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1 INTRODUCTION

One of the most celebrated aspects of Myerson’s [1981] optimal auction result is that it provides an
economic explanation for the ubiquitous use of the four standard auction forms. Strictly speaking,
however, Myerson’s results apply only to cases in which a seller is selling a single good. Because
many sellers sell multiple goods, extending Myerson’s analysis to the multi-good case has long
been considered a critical next step. But the multi-good monopoly problem has resisted a complete
solution for over 35 years and by now it is well understood to be an extremely difficult problem.
Worse still, it is known that the optimal solution must typically be quite complex and very often
requires buyers to purchase randomized contracts.! And therein lies the difficulty, because we do
not often, if ever, observe complex or randomized selling mechanisms in practice. This raises the
obvious question, Why not?

!Examples where randomization increases the revenue appear in the literature, starting with Thanassoulis [2004]. See Hart
and Reny [2015] for the analysis of a particularly simple such example, and references to this literature.
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18:2 S. Hart and P. J. Reny

One reason that we may not observe the kinds of complex mechanisms that full optimality
dictates is that relatively simple mechanisms may suffice for generating much of the revenue that
could ever be generated. Thus, a complementary approach to the research program initiated in
Myerson [1981] is to search for relatively simple mechanisms that yield a significant fraction of
the revenue that is generated by a fully optimal mechanism.? The present article represents a
modest contribution to this program.

We consider a single seller who has one unit each of two indivisible goods. The two goods need
not be identical. The seller, whose value for the two goods is zero, can offer to sell the goods to a
single buyer. The buyer’s two values, one value for each of the two goods, are unknown to the seller
but are known to be independently distributed (so, we say that the two goods are independent). The
buyer is risk neutral and has preferences that are additive in the values and (negatively so) in the
price paid. Even in this most basic case, there is no known characterization of the optimal selling
mechanism, though it is known that the optimal mechanism can display unusual properties.> We
ask, What fraction of the optimal revenue can the seller guarantee by selling each of the two goods
separately, i.e., by posting a Myerson-optimal price for each of the goods?

In the context of a general analysis with any finite number of independent goods, Hart and
Nisan [2017]* show in particular that, by selling two independent goods separately, the seller can
guarantee at least 50% of the optimal revenue but cannot guarantee more than® 78%. A nice feature
of the 50% revenue guarantee is that its proof is relatively simple. In part, this simplicity arises
from the rather generous bounds that are established at various steps. While it seems clear that
the bounds employed in the Hart-Nisan proof are “much” too generous, tightening them as we do
here requires a surprising amount of additional effort. Hart and Nisan also show that if, in addition,
the buyer’s two independent values are identically distributed, then the revenue guarantee is at
least 73%, which is tantalizingly close to the 78% upper limit.

Our main result significantly improves upon the Hart-Nisan 50% guarantee, and shows that
their 73% guarantee with identically distributed values can also be obtained when the buyer’s
value distributions satisfy Myerson-regularity. None of our results require the two values to be
identically distributed.

Main Result. For any two independent goods, selling each good separately at its
optimal one-good price guarantees at least \Je/ (\e + 1) ~ 62% of the optimal revenue.
Furthermore, if the buyer’s two value distributions each satisfy Myerson-regularity,
then the guaranteed fraction of optimal revenue increases toe/(e + 1) = 73%.

This is stated below as Theorems 7 and 9.

To summarize the known bounds on the guaranteed fraction of optimal revenue (GFor) from
selling separately two goods: when the goods are independent, the GFOR is at least 62%; when they
are independent and either Myerson-regular or identically distributed, the GFOR is at least 73%; in
all these three cases, the GFoR is at most 78%; and, when the goods are not necessarily independent,
the GFOR drops all the way down to zero [Hart and Nisan 2019].°

2See Chawla et al. [2007] (in the related unit-demand setup); Hart and Nisan [2012/2017] provides an overview of this
literature.

3Such as being non-monotonic: increasing the buyer’s valuations may well decrease the seller’s optimal revenue; see Hart
and Reny [2015].

4Originally circulated in 2012 (EC-2012).

SHart and Nisan [2017] establish the 78% upper bound with an explicit example in which it is optimal to sell two independent
and identically distributed goods as a bundle (these goods satisfy the Myerson-regularity condition).

®For more than two goods a similar result is due to Briest et al. [2015].
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1.1 Some Related Work

There is by now a vast literature in game theory, economics, and computer science that deals with
the (optimal) selling of multiple goods. While that literature is too large to survey here, the reader
may wish to consult the literature section in, say, Hart and Nisan [2017] for an overview of prior
work; see also the references in the Introduction section above. We will mention here the result
of Babaioff et al. [2014] the better option between selling the goods separately and selling them as
the bundle of all goods yields a Gror that is bounded away from zero (specifically, >1/6) for any
number of independent goods. Recently, in the case of two independent goods, Babaioff et al. [2018]
have shown that separate selling yields at least 78% of the optimal deterministic revenue, and that
this bound is tight. In the related setup of a unit-demand buyer (who desires to buy only one good,
rather than having an additive value over bundles of goods), Chawla et al. [2010, Theorem 5] show
a GFOR of 1/4 for the separate selling of any number of independent goods. Finally, Daskalakis et al.
[2017] provide a duality-based characterization of the revenue-optimizing mechanism for multiple
goods.

1.2 Organization of the Article

The article is organized as follows: Section 2 presents the model, defines the appropriate
concepts, and provides some preliminary results. Section 3 gives an outline of the proof. The proof
itself consists of a general decomposition result (Proposition 4 in Section 4) and an estimate of
the crucial term there (Proposition 6 in Section 5), which, when combined, give the first part of
the Main Theorem, namely, the general 62% bound (Theorem 7 in Section 6). Section 7 proves the
second part of the Main Theorem, namely, the 73% bound for regular distributions (Theorem 9),
together with some additional results. Appendix A provides a general result on the continuity of
the revenue with respect to valuations (which is of independent interest), and Appendix B gives a
simple illustration of the use of nonsymmetric diagonals.

2 PRELIMINARIES
2.1 The Model

The basic model is standard, and the notation follows Hart and Reny [2015] and Hart and Nisan
[2017], which the reader may consult for further details and references.

One seller (or “monopolist”) is selling a number k > 1 of goods (or “items,
to one buyer.

The goods have no value or cost to the seller. Let x1, x2, . . ., x¢ > 0 be the buyer’s values for the
goods. The value for getting a set of goods is additive: getting the subset I C {1, 2,...,k} of goods
is worth };¢7 x; to the buyer (and so, in particular, the buyer’s demand is not restricted to one
good only). The valuation of the goods is given by a random variable X = (X;, Xs, ..., Xk) that
takes values in R¥ (we thus assume that valuations are always nonnegative); we will refer to X as
a k-good random valuation. The realization x = (xy, X3,...,Xk) € Rﬁ of X is known to the buyer,
but not to the seller, who knows only the probability distribution of X (which may be viewed as
the seller’s belief); we refer to a buyer with valuation x also as a buyer of type x. The buyer and
the seller are assumed to be risk neutral and to have quasi-linear utilities.

The objective is to maximize the seller’s (expected) revenue.

By the Revelation Principle [Myerson 1981], it is without loss of generality to restrict attention
to “direct mechanisms” that are “incentive compatible.” A directmechanism p consists of a pair of
functions’ (¢, s), where ¢ = (g1, ¢z, . . > qx) : R¥ — [0,1]% and® s : R¥ — R. If the buyer reports a

» &«

objects,” and so on)

7 All functions in this article are assumed to be Borel measurable [cf. Hart and Reny 2015, footnotes 10 and 48].
8Without loss of generality, any mechanism can always be extended to the whole space R ff ; see Hart and Reny [2015].
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18:4 S. Hart and P. J. Reny

valuation vector x € RX, then g;(x) € [0, 1] is the probability that the buyer receives good’ i (for
i=1,2,...,k), and s(x) is the payment that the seller receives from the buyer. When the buyer
reports his value x truthfully, his payoff is!® b(x) = Z]le qi (x)x; — s(x) = q(x) - x — s(x), and the
seller’s payoff is s(x).

The mechanism p = (g, s) satisfies individual rationality (IR) if b(x) > 0 for every'! x € R¥; it
satisfies incentive compatibility (IC) if b(x) > q(¥) - x — s(X) for every alternative report ¥ € R¥
of the buyer when his value is x, for every x € R¥; and it satisfies no positive transfer (NPT) if
s(x) > 0 for every x € R (which, together with IR, implies that s(0) = b(0) = 0).

The (expected) revenue of a mechanism p = (g, s) from a buyer with random valuation X, which
we denote by R(y;X), is the expectation of the payment received by the seller; i.e., R(y; X) =
E [s(X)] . We now define:

e Rev (X), the optimal revenue, is the maximal revenue that can be obtained: REv(X) :=
sup,, R(p; X), where the supremum is taken over all mechanisms y that satisfy IR and IC.

When there is only one good, i.e., when k = 1, Myerson’s [1981] result is that

Rev(X) = supp - (1 - F(p)), (1)
P20
where F is the cumulative distribution function of X. Optimal mechanisms correspond to the seller
“posting” a price p and the buyer buying the good for the price p whenever his value is at least p;
in other words, the seller makes the buyer a “take-it-or-leave-it” offer to buy the good at price p.
Besides the maximal revenue REv(X), we consider what can be obtained from the simple class
of mechanisms that sell each good separately.

e SREV (X), the separate revenue, is the maximal revenue that can be obtained by selling each
good separately. Thus,

SREV(X) = REV(X;) + REV(X3) + ... + REV(X}).

The separate revenue is obtained by solving k one-dimensional problems (using Equation (1)), one
for each good.

We now state the basic properties from Hart and Nisan [2017, Propositions 5 and 6] needed for
our proof.

PRroPOSITION 1. (i) Let u = (q,s) be a mechanism for k goods with buyer payoff function b. Then
u = (q, s) satisfies IC if and only if b is a convex function and for all x the vector q(x) is a subgradient
of b at x (i.e, b(x) — b(x) > q(x) - (X — x) for all x).

(i) Rev (X) = sup, R(p; X) with the supremum taken over all IC, IR, and NPT mechanisms pu.

2.2 Distributions

As we show formally in Appendix A.1, for the results of the present article, we can limit ourselves
without loss of generality to valuations that admit a density function (this follows from general
continuity properties of the revenue, which we prove in Appendix A, and are of independent
interest).

“When the goods are infinitely divisible and the valuations are linear in quantities, g; may be alternatively viewed as the
quantity of good i that the buyer gets.

10The scalar product of two n-dimensional vectors y = (y1, . .., yn) and z = (21, . . ., z,) isy - 2 = i Yizi
"ndividual rationality recognizes that, regardless of his valuation, the buyer can obtain an expected payoff of zero by not
participating in the mechanism.

ACM Transactions on Economics and Computation, Vol. 7, No. 4, Article 18. Publication date: December 2019.

RIGHTSE LI MN iy



The Better Half of Selling Separately 18:5

In what follows, we thus assume that every nonnegative random variable X has an absolutely
continuous cumulative distribution function, F(t) = P [X < t] = P [X < t], with an associated
density function f(t). We denote by G the tail probability, i.e.,

G(t) =1-F(t) = foof(u)du =P[X >1],

and by H the cumulative tail probability, i.e.,
t
H(t) := f G(u)du = E [min{X, t}] 2)
0

(the equality holds, since E [min{X,t}] f P [min{X, t} > u] du fo [X > u]
t
J; Gw)du).
Let r := REV(X) > 0 be!? the optimal revenue from X; then Equation (1) implies G(t) < r/t,
which together with G(t) < 1 gives
G(t) < min {;, 1} .
Therefore,
" Ly t
H(t)sf 1du+f —du =r+rlog-, (3)
0 r u r

forevery t > r (and H(t) < tfort <r).

2.3 Change of Units

We start with a trivial, but useful, change of units. For every 0 < Ay,...,Ax <1, let My, 5,
denote the set of all IC and IR mechanisms i = (g, s) that satisfy ¢;(x) € [0, A;] (instead of g;(x) €
[0,1]) for every x € R’j andi =1,...,k. The set of all IC and IR mechanisms, which we denote by
M, is thus the same as My 1.

LEMMA 2. Forevery0 < Ay,...,Ax <1, we have
REV(X1,....Xk) = sup  R(u: Xy, ....Xx),
HEMAL g

where X; := (1/A)X; fori=1,... k.

Proor. Given [ =(q,S) with g;(x) € [0,A4;] for all i, define p = (q,s) by qi(xi,...,xx) :=
(1/21)qi(x1/ 21, iy Xk /Ak) €10,1]  and  s(xq,...,xx) :=S(x1/A1, ..., xk/Ar)  (and  thus
b(xy, ..., xk) =b(x1/A1,. .., xx/Ax) for the corresponding buyer’s payoff functions).
It is immediate to see that p is IC and IR if and only if g is IC and IR, and that
E[5(X1,....Xk)] = E[s(X1,...,Xk)]. Conversely, given p one generates [ by the reverse
transformation. O

3 OVERVIEW OF THE PROOF

The first part of the proof is similar to the proofs of Theorems A and B in Hart and Nisan [2017]
except that, where they split the buyer’s space of values (x,x;) € R? in half along the diagonal
X1 = X3, we split the space into two regions x; > Ax; and x; < Ax along a possibly nonsymmetric
diagonal x; = Ax; (the precise value of A will be chosen later). For any two-good mechanism, the

13

12The continuity of F implies that X cannot be identically zero, and so the optimal revenue REv(X) must be positive (just
sell the good at a small enough positive price).
3The reader is encouraged to look at these proofs and the explanations there.
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18:6 S. Hart and P. J. Reny

revenue in each of the two regions can be estimated by constructing from it appropriate one-good
mechanisms, which eventually leads to a key bound: see Proposition 4 in Section 4. (Rather than
working directly with the two asymmetric regions, which is cumbersome, the proof simplifies
computations by first making an appropriate change of units, which amounts to rescaling the
probabilities that the goods are received: see Lemma 2 in Section 2.3.) Once we have the bound
given in Proposition 4, we need to estimate the maximum of a certain integral expression—which is
essentially the additional revenue that is achievable beyond the separate one-good revenues —over
pairs of nonnegative functions ¢1, ¢, whose sum ¢; + ¢, is nondecreasing. This is accomplished in
Proposition 5, by considering the appropriate extreme functions and then carefully estimating the
relevant terms (this is the hardest part of the proof). In Section 6, we put everything together, and,
by choosing the best possible A (specifically, A = 1/4/e), prove the 62% bound (Theorem 7). Then
in Section 7, we show the 73% bound for Myerson-regular goods (Theorem 9), and then we also
deal with monotonic mechanisms. There are two appendices: Appendix A establishes that, under
quite permissive conditions, the seller’s revenue is continuous in the distribution of the buyer’s
valuation, a result that we use in our proof, but that is also of independent interest, and Appendix B
provides a simple illustration of how the “nonsymmetric diagonal” construct alone can produce
useful bounds.

4 BOUNDING THE REVENUE BY NONSYMMETRIC DECOMPOSITION

This section provides the basic decomposition with respect to a nonsymmetric diagonal (equiva-
lently, we make a corresponding change of units and use the symmetric diagonal; see Section 2.3).

Given a two-good random valuation (Xj, X3), for i = 1,2 let F; denote the cumulative distri-
bution function of X;, and let f;, G;, and H; be the associated funtions as defined in Section 2.2
(namely, the density, tail probability, and cumulative tail probability functions, respectively). We
let r; :==REV(X;) be the optimal revenue that can be obtained from good i, and define two useful
auxiliary functions K; and K:

Ky(t) = fo(t)(H(t) — 1) = G1(£)Ga(2), 4)

Ka(t) := fi(t)(Ha(t) = r2) = G1(£)Ga(2). )

The K functions arise in our bound in Proposition 4, and are crucial to our analysis; they may

be viewed as a kind of “joint virtual valuation” (see Equation (15), the decomposition (23), and
Lemma 8 in Section 7).

The following lemma, which slightly generalizes Lemma 19 in Hart and Nisan [2017] (it re-

places the factor 1 — q(x,) there with A — g(xy) here), obtains a better bound on the revenue of a
mechanism by “rescaling” its allocation function g so it covers the entire interval [0, A].

LEmMA 3. Let X be a one-good random valuation with values bounded from below by some xy > 0.
Then for every IC mechanism u = (q, s) that satisfies q(x) < A for all'** x > xo, we have

R(p; X) < (A = q(x0))REV(X) + 5(x0). (6)

Proor. The function q is nondecreasing (because q is the derivative of the buyer’s payoff func-
tion b, which is convex), and so q(xp) < q(x) < A for all'® x > xo.

If g(x0) = A, then q(x) = q(x) = A for all x > xp, hence s(x) = s(xp) for all x > x¢ by IC; there-
fore, E [s(X)] = s(x) and Equation (6) holds as equality.

141t suffices to require g(x) < A for x in the support of X. As in Hart and Reny [2015], one can always extend a k-good
mechanism to the whole space Rf without increasing its menu beyond taking closure, and so the bound extends to all
RE.

I51f the values of X are bounded from above by some finite x;, then we can replace A with g(x1).
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The Better Half of Selling Separately 18:7

If q(xp) < A, then define a new mechanism /I = (§,$) by §(x) := 0(q(x) — q(xo)) and $(x) :=
0(s(x) — s(xp)), and thus l;(x) = 0(b(x) — (x — x0)q(x0) — b(xp)), where 0 := 1/(1 — q(xp)) > 0 (so
that 0 < §(x) < 1). It is immediate to verify that (g,$) is an IC and IR mechanism: iAndeed,
[G(x) - x = 8(x)] = [§(x") - x = §(x)] = O ([q(x) - x = s(x)] = [q(x") - x = s(x)]) = 0, and b(xo) =
0. Therefore, REv(X) > E [$(X)] = O(E [s(X)] — s(x0)), which yields Equation (6). O

We now come to the main result of this section, which generalizes the decomposition of the
proofs of Theorems A and B in Hart and Nisan [2017]: the revenue from two goods is bounded by
the sum of the separate one-good revenues and an additional term (“the K-term”), which will be
estimated in the next section.

PropPOSITION 4. Let X = (X1, X3) be a two-good random valuation with independent goods (i.e.,
X1 and X, are independent nonnegative real random variables), and let ji = (q,s) be a two-good
IC, IR, and NPT mechanism that satisfies q;(x) < A; for all x € R% and i = 1,2. Then the functions
@i : Ry — [0,A;] given by ¢;(t) := q;(t, t) fori = 1,2 are such that ¢1 + ¢, is nondecreasing and

R(p; X1, X5) < Ayry + Aorz + f (01(OKL (1) + @2(1) K, (1)) de. (7
0

Proor. The first part of the proof, which yields Equation (10), follows the same lines as the proof
of Theorem B in Appendix A.1 of Hart and Nisan [2017], but with the appropriate modifications,
because here X; and X, are not identically distributed, the mechanism y is not symmetric, and
each g; is bounded by A;.

We will write Y for X; and Z for X3, and so X = (Y, Z).

For every t > 0 define'® ®(t) := b(t, t) and ¢;(t) := q;(t, t). By Proposition 1(i) the function ® is
convex and q(t,t) = (¢1(t), p2(t)) is a subgradient of b at (t, t), and so ¢ (¢) + ¢ () is a subgradient
of @ at t. Therefore, ¢; + ¢, is a nondecreasing function, and ®(u) = fou (p1(t) + @2(t))dt (use
Corollary 24.2.1 in Rockafellar [1970], recalling that ®(0) = b(0,0) = 0 by NPT).

Consider first the region Y > Z. For each fixed value z > 0 of the second good such that
P [Y > z] > 0, define from the two-good mechanism p = (¢,s) a one-good mechanism p* =
(¢%,s7) for the first good by replacing the allocation of the second good with an equivalent de-
crease in payment; that is, the allocation of the first good is unchanged, i.e., ¢*(y) := q1(y, 2),
and the payment is s*(y) := s(y, z) — zq2(y, z), for every y > 0; note that the buyer’s payoff re-
mains the same: b*(y) = b(y, z). The mechanism p* is IC and IR for y, since p is IC and IR
for (y,z). Let Y* denote the random variable Y conditional on the event Y > z, and consider
the revenue R(p%;Y?) = E [s*(Y?)] = E [s*(Y)|Y > z] of p# from Y?. We have Y* > z, ¢°(z) =
q91(2.2) = ¢1(2), and s*(2) = s(z,2) - 2q2(2. 2) = 291 (2. 2) - b(2.2) = z¢1(2) — P(2), and so, apply-
ing Lemma 3 above to Y?, we have

E [s*(V)|Y = z] < (A1 — 01(2))REV(Y?) + 291 (2) — D(2). (8)

Now Rev(Y?) < REV(Y)/P [Y > z] (use Equation (1): any posted-price mechanism for Y? yields,
when applied to Y, atleast P [Y > z] times the revenue from Y?). Substituting this into Equation (8)
and multiplying by P [Y > z] gives

E[s*(Y)1ys:] < (A1 = 1(2))r1 + (z1(2) — 2(2))P [Y > 7]

for all z > 0 (which trivially includes those z where P [Y > z] = 0). Taking expectation over the
values z of Z yields

E [SZ(Y)leZ] shn-nE[g@2)]+E[(Zei(Z2) - 2(2)1y2z]. )
16Notice that ® here is 2® in Hart and Nisan [2017].
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18:8 S. Hart and P. J. Reny

For y > z > 0, we have s(y,z) = s*(y) + zq2(y, z) < s*(y) + zq2(y, y) = s*(y) + zp2(y) (by the
monotonicity of ¢ in its second variable, again by the convexity of b), which together with Equa-
tion (9) yields

E[s(Y,2)1y>z] < E [SZ(Y)lYZZ] +E [Zp2(Y)1y22]
Ar = E[ou(2)] + E [(Ze2(Y) + Z¢1(Z) - ©(2)) 1y>2]
At = E[o1(2)] + E [(Ap2(Y) + Ap1(Z) — @(A)) 1y>z],

IN A

where we put A := min{Y, Z}.
Consider next the Z > Y. Interchanging Y and Z and using Z > y instead of Z > y throughout
gives

E[s(Y,Z2)1z>y] < Aorz = 2 E [02(Y)] + E [(Ap1(Z) + Apa(Y) = (A)) 12>v]
Adding the last two inequalities yields
E [s(Y,Z)] My + Aary = E [01(2)] = 2 E [g2(Y)]
+E [Ap1(Z) + Aga(Y) — ©(A)]
Ay + Agrg
+E [p1(Z2) (A= )] + E [92(Y) (A = r2)] - E[®(A)]. (10)

IA

Now, we have
Elpn(@) (=)= [ pi@(E minl.2)] - r) )z
0
- [ p@ume - s (11)
0
(use A = min{Y, Z} and Equation (2)). Similarly,

E [02(Y) (A - 12)] = fo 02(0)(Ha(y) - r2) i (9)dy. (12)

Let Fp be the cumulative distribution function of A = min{Y,Z}; then 1 — Fy(u) = Ga(u) =
G1(u)Gz(u), and

E [o(A)] fo D(u)dFa(u) = ~ fo (u)dGa (u)

[0 (u) G + f & (u)Gx (u)du

foo O’ (u)Gp(u)du
0

f (01(u) + 92(u)) G () G () s, (13)
0

where we integrated by parts to get the second line,!” and then used ®(0) = 0 and ®(c0)Gx (c0) = 0
(because 0 < ®(u)Ga(u) < 2u(ri/u)(rz/u) - 0 as u — co, with ®(u) < 2u following from
d’'(u) < 2).

Substituting Equations (11)—(13) into Equation (10) yields the result. O

Formally, we integrate by parts on a finite interval [0, M] and then let M — co. The functions G, and ® are absolutely
continuous (because G; = 1 — F; for i = 1, 2 are absolutely continuous and Gy = GGz, and @ is convex and continuous).
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5 BOUNDING THE K-TERM

In this section, we bound from above the term f (1K1 + ¢2K3) in Equation (7) over all possible
functions ¢;, which take values in [0, A;], and whose sum @; + ¢, is nondecreasing. This term is
linear in the ¢;, and so, if each ¢; were nondecreasing, it would suffice to consider only the extreme
functions that take the values 0 and A; (because any nondecreasing function is an average of such
functions; see the remark below). However, we only require the sum to be nondecreasing, which
requires a more delicate analysis; see Proposition 5. This result is then applied to our specific
functions K; and K; to get the bound in Proposition 6 (this constitutes the core of the proof).

From now on, we will assume without loss of generality that 1y < A;, andso 0 < A; < A, < 1.
Let K;, K5 : R, — R be two functions, and define

I:= supf (p1(1)K1(t) + @2(t)K2(2)) dt,
@1, 92 J0

where the supremum is taken over all functions ¢; : R; — [0, ;] such that ¢ := ¢; + ¢, is nonde-
creasing.
To estimate I, for any 0 < a < b < ¢ < oo define

I(a.b.c) := f bxl max(K; (t), K(t)}dt
+ fb " (e = M)Ka(t) + A max(Ky (1), Ka(8)}) dt
+ f " K () + Ao () de
= X acmax{Kl(t),Kg(t)}dt+/11 f C(Ki) + Ka()dt

+(/12 —Al) ﬁwKz(t)dt. (14)

It is immediate to see that I(a, b, c¢) is nothing other than f (1K1 + ¢2K>) for the following func-
tions ¢; and ¢,:

| || a<t<b | b<t<c |t2c|

e1(t) || Mk )=k Mg (0K M
e2(1) || Ml <ko) | Mk )<ko) A2 — Ay Ao

Their sum ¢; + ¢, then equals

| [ a<t<b] b<t<c| t>c |
|(p1(t)+(pz(t) ” M | Ay |/11+/12|

which is a nondecreasing function, and so I(a, b, ¢) < I.
PROPOSITION 5. Suppose that 0 < A; < A < 1. Then

I= sup  I(a,b,c).

0<a<b<c<co

Remark. We will use the following well-known result. Every nondecreasing function
Vi [u,v] = [0,1] (where —co < u < v < o) can be expressed as an (integral) average of
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18:10 S. Hart and P. J. Reny

nondecreasing functions that take only the values 0 and'® 1. More generally, every nondecreasing
function ¢ : [u,v] — [a, f](where a < fare finite) can be expressed as an average of nondecreasing
functions that take only the two values azand f (when a < f5, apply the above to ( — a)/(f — a),
which takes values in [0, 1]). Therefore, when we maximize a linear functional fuv Y (t)K(t)dt
over all nondecreasing functions i : [u,v] — [a, f], it suffices to consider those functions that
take only the two extreme values ¢ and f.

Proor. We have seen above that I > I(a,b,c) for every a < b < c. We now show that I <
Sup, <p<c I(a, b, c).

The proof proceeds as follows: We partition the range of ¢ into three intervals: [0, 4], (11, 12],
and (A2, 4; + A2]; provide simple pointwise bounds on ¢ (#)K;(t) + ¢2(t)K,(t) in each interval; as
these bounds are affine in ¢, we apply the remark above.

For each ¢, given ¢(t) = ¢1(t) + @2(t), the expression ¢1(t)K;(t) + @2(t)K2(t) is maximized by
putting as much weight as possible—subject to the constraints 0 < ¢;(t) < A;—on the higher of
K;(t) and K;(t). This gives the following upper bounds on ¢ (¢)K; (t) + @2 (t)K2(t):

e ¢(t) max{K;(t),Ky(t)} for every t in the interval where 0 < ¢(t) < Ay;

o (p(t) — A1)K»(t) + Ay max{K;(t), K»(t)} for every t in the interval where 1; < ¢(t) < A, (be-
cause ¢1(t) < Ay implies @, (t) > ¢(t) — A1); and

o (p(t) — A2)K1(t) + (p(t) — A1) K2(8)+ (A1 + A2 — (1)) max{K;(t), K(t)} for every ¢ in the in-
terval where 1y < @(t) < A1 + 1.

In each one of these three intervals the bound is affine in ¢ and so, by the remark above, when
maximizing over nondecreasing ¢, it suffices to consider solely those functions ¢ that take only
the corresponding two extreme values. Altogether, such a ¢ takes only the values 0, A1, A, and
A1 + Ay, say on the intervals (0, a), (a, b), (b, ¢), and (c, o), respectively—and then f(<.01K1 + p2K>)
becomes precisely I(a, b, ¢). Thus, indeed I < sup I(a, b, c). m|

We now come to the main argument of our proof, which yields, using Proposition 5, an upper
bound on the K-term for our specific functions K; and K.

PROPOSITION 6. Let0 < Ay < Ay < 1, and let Ky, K, be given by Equations (4) and (5). Then
1
I < = (Asry + Airg + Ag(e — 1) min{ry, rp}) .
e

Proor. Recalling Equation (2), we have the following: for each i = 1,2, the function H;(t)
is continuous and strictly increasing at each t in the support of X; (because G;(t) > 0 there),
and H;(c0) = E [X;] > r; (with strict inequality unless X; is constant, in which case everything
trivializes). Therefore, there exists a finite 7; such that H;(z;) = r;; since for all ¢t < r;, we have

18 Assume first that 1(v) = 1. If ¢ is a right-continuous function, then i/ may be viewed as a cumulative distribution
function on [u, v], and we have ¥/ (¢) = f[u’t] dy(x) = f[u’v] 1[x, 0] (t)dY (x) for every t € [u, v] (where 1 is the in-
dicator function of the set E, ie., 1g(¢) =1if ¢t € E and 1g(¢) = 0 otherwise). If ¢ is not necessarily right-continuous,
then let ¢/, (¢) := lim;/~ ; ¥(¢’) (which is right-contiuous), /_ () := lim;s »; (¢’), and take A, € [0, 1] such that /(¢) =
A (t) + (1= A)Y—(2); then ¢ = f[u,v] Ax1x, 0] + (1= Ax) 1 (x, 0))dPs ().

If0 < ¢(v) < 1, theny = 1//(1))1/; + (1 - ¢¥(v))0, where 1,/;(t) = /(t)/y(v) and 0 is the zero function (i.e., 0(¢) = 0 for
all ¢), and we apply the above to 1; Finally, if ¢ (v) = 0, then ¢ = 0.

As an application, every one-good IC and IR mechanism p = (g, s) can be expressed as an average of posted-price
mechanisms yip = (gp, Sp), Where qp = 1[p «) and sp = plj, ). Indeed, g is nondecreasing, and taking it to be, say,
right-continuous (which corresponds to seller-favorability), we have g = f qpdq(p), and thus s = f spdq(p), and b =
f bpdq(p) for the corresponding buyer payoff functions (this decomposition provides a proof of Equation (1)).
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H;(t) <t < r; (because G; < 1), it follows that
T > Tj.

Put L;(t) := G;(t)(H;(t) — r;); taking derivatives gives

Li(t) = = fi(O)(Hi(t) = 1) + G;()Gi(t) = =Ki(1). (15)
We will use the following estimates:
f G1(1)Ga(1)dt < f Ny -nn (16)
u u bt u

for every u > 0 (because G;(t) < r;/t);

Hi(u) —r; <rjlog s
ri

for every u > r; (recall Equation (3)); and, thus,

rl-rj u

Li(u) = Gj(u)(Hi(u) —r;) < o log - (17)

for every u > r;. The last inequality implies that L;(u) — 0 as u — oo, and so
[ Kt = Lol = . (18)

Finally, letting {i, j} = {1, 2}, we have
1
Li(u) < T and (19)
rirj
Ll(u) + — < Ty (20)
u

for every u > r; (use Equation (17) together with log x/x < 1/e and (logx + 1)/x < 1 for all x > 0;
note that there is no typo here: these bounds on L; use r; rather than r;).

We need to bound I(a, b, ¢). For the last term of Equation (14), we have, by Equations (18) and
(19),

f Ky (t)dt < 1rl, (21)
b e

and so it remains to estimate J(a,c) := f; max{K;, Ky} + fcoo (K1 + K3). A main difficulty in doing
so is that the K; are neither nonnegative nor monotonic, and may change signs many times. To han-
dle this, we define for each i an auxiliary function M;(t) := f;(t)(Hi(t) — ri) = Ki(t) + G1(t)Ga(1),
which vanishes at t = 7;, is nonpositive before 7;, and nonnegative after 7;; i.e., M;(t) > 0fort > 7;
and M;(t) < O0fort < ;.

We distinguish three cases according to the location of a relative to 7; and 7, (the points where
M; and M, change sign); without loss of generality'® assume that 7; < 7.
e Case 1.a > max{r, 7;} = 7. Forevery t > a, we have M;(t) > 0 (because t > a > 7;), and thus?’

max{K;(t), Kz(t)} = max{M;(t), Ma(t)} = G1(t)G2(t)
< My (t) + Ma(t) — G1(£)Ga(t)
= Ki(t) + Kz () + G1(t)Ga(t).

19The expression J(a, b) that we estimate now is symmetric in i = 1, 2, and so the assumption that 1; < A, is irrelevant
here; we thus assume that 7; < 7.
20This is the inequality max{x, y} < x + y + z whenever x, y > —z. As simple as it is, it turns out to be crucial in obtaining
the overall better-than-1/2 bound.
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18:12 S. Hart and P. J. Reny

Since we clearly also have K; + K, < Ky + K3 + G1G,, we get
Jao) < f (K0 (1) + Ko(t) + Ga()Go(0))
a
< Ly(a) + Ly(a) + ”Trz =: J(a)

by Equations (18) and (16). If, say, rx < ry (where {k, ¢} = {1, 2}) then using Equation (19) for i = k
and Equation (20) for i = € (recall that a > 7; > r; for both i) yields?!

o | =

re + ry.

J(a,c) < J(a) <
-

e Case2.71 < a < 1. Intheranget € [a,12) C [11, 72), we have M;(t) > 0 > M,(t), and so K;(t) >
K,(t) and K,(t) < 0; therefore, both max{K;(t), K»(t)} and K;(t) + K»(t) are < K;(t), and thus,
regardless of where c is,

~

rnra

J(a,c) < f’z Ki(t)dt + J(r2) = (L1(a) — Li(z2)) + (Ll(Tz) + Lo(73) + S

rr 1 1
= Ly(a) + Lz < —ry+minf{ry, r2} < —re + 1y,
T e e

where we have used: Ly(13) = 0 and 75 = max{ry, 7o} > max{ry,r;} (because 7; > r;).
e Case 3.a < min{ry, 7o} = 7;. Forevery t < 71, we have K;(t) < M;(t) < 0and Kx(t) < M,(t) <0,
and so both max{K; (), K»(t)} and K;(¢) + K,(t) are < 0 in the interval [a, 7;]. Therefore, J(a, c) <
J(71, max{c, 71}), to which we apply Case 2 (with a = 77).
Thus, in all three cases the bound on J(a,c) is (1/e)rg+re = (1/e)(ri +12) + (1 —
1/e) min{ry, ry}; together with Equation (21), we get
/11 Al(e - 1) /12 - Al

A .
I(a,b,c) < —lrl + —ry + ————=min{ry,r} +
e e e e

r1,
completing the proof. ]

Remarks. (a)If 1 and ¢, are each required to be nondecreasing (rather than just their sum), then
we get a smaller bound on f (1K1 + ¢2K3), namely:

sup fo (O (DK (1) + oK (1) dt

@1, P2
) 3] /11 /'{2
= sup A Ki(t)dt + sup A, Ky(t)dt < —rp+ —n4
0<a<co a 0<b<oo b € €

(use the remark preceding the proof of Proposition 5 together with Equations (18) and (19)). There-
fore, for mechanisms p = (g, s) where q;(t,¢) and g2(,t) are monotonic—such as, for instance,
symmetric mechanisms, where?? q1(t,t) = q2(t, t)—we get, taking A; = A, = 1 in Proposition 4,

1 1 1
R(p; X) <ri+r+-rn+-r= (1 + —) (ry + 12).
e e e

This yields the bound e/(e + 1), which is better than ve/(+/e + 1).
(b) If the functions K; satisfy a weak single-crossing property, i.e., if there exist u; € [0, o] such
that K;(t) < 0 for t < u; and K;(t) > 0 for ¢t > u;, then fooo 0K < A; fuoo K;. As in Remark (a)

2L A slightly better estimate of (2/+/e)/7172 may be obtained here by directly maximizing J(a) over a; however, this will
not improve the overall estimate, due to Cases 2 and 3.
22This proves Theorem B of Hart and Nisan [2017] for two independent and identically distributed goods.
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above, this yields the better bound I < (A;/e)r, + (A2/e)r1, and will be used when dealing with
regular goods (see Lemma 8 and Theorem 9 in Section 7 below).

6 COMPLETING THE PROOF
Combining the results of the previous two sections yields the first part of our Main Result:
THEOREM 7. Let X = (X1, X3) be a two-good random valuation with independent goods. Then
SREV(X1, X>) S \e
ReV(X1, X3) Ve+1
PRrOOF. Let™ R; := REV(X;); thus SREV(X1, Xp) = Ry + Rp. Given 0 < A < A, put X; := X;/A;
and r; :=Rev(X;) = R;/A;. Using Lemma 2, Proposition 4 for (X1, X»), and then Proposition 6, yields

Ry Ry /12 Ry MRy Ae—1) . [R Ry
REV(X(,X3) < A +A 212
EV(Xy, X3) 1/1 2A2 . /11 + e 7 + - min /11 /12

A Ae—1
SR1+R2+—R1+—R2+ (e )
Ae e

~ 0.62.

Ry (22)

1
=R; +Ry+ —R; + ARy,
Ae

where in the second line, we put A := A1 /A, € (0, 1] and used min {R; /A1, R2/A2} < Ry/A,. The final
expression equals (1 + 1/+/e)(R; + R;) when A = 1/+/e, completing the proof.?* m]

7 REGULAR GOODS AND MONOTONIC MECHANISMS

In this section, we prove the second part of our Main Result, namely, the better bound of 73% for
regular goods (and also for monotonic mechanisms). We will use here only the symmetric diagonal
decomposition (i.e., ; = A, = 1).

Following Myerson [1981], we say that a one-dimensional random variable X is weakly regular
if its support is an interval [«, ] with?® 0 < @ < B < oo, on which it has a density function f(t)
that is positive and continuous, and the resulting “virtual valuation function” t — G(t)/f(¢) is non-
decreasing (Myerson’s regularity condition requires the virtual valuation to be strictly increasing).

LEMMA 8. Assume that X1 and X, are weakly regular. Then K;(u) > 0 implies that K;(v) > 0 for
allv > u, fori =1,2.

Proor. Let [a;, ;] be the support of X;. Assume by way of contradiction that, say, Ky (u) > 0
and K;(v) < 0 for some v > u. First, K;(u) > 0 implies that f2(u) > 0 and H;(u) — r; > 0 (other-
wise Ky (u) < —G1(u)Gz(u) < 0),and so a; < u < ffz and u > «; (because H; is nondecreasing and
Hi(a1) < a1 = a1 - Gi(a1) < r1). Second, Ky (v) < 0 implies that G;(v) > 0 and Gz(v) > 0 (other-
wise K1(v) = fo(v)(Hi(v) —r1) = fa(v)(Hy(u) — r1) = 0, since H; is nondecreasing), and so v <
and v < f, (because G;(f;) = 0). Together with u < v it follows that u and v both lie in the inter-
val?® where f,(t) > 0, Gy(t) > 0, and H;(¢) — r; > 0. But in that interval the function x, defined by

Ki(t) (Hl(t) - t) N (t B Gz(t))

)= 26w -\ a0 A0

(23)

23The results of the previous sections will be applied to the rescaled X; = X;/A;, and so we will use r; for the revenue of
X;, and R; for the revenue of the original X;.

240ne may check that 1 + 1/+/e is the best bound that is independent of R; and R, (when Ry = R, the above expression is
minimized only at A = 1/+/e).

ZNotice that we allow p = oo, in which case the interval is understood to be [«a, o).

Nle, t; <u < v < By, where t; > a; is the point where H(t;) = ri, and oz < u < v < fB.

ACM Transactions on Economics and Computation, Vol. 7, No. 4, Article 18. Publication date: December 2019.

RIGHTSE LI MN iy



18:14 S. Hart and P. J. Reny

is increasing—the derivative of the first term is f;(t)(Hi(t) — r1)/G3(t) > 0, and the second term is
nondecreasing by regularity. Therefore, we cannot have k(u) > 0 and x(v) < 0, which contradicts
the assumption that K;(u) > 0 and K;(v) < 0. O

This yields the second part of our Main Result:

THEOREM 9. Let X = (X1, X3) be a two-good random valuation with independent and weakly reg-

ular goods. Then
SREV(X1, X3) e
> ~ 0.73.

REV(Xl,Xz) T e+1 -

Proor. Take A; = A; =1 and let r; =REV(X;). Lemma 8 implies that if K;(t) is positive any-

where, then it is nonnegative from that point on, and so either (i) there is some finite u > 0 such

that K;(t) < 0 for t < u and K;(t) > 0 for t > u or (ii) K;(¢) < 0 for all t > 0. Therefore, for any
function ¢; with values in [0, 1], we have

fom pi(HK;()dt < fum Ki(t)dt = L;(u) < %ri

in case (i) (by Equations (18) and (19)), and fom @i(t)K;(t)dt < 0 in case (ii). Altogether f 1Ky +
fqosz < (1/e)rp + (1/e)ry, and so Proposition 4 gives REV(X) < (1 + 1/e)(ry + rz), proving the
result. |

Next, let MONREV(X) denote the maximal revenue that can be obtained using monotonic mech-
anisms, i.e., mechanisms p = (g, s) for which the function s(x) is nondecreasing in x.

ProprosITION 10. Let X = (X1, X3) be a two-good random valuation with independent and weakly
regular goods. Then
SREV(X] . Xz) > e
MONREV(X1,X,) ~ e+1

Proor. Put r; := Rev(X;), and let V; be the “equal-revenue” (ER) random valuation with the
same revenue r; as X;; i.e., its tail distribution function is G,-(t) = min{r;/t, 1} > G;(t). Take V; and
V; to be independent, and put V = (V1, V). Because V; first-order stochastically dominates X;, for
every monotonic mechanism p = (g, s), we have R(u; X) = E [s(X1,X2)] < E [s(V1, V2)] = R(i; V).
Therefore,

~ 0.73.

MonNREV(X) < MoNREV(V) < Rev (V).
The ER-good V; is weakly regular (because on its support [r;, o) the virtual valuation func-
tion t — Gi(t)/f}(t) is identically 0), and so SREV(V) > e/(e + 1)REV(V) by Theorem 9; together
with SREV(X) = SREV(V) (by construction) and MoNREV(X) < Rev(V) (see above), the result
follows. =

APPENDICES
A  REVENUE CONTINUITY

This appendix deals with the continuity of the revenue with respect to valuations, which is of
independent interest. Take a sequence of k-good valuations X" that converges in distribution to
the k-good random valuation X; does the sequence of revenues REv(X") converge to?’ REv(X)?

270nly the distribution of a random valuation X matters for the revenue achievable from X it is thus natural to consider
what happens when X ™ converges in distribution to X. Formally, convergence in distribution is equivalent to the cumula-
tive distribution functions converging pointwise at all points of continuity of the limit cumulative distribution. Informally,
being close in distribution means that the probabilities of nearby values are close (see, for instance, Equation (24) below).
Billingsley’s [1968] book is a good reference for the concepts used here.
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Even in the one-good case this need not be so: for each n let X" be the one-good valuation that
takes value 0 with probability 1 — 1/n and value n with probability 1/n. Then X" converges in
distribution to the valuation X that takes value 0 with probability 1. But REv(X") = 1 (with the
posted price of n) while REv(X) = 0.

We will show that if the valuations all lie in a bounded set—more generally, if the random val-
uations are uniformly integrable—then the limit of the revenues equals the revenue of the limit.
We emphasize that all the results in this Appendix are for general k-good valuations for any k > 1,
whether the goods are independent or not.?

Some notation. First, it will be convenient to work here with the £;-norm on® R, ie., ||x]||; =

le |x;|. The £;-norm of a valuation x in R¥ provides a simple bound on the seller’s payoff in
any mechanism p = (g, s) that is IR: s(x) < q(x) - x < 3}; x; = ||x]|y; thus, if a random valuation X
satisfies || X||; £ M, then REV(X) < M. Second, the Prohorov distance between the distributions of
X and Y, which we denote by Dist(X,Y), is defined as the infimum of all p > 0 such that

P[X € A] < P[Y € B,(A)] + p, and (24)
P[Y e A] < P[X € B,(A)] +p
for all measurable sets A, where B, (A) := {y : ||y — x||; < p for some x € A} is the p-neighborhood

of A. Thus, 0 < Dist(X, Y) < 1, and X" converges in distribution to X, which we write as X" g X,
if and only if Dist(X, X") — 0 [again, see Billingsley 1968].

The basic result is that in the bounded case the distance between the revenues of two random
valuations is uniformly bounded by a function of the Prohorov distance between their distribu-
tions.

PROPOSITION 11. Let X and Y be k-good valuations with bounded values, say, ||X||1, [|Y|l; < M
for some M > 1. Then*

|REV(X) — REV(Y)| < (2M + 1)4/Dist(X, Y).

Proor. If Dist(X, Y) = 1 there is nothing to prove, since both revenues are between 0 and M.

Thus, let 0 < p < 1 be such that Equation (24) holds for every measurable set A C R¥, and take
a so p < a < 1 (the value of @ will be determined later). Denote by Dy := {x € R’j lxlh < M}
the domain of values of X and Y.

Let ¢ = (q,s) be an IC, IR, and NPT mechanism, and let b be its buyer payoff function. We
define a new mechanism fi by lowering all payments by a factor of 1 — « (and letting the buyer
reoptimize). Thus, let clW < RX*! be the closure of the set W := {(g(x), (1 — @)s(x)) : x € Dyy}.
For each x € Dy let (G(x),3(x)) be a maximizer for®! b(x) == max (g, )ecl w(g - x —t). Then the
mechanism i = (g, §) is IC (by the maximizer definition), IR (because l;(x) > b(x) + as(x), which
is nonegative, since y is IR and NPT), and NPT (because y is NPT).*?

Let x,y € Dy be such that ||x — y[|; < p. Then (§(y),s(y)) € cl W can be approximated by el-
ements of W: for every ¢ > 0 there is z € Dy, such that, in particular, |S(y) — (1 — a)s(z)| < ¢ and

28 Monteiro [2015] establishes continuity of the optimal revenue in the one-good case with n independent buyers, when
the valuations are bounded and the limit distributions are continuous (his proof uses the characterization of the optimal
mechanism).

2This affects only the various constants below.

30We have not attempted to optimize the bound here.

31This maximum is attained because W is bounded, namely, W C [0, 11% x [0, M], and so cl W is a compact set.

32Hart and Reny [2015] use this device of applying a small uniform discount to the buyer’s payments to show that, at an
arbitrarily small cost, the seller can perturb any IC and IR mechanism so the buyer breaks any indifference in the seller’s
favor (the resulting mechanism is thus called seller-favorable).
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I[q(y) -y = $5(y)] - [q(2) - y — (1 - a)s(2)]| < ¢. We then have
q(z) -y —(1-9)s(z) + ¢ = 4(y) -y = 5(y)
2 q(x) -y - (1-a)s(x)
= q(x) - x = s(x) + q(x) - (y = x) + as(x)
2 q(z) - x = s(z) + q(x) - (y — x) + as(x),
where the second inequality follows, because (q(x), (1 — a)s(x)) € W, and the last inequality fol-
lows because (g, s) is IC. Rearranging gives

a(s(z) = s(x)) = (q(x) —q(2)) - (y —x) —e.
Now [(g(x) — q(z)) - (y — x)| < p (because g(x), q(z) € [0, 1]k and ||y — x||; < p), and so

(1-a)s(z) = (1 - a)s(x) - 1?7“(,; o).
Recalling that 5(y) > (1 — a)s(z) — ¢ yields
) 2 (- st - —(p+0) -

as ¢ > 0 was arbitrary, we have
1-«a

$(y) = (1 - a)s(x) - p:

and so, using s(x) < [[x]]; £ M,
$(y) = s(x) — B, (25)
where = aM + (1 — a)p/a.
For each t > 0 put A(t) := {x € Dy : s(x) > t} and A(t) = {x € Dy : §(x) > t}. Inequality (25),
which applies whenever ||y — x||; < p, implies that A(t — f) 2 B, (A(t)), and so

Rev(Y) > E [§(Y)] = fom P [Y € A(t)| dt > fﬁM P[Y eA-p)dt

M

M
zfﬁ P[YeBP(A(t))]dtzfﬁ P [X € A(t)]dt — (M - B)p

M
N f P[X € A()]dt - f— (M~ B)p = E [s(X)] - £,

where ’ := f + (M — B)p (for the fourth inequality we have used Equation (24) and f < M, which
follows from p < & and M > 1).

Taking a = 4/p gives f < (M +1)+/p and ' < f+ Mp < (2M + 1)4/p. The displayed inequal-
ity above holds for every p and every p > Dist(X,Y), and so Rev(Y) > Rev(X) - (2M +
1)4/Dist(X, Y). Interchanging X and Y completes the proof. O

A sequence of random variables (X™),,»1 is uniformly integrable if for every ¢ > 0 there is a finite
M such that E [||X"]l; 1jjxn,,>am] < € for all n.

THEOREM 12. Let X™ be a sequence of k-good random valuations that converges in distribution to
the k-good random valuation X. Then

liminf REV(X") > REV(X).

n—oo

Moreover, if the sequence X™ is uniformly integrable, then

lim Rev(X") = REV(X) < oo.
n—oo
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Proor. For every M > 0 and every k-good valuation X, denote X,y := X1|jx|),<m. Any IR, IC,
and NPT mechanism y = (g, s) satisfies s > 0 and s(0) = 0, and so E[s(X(ar))] = E[s(X)1 x|}, <a]
monotonically increases to [E [s(X)] as M increases to infinity. Therefore, REV(X(51)) monotoni-

cally increases to REv(X).
D D

If X" = X, then X[, = X for almost every M > O—specifically, for those M where®

P [|IX]]; = M] = 0—and so lim,lREV(X(”M)) = REV(X(a)) by Proposition 11. Now REv(X") >

REvV(X ("M)), and hence lim inf,REV(X") > REV(X(a)) for almost every M. Letting M — oo proves
the first part of the theorem.

If in addition the sequence X, is uniformly integrable, then for every ¢ > 0 there is M > 0 with

P [|IX|l; = M] = 0 that is large enough so E [||X"||; 1;x~;,>m] < ¢ for all n. Since, as seen above,

0 < s(x) < [lx||; for every IR and NPT mechanism p = (g, s), it follows that E [s(X™)1|xn|,>m]| <

¢ for all n, and thus ReEv(X ("M)) > REV(X™) — ¢ for all n (this also shows that the revenues are

all finite, as they are bounded by M + ¢). Therefore, REV(X) > Rev(X(ap)) = limnREV(X("M)) >
lim sup, REV(X") — ¢, which, together with the first part of the theorem, proves the second
part. O

A.1 Continuous Valuations

It is often convenient—as in the present article—to restrict attention to random valuations whose
distributions admit a density function (i.e., their cumulative distribution functions are absolutely
continuous; we refer to these for now as “continuous”). We now show that for the results in the
present article one may restrict attention to continuous random valuations. Indeed, assume that
we have already proved a result of the form REv(X) < 6 SREv(X) for all such continuous X, and let
X be a valuation that is not necessarily continuous (and so it may have atoms and even finite sup-
port). First, because, as we have seen in the proof of Theorem 12 above, REV(X(a1)) — pm—REV(X)
and SREV(X(31)) —ar—eSREV(X), it suffices to prove the result for random valuations X with
bounded values, say ||X||; < M. Second, let U be independent of X and distributed uniformly
on [0, l]k, and for every n define X" := X + (1/n)U. Then, clearly, the valuations X" are con-

D
tinuous, X" = X, and the sequence X" is bounded (||X"||; < ||X||; + (1/n)k < M + k); therefore,
REV(X") —,50REV(X) and SREV(X") —,0SREV(X) (apply the second part of Theorem 12 to

the sequences X" 3 X and X 3 X; for all goods i). Thus, REvV(X) < 6 SREV(X) holds for every
bounded X, and so for every X.

B  NONSYMMETRIC DIAGONALS

In this Appendix, we illustrate how the use of nonsymmetric diagonals alone may strictly improve
the 50% bound of Hart and Nisan [2017], and, in some cases, also the 62% bound of our Theorem 7.3*
However, this improvement is not uniform, in the sense that it does not yield a better constant
than® 50%.

33These are the points of continuity of the cumulative distribution function of ||X||;; see Corollary 1 to Theorem 5.1 in
Billingsley [1968].

34To get more than 50%, the single-good revenues need just to be different, and to get more than 62% they need to be
significantly so (with the revenue of one good about nine times higher than the revenue of the other).

35Yet another non-uniform bound may be obtained by optimizing A in the first line of Equation (22):

2 2 1
REV(Xl, Xz) < Ry + Ry + min {T\)RIRQ, —+/R1Ry + (1 - —)min{Rl, Rz}} N
e e e

where R; = REv(X;) fori =1, 2.
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ProprosITION 13. Let X = (X1, X3) be a two-good random valuation with independent goods. Then

REV(X;, X;) < (\/REV(Xl) + \/REV(XQ))Z.

Remark. When Rev(X;) # Rev(X;) the right-hand side is strictly less than
2(REV(X;)+ REeV(X3)), the bound of Theorem A of Hart and Nisan [2017] (when
REV(X;) = REV(X3) the two bounds are the same).

Proor. We follow the proof of Theorem A in Hart and Nisan [2017], but we now split the
computation along the diagonal Y = AZ for some A > 0 (instead of splitting along Y = Z). The
arguments in the proof there carry over, and, for each fixed value z of Z, we now have

E[s(Y,2)1ys)z1Z = z] < Rev(Y) + zP [Y > Az]
= Rev(Y) + %(AZ)P [Y > Az]

1 1
< Rev(Y) + EREV(Y) = (1 + Z) Rev(Y).
Similarly, for each fixed value y of Y,
E [S(Y,Z)lzz(l/,l)ﬂy = y] < Rev(Z) + yP [Z > %]

Y Yy
- Zp <
REV(Z)+A/1 [Z> /1]

< Rev(Z) + AREV(Z) = (1 + A)REV(Z).

Taking expectation over the values of Z and Y, adding the two inequalities, and then minimizing
the resulting expression over A (by taking A = \/REV(Y)/REV(Z)) yields the result. O

Remark. A better bound than the one of Proposition 13, albeit also non-uniform, has been ob-
tained by Kupfer [2017].
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