other studies have also provided first experimental evidence
that brain function arises from a combination of local infrastruc-
ture (microstructural/molecular features) and connectivity
(Passingham et al. 2002; Scholtens et al. 2014; Barbas 2015).
Therefore, combining connectivity-based parcellation results
with probabilistic maps of microstructure could hold great prom-
ise for relating brain structure to function at the macroscopic
scale.

Connectivity-Based Parcellation Using Multimodal
Connectivity Information

Many approaches to parcellating the brain into subregions using
different connectivity features have recently become available.
These include tractography-based anatomical connectivity
(Behrens et al. 2003; Johansen-Berg et al. 2004), resting-state func-
tional connectivity (Cohen, Fair, et al. 2008; Cohen, Lombardo,
et al. 2008; Nelson et al. 2010), structural covariance (Cohen,
Fair, et al. 2008; Cohen, Lombardo, et al. 2008; Kelly et al. 2012),
and meta-analysis-based functional coactivation (Eickhoff et al.
2011). However, the biological basis of these methods and what
we can infer from these imaging modalities are not yet fully
understood (Eickhoff et al. 2015). The current version of the Brain-
netome Atlas was created using structural connectivity patterns
as estimated by diffusion-weighted imaging and hence primarily
relies on direct connections as opposed to indirect,multisynaptic
interactions as revealed, for example, by resting-state or task-
based functional connectivity. Several studies have focused on
the relationship between anatomical and functional connectivity
indicating that resting-state connectivity (Honey et al. 2009; van
den Heuvel et al. 2009) andmeta-analytic coactivations (Eickhoff
et al. 2010) at least to some degree reflect the underlying anatom-
ical connectivity architecture of the human brain. Finally, it has
been shown that structural covariance patterns are largely in
agreement with the aforementioned methods (Kelly et al. 2012).
Although its biological significance remains controversial, it is
hence assumed that functional connectivity should at least con-
tribute to the patterns of structural covariance (Mechelli et al.
2005; Alexander-Bloch et al. 2013).

The other important aspect to consider in the construction of
brain atlases, or more general, the definition of brain regions is
the distinction betweenmethods focused on either the clustering
or the detection of borders. While similar in their final
appearance, the former are driven by aggregating locations
(voxels) with similar properties, whereas the later are aimed at

identifying abrupt changes in the respective feature. The second
relates to the nature of the features being either locally (such as
cyto- or receptorarchitecture) or globally (such as connectivity
profiles). To synthesize the existing brain parcellation studies,
we may hence distinguish a “2 × 2” matrix of ways that have
been used to generate brain atlases: regionally versus globally
and by clustering or by border detection. The JuBrain cytoarchi-
tectonic atlas and other histology-based atlases are examples
of regional border detection (Brodmann 1909; Von Economo
and Koskinas 1925; Zilles and Amunts 2010), while whole-brain
parcellation studies based on rfMRI or dMRImay be realized by ei-
ther global border detection (Wig et al. 2014; Gordon et al. 2016) or
global clustering (Craddock et al. 2012; Moreno-Dominguez et al.
2014). In this framework, the Brainnetome Atlas would represent
an example of clustering based on a global feature (connectivity).

Given the heterogeneity of both features and methods that
may be used to parcellate the brain into distinct subregions,
one of the particular challenges will be to examine the consist-
ency or inconsistency of the ensuing parcellations and to evalu-
ate different brain parcellation schemes. Using resting-state
connectivity, meta-analytic coactivation and structural covari-
ance, but not fiber tracking, Kelly et al. (2012) found a consistent
pattern in the parcellations of the insula. In our recent work, we
consistently identified 5 subregions in the superior parietal lob-
ule of each hemisphere based on its anatomical connections as
well as its resting-state connectivity and coactivation patterns
(Yang et al. 2015). Further systematic comparison—acrossmodal-
ities, features, andmethods—of themaps thatmay be computed
using connectivity-based parcellation is still needed. Such inte-
gration would not only be crucial to obtain a more comprehen-
sive picture of human brain organization, but in particular also
to better understand the relationship between the different
approaches and to arrive at a mechanistic relationship between
the different aspects of brain organization (Amunts et al. 2014).

Methodological Considerations

The Brainnetome Atlas provides a cross-validated, robust group-
level parcellation of the human brain, but ultimately individual,
subject-level parcellations will be required to reflect interindivi-
dual variability in the location of brain modules (Barnes et al.
2011; Fonovet al. 2011; Laumann Timothy et al. 2015). In that con-
text, we note that the parcellation current scheme is consistent
with our previous parcellations of specific regions, including
the frontal pole (Liu et al. 2013), temporal pole (Fan et al. 2014),
parahippocampal region (Zhuo et al. 2016), and superior (Wang
et al. 2015) and inferior parietal lobules (Wang et al. 2012) based
on a different set of subjects. While reassuring, it still remains
to be tested, how reliable individual brains may be parcellated
using structural connectivity information and how the ensuing
maps relate to other aspects of interindividual variability such
as age and gender.

In forming the Brainnetome Atlas, we identified the following
key issues for further consideration: 1) Development of reliable
clustering algorithms and effective measures for validating the
quality of parcellations needs to be further explored. Here, we
used across-subject consistency as the key cluster-validity criter-
ion,which is in linewith previouswork (Beckmann et al. 2009; Liu
et al. 2013; Fan et al. 2014; Neubert et al. 2014), but may introduce
a bias against more (spatially) variable patterns. 2) Maintaining
the macroscopically visible sulcal and gyral anatomy so that we
could provide an intuitive description of the location of the
activationsmotivated by the use of the DK atlas as the initial par-
cellation. We have attempted to follow the widely accepted
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anatomical conventions and then to further divide the brain re-
gions into subregions using tractography-based parcellation. It
should be acknowledged, however, that the DK atlas boundaries
provide an a priori parcellation that may not be related to the ac-
tual differentiation of the cortex into distinct areas based on pure
connectivity profiles. Additionally, themacroanatomy is general-
ly a rather poor predictor of microstructural boundaries, and
hence, further work may be warranted on the relationship be-
tween the Brainnetome Atlas and functional or microstructural
parcellations at various scales. 3) To calculate the population-
based probabilistic maps, it is vital to register the individual par-
cellation results to the commonly used MNI space. Recently, few
groups have begun trying to work with the structural connectiv-
ity-based registration or fusing the connectivity informationwith
the cortical anatomy (Gutman et al. 2014;Wang et al. 2014). How-
ever, such kind of registration methods based on structural
connectivity is still very experimental and not well developed
yet. The macro-anatomy-based registration is still the standard
of the field, and we are keeping with the established approach
in forming the Brainnetome Atlas. 4) The other important issue
for this framework is the validation of the connectivity-based
brain atlas (Klein et al. 2007; Gordon et al. 2016; Lefranc et al.
2016). The connectivity-based boundaries within the initial
macroanatomical cortical areas are validated using another
independent dataset with different scan parameters. The repro-
ducible results from the independent dataset show good consist-
ency with the parcellation results based on the HCP data.

Conclusions and Outlook

The long-term aim of the Brainnetome Project is to understand
the organizing principles of the brain. The current version
of the Brainnetome Atlas will facilitate investigations into struc-
ture–function relationships and holds promise for the identifica-
tion of new biomarkers for diagnostic and clinical studies. In
the future, however, novel methodologies and brain-mapping
techniques should evolve and allow an enhanced assessment
of the structure, function, and spatiotemporal changes in the
human brain on different spatial and temporal scales. The Brain-
netome Atlas should thus be regarded as a starting point, which
will enable the generation of future brain atlases that are even
more fine-grained and advance from single anatomical descrip-
tions to an integrated atlas that includes structure, function,
and connectivity, together with other potential sources of infor-
mation (Amunts et al. 2014). The next stage of the Brainnetome
Atlas will be multimodal instead of unimodal and dynamic
instead of static by including information on spatiotemporal
changes during normal development or aging as well as dis-
ease-related effects. Finally, integration with gene expression
data should provide entirely novel insights into human brain or-
ganization. A recent study that analyzed brain imaging and gene
expression data found that large-scale resting-state functional
brain networks correlated with the expression of genes that
code for ion channels and other synaptic functions (Richiardi
et al. 2015). In a preliminary study of the relationship between
genetics and brain parcellation, we noninvasively investigated
the genetic influences on a fine-grained topological arrangement
of the human cerebral cortex usingMRI data from twins (Cui et al.
2015). While far from being understood and readily used, such
genetic information will be crucial for the next-generation
human brain atlas by linking phenotypically observed effects to
genetic causes. While human brain atlasing is thus not only
an endeavor that has been ongoing for more than a century
but also one that will see constant changes and refinement, the

current Brainnetome Atlas represents an important step in this
development by providing the first whole-brain parcellation
based on structural (connectivity) information on the basis of a
robust cross-validation in a high-quality in vivo dataset.
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