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Abstract Truth discovery is a key problem in data analytics which has re-
ceived a great deal of attention in recent years. In this problem, we seek to
obtain trustworthy information from data aggregated from multiple (possi-
bly) unreliable sources. Most of the existing approaches for this problem are
of heuristic nature and do not provide any quality guarantee. Very recently,
the first quality-guaranteed algorithm has been discovered. However, the run-
ning time of the algorithm depends on the spread ratio of the input points and
is fully polynomial only when the spread ratio is relatively small. This could
severely restrict the applicability of the algorithm. To resolve this issue, we
propose in this paper a new algorithm which yields a (1 4 €)-approximation
in near quadratic time for any dataset with constant probability. Our algo-
rithm relies on a data structure called range cover, which is interesting in its
own right. The data structure provides a general approach for solving some
high dimensional optimization problems by breaking down them into a small
number of parametrized cases.
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1 Introduction

Truth discovery is an important problem arising in data analytics, and has
received a great deal of attentions in recent years in the fields of data mining,
database, and big data [6LOLIOLITL7T2LI3T4]. Truth discovery seeks to find
trustworthy information from a dataset acquired from a number of sources
which may contain false or inaccurate information. There are numerous ap-
plications for this problem. For example, the latest search engines are able to
answer user queries directly, instead of simply listing webpages that might be
relevant to the query. This process involves retrieving answers from potentially
a large number of related webpages. It is quite common that these webpages
may provide inaccurate or inconsistent information. Thus a direct answer to
the query needs the search engine to be able to extract the most trustworthy
information from all these webpages, which is exactly the problem of truth
discovery.

Truth discovery is an unsupervised learning problem. Besides the input
data, no prior knowledge about the reliability of each data source is provided.
In such settings, an intuitive approach is to view all data sources equally
reliable and obtain the solution by using the idea of averaging or majority
rule. A major issue of this approach is that the yielded answer may be quite
far away from the truth. This is because a small number of unreliable data
sources could significantly deviate the final solution. To deal with this issue,
truth discovery treats data sources differently by estimating the reliability
for each of them. This greatly increases the level of challenge for the problem.
Moreover, since the truth discovery problem often occurs in big data scenarios,
the number of data sources could be quite large and the dimensionality of the
data could be rather high, which brings another dimension of challenges to the
problem.

A widely accepted geometric modeling of the truth discovery problem is the
follows. Data from each source is formulated as a set of real number attributes,
and thus can be viewed as a vector in R?, where d is the number of attributes.
Each data source is associated with a positive variable (or weight) representing
its reliability. Formally, the truth discovery problem can be defined as follows.

Definition 1 (Truth Discovery [7JI1]). Let P = {p1,p2,...pn} be a set of
points in R? space, where each p; represents the data acquired from the i-th
source among a set of n sources. The truth discovery problem is to find the
truth vector p* and w; (i.e., reliability) for each i-th source such that the
following objective function is minimized,

min X7 w;||p; — p* %, s.t. Xiem v = 1. (1)

The meaning of the above truth discovery formulation was discussed in [4]
from an information theory’s point of view. It is shown that the constraint on
w; in Definition
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Despite extensive studies on this problem, most of the existing techniques
are of heuristic nature, and do not provide any guarantee on the quality of
solution. It is not until very recently that the true discovery problem has
a theoretically guaranteed solution [4]. This result ensures that a (1 + €)-
approximation of the problem can be achieved in O(dn? + (nA)°nd) time,
where n is the number of input points (i.e., data sources), d is the dimen-
sionality of the space, A is the spread ratio of the input points, and o is any
fixed small positive number. The result is based on an elegant sampling tech-
nique which is capable of handling high dimensional data. A main issue of
this method is that its running time depends on the spread ratio of the input
points, and is polynomial only when the spread ratio is relatively small (i.e.,
A = O(y/n)). This could severely restrict its applicability.

To overcome this main issue, we present in this paper a faster algorithm for
the truth discovery problem. With constant probability, our algorithm achieves
a (1 + €)-approximation in O(dn?(logn + logd)) time, which is completely in-
dependent of the spread ratio. The running time roughly matches the needed
O(dn?) time for a trivial case (i.e., p* is close to one of the input points) in [4],
and thus can be viewed as near optimal. Our algorithm is also space efficient,
using only nearly linear space, while the space complexity of [4] also depends
on the spread ratio. Our algorithm relies on a new data structure called range
cover, which is interesting in its own right. Roughly speaking, range cover is a
data structure designed for a class of optimization problems (in high dimen-
sional space) which are decomposable into a number of “easier” cases, where
each case can be characterized by a parameterized assumption. For exam-
ple, truth discovery can be formulated as a problem of finding a truth vector
p* € R? from a given set P of points in R? so that a certain objective function
(the exact formulation will be discussed later) is minimized. We are able to
show that although directly optimizing the objective function is challenging,
the problem is much easier to solve if some additional information (e.g., the
distance r between p* and P) is known. Thus, by viewing the additional in-
formation as a parameterized assumption, we can solve the truth discovery
problem by searching for the best assumption. The range cover data structure
shows that even though the number of parameterized assumptions could be
very large (or even infinite), it is sufficient to sample only a small number of
assumptions to ensure a good approximate solution. This leads to a small-size
data structure (i.e., O(nlogn) space) and a faster algorithm for truth discov-
ery. Since the idea of decomposing problem into cases is not restricted only to
the truth discovery problem, we expect that this data structure will provide
new approaches to other problems.

Related Geometry Problems: The truth discovery problem can be viewed
as a special variant of the 1-mean problem since the truth vector is the weighted
mean of input points with unknown weights. Therefore, it might seem possi-
ble to apply the core-set ideas [IL[2,3] to reduce the number of input points.
However, this turns out to be difficult for the truth discovery problem. The
reason is the follows. Even if we preprocess the data points into a core-set, the
problem of finding the truth vector for a relatively small set of data points
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in high dimensional space is still non-trivial, and thus techniques presented in
this paper are still needed.

2 Range Cover Data Structure

In this section, we present the aforementioned range cover data structure.

Range cover is motivated by several high dimensional optimization prob-
lems (such as truth discovery). In these problems, an input point set P is given
in R? space, and the objective is to find a point ¢ in R¢ so that a certain objec-
tive function is optimized. A commonly used approach for such problems is to
examine a number of candidate points selected by some algorithms/strategies.
But directly applying such an approach could require too many (e.g., expo-
nential in d) points to be examined in high dimensional space. A possible way
to overcome this difficulty is to characterize all possibilities of ¢ into a small
number of cases so that in each case g is associated with a certain parametrized
assumption which could help solve the problem more efficiently. For instance,
in some optimization problem, g could be much easier to obtain if we know in
advance the nearest neighbor (say p) of ¢ in P and its distance r to ¢ (i.e.,
lp — ¢|| = r) for some parameter r. We expect that these parameterized as-
sumptions form a space with much lower dimensionality than d, and thus the
overall time complexity can be significantly reduced.

From the above discussion we know that for the range cover data structure
to be efficient, the problem needs to be decomposable into a small number
of “easier” cases. For this purpose, we will take advantage of the distribution
of the points in P, such as their locality and point aggregation properties.
To understand how point aggregation can be useful, consider the following
parameterized assumption on ¢: Assume that p is the nearest neighbor of ¢ in
P and r is their distance. Denote this assumption by NN ¢(p, r). If a subset of
points, v = {p1,pa,...,Pm}, are close to each other compared to r, i.e. their
diameter D(v) is no larger than Ar for some predefined small constant A > 0,
then points in v can be viewed as a single ‘heavy’ point (simply denoted by v
for convenience), and assumptions

NNy (p1,7), NN ((p2,7), ... ,. NN ¢(pm,7)

can be covered (or replaced) by a single assumption NN, (v, r) without losing
much quality. We formally define NN (v, r) for aggregated subset v as follows.

Assumption 1 NN, (v,r): For a subset v of P, NN (v,r) is an assumption
about q if the following holds: The diameter D(v) of v is no more than Ar for
some small constant X > 0, and r < ||[p' —q|| < (1+X)r, where p’ is the nearest
neighbor of q in v.

Another property of P that can be made use of is the domination relation.
If ¢ is very close to an aggregated subset of points v C P compared to points
in P\ v, it can often be viewed as a degenerated case for the problem and is
relatively easy to solve. To cover such cases, we define the following assumption
DOM,(v) for predefined constants £ > 0 and A > 0.
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Assumption 2 DOM,(v): For a subsetv of P, DOM,(v) is an assumption
about q if the following holds: There exists a point p, € v such that D(v) <
Alg = poll and |lp, — qll < €llp—v — gl| for any point p_, € P\ v, where D(v)
is the diameter of v.

With the above definitions of assumptions, we know that the goal of the
range cover data structure is to generate a small number of assumptions

DOM4(v1), DOMy(v2),...,DOMy(vp)

and

NN (v, 71), NN 4 (vh,72), . .. ,N/\/q(vlgmg),

so that for any ¢ € R?, at least one of these assumptions holds. We call such
a collection of assumptions an assumption coverage.

The main idea of range cover is to build a series of views of P formed by
aggregated subsets from different scales of r, which is a controlling factor and
can be interpreted as the distance of observation. Range cover identifies, for
each 7, a collection of disjoint aggregated subsets v of P with diameter no
larger than Ar for some predefined small constant A > 0. The collection can
be used as a sketch of P observed from distance r, which takes much less space
than P. These views (from different distances r) jointly provide an easy way
to access the “skeleton” information of P, and allow us to produce a small-
size assumption coverage. Particularly, for a given r, instead of generating
assumptions NN ({p},r) for each point p € P, we produce coarse-grained
assumptions NN, (v,r) for every v in this view. Furthermore, by utilizing
domination relation, we do not need to consider small values of r, and thus
can further reduce the size of the assumption coverage. This is because the
aggregation-based views of P from small enough r’s correspond to situations
where ¢ is very close to some point and the domination relation holds. Note
that when determining point aggregation, we need not to consider too large r
as well, since for large enough r the whole point set P is an aggregated set.

To generate the assumption coverage, an obvious challenge is how to reduce
the number of possible values of r for which we need to build a view of P.
Even though there is no need to consider too large and too small values for
r, the gap between the maximum and minimum values often depends on the
spread ratio of P, which could lead to pseudo-polynomial running time for
algorithms using the range cover data structure. Below we will show how to
overcome this challenge and obtain a small-size range cover.

2.1 Range Cover and Assumption Coverage

The range cover data structure uses the aggregation tree as an ingredient. The
aggregation tree is a variant of the Hierarchical Well-Separated Tree (HST)[8]
which is defined conveniently for point aggregation in a well-behaved manner.
The definition is as follows.



6 Ziyun Huang et al.

1. Every node v (called aggregation node) represents a subset P(v) of P, and
the root represents P.

2. Every aggregation node v is associated with a representative point [(v) €
P(v) and a size s(v) which is an upper bound on the diameter of P(v).

3. Every leaf node corresponds to one point in P with size s(v) = 0, and each
point appears in exactly one leaf node.

4. The two children v; and vy of any internal node v form a partition of v
with max{s(vy), s(ve)} < s(v).

5. For every aggregation node v with parent v, % is bounded by a polyno-
mial function P(n,d) > 1 (called distortion polynomial), where 74,+ is the
minimum distance between any point in P(v) and any point in P\ P(v).

The following theorem shows that an HST with polynomial distortion
(therefore, the aggregation tree also) can be built within near linear time.

Theorem 1 [§] An HST with distortion O(v/dn®) can be built in O(dnlogn)
time with success probability 1 — 1/n.

Below we will show how to build a range cover data structure from a given
aggregation tree 7}, which ensures to form an assumption coverage.

Consider an aggregation node v from distance r. If the diameter of v is not
larger than Ar for a predefined constant A > 0, all points in v can be viewed
as an aggregated subset and thus is part of the view from r. If r is so large
that even the parent v’ of v in T}, is an aggregated subset, v can be replaced
by v’ in the view. This means that an aggregation node v should not appear
in the view from a far enough distance r. Also if r is small, either v has a
too large diameter and thus cannot be an aggregated subset or v dominates
g (i.e. the solution point). In the former case, v should be replaced by one
of its descendant in the view. In the latter case, we do not include v in the
view from distance r, with the belief (which will be proved later) that the
absence of v can be compensated by including the DOM,(v) assumption in
the assumption coverage.

The above observation implies that for any aggregation node v, there exists
a range (rp,ry) of the value of r, such that v is only “visible” when 7 lies in
the range. This immediately suggests the following scheme. Divide the set of
all positive real numbers into intervals

(T+ N A+ N t=...,-2,-1,0,1,...,

and associate each of them with a bucket. If an interval (a, ] lies within the
interval (rz,7m) of an aggregation node v, then insert v into the bucket of
(a,b]. The collection of these buckets is then the desired range cover data
structure.

Given input points P, for any constant factors 0 < A < 1/4 and £ > 0 in
Assumption

Clearly obtaining A from R is quite straightforward, and |.A| has
a size no larger than that of R.

The following theorem shows that A is indeed an assumption
coverage.



Faster Algorithm for Truth Discovery via Range Cover 7

Algorithm 1 RangeCover(T), A, &)

Input: A aggregation tree T, built over a set P of points in R<; an approximation factor
0< A< i, a controlling factor 0 < £ < 1.
Output: A number of sets of aggregation nodes, each of which is associated with an interval
((1 4+ N, (1 + Nt for some integer t.
1: For every interval ((14+ M)t (1 4+ A\)tFT1], create an empty bucket B:. (Note that By will
not be actually created until some aggregation node v is inserted into it.)
2: For every non-root node v of Tp, let v, be its parent in Tp, 75 be s(vp)/A, and rz, be
max{s(v)/, €s(v,)/(16P(n, d))}. Do
— For every integer t satisfying the condition of r;, < (1 + A\)! < rp, insert v into
bucket Bz.

Theorem 2 For any q in R?, at least one of the assumptions in A holds.

Proof Let p' be the nearest neighbor of ¢ in P. If |¢ — p/|| = 0,
DOM,({p'}) holds. In the following we assume that |¢q — p'|| > 0.
Let ¢ be the integer such that (1 + \)! < [¢—p/| < (1 + N)FL
Let v be a aggregation node of T, which is the highest ancestor
of {p'} in T, such that s(v') < A(1 4+ \)". Since {p'} is a leaf of T} and
s({p'}) =0 < A1+ N\, such a v/ always exists.

Based on the relationship between v/, ¢ and the range cover data
structure, we have 4 cases to consider.

— (a) v’ is the root of T},

- (lf)) (1+N)Y < max{s(v')/\,&s(vy,)/(16P(n,d))}, where v}, is the parent
of v in T,

— (¢) (1+ N > s(v))/A, and /

— (d) max{s(v')/\,5(0}) /(16P(ny )} < (1+ N < s(th) /A

Below we analyze each of the four cases.

Case (a): Since s(v/) < M1+ )" < M|g—p/|| and v’ represents the
whole point set P (as it is the root of 7,), we know that P\ v is
empty. This means that the assumption DOM,(v") holds for g.

Case (b): Note that by the definition of ¢/, we know that (1+))" >
5(v')/A. Therefore if case (b) occurs, we have (1+)\)! < £s(vy,)/(16P(n, d)).
By (1+ A < |l¢g—p|| <1+t and A < 1, it follows that [¢ — p/|| <
£s(v,)/(8P(n,d)). Let p, be any point in P\ v. Then we know that
lpo — p'll = s(v,,)/P(n,d), by the property of aggregation tree. There-
fore, we have {|p, — p'|| > 8||¢ — p'|. Thus, we get

lpo —all = llpo — 'l = lla — 2’|l = (8/& = 1)|lg — P']|-

By the fact £ < 1, we have ||¢ —p'| < §J|po —¢||. Also since (1+\)" >
s(')/X and (1+ 1) < ||q —p'[| < (1+ N+, we have [lg = p/|| > s(v/) /A
This indicates that DOM,(v’) holds for case (b).

Case (c): This case actually never occurs. This is because, by the

definition of v, s(v;) > A(1 + MY, since otherwise v/ cannot be the

highest ancestor of {p'} satisfying the inequality s(v/) < (1 + \)''.
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Case (d): Note that this case means that v’ is placed in bucket
(1 + MY, (1 4+ A" Thus NNV,(v, (1 4+ A\)Y) is in A. We show that
NN, (@', (14 A)") holds for g. Indeed, this follows immediately from
previous discussion on v':

s(') < A1+ N

and
A+NQ+N >0 —all > @+ N

Since in all cases at least one assumption in A holds for ¢, the
theorem follows. O

The following theorem indicates that the size of the assumption
coverage is small.

Theorem 3 Given an aggregation tree T), and factors 0 < A < 1/4 and 0 <
&€ < 1, the range cover data structure can be built in O(1/Xlog(1/&)n(logn +
logd)) time and takes O(1/Alog(1/&)n(logn + logd)) space. Consequently,
|A] = O(1/Xlog(1/&)n(logn + logd)).

Proof From Algorithm

3 Solving Truth Discovery with Assumption Coverage

In this section, we show how to use the assumption coverage to solve
the truth discovery problem. Given any point set P in R? and a small
constant 0 < ¢ < 1, we first build an assumption coverage A with
factors A and £ whose values depend on ¢ only and will be determined
later. We then show how to obtain a (1 + €)-approximation of the
problem in polynomial time. Let p* be the truth vector (i.e., optimal
solution) of the problem.

We first borrow a useful lemma from [9]. It shows that once p*
is determined, the weights w; can also be determined. Thus we only
need to find an approximate truth vector p*.

Lemma 1 [J] If the truth vector p* is fized, the following value for each weight
w; minimizes the the objective function (
There are two types of assumptions about p* in A which covers all possi-
bilities of p*: NN pu(v,r) and DOM,,.(v). Below we discuss each of them.
The following lemma shows that DOM,,.(v) is easy to solve.

Lemma 2 By setting A < 1/4 and £ < ¢/4, if DOM,.(v) holds for the truth
vector p*, there exists a point p’ € v C P such that p’ is a (14€)-approximation
of the truth discovery problem (using the objective function (
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Proof Since DOM . (v) holds for p*, let p, € v be the point defined in As-
sumption 2. Then for any p, € P\ v, we have ||p, —p*|| > (1 —€/4)||po — D]l
(by triangle inequality). For any p; € v, we know from the fact X < 1/4 and
DOMy.(v) that ||py — pil| < ||pi — p*||. For every point p € P, determine its
weight based on Equation (

Now mowve p* to p, and leave the weights of all points unchanged.
Estimate how much the value of the objective function (

From the above lemma, we know that if DOM,,(v) holds for some
v, then one of the input point in P will be a (1 + ¢)-approxzimation.
This means that we can handle all such cases by trying every input
point as p* by computing the objective function (

The following lemma shows that NN ,.(v,r) can also be handled
efficiently. We leave the proof to the next subsection.

Lemma 3 If NN . (v,r) holds for any factor 0 < X\ < 1/4, then a (1 + ¢)-
approximation can be computed in time O(dn) with constant probability, where
€ is a small constant in (0,1).

The above lemmas suggest that we can compute an approrimate
p* by the following algorithm.
1. Compute a aggregation tree from P.
2. Set { =¢/4, A\=1/5, compute a range cover from the aggregation
tree.
3. Compute A from the range cover.
4. Try every p € P as a candidate for the truth vector. Choose the
one, say p1, that minimizes the objective function.
5. For every NN,.(v,r) in A, compute a candidate for p*. Choose
the one, say p2, that minimizes the objective function.
6. Choose from p; and ps the one that minimizes the objective func-
tion
In the above algorithm, Step 1 takes O(dnlogn) time. Step 2 needs
O(n(logn +logd)) time (where € is hidden in the O(-) notion). Step 3
costs O(n(logn+logd)) time. Step 4 can be done in O(dn?) time. Step 5
takes O(dn?(logn+logd)) time, since we test at most O(n(logn+logd))
assumptions in A. Step 6 requires only O(1l) time. For the space
usage, it can be computed O(dnlogn)+ O(n(logn +logd)) + O(n(logn +
logd)) + O(dn) + O(dn) + O(1) = dn(logn + logd). Thus we have the
following main theorem.

Theorem 4 Given any set P of n points in R, with constant probability, it
is possible to compute a (1 + €)-approzimate solution for the truth discovery
problem in O(dn?(logn + logd)) time and O(dn(logn + logd)) space.

3.1 Solving NN p.(v,7)

In this section we prove Lemma
Lemma
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3.1.1 Partitioning P for Estimating Weights

We first show how to estimate the weights of some points by NN . (v,r)
without knowing p*. This is crucial for our algorithm to be efficient
for any point set P.

Let p; € v denotes the representative point l(v) of v. We label the
rest of points in P as ps,p3,..., pn.- For each point p; € P, define
ri = max(||p1 — pil,r) and r; = ||p* — pi||. For NN,.(v,r), let p;, € v
be the nearest neighbor of p* in P. Below we derive the relationship
between r; and r}.

First, we consider the case that max(||p1 —p;||,7) = r. In this case,
we have r; > ||p;, —p*|| > r =1} by assumption NN p.(v,r) and the fact
that p;, is the nearest neighbor of p*. Also we have

ri < |lpr ="\ + lpr — pill < [lp1 — 27| + 7,

and

lpr — || < llp1 — pi || + Ip* — pi. || < D(v) + (1 + X)r < (1+2X\)r.

Thus, r; < (24 2\)r = (2 + 2\)r}. Putting all together, we have 1}, <
ri < (24207,

Then, we consider the case that max(||p1 — pill,7) = ||lp1 — pil|- In
this case, v, = ||p1 — pi|| > r. Again, we have

[pr = p" || < llpr = pi. I+ lp" = pi.ll < D(v) + (1 + A)r < (1+20)r.
Therefore, (1+2X\)r; > ||p1 — p*||. Thus,
ri = |pi ="l < llp1 = pill + llpr = P < o1 = pill + (1 + 20)r = (2 + 20)r;.

Next, we consider 2 subcases, v} > 2r and r, < 2r. If r, < 2r, since
r; > r, we have r; > r./2. If v} > 2r, since ||p1 — p*|| < (1 +2\)r, we
have ||p1 —p*|| < (1 +2X)r;/2. This means that

ri = |lps — "l > lpr — pill = llpr — p*[| > 75 — (L + 2X)ri/2 = (1 — 2\)r;/2.

To conclude, we have (1 —2\)r;/2 <r; < (24 2\)r}.
From the above analysis and the fact that A\ < 1/4, we can obtain
the following.

ri/4 <ri <dr. (2)
For each p; € P, let w; = log((zpjepr?)/(r%)), i.e., w; is the optimal

weight determined by Lemma

This means that w, can be used as an approximation of w; if w;
1S large enough.

For any p; € P, if w, > 8/ > log 256/ for any 0 < § < 1, we have
the following (by (

Next, we further show that there is at most one point p; in P with
weight w; < log36/25 which, if exists, can be identified by a simple
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procedure. By the definition of w;, we know that w; < log36/25 can
happen only when |p* — p;|| > 5|p* — p;|| for any i # j. This means
that for any j,l # i,

lpj=pill < " =p;lI+lp* =pull < 2maz({lp”—p; |, lp"=pil)). Thus, we have

Ip; = pill = lp™ = pill = Ip" — pjll
> 5max(|[p* — pjll, |p" — pll) = maz(|p* — p; |, [p* — pull)
= dmaz(|[p" — p;ll, lp" — pll) = 2|lp; — pl-
Hence, for any j,l # i, the inequality ||p; — pi|| < ||lpi — p;l|/2 holds.
In other words, p; is isolated from the rest of the points in P. It is

easy to see that such a p; is unique, if exists. The following procedure
searches for such a p;.

1. Choose an arbitrary point p from P.

2. Find a point p' in P farthest away from p.

3. Find a farthest point p’ from p' in P.

4. Compare the pairwise distances among the three points in {p,p’,p"}.
Throw away the pair of points with the smallest pairwise dis-
tance. Output the remaining point as p.

From the above discussion, it is easy to see that if there is a point
p; with weight w; < log36/25, it must be p. Clearly, this procedure
takes only O(dn) time.

For a constant 0 < 8 < 1/2 (whose value will be determined later),
let P, = P\ (PsU{p}) and P. = {p} \ Ps. Then, P,,P.,Ps form
a partition of P. Pg contains all points p; in P whose weights w;
have already been roughly determined (i.e., approximated by w;); P-
has at most one point, which will be the one with weight smaller
than log 36/25, if exists; P, contains all the remaining points whose
weights are not known yet. P,, P, P3 together with w, can be obtained
in O(dn) time since it takes a total of O(n) distance computations.

Following a similar idea in [}, we further decompose P, by using
the log-partition technique, where v > 0 is a constant to be deter-
mined later. (Note that the log-partition cannot be explicitly obtained
since we do not know the weights w;. We assume that such a parti-
tion exists and will be used in our later analysis.)

Definition 2 The log-partition of P, divides points in P, into k groups
Gi,...Gy as follows, where k = [log; ., %1 +1: G = {p; € PJ(1 +
7)1 1og 36/25 < w; < (1 + 7)'log36/25}.

Note that the above partition indeed involves all points in P,.
This is because by the definition of P. and Ps, and the fact that
(1-p)w; < w; < (14+pB)w; for all point p; € Ps, we know that log 36/25 <
w; < 168 for each point p; € P,. This implies that G;,...Gy, P, Pg
form a partition of P. Also, we apply log-partition to P, instead
of P as in [{)]. In this way the value of k is bounded, making our
algorithm efficient for any data.
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3.1.2 Applying the Simplex Lemma

In the following we provide details on the simpler lemma in [}
and how to use it to solve the truth discovery under assumption
NN (v, 1), given a partition of P as shown in Section

The basic idea comes from the following lemma from [J]].

Lemma 4 (Modified Simplex Lemma [J]). Given an unknown weighted point-
set Q C R?, which is implicitly divided into k mutually exclusive groups
{Q;11 < j <k}, and k points {01 < j < k} satisfying the condition that
for each j, the distance between o; and the weighted mean of the unknown Q;

is no more than o fived value L > 0. Let I' = {j\i}u((%j)) > 1}, where w(-) is
the total weight of a point-set. Then it is possible to construct a grid of size
((8k/€)k) inside the simplex determined by {oj|7 € I'}. such that at least one

grid point T satisfies the following

€
1—c¢

Q)+ (1+e)L, (3)

where m(Q) and 6(Q) are the weighted mean and standard deviation of Q,
respectively.

.
\4 /. ° . .
o M, / " . M
/ \\ Q o? : °
0, . o, 0,

.\03.‘\ M3/ .

Fig. 1: An example illustrating how to use Simplex Lemma to find the weighted
mean of a point set which is partitioned into sub-clusters with weighted means
My, Ms, M3, respectively. We first find points (O1, Oz, O3 in the figure) close to
the weighted means of the clusters, and then build a simplex using O1, Oz, O3
as the vertices and with grids in its interior. The actual weighted mean O is
close to the one of the grid point O.

Figure
Suppose that we are applying SIMPLEX(e,k,o01,...,0) for clus-

ters Q = Ule Q; with approximate center o; for each Q;. The analysis
in [J]] established the following fact for SIMPLEX.



Faster Algorithm for Truth Discovery via Range Cover 13

Fact 1 If for each Q;, the inequality 7“7‘1)((%")) > + (where w(-) denotes

the total weight of a point set) holds and the distance between its
approrimate mean o; and the actual weighted mean of Q); is no larger
than O(ed(Q;)/Vk) (where §(-) denotes the weighted standard devia-
tion), there exists a grid point o’ in the grid produced by SIMPLEX e, k, 01,
..,0r) such that the distance between the actual mean of Q and o

is no larger than O(\/e6(Q)).

With the above fact, our idea is to apply SIMPLEX on P, Ps, P,
to produce a grid such that one of the gird points is close to the
optimal truth vector p*. Since we aim for a (14+0(e))-approximation,
it 1s sufficient to have the distance from the grid point to p* no larger
than O(\/ed(P)), as it is shown in [J] that this gives a (1 + O(e))-
approximation for the objective function. By Fact

Note that it is trivial to find an approximate mean for P. since
P. contains at most one point, and its mean can be obtained au-
tomatically. Hence, the remaining issue is to estimate the weighted
mean of P, and Pj.

Finding og: The weighted mean of Pz can be directly computed by
using w, as an approxrimation of the actual weight w;. If the value
of B is chosen properly, the computed mean should differ from the
actual mean by a distance no more than O(ed(Pg)). This can be shown
by the following lemma. It is easy to see that it suffices to set B = €.

Lemma 5 Let P = {p1,ps,...,pn} be a set of weighted points with each p;
associated with a weight w; > 0. For i = 1,2,...,n, let w;, > 0 be a number
satisfying inequality (1—5)w; < w} < (148)w; for some constant 0 < B < 1/2.
Then ||m — m/||?> < 4B882(P), where m and 5(P) are the weighted mean and
weighted deviation of P, respectively, and m' is the weighted mean of P with
new weights w; for each p;.

Proof Let W = "  w;. Since m is the weighted mean of P, it is
known that > w;|p; —m/||> = Wm —m/||> + X1, wiljm — p;||>. Thus,

n n
lm = m/ |12 = O willpi — 1> = > willm — pi|?)/ W
=1 =1
n n
<((1-p)"" ngnpi o ZwiHm' - pill?)/W.
i=1 =1

From the fact that m’' is the weighted mean of P with weights w),
for each p;, we have

n n
> willpi —m'|? <Y whllpi — m]*.
i=1 i=1
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Algorithm 2 (1 + O(1)e)-approximate Truth Discovery from NN . (v,r)

Input: A set P of n points in R% space. Assumption NNps(v,r). B = €2. Constants v, k
16 4k 16k2 4k
solved from 2yvk < €2 and k = [og 4~ W] +loa=ylogT. =3

p
a = e33/48k.
Output: An approximate truth vector.

1: Identify P<, Pg, P, by computing w/ for each p; € P.

2: Compute the weighted mean o} of Pg using weights wg.

3: Randomly sample ¢; points from P. Enumerate all subsets of cg points from the sample.
Compute means of these subsets, and put all the means into a set M.

4: TFor every k-subset {o1,...0p} of M, apply SIMPLEX(€?,k,01,...,0x) to produce a
grid. Put all grid points in into a point set G.

5: For every o), in G, if P< contains a point o}, then build a grid by applying
SIMPLEX (e, 3, 0}, 05, 04 ); otherwise, build a grid using SIMPLEX(¢, 2, 04, 0%).

6: Try all the grid points produced above. Output the one that minimized the objective
function (1).

Applying this to the above inequality, we get
n
[l —m[|* <> (1= B)"wf = wy)[[m = pi |/ W
i=1

Finally by the fact that v} < (1+8)w;, the above inequality becomes

2 - 2
m—m'|? < —— willps — m|? = ———B5*(P).
I = < 7= D wilps = mlP/W = =550%(P)
The lemma follows from the fact that 5 < 1/2. O

Finding o,: We start by assuming that w(P,) > ew(P)/3 (where w(-)
is used to denote the total weight of a point set), since otherwise
the contribution of o, is insignificant (by Fact

The idea is to use the unweighted mean of each G; to estimate
the weighted mean of G;. The estimation is a good approximation
since points in the same group G; will have roughly the same weight;
thus the weighted mean of G; is approximately the unweighted mean
of G;. Computing the mean of G; is not simple, since we do not
know explicitly which points are in G;. Below we describe a sampling
technique to estimate the unweighted mean of G;. Note that the total
weight W of all points in P is at least nlogn as shown in [J|] and
every point in G; has a weight no larger than 16/ (by the definition

of P,). Thus, if the total weight of G; is no smaller than w >

E/PEZV = SZZV (note that by Fact
Algorithm
In Step 1 we partition P into P, Ps, P, as mentioned before. In
Step 2 an approximate weighted mean of Pg is computed. In Steps 3

and 4, we try to guess k weighted means {o1,...0,} for the clusters
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G1,...G, resulted from the log-partition of P, by using random sam-
pling. We apply SIMPLEX to these approximate means {o1,...0} to
produce a small grid. The set G of grid points contains at least one
point which is a good approrimate weighted mean of P,. In Steps
5 and 6, we already have approximate weighted means o) and o} of
P. and Pz, respectively, and a set G which contains an approximate
weighted mean o) of P,. We then try all possible o, from G and
use SIMPLEX on 0},0,,05 to produce grids and one of such grids
contains the desired approxrimation of the truth vector.
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