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We extend Kreps and Wilson’s concept of sequential equilibrium to games with infi-
nite sets of signals and actions. A strategy profile is a conditional ε-equilibrium if, for
any of a player’s positive probability signal events, his conditional expected utility is
within ε of the best that he can achieve by deviating. With topologies on action sets,
a conditional ε-equilibrium is full if strategies give every open set of actions positive
probability. Such full conditional ε-equilibria need not be subgame perfect, so we con-
sider a non-topological approach. Perfect conditional ε-equilibria are defined by testing
conditional ε-rationality along nets of small perturbations of the players’ strategies and
of nature’s probability function that, for any action and for almost any state, make this
action and state eventually (in the net) always have positive probability. Every per-
fect conditional ε-equilibrium is a subgame perfect ε-equilibrium, and, in finite games,
limits of perfect conditional ε-equilibria as ε→ 0 are sequential equilibrium strategy
profiles. But limit strategies need not exist in infinite games so we consider instead the
limit distributions over outcomes. We call such outcome distributions perfect condi-
tional equilibrium distributions and establish their existence for a large class of regular
projective games. Nature’s perturbations can produce equilibria that seem unintuitive
and so we augment the game with a net of permissible perturbations.

KEYWORDS: Sequential equilibrium, infinite game, finite consistency, conditional
epsilon-equilibrium.

1. INTRODUCTION

WE DEFINE PERFECT CONDITIONAL ε-equilibrium and perfect conditional equilibrium
distributions for multi-stage games with infinite signal sets and infinite action sets and
prove their existence for a large class of games.

Kreps and Wilson (1982), henceforth KW, defined sequential equilibrium for any fi-
nite game in which nature’s states all have positive probability, henceforth standard finite
games. But rigorously defined extensions to infinite games have been lacking. Various
formulations of “perfect Bayesian equilibrium” (defined for standard finite games in Fu-
denberg and Tirole (1991)) have been used for infinite games, but no general existence
theorem for infinite games is available.1

Harris, Stinchcombe, and Zame (2000) provided important examples that illustrate
some of the difficulties that arise in infinite games and they also introduced a method-
ology for the analysis of infinite games by way of nonstandard analysis, an approach that
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they showed is equivalent to considering limits of a class of sufficiently rich sequences
(nets, to be precise) of finite-game approximations.

It may seem natural to try to define sequential equilibria of an infinite game by taking
limits of sequential equilibria of finite games that approximate it. The difficulty is that
no general definition of “good finite approximation” has been found. Indeed, it is easy to
define sequences of finite games that seem to be converging to an infinite game (in some
sense) but have limits of equilibria that seem wrong (e.g., Example 2.1).

Instead, we work directly with the infinite game itself. We define a strategy profile to
be a conditional ε-equilibrium if, given the strategies of the other players, each player’s
continuation strategy is ε-optimal conditional on any positive-probability set of signals.2

In standard finite games, it is not hard to see (although we have not seen it previ-
ously pointed out) that a strategy profile is part of a sequential equilibrium if and only
if, for every ε > 0, there is an arbitrarily close completely mixed strategy profile that is a
conditional ε-equilibrium. It is this finite-game characterization of sequential equilibrium
strategy profiles, without any reference to systems of beliefs, that we will extend to infinite
games.

The central challenge in infinite games is how to test whether the players’ behavior is ra-
tional off the equilibrium path of play. As we have just noted, in standard finite games the
sequential equilibrium concept tests the players’ rationality by checking whether, for any
ε > 0, there is an arbitrarily close completely mixed strategy profile that is a conditional
ε-equilibrium.

In infinite games, there are two serious difficulties with this approach to testing behavior
off the equilibrium path. The first difficulty is that, with uncountably-infinite action spaces,
we cannot make all actions have positive probability at the same time, no matter how
we perturb the players’ strategies. A possible response to this difficulty is to introduce
separable topologies on action spaces and to test the players’ behavior conditional on each
signal event that has positive probability under strategy profiles that have full support.
A case for this approach is given in Section 5. But despite testing for rationality on a rich
class of events, such a topological approach does not test for rationality everywhere, and
so it can allow equilibria that fail to be subgame perfect (Example 5.3). So we emphasize
a different approach.

The second difficulty is that, with uncountably many states of nature, nature’s probabil-
ity function must give all but countably many states probability zero. So even if rationality
could be tested by perturbing the players’ strategies, the players’ resulting conditional
probabilities over histories would be biased so as to explain, whenever possible, any prob-
ability zero event as being the result of a deviation by some player instead of perhaps
being the result of the occurrence of a state of nature that had prior probability zero. This
bias can be so severe that it rules out all but strictly dominated strategies (Example 6.1).

Our solution to these difficulties makes use of generalized sequences, that is, nets. If
b is any strategy profile and p is nature’s probability function, we define a net {(bα�pα)}
of strategy-profile/nature-perturbation pairs to be admissible for (b�p) if two conditions
are satisfied. First, the history-dependent probabilities on action-events specified in the
net {bα} must converge uniformly to those of b, and the history-dependent probabilities
on state-events specified in the net {pα} must converge uniformly to those of p. Second,
for each history of play, any feasible action for any player given that history must receive
positive probability under bα for all large enough α, and almost-any state of nature that

2See Radner (1980) for a study of ε-rationality in finitely repeated games.
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can occur given that history of play must receive positive probability under pα for all large
enough α.3

Admissible nets play the role in infinite games of convergent sequences of completely
mixed strategies in finite games. Indeed, the strategies in an admissible sequence (hence,
net) of any finite game are eventually all completely mixed. Importantly, admissible nets
avoid the two serious difficulties described above because, first, for every feasible action,
admissible nets eventually always give that action positive probability, and second, for
almost any state of nature, admissible nets eventually always give that state positive prob-
ability thereby allowing zero probability events to be explained as the occurrence of a
state of nature that has prior probability zero.4

A strategy profile b is defined to be a perfect conditional ε-equilibrium if there is a
net of strategy-profile/nature-perturbation pairs that is admissible for (b�p) such that,
for each pair (bα�pα) in the net, bα is a conditional ε-equilibrium in the game with na-
ture’s perturbed probability function pα. A perfect conditional equilibrium distribution is
defined as the limit of perfect conditional ε-equilibrium distributions on outcomes of the
game as ε→ 0.5

Nets of perfect conditional ε-equilibria as ε → 0 need not have convergent subnets
even in very nice games, which is why we only consider their limit distributions on out-
comes. As noted by Milgrom and Weber (1985), Van Damme (1987), Börgers (1991), and
Harris, Reny, and Robson (1995), the difficulty is that the randomized signals upon which
players coordinate their actions along the sequence can, in the limit, have distributions
that degenerate to a point, leaving the players without access to the necessary coordina-
tion device.

Our solution concept, perfect conditional ε-equilibrium, does not include systems of
beliefs. In Section 6.4, we show that any perfect conditional ε-equilibrium generates a
finitely consistent conditional belief system with respect to which it is sequentially ε-
rational. These concepts extend to infinite games the concepts of consistency of beliefs
and sequential rationality introduced in KW. Some difficulties with finite consistency are
also discussed.

Perfect conditional ε-equilibria and perfect conditional equilibrium distributions are
shown to exist for a large class of regular projective games (Theorems 9.3 and 9.5), and are
shown to have other attractive properties. First, every perfect conditional ε-equilibrium
strategy profile is a subgame perfect ε-equilibrium, and therefore also an ε-Nash equi-
librium (Theorems 6.9 and 6.10). Second, if two players have the same information, they
must behave, in any perfect conditional ε-equilibrium, as if they have the same beliefs

3“Perturbations” are not synonymous with “mistakes.” See KW, pp. 373–374.
4In standard finite games, all states of nature have strictly positive prior probability, which is why Kreps

and Wilson (1982) did not need to perturb nature. (But note that their theory would have been unchanged
even had they perturbed nature, because nature’s strictly positive probabilities would swamp the infinitesimal
perturbations.)

5We use the term “perfect” to indicate that behavior is tested for rationality everywhere (i.e., at every event
both on and off the equilibrium path).

Simon and Stinchcombe (1995) and Bajoori, Flesch, and Vermeulen (2013, 2016) used a topological full-
support condition in defining, for infinite normal form games, solutions that they call “perfect.” Such topolog-
ical restrictions on the supports of strategies are used in Section 5 to refine perfect conditional ε-equilibrium,
but we call the refined solution “full.” The word “perfect” in English comes from a Latin word meaning “com-
plete,” and so it seems more appropriate for the condition of testing rationality everywhere versus testing
rationality conditional only on sets that have positive probability under a full-support strategy profile, which,
as already mentioned, need not even yield behavior that is subgame perfect.
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about the history of play (Section 6.4). Third, in any standard finite game, a strategy pro-
file is part of a sequential equilibrium if and only if it is the limit of perfect conditional
ε-equilibria as ε→ 0 (Theorem 6.4). So in standard finite games, the perfect conditional
equilibrium distributions defined here are precisely the distributions over outcomes that
arise from sequential equilibria.

The remainder of the paper is organized as follows. Section 2 provides an example that
motivates why we do not use finite-game approximations of the infinite game to define our
solution. Section 3 introduces the multi-stage games that we study and provides some pre-
liminary notation and concepts. Section 4 introduces our most basic equilibrium concept,
conditional ε-equilibrium. Section 5 considers a topological approach to the problem of
perfection in infinite games. Section 6 contains the definition of a perfect conditional
ε-equilibrium strategy profile as well as the definition of a perfect conditional equilib-
rium distribution. This section also establishes several properties of perfect conditional
ε-equilibria (e.g., that they are subgame perfect ε-equilibria), and introduces systems of
beliefs and the concepts of finite consistency and sequential ε-rationality. Section 7 ap-
plies our definitions to several examples. Section 8 augments the game with a permissi-
ble net of nature-perturbations to avoid unintuitive equilibria that can arise with arbi-
trary nature-perturbations. Section 9 introduces the class of “regular projective games”
for which we can prove existence of perfect conditional ε-equilibria and perfect condi-
tional equilibrium distributions. Section 10 provides some final remarks. The proof of our
main existence result is in Section 11. All other proofs are in the Supplemental Material
(Myerson and Reny (2020)).

2. PROBLEMS WITH FINITE APPROXIMATIONS OF INFINITE GAMES

In this section, we provide an example that illustrates why we do not use finite approx-
imating games as a basis for defining sequential equilibrium in infinite games. Despite
many attempts, we have not found any method for providing “good” finite approxima-
tions of arbitrary multi-stage games. Instead, our solutions are based on strategies that
are approximately conditionally optimal among all of the infinitely many strategies in the
original game. To show just one of the ways that things can go wrong, the finite approxi-
mations used in this next example seem natural but lead to unacceptable results.

EXAMPLE 2.1: Spurious signaling in naïve finite approximations.
• On date 1, nature chooses θ ∈ {1�2} with p(θ = 1) = 1/4, and player 1 chooses x ∈

[0�1].
• On date 2, player 2 observes the signal s = xθ and chooses y ∈ {1�2}.
• Payoffs (u1�u2) are as follows:

y = 1 y = 2

θ= 1 (1�1) (0�0)

θ= 2 (1�0) (0�1)

Consider subgame perfect equilibria of any finite approximate version of the game
where player 1 chooses x in some finite subset of [0�1] that includes at least one inte-
rior point. We shall argue that player 1’s expected payoff must be 1/4.

Player 1 can obtain an expected payoff of at least 1/4 by choosing the largest feasible
x̄ < 1, as player 2 should choose y = 1 when s = x̄ > x̄2 indicates θ = 1. (In this finite
approximation, player 2 has perfect information after the history θ= 1, x= x̄.)
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Player 1’s expected payoff cannot be more than 1/4, as 1’s choice of the smallest 0 <
x < 1 in his equilibrium support would lead player 2 to choose y = 2 when s = x2 < x
indicates θ= 2.

But such a scenario cannot be even an approximate equilibrium of the original infinite
game, because player 1 could get an expected payoff at least 3/4 by deviating to

√
x̄ (> x̄).

In fact, by reasoning analogous to that in the preceding two sentences, player 1 must
receive an expected payoff of 0 in any Nash equilibrium of the infinite game, and so also
in any sensibly defined “sequential equilibrium.”

Hence, approximating this infinite game by restricting player 1 to any large but finite
subset of his actions would produce subgame perfect equilibria (and hence also sequential
equilibria) that are all far from any sensible equilibrium of the original infinite game.

We next formally introduce the class of games that we study.

3. MULTI-STAGE GAMES

For ease of exposition, we restrict our analysis to a large class of extensive-form games
called multi-stage games. A multi-stage game is played in a finite sequence of dates.6 At
each date t, each player receives a private “signal,” about the history of play. Each player
then simultaneously chooses an action from his set of available date-t actions, and nature
simultaneously chooses a date-t state whose distribution can depend on the entire history
of play. Perfect recall is assumed.7

Formally, a multi-stage game � = (I�T�S�A�M���p�σ�u) consists of the following
items:
��1� I is the finite set of players, 0 /∈ I. Let I∗ = I ∪ {0}, where 0 denotes nature

(chance). The finite set of dates of play is {1� 	 	 	 �T }. Let L = I × {1� 	 	 	 � T } denote the
set of dated players, let L∗ = I∗ × {1� 	 	 	 � T }, and write it for (i� t).
��2� S =×it∈LSit , where Sit is the set of possible signals received by player i at date t;

Si1 = {∅} for all i ∈ I.
��3� For it ∈L,Ait is the set of all possible date-t actions for player i, andA0t is the set

of all possible date-t states of nature.
��4� A⊆×it∈L∗Ait is the set of possible outcomes of the game. (Additional restrictions

on A are given below.)
The subscript < t indicates the projection onto dates before t, and ≤ t weakly before.

For example, for any a ∈×it∈L∗Ait , a<t = (air)i∈I∗�r<t . So if a ∈A, then a<t is the associ-
ated date-t history, that is, the partial sequence of actions and states before date t, and
A<t = ⋃

a∈A{a<t} = {date-t histories} (A<1 = {∅}, A<T+1 =A). We also use a<t to denote
a typical element ofA<t without necessarily specifying an outcome inA whose projection
onto dates before t is equal to a<t .

6A countable infinity of dates can be accommodated with some additional notation.
7Multi-stage games include Bayesian games, signaling games, principal-agent games, games with perfect

information, games with almost perfect information, finitely-repeated games with and without private moni-
toring, and finite-horizon stochastic games. But if we define precedence by saying that one signal (information
set) in the game precedes another when there is a path of play along which the one signal is generated first and
the other signal is generated second, then the class of multi-stage games excludes all games in which the tran-
sitive closure of this binary relation fails to be acyclic. We restrict attention to multi-stage games only because
they are notationally simple to describe. But there is no real difficulty in extending our definitions to games
with perfect recall outside this class. See Myerson and Reny (2020).
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��5� The mapping M(·) specifies sigma-algebras (closed under complements and
countable intersections) of measurable subsets for each Sit , Ait , and A0t , as well as for
any of their finite products. So, for example, M(Sit) is the set of measurable subsets of
Sit . All one-point sets are measurable, product sets are given their product sigma-algebras,
and subsets of measurable spaces are given their relative sigma-algebras. Assume that
A ∈M(×it∈L∗Ait) and that A<t ∈M(×i∈I∗�r<tAir) for each date t ≤ T .
��6� Player i’s date-t information is determined by a measurable and onto signal func-

tion σit : A<t → Sit .8 Since, for every i ∈ I, Si1 = A<1 = {∅}, we define σi1(∅) = ∅. As-
sume perfect recall: ∀it ∈ L, ∀r > t, there are measurable functions Ψ̄irt : Sir → Sit and
ψ̄irt : Sir → Ait such that Ψ̄irt(σir(a<r)) = σit(a<t) and ψ̄irt(σir(a<r)) = ait , ∀a ∈ A. The
game’s signal function is σ = (σit)it∈L.
��7� For it ∈L, sit ∈ Sit , and a<t ∈A<t , �it(sit) ∈M(Ait) is the set of all feasible date-t

actions for player i given the signal sit , where �i1(∅)=Ai1 (so on date t = 1, every action
inAi1 is feasible for player i). Assume that for any ait ∈Ait , the set {sit ∈ Sit : ait ∈�it(sit)}
is measurable. For any date t ≤ T and for any a ∈×ir∈L∗Air , assume that a<t+1 ∈A<t+1 iff
for every player i ∈ I and for every date r ≤ t, air ∈�ir(σir(a<r)). So the setA of outcomes
of the game is the set of all paths along which the players’ actions are feasible given any
history.

Let �(X) denote the set of countably additive probability measures on the measurable
subsets of X . For any two measurable spaces X and Y , a mapping ζ : Y → �(X) is a
transition probability iff for every measurable C ⊆X , ζ(C|y) is a measurable real-valued
function of y on Y .
��8� p = (p1� 	 	 	 �pT ) is nature’s probability function where, for each date t, pt :

A<t → �(A0t) is a transition probability.
��9� Each player i has a bounded measurable utility function ui : A → R, and u =

(ui)i∈I .
At each date t ∈ {1� 	 	 	 � T } starting with date t = 1, and after any date-t history a<t ∈

A<t , each player i is privately informed of his date-t signal, sit = σit(a<t), after which
each player i simultaneously chooses an action from his set of feasible date-t actions
�it(sit)⊆Ait , and nature chooses a date-t state a0t ∈A0t according to pt(·|a<t). The game
then proceeds to the next date. After T dates of play, this leads to an outcome a ∈A and
the game ends with player payoffs ui(a), i ∈ I.

In the next two subsections, we formally introduce strategies, outcome distributions,
payoffs, and conditional payoffs.

3.1. Strategies and Induced Outcome Distributions

A strategy for dated player it ∈ L is any transition probability bit : Sit → �(Ait) that
satisfies bit(�it(sit)|sit)= 1 for every sit ∈ Sit .

Let Bit denote it’s set of strategies and let Bi =×t∈TBit denote i’s (behavior) strategies.
Perfect recall ensures that there is no loss in restricting attention to Bi for each player i.
Let B=×it∈LBit denote the set of all strategy profiles.

For any date t, let B·t =×i∈IBit denote the set of date-t strategy vectors with typical ele-
ment b·t = (bit)i∈I . LetA·t =×i∈I∗Ait . Each b·t ∈ B·t determines a transition probability Pt
from A<t to M(A·t) such that, for any measurable product set C =×i∈I∗Cit ⊆×i∈I∗Ait

8It is without loss of generality to assume, for every r < t, that σit does not depend on the date-r signal of
any player since earlier signals depend on even earlier states and actions.
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and for any a<t ∈A<t ,

Pt(C|a<t� b·t)= pt(C0t |a<t)
∏
i∈I
bit

(
Cit |σit(a<t)

)
	 (1)

For any b ∈ B, we inductively define measures P<t(·|b) in �(A<t) so that P<1({∅}|b)= 1
and, for all t ∈ {1� 	 	 	 �T } and for all measurable C ⊆A<t+1,

P<t+1(C|b)=
∫
Pt

({
a·t : (a<t� a·t) ∈C}|a<t� b·t

)
P<t(da<t|b)	 (2)

(Notice that P<t(·|b) depends only on b<t .)
Let P(·|b)= P<T+1(·|b) be the probability measure on outcome events in M(A) that is

induced by b. The dependence of P(·|b) on nature’s probability function p will sometimes
be made explicit by writing P(·|b;p).

For any b ∈ B, we inductively define transition probabilities fromA<t to �(A≥t) so that
P≥T (·|a<T �b)= PT(·|a<T �b·T ), and for any date t < T and any measurable C ⊆A≥t ,

P≥t(C|a<t� b)=
∫
P≥t+1

({
a≥t+1 : (a·t � a≥t+1) ∈ C}|a<t+1� b

)
Pt(da·t|a<t� b·t)	

(Notice that P≥t(·|a<t� b) does not depend on b<t .)
At any date t, the conditional expected utility for player i with strategies b given history

a<t is

Ui(b|a<t)=
∫
ui(a<t� a≥t)P≥t(da≥t |a<t� b)

(notice that Ui(b|a<t) does not depend on b<t), and player i’s ex ante expected utility is

Ui(b)=
∫
ui(a)P(da|b)=

∫
Ui(b|a<T+1)P<T+1(da<T+1|b)	

3.2. Conditional Probabilities

For any b ∈ B, for any it ∈L, and for any Z ∈M(Sit), define

Pit(Z|b)= P<t
(
σ−1
it (Z)|b

) = P<t
({
a<t : σit(a<t) ∈Z}|b)	

Then Pit(Z|b) is the probability that i’s date-t signal is in Z under the strategy profile b.
The dependence of Pit(·|b) on nature’s probability function p will sometimes be made
explicit by writing Pit(·|b;p).

For any it ∈ L and for any measurable Z ⊆ Sit , if Pit(Z|b) > 0, we may define: condi-
tional probabilities,

P<t(C|Z�b)= P<t
(
C ∩ σ−1

it (Z)|b
)
/Pit(Z|b)� ∀C ∈M(A<t)�

and

P(C|Z�b)= P({a ∈C : σit(a<t) ∈Z|b)/Pit(Z|b)� ∀C ∈M(A)�

and conditional expected payoffs,

Ui(b|Z)=
∫
A

ui(a)P(da|Z�b)	
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(Notice that P<t(·|Z�b) is the marginal of P(·|Z�b) onA<t .) The dependence of P(·|Z�b)
and Ui(·|Z) on nature’s probability function p will sometimes be made explicit by writing
P(·|Z�b;p) and Ui(·|Z;p).

The concepts that we will define in the rest of the paper are all based on the idea that
players must choose strategies that are approximately optimal among all of their feasible
strategies in the game �. One might think that strategies that are fully optimal can be
obtained by taking limits of approximately optimal strategies, but this is not the case. The
difficulty with exact optimality arises through a phenomenon that we call “strategic en-
tanglement,” where a sequence of strategy profiles yields randomized play that includes
histories with fine details used by later players to correlate their independent actions.
When these fine details are lost in the limit, there may be no strategy profile that pro-
duces the limit outcome distribution.9 In fact, Harris, Reny, and Robson (1995) gave an
example in which this problem is so severe that it precludes the existence of a subgame
perfect equilibrium in a two-stage game with compact action sets and continuous payoff
functions.10 Consequently, for much of what follows, we consider strategies in which all
players are ε-optimizing. But see Section 6.2 where we consider the limits, as ε→ 0, of
the outcome distributions produced by such ε-optimal strategies.

We next introduce a basic solution concept that, like Nash equilibrium, only disciplines
behavior in positive-probability events.

4. CONDITIONAL ε-EQUILIBRIUM

For any it ∈L, and for any bi ∈ Bi, say that ci ∈ Bi is a date-t continuation of bi if cir = bir
for all r < t.

DEFINITION 4.1: For any ε ≥ 0, a strategy profile b ∈ B is a conditional ε-equilibrium
iff for every it ∈ L, for every measurable Z ⊆ Sit satisfying Pit(Z|b) > 0, and for every
date-t continuation ci of bi,

Ui(ci� b−i|Z)≤Ui(b|Z)+ ε	 (3)

Every conditional ε-equilibrium is an ε-Nash equilibrium, which only requires inequal-
ity (3) to be satisfied when Z = Sit . But the converse can fail because, in an ε-Nash equi-
librium, a player may be able to improve his conditional payoff in some observable event
by more than ε if the conditioning event occurs with sufficiently small probability in equi-
librium.

Conditional ε-equilibrium ensures that no player could expect significant gains by uni-
laterally deviating from the equilibrium after any event that has positive probability in
the equilibrium, and so predicted behavior will satisfy approximate rationality in all such
positive-probability events. One might hope that we could ignore any possibility of irra-
tional behavior in events that have zero probability in equilibrium, since they are unlikely
to occur! But for any event that would be observable by some player j, if this event could

9Milgrom and Weber (1985) provided the first example of this kind. See also Van Damme (1987) and Börg-
ers (1991).

10The nonexistence of a strategy supporting the limit outcome distribution can sometimes be remedied by
adding an appropriate correlation device between periods as in Harris, Reny, and Robson (1995). Manelli
(1996) considered the problem of strategic entanglement in signaling games and restored existence there by
adding cheap talk to the sender’s message. Both of these remedies can add equilibria that are not ε-equilibria
of the original game.
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get positive probability when some player i deviated from the equilibrium, then j’s pre-
dicted behavior in this event may be used in the calculation of i’s expected payoffs from
this deviation. So if j’s predicted behavior in this event would not be even approximately
rational, then the calculation of i’s incentive to deviate in inequality (3) could be flawed.
Thus, we need to strengthen conditional ε-equilibrium so as to verify the rationality of
players’ behavior in any observable event that could get positive probability if players
deviated from equilibrium, even if the event has zero probability in the equilibrium itself.

For a finite extensive-form game, the problem can be avoided by considering condi-
tional ε-equilibria in which each player at each information set assigns at least some
small positive probability to every feasible action. Such a completely mixed strategy would
give positive probability to every event that could get positive probability after any strate-
gic deviations by the players in the finite game. So for finite games, Kreps and Wilson
could define sequential equilibria as limits (as ε→ 0) of completely mixed conditional
ε-equilibria.

But in infinite games where players have uncountably infinite sets of actions, any be-
havioral strategy profile must leave many actions with zero probability. Then a deviation
to such zero-probability actions could lead to events where our definition of conditional
ε-equilibrium does not test the rationality of players’ behavior. Thus, we will need to con-
sider perturbations of the conditional ε-equilibrium, to test rationality in these events,
unless we can find some reasonable way to restrict the set of strategic deviations that
must be considered. This latter possibility is explored in the next section, where we re-
strict consideration to a dense set of deviations, using a topology on action spaces.

5. FULL CONDITIONAL ε-EQUILIBRIUM

Although it may be impossible to give positive probability to all actions for a player in
an infinite game, the player may have behavioral strategies that assign positive probability
to every neighborhood of every action, under some suitable topology on Ait . So for a
multi-stage game � as in Section 3, let us suppose now that, for each it ∈ L, the action
set Ait is a separable metric space, and the measurable sets M(Ait) are the Borel sets.
For simplicity, in this section we assume that each player’s set of feasible actions is history
independent, so that �it(sit)=Ait , for all sit ∈ Sit and for all it ∈L.

We say that a strategy profile b has full support iff, for all it ∈ L, and for all sit ∈ Sit ,
we have bit(C|sit) > 0 for every C that is a nonempty open subset of �it(sit) = Ait .11

Full-support strategies exist, by the assumption that the topology on each Ait is sepa-
rable, as each dated player has a countable dense set of actions that could all be given
positive probability. Furthermore, any strategy profile b can be closely approximated by
full-support strategy profiles, because (1 − λ)b+ λb̂ has full support whenever 0< λ< 1
and b̂ has full support.

DEFINITION 5.1: Say that b is a full conditional ε-equilibrium iff b is a conditional ε-
equilibrium that has full support.

11Such strategies have been defined for various games with history-independent action sets. For signaling
games, Mansuwé, Jansen, and Peters (1997) called such strategies pointwise completely mixed. For Bayesian
games, Bajoori, Flesch, and Vermeulen (2016) called them completely mixed behavior strategies. For a class
of extensive games, Jung (2018) called them fully mixed. In normal form games, Simon and Stinchcombe
(1995) and Bajoori, Flesch, and Vermeulen (2013) have used mixed strategies with full support to refine Nash
equilibrium.
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With full-support strategies, any feasible action for any player has arbitrarily small
neighborhoods that will get positive probability under the player’s strategy after any possi-
ble signal. Using this property, we can now construct a dense set of deviations under which
the problem of zero-probability events does not arise for a full conditional ε-equilibrium.

Let us define a tremble profile to be any ϕ = (ϕit)it∈L such that each ϕit : Ait × Sit →
�(Ait) is a transition probability that satisfies ϕit(�it(sit)|ait� sit)= 1, for all ait ∈Ait and
for all sit ∈ Sit . For any tremble profile ϕ and any strategy profile b ∈ B, let b ∗ ϕ denote
the strategy profile (bit ∗ϕit)it∈L ∈ B where, for each it ∈L, bit ∗ϕit ∈ Bit is defined by

[bit ∗ϕit](C|sit)=
∫
ϕit(C|ait� sit)bit(dait |sit)� ∀C ∈M(Ait)�∀sit ∈ Sit�∀it ∈L	

The tremble profile ϕ is δ-local iff ϕit(Bδ(ait)|ait� sit)= 1, for all ait ∈Ait , for all sit ∈ Sit ,
and for all it ∈L, where Bδ(ait) is the ball of radius δ around ait .

So a δ-local tremble profile ϕ describes a model in which, when any player i intends to
choose some action ait after observing some signal sit , the player would tremble slightly
and would really choose some nearby action, within distance δ from ait , according to the
probability distribution ϕit(·|ait� sit). If the players’ intended actions were generated by
the strategy profile b, then their realized actions would depend on their signals according
to the strategy profile b ∗ϕ. By taking δ to 0, we can guarantee that each player’s realized
actions with a δ-local tremble will always be arbitrarily close to his intended actions.

The following theorem tells us that, for any full conditional ε-equilibrium b, we can
construct arbitrarily small local trembles that do not change b and are such that, for any
intended deviations by any players, the corresponding deviations with trembles do not
lead to any positive-probability events in which the rationality of the full conditional ε-
equilibrium has not already been tested. A proof is in Myerson and Reny (2020).12

THEOREM 5.2: Suppose that b is a strategy profile with full support. Then for any δ > 0,
there is a δ-local tremble profile ϕ such that b ∗ ϕ = b and, for every b̂ ∈ B and every C ∈
M(A), if P(C|b̂ ∗ϕ) > 0, then P(C|b) > 0.

Full conditional ε-equilibria exist in a large class of (regular projective) games (Theo-
rem 9.3 and Remark 9.4), but can fail to be subgame perfect, as the next example shows.

EXAMPLE 5.3: Failure of subgame perfection for a full conditional ε-equilibrium.
• On date 1, nature chooses θ uniformly from [0�1].
• On date 2, player 1 observes the signal s1 = θ and chooses x ∈ [0�1].
• On date 3, player 2 observes the signal s2 = (θ�x) and chooses y ∈ [0�1].
• Payoffs are u1 = u2 = 1 if θ= x= y , and u1 = u2 = 0 otherwise.13

• Full-support strategies are defined with the usual topology on [0�1] as a subset of the
real number line.

12The idea is to partition each action space Ait into measurable sets C , each of which is contained in a ball
of radius δ/2 and has a nonempty interior, so that it gets positive probability under bit with full support. Then
for any intended action ait in the partition element C , we can let ϕit(D|ait � sit )= bit(D ∩ C|sit)/bit(C|sit) for
all D ∈ M(Ait). So ϕit(·|ait � sit ) imitates bit(·|sit ) within a small set of actions that are δ-close to ait .

13These payoff functions are discontinuous. A similar example with continuous payoffs can be obtained by
adding more stages. Discontinuities for early players then arise because the behavior of later players is not
continuous in the actions of the early players.
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In this game, each player wants both players to match nature’s choice of θ. Since both
players observe the past history when it is their turn to move, this game has perfect infor-
mation. In any subgame perfect equilibrium, player 2 must be expected to choose y = θ
whenever x = θ, and so player 1 should choose x = θ, so that both players get a payoff
of 1. With any ε > 0, there exist full conditional ε-equilibria in which this outcome event
{x= y = θ} has arbitrarily high probability (with each player having a small probability of
choosing an action from a full-support distribution on [0�1]).

However, we can also find full conditional ε-equilibria in which the players’ expected
payoffs are 0. For example, consider strategies where each player’s action would be cho-
sen from a uniform distribution on [0�1] independently of the observed history. Player 2
would strictly prefer to choose y = θ in the event {x= θ}, but conditional ε-equilibrium
does not require rationality of 2’s response in this event because it has probability 0 when
player 1 chooses x independently of θ.

If, in the above zero-payoff imperfect equilibrium, player 1 understood that player 2
would rationally respond to x= θ by choosing y = θ, then player 1 would certainly prefer
to choose x= θ. But this argument depends on the implicit assumption that player 1 can
choose x exactly equal to θ, without any small local tremble. If player 1’s intended choice
of x = θ would lead to the realized x actually being drawn from a uniform distribution
over the interval of [θ − δ�θ + δ], for some small δ > 0, then player 1 could not force
the exact match {x = θ} to have positive probability even if he tried, and so the failure
of subgame perfection in this event would not actually matter. It is in this sense that
Theorem 5.2 tells us that any failures of sequential rationality in a full conditional ε-
equilibrium could become irrelevant if players’ choices are subject to arbitrarily small
local trembles.

This interpretation of the zero-payoff imperfect full conditional ε-equilibrium relies on
the possibility that players might be unable to even approximately optimize since local
trembles must preclude at least one of the players from matching nature’s choice of θ
even when the other player matches θ. Next, we develop an approach to the problem of
perfection in which all players are assumed always to approximately optimize over their
entire set of feasible strategies.

6. PERFECT CONDITIONAL ε-EQUILIBRIUM

From Example 5.3, we see that subgame perfection cannot be guaranteed without test-
ing rationality of players’ responses to all possible deviations (not just some dense set of
deviations). Thus, we now develop our concept of perfect conditional ε-equilibrium by
considering nets of perturbations of the players’ strategies and nets of perturbed proba-
bility functions for nature that eventually (in the net) give all player actions and almost all
states of nature positive probability, and along which the players ε-optimize conditional
on all positive-probability events.

Our next example motivates why we must perturb both nature’s probability function
and the players’ strategies when we require that rationality be tested with positive prob-
ability at each signal. The example shows that such a requirement can be incompatible
with the existence of equilibrium if we perturb only the players’ strategies.

EXAMPLE 6.1: Nonexistence of equilibrium when only strategies are perturbed in ra-
tionality tests.

• On date 1, nature chooses θ uniformly from [0�1] and player 1 chooses x ∈ {−1} ∪
[0�1].
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• On date 2, player 2 observes the signal s, where s = x if x ∈ [0�1] and s = θ if x= −1,
and then chooses y ∈ {−1�1}.

• Payoffs are u1 = −x, u2 = (x+ 1/2)y .
In this game, player 2 observes a number s ∈ [0�1] but she does not know whether the

number she observes was chosen by player 1 (which will be the case when x ∈ [0�1]) or
was chosen by nature (which will be the case when x= −1).

The strategy x = −1 is strictly dominant for player 1 and player 2 wants to choose
y = −1 if and only if x= −1. So this game has an essentially unique Nash equilibrium in
which player 1 chooses x = −1 and player 2 chooses y = −1 for Lebesgue almost every
signal s ∈ [0�1] that she observes.

However, if we required that, for any signal s ∈ [0�1], player 2’s equilibrium behavior
should pass a conditional rationality test in slightly perturbed strategies that give this
signal positive probability (so that conditional payoffs can be computed), then there would
be no equilibrium at all. Indeed, for any α ∈ [0�1], the event {s = α} can have positive
probability, but only if positive probability is given to x = α, because the event {θ = α}
has probability 0. So in any scenario where {s = α} has positive probability, conditional
rationality would require player 2 to choose y = 1 when she observes s = α since the
resulting conditional probability of the event {x ∈ [0�1]} is 1. Applying this same argument
to every signal α ∈ [0�1] would imply that player 2 must choose y = 1 after every signal.
But, for ε > 0 small enough, this strategy is not even an ε-best reply for player 2 against
player 1’s strictly dominant choice of x= −1.

To see the problem another way, consider any possible value of 2’s signal ŝ ∈ [0�1]. We
could try to estimate what player 2 should believe is the conditional probability of player
1 having chosen x = −1 given that 2 has observed s = ŝ by taking the limit of what this
Bayesian belief probability would be for strategies in a net of strategies which converge
to 1’s unique equilibrium strategy and which (eventually) give positive probability to the
event of 2 observing {s = ŝ} (so that we can apply Bayes’s rule). But these Bayesian belief
probabilities must all be 0, because the event of 2 observing s = ŝ can have positive prob-
ability only when player 1 gives some small positive probability to the event {x = ŝ ≥ 0},
since the event {θ = ŝ} must have probability 0 as long as we do not perturb nature’s
behavior. Now this argument can be applied for every ŝ in [0�1]. Thus, when we try to
compute conditional belief probabilities from a net of perturbations of 1’s equilibrium
strategy, we find that player 2 must assign belief probability 0 to the event {x= −1} con-
ditional on every individual signal in [0�1]. But before observing this signal, knowing only
that s ∈ [0�1], player 2 must understand that the event {x= −1} has probability 1 in equi-
librium.

This problem arises here because, when only the players’ strategies are perturbed, the
positive-probability rationality test biases player 2’s conditional beliefs toward explaining
prior probability-zero events as always being the result of a deviation by player 1 instead
of perhaps being the result of the occurrence of a probability-zero state of nature.

To avoid such biased beliefs, and to steer clear of the problem encountered here, we
perturb both the players’ strategies and nature’s probability function in our tests for ra-
tional behavior.

We next introduce our main solution concept which, unlike both conditional ε-
equilibrium and full conditional ε-equilibrium, tests for rational behavior even at events
that have probability zero in equilibrium.
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6.1. Perfect Conditional ε-Equilibrium

Let T denote the set of τ = (τ1� 	 	 	 � τT ) such that each τt :A<t → �(A0t) is a transition
probability. Thus, T is the set of alternative probability functions for nature in the game �.
Notice that nature’s probability function p is in T . For any τ ∈ T , let �(τ) denote the
perturbed game in which nature’s probability function is τ instead of p.

For any τ�τ′ ∈ T , define ‖τ′ − τ‖ = sup |τ′
t(C|a<t)− τt(C|a<t)|, where the supremum

is over all t ≤ T , a<t ∈ A<t , and C ∈ M(A0t). For any b′� b ∈ B, define ‖b′ − b‖ =
sup |b′

it(C|sit) − bit(C|sit)|, where the supremum is over all it ∈ L, sit ∈ Sit , and C ∈
M(Ait).

Sequences of completely mixed strategies play a critical role in defining sequential equi-
librium in finite games but are unavailable in infinite games when any player has a contin-
uum of actions. So we extend to infinite games the concept of a sequence of completely
mixed strategies by using instead nets of strategies whose tails give every action positive
probability.14

For any b ∈ B, say that the net {bα} of strategy profiles is admissible for b iff
limα ‖bα − b‖ = 0,15 and, for every it ∈ L, for every sit ∈ Sit , and for every ait ∈ �it(sit),
there is an index ᾱ in the directed index set such that bαit({ait}|sit) > 0 for every α≥ ᾱ.

Notice that in any finite game, if a sequence (and therefore a net) of strategy profiles
is admissible for some strategy profile, then the sequence of strategies converges to that
strategy profile and, far enough out in the sequence, all strategies always give all available
actions positive probability. So admissible sequences of strategies in finite games corre-
spond exactly to the kinds of sequences that are required to define sequential equilibria
there.

For any b ∈ B, it is easy to construct a net that is admissible for b as follows. Let AI =×it∈LAit denote the set of action profiles. The index set for our net will be the set, Ω, of
all ordered pairs (n�F) such that n is any positive integer and F is any nonempty finite
subset ofAI . This index set is a directed set when we partially order its elements by saying
that (n′�F ′) is at least as large as (n�F) iff n′ ≥ n and F ′ ⊇ F . For any (n�F) ∈Ω, let Fit
be the projection of F onto Ait .

For any (n�F) ∈Ω, for any it ∈L, and for any sit ∈ Sit , define b̃n�Fit (·|sit) to be uniform on
Fit ∩�it(sit) if this intersection is nonempty, and define b̃n�Fit (·|sit)= bit(·|sit) otherwise.16

Define bn�Fit (·|sit)= (1− 1
n
)bit(·|sit)+ 1

n
b̃n�Fit (·|sit). Then, the action-probabilities assigned by

bn�Fit are always within 1
n

of those assigned by bit , and bn�Fit (·|sit) gives positive probability to
every action in Fit ∩�it(sit). In particular, for any ait ∈�it(sit), b

n�F
it ({ait}|sit) > 0 whenever

Fit contains ait . These properties of each bn�Fit imply that the net {bn�F}(n�F)∈Ω is admissible
for b.

We next define admissible nets of perturbations of nature’s probability function p. For
these nets, we require only that almost every state of nature (as opposed to every state)
receive positive tail-probability, as formalized below. This allows one to capture the idea
that after some out-of-equilibrium history, it is common knowledge among the players

14All nets will be indexed by superscripts, for example, {bα}. It will always be implicit that the net’s set of
indices comes equipped with a partial order that makes the index set a directed set, that is, for every pair of
indices, there is another index that is weakly greater than both.

15This limit means that, for every ε > 0, there exists an index ᾱ in the net’s directed index set such that
‖bα − b‖< ε for every α≥ ᾱ.

16The multi-stage game measurability condtion on�it specified in �.7 ensures that b̃n�Fit has the measurability
property required of a transition probability.
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that some states that could explain that history are nevertheless impossible—for example,
states that are outside the support of nature’s distribution. The simplest way to ensure
that players always consider a state (with prior probability zero) to be impossible is to
give it probability zero in every element of a net of perturbations.17

For any date t, for any C ⊆ A0t × A<t , and for any a<t ∈ A<t , let Ca<t = {a0t ∈ A0t :
(a0t � a<t) ∈C} be the slice of C through a<t .

Given nature’s probability function, p, say that a net {pα} of nature-perturbations is
admissible for p iff limα ‖pα −p‖ = 0, and, for any date t, there is a measurable subset C
of A0t ×A<t such that for any a<t ∈A<t , pt(Ca<t |a<t)= 1 and, for any a0t ∈ Ca<t , there is
an index ᾱ in the directed index set such that pαt ({a0t}|a<t) > 0 for every α≥ ᾱ.18

For any b ∈ B, say that a net {(bα�pα)} of strategy profiles and nature-perturbations is
admissible for (b�p) iff {bα} is admissible for b and {pα} is admissible for p.19

We can now state one of our central definitions.

DEFINITION 6.2: For any ε > 0, a strategy profile b ∈ B is a perfect conditional ε-
equilibrium iff there is a net {(bα�pα)} of player strategies and nature-perturbations that
is admissible for (b�p) such that, for every α, bα is a conditional ε-equilibrium of the
game �(pα). The net {(bα�pα)} is then called an ε-test net (for (b�p)).

In a perfect conditional ε-equilibrium, behavior is ε-rational in all events given positive
probability in the tail of an admissible net, which should be interpreted to mean in all
events outside a “strategically irrelevant” set. The next definition makes this precise.

Say that a measurable subset N of A is negligible iff P(N|b) = 0 for every b ∈ B. So a
negligible set is strategically irrelevant because, in positive-probability events, it cannot
be given positive probability by any strategy profile.

We can now state the following result, which says that every outcome in the game out-
side a negligible set receives positive probability in the tail of any admissible net of strate-
gies and nature-perturbations. A proof is in Myerson and Reny (2020).20

THEOREM 6.3: If {(bα�pα)} is admissible for (b�p), then there is a negligible set of out-
comes N ⊆A such that, for every a ∈A \N , there is an index ᾱ such that P({a}|bα;pα) > 0
for every α≥ ᾱ.

In standard finite multi-stage games, we can relate perfect conditional ε-equilibria to
strategy profiles that are part of a sequential equilibrium, henceforth sequential equilib-
rium strategy profiles. A proof is in Myerson and Reny (2020).

THEOREM 6.4: In any standard finite multi-stage game, the following conditions are equiv-
alent:

17For example, the “canonical” nets of nature-perturbations defined in Section 8.1 eventually (in their tail)
give probability zero to states outside the support of p. See Footnote 42.

18Like admissible nets of strategies, admissible nets of nature-perturbations are easily constructed.
19Notice that if {bγ} is admissible for b and {pδ} is admissible for p, then defining (b(γ�δ)�p(γ�δ))= (bγ�pδ)

for each γ and δ, and partially ordering (γ�δ) pairs coordinatewise, that is, (γ′� δ′) ≥ (γ�δ) iff γ′ ≥ γ and
δ′ ≥ δ, we obtain that the net {(b(γ�δ)�p(γ�δ))} is admissible for (b�p).

20The idea of the proof is as follows. By admissibility, for any date t, there is Ct ∈ M(A0t ×A<t) such that
for every a<t ∈A<t , pt(Cta<t |a<t)= 1 and, for every a0t ∈ Cta<t , there is an index ᾱ such that pαt ({a0t}|a<t) > 0
for every α≥ ᾱ. Let N be the union of N1� 	 	 	 �NT , where Nt = {a ∈A : (a0t � a<t) /∈ Ct}. Then N is negligible
because each Nt is negligible (by the definitions in Section 3.1).
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(a) b ∈ B is a sequential equilibrium strategy profile,
(b) b ∈ B is a perfect conditional ε-equilibrium for every ε > 0, and
(c) b ∈ B is the limit as ε→ 0 of a sequence of perfect conditional ε-equilibria.

Given this result, it would be natural to extend the definition of sequential equilibrium
to infinite games by defining b ∈ B to be a “perfect conditional equilibrium” if and only if
it is a perfect conditional ε-equilibrium for every ε > 0, or, if and only if it is the limit as
ε→ 0 of a sequence of perfect conditional ε-equilibria. But such strategy profiles need
not exist, even in very well-behaved infinite games.21 So, in the next section, we instead
consider sequences (nets) of perfect conditional ε-equilibria and the limits of their out-
come distributions as ε→ 0.

6.2. Perfect Conditional Equilibrium Distributions

We now define a “perfect conditional equilibrium distribution” as a limit of perfect
conditional ε-equilibrium distributions on outcomes as ε→ 0.

DEFINITION 6.5: A mapping μ : M(A) → [0�1] is a perfect conditional equilibrium
distribution iff there is a net {bα} of perfect conditional εα-equilibria such that limα εα = 0,
and

μ(C)= lim
α
P

(
C|bα) for every C ∈M(A)	22 (4)

It follows immediately from (4) that if μ is a perfect conditional equilibrium distribu-
tion, then μ is a finitely additive probability measure on M(A).23 The next result is an
immediate consequence of the equivalence of (a) and (c) in Theorem 6.4.

THEOREM 6.6: In any standard finite multi-stage game, the set of perfect conditional equi-
librium distributions is precisely the set of distributions over outcomes induced by the set of
sequential equilibria.

The existence of perfect conditional ε-equilibria is taken up in Section 9.1. We record
here the simpler result, based on Tychonoff’s theorem, that a perfect conditional equilib-
rium distribution exists so long as perfect conditional ε-equilibria always exist. A proof is
in Myerson and Reny (2020).

THEOREM 6.7: If, for each ε > 0, there is at least one perfect conditional ε-equilibrium,
then a perfect conditional equilibrium distribution exists.

If (4) holds, then so long as ui is bounded and measurable (as we have assumed),

lim
α

∫
A

ui(a)P
(
da|bα) =

∫
A

ui(a)μ(da)� (5)

21See, for example, Example 2 in Milgrom and Weber (1985), Van Damme (1987), Börgers (1991), and
Section 2 in Harris, Reny, and Robson (1995).

22The directed index set can always be chosen so that each element is of the form α= (ε�F), where ε is any
positive real number, F is any finite collection of measurable subsets of A, and smaller values of ε and more
inclusive finite collections F correspond to larger indices.

23For any disjoint sets C�D ∈ M(A), (4) and limα P(C ∪ D|bα) = limα[P(C|bα) + P(D|bα)] imply that
μ(C ∪DH)= μ(C)+μ(D).
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and so we define i’s equilibrium expected payoff (at μ) by∫
A

ui(a)μ(da)	

Sometimes μ is only finitely additive, not countably additive (e.g., the leading example
in Harris, Reny, and Robson (1995)). Even so, in many practical settings, there is a natural
countably additive probability measure over outcomes that is induced by μ.

DEFINITION 6.8: Suppose that A is a normal topological space and M(A) is its Borel
sigma-algebra.24 We say that μ̇ is the regular countably additive distribution induced
by μ iff μ̇ is a regular countably additive probability measure on M(A) such that∫
f (a)μ̇(da)= ∫

f (a)μ(da) for all bounded continuous f :A→R.25

In most applications, for example, whenever A is a compact Hausdorff space with its
Borel sigma-algebra of measurable sets, μ induces a regular countably additive distribu-
tion μ̇.26 In this case, player i’s equilibrium expected payoff (at μ), namely

∫
A
ui(a)μ(da),

is equal to
∫
A
ui(a)μ̇(da) whenever ui :A→ R is a continuous function.27

6.3. Other Properties

The next result states that every perfect conditional ε-equilibrium is a conditional ε-
equilibrium, and therefore also an ε-Nash equilibrium. A proof is in Myerson and Reny
(2020).28 The proof uses the fact that signal-event-probabilities in a perfect conditional
ε-equilibrium are well-approximated by the ε-test net.

THEOREM 6.9: Every perfect conditional ε-equilibrium is a conditional ε-equilibrium and
therefore, a fortiori, an ε-Nash equilibrium.

Given perfect recall, we may say that a date-t history a<t ∈ A<t is a subgame of � iff
σ−1
it (σit(a<t))= {a<t}, for all i ∈ I.
For any ε > 0, say that a strategy profile b ∈ B is a subgame perfect ε-equilibrium of � iff

there is a negligible subset N of A such that for every a ∈A \N and for every date t, if
a<t is a subgame, then

sup
ci∈Bi

Ui(ci� b−i|a<t)≤Ui(b|a<t)+ ε for every i ∈ I	 (6)

24Recall that a topological space is normal if any pair of disjoint closed sets can be separated by disjoint
open sets.

25There can be at most one such Borel measure μ̇ since, by Theorem IV.6.2 in Dunford and Schwartz (1988),
any two such measures must agree on all closed sets. Then, by Corollary 1.6.2 in Cohn (1980), the two measures
must agree on all Borel sets since the set of closed sets is closed under finite intersections and generates the
Borel sigma-algebra.

26This follows from the Riesz representation theorem, an observation for which we are grateful to a referee.
27When the outcome distribution μ̇ cannot be supported by any strategy profile, it can sometimes be sup-

ported by a correlated strategy (as happens in the examples listed in Footnote 21). Whether this is true in
general is not known.

28It is also straightforward to show that the set of perfect conditional ε-equilibria is closed under the ‖ · ‖-
norm on B, and the set of perfect conditional equilibrium distributions is compact in the product topology on
[0�1]M(A). We omit the straightforward proofs.
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Our next result states that perfect conditional ε-equilibria induce ε-Nash equilibria in
all subgames outside a strategically irrelevant set. A proof is in Myerson and Reny (2020).
The result is a consequence of the fact that, in an ε-test net for a perfect conditional ε-
equilibrium, every outcome, and so also every subgame, outside a negligible set eventually
has positive probability. So, conditional on all such subgames, play must be ε-optimal.

THEOREM 6.10: Every perfect conditional ε-equilibrium is a subgame perfect ε-
equilibrium.

Our perfect conditional ε-equilibrium concept does not specify beliefs for the players.
Instead, the players’ beliefs are implicitly specified through a net of perturbations that
tests for ε-optimal behavior. Next, we provide one way to define systems of beliefs so that
KW’s consistency condition for standard finite games extends to infinite games.

6.4. Conditional Belief Systems and Sequential ε-Rationality

For any it ∈L and for anyZ ∈M(Sit), say thatZ is observable iff there is b ∈ B such that
Pit(Z|b) > 0. A player’s behavior conditional on any signal event that is not observable
is irrelevant since, in positive-probability events, no behavior can make an unobservable
event have positive probability.

DEFINITION 6.11: A conditional belief systemβ specifies, for every it ∈L, and for every
observable Z ∈M(Sit), a finitely additive probability measure βit(·|Z) on the measurable
subsets of A<t such that βit(σ−1

it (Z)|Z)= 1.29

So a conditional belief system specifies, for any observable set of signals and for any
dated player, a finitely additive probability measure over histories that gives probability 1
to the set of all histories that generate signals in the given set.

DEFINITION 6.12: For any b ∈ B and for any conditional belief system β, say that (b�β)
is Bayes consistent iff for all it ∈ L, for all C ∈ M(A<t), and for all measurable Z ⊆ Sit
such that Pit(Z|b) > 0, βit(C|Z)= P<t(C|Z�b).

So Bayes consistency disciplines beliefs only on signal events that have positive proba-
bility under the given strategy profile. If (b�β) is Bayes consistent, then we also say that
β is Bayes consistent (with b).

One way to extend to infinite games KW’s definition of a belief system that is consistent
with a given strategy profile is the following.

DEFINITION 6.13: For any b ∈ B and for any conditional belief system β, say that (b�β)
is finitely consistent iff there is a net {(bα�pα)} in B× T that is admissible for (b�p) such
that for every it ∈L and for every observable Z ∈M(Sit),

βit(C|Z)= lim
α
P<t

(
C|Z�bα;pα)� ∀C ∈M(A<t)	

30 (7)

If (b�β) is finitely consistent, then we can also say that β is finitely consistent with b.

29The set σ−1
it (Z) is nonempty because, in a multi-stage game, each signal function σit :A<t → Sit is onto,

that is, its range is Sit .
30An implication of Theorem 6.3 is that, because Z is observable and {(bα�pα)} is admissible for (b�p),

there is ᾱ such that Pit(Z|bα;pα) > 0 for every α≥ ᾱ. See Myerson and Reny (2020), Corollary to Theorem 6.3.
So the conditional probability on the right-hand side of (7) is well-defined.
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Importantly, for any b ∈ B, there is a conditional belief system β that is finitely consis-
tent with b.31 Moreover, if (b�β) is finitely consistent, then it is Bayes consistent and β
exhibits many additional consistency properties.32

We next extend KW’s definition of sequential rationality to infinite games.

DEFINITION 6.14: For any ε ≥ 0, for any b ∈ B, and for any conditional belief system
β, say that (b�β) is sequentially ε-rational iff for every it ∈ L and for every observable
Z ∈M(Sit),∫

Ui(ci� b−i|a<t)βit(da<t|Z)≤
∫
Ui(b|a<t)βit(da<t|Z)+ ε for every ci ∈ Bi	

It is easy to verify that if (b�β) is Bayes consistent and sequentially ε-rational, then
b is a conditional ε-equilibrium. We also have the following result, whose proof is in
Myerson and Reny (2020). The proof uses an ε-test net for b to construct beliefs β as
in (7). Sequential ε-rationality then follows by continuity given that each element of the
test-net is a conditional ε-equilibrium.

THEOREM 6.15: If b ∈ B is a perfect conditional ε-equilibrium, then there is a belief system
β such that (b�β) is finitely consistent and sequentially ε-rational.

But the converse fails. That is, (b�β) can be finitely consistent and sequentially ε-
rational even though b is not a perfect conditional ε-equilibrium (see Example S1 in
Myerson and Reny (2020)).

A well-known property of consistent beliefs in standard finite games is that players with
the same information must have the same beliefs about the history of play. This property
extends to infinite games and finitely consistent beliefs. Indeed, and even more generally,
suppose that at any date t, two players can each distinguish between the measurable set
of histories C<t and its complement, that is, for each player, no date-t history outside C<t
generates the same signal as any history in C<t . Suppose also that C<t can have positive
probability under some strategy profile. Then, for any finitely consistent beliefs, the two
players must have the same beliefs over C<t conditional on each of their signal sets that is
generated by C<t .33 Because this holds in particular when, for each player, C<t generates
a single signal, we may conclude in addition that with finitely consistent beliefs, whenever
any two players have the same information about the history of play, they must have the
same beliefs.

Since, for any perfect conditional ε-equilibrium b, there are conditional beliefs β such
that (b�β) is finitely consistent and sequentially ε-rational, the discussion in the previous

31For example, let {(bα�pα)} be any net that is admissible for (b�p). Then (see Footnote 30),
{(P<t(C|Z�bα;pα))it∈L�Z∈M(Sit )�C∈M(A<t )}α is a net taking values in a space that is an infinite product of the
compact set [0�1]. By Tychonoff’s theorem, this space is compact and so a convergent subnet can be extracted
to define beliefs as in (7).

32For example, for all it ∈L, for all W�Z ∈ M(Sit), and for all C ∈ M(A<t),

βit
(
σ−1
it (W )|Z

)
βit

(
C ∩ σ−1

it (Z)|W
) = βit

(
σ−1
it (Z)|W

)
βit

(
C ∩ σ−1

it (W )|Z
)
	

33This is because their signal sets are observable events (since C<t can have positive probability), and be-
cause, by equation (7), if signal sets Zit and Zjt satisfy C<t = σ−1

it (Zit)= σ−1
jt (Zjt), then for everyH ∈ M(A<t),

βit(H|Zit)= βjt(H|Zjt)= limα P<t(H ∩C<t |bα;pα)/P<t(C<t |bα;pα).
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paragraph implies that, in any perfect conditional ε-equilibrium, any two players with the
same information about any observable event behave as if they have the same beliefs.

Despite having some good properties, finitely consistent beliefs can sometimes seem
paradoxical. Indeed, returning to Example 6.1, consider any ‖·‖-convergent net {(bα�pα)}
in B× T such that pα = p is constant and equal to nature’s probability function and such
that for each δ > 0 and for each action of player 1, player 1’s net of strategies eventually
always gives that action positive probability and eventually always gives the strictly domi-
nant action x= −1 probability at least 1 − δ. Any such net defines a net of belief systems
that has a limit point (by Tychonoff’s theorem). Moreover, each limit point is finitely con-
sistent. But, as we have seen, these finitely consistent beliefs would put probability 0 on
the event that player 1’s action is x = −1 conditional on each of player 2’s signals, even
though this event should get probability 1 conditional on player 2’s entire set of signals.

Thus, with only finite consistency, beliefs on one-point signal events may not be suffi-
cient to determine beliefs more generally. In particular, the probability assigned to any
set of histories conditional on any given signal event need not be a convex combination
of the probabilities assigned to that set of histories conditional on each element of an
arbitrary partition of that signal event. However, that probability can always be obtained
as a convex combination of the conditional probabilities given each element of any finite
partition of that event.

Much applied work on signaling games (for example) has relied on an implicit assump-
tion that beliefs conditional on one-point signal events should be sufficient to characterize
beliefs for all larger observable events. When beliefs computed pointwise are not suffi-
cient to evaluate the sequential rationality of a strategy, this beliefs-based approach can
become more difficult and so perhaps less useful.

7. ILLUSTRATIVE EXAMPLES

In this section, we present two examples showing that perturbations of nature can some-
times lead to perfect conditional ε-equilibria that may seem unintuitive.34

EXAMPLE 7.1: Unintuitive consequences of non-independent perturbations of inde-
pendent states of nature.

• On date 1, nature chooses θ= (θ1� θ2) uniformly from the square [−1�3] × [−1�3].
• On date 2, player 1 observes θ1 and chooses x ∈ {−1�1}.
• On date 3, player 2 observes x and chooses y ∈ {−1�1}.
• Payoffs are u1 = xy and u2 = θ2y .
Since no player receives any information about θ2, and E(θ2) > 0, player 2 should

choose y = 1 regardless of the action of player 1 that she observes. But then player 1
should also choose x= 1 regardless of the value of θ1 that he observes. Hence, the intu-
itively natural equilibrium expected payoff vector is (u1�u2)= (1�1).

But consider the pure strategy profile (b12� b23) where b12(θ1) = [−1] if θ1 > −1,
b12(−1)= [1], and b23(x)= [−x].35

34The two examples considered here are infinite games. Perturbations of nature can also have dramatic
effects in non-standard finite games, that is, finite games in which some of nature’s states have prior probability
zero. This is because, when states with prior probability zero receive positive probability in some perturbation,
they suddenly become “possible” and therefore can explain events that could otherwise be explained only
through a deviation by some player. See the discussion following Example 6.1 as well as Section 4.8 in Myerson
(1991).

35Here and in the next example, the notation [c] denotes the probability measure that puts probability 1 on
the action c.
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This strategy profile yields the expected payoff vector (u1�u2) = (−1�1), but it is
nonetheless a perfect conditional ε-equilibrium for any ε > 0 because it can be sup-
ported by a perturbation of nature that puts small positive probability on the event
{θ1 = θ2 = −1}. With this perturbation of nature, it would be sequentially rational for
player 2 to choose y = −1 when she observes x= 1 because she would attribute this ob-
servation to the occurrence of the positive-probability event {θ1 = θ2 = −1} and therefore
would expect the value of θ2 to be −1.36

This perfect conditional ε-equilibrium may seem unintuitive because θ2 is observed by
no one and is independent of everything in the game, yet, nature’s supporting pertur-
bation leads both players to believe that observing θ1 = −1 informs them that θ2 = −1
(player 1 observes θ1 = −1 directly; player 2 infers from 1’s perturbed strategy that
θ1 = −1 when she observes x = 1). Thus, the perturbations of nature that support per-
fect conditional ε-equilibria can influence the informational content of nature’s states in
important, but perhaps unintended, ways.

When the game specifies that θ= (θ1� θ2) is uniform on [−1�3] × [−1�3], the modeler
might intend for this to mean that neither one of nature’s two coordinates, θ1 and θ2,
can ever be informative about the other, even in zero-probability events. But, formally,
the joint distribution only determines the distribution of, say, θ2 conditional on θ1, for
almost every value of θ1. In particular, the distribution of θ2 conditional on θ1 = −1 can
be defined to assign all mass to θ2 = −1, as in the perturbation of nature in the present
example.37 The perturbations of nature in perfect conditional ε-equilibria fill in these in-
determinacies that are present in, but are irrelevant for, standard probability theory. But
because the way these indeterminacies are filled in can be crucial in a game-theoretic con-
text, we may wish to better control how they are resolved. For example, the unintuitive
equilibrium above can be eliminated if θ1 and θ2 are perturbed independently. See Sec-
tion 8 for a general class of such restricted nature-perturbations. Alternatively, we could
apply the concept of full conditional ε-equilibrium from Section 5, which would exclude
the perverse equilibrium for this example and the next one.

EXAMPLE 7.2: Unintuitive consequences of large perturbations of nature even with
small probability.

• On date 1, nature chooses θ= (θ1� θ2) ∈ [0�1]2. With probability 1/2, the coordinates
are independent and uniform on [0�1], and with probability 1/2, the coordinates are equal
and uniform on [0�1].

• On date 2, player 1 observes s12 = θ1 and chooses x ∈ {−1�1}.
• On date 3, player 2 observes s23 = x and chooses y ∈ {−1�1}.
• Payoffs are u1 = xy and u2 = y(1/3 + θ2 − θ1).

36In contrast, because full conditional ε-equilibrium does not require nature-perturbations, the only full
conditional ε-equilibrium outcome in the limit as ε→ 0 is (1�1).

37Notice that this would not be true if θ2 were chosen after θ1. Then, the distribution of θ2 would be specified
by nature’s transition probability function for any possible value of θ1. In this case, the game model could
specify that θ2 is uniform on [−1�3] for every possible θ1, which would eliminate the problem in this example.
However, even then, the same problem would arise in a modified example with two additional players, 3 and
4, who, separately from players 1 and 2, play the same game, with player 3 playing the role of player 1 and
player 4 playing the role of player 2, and where the roles of θ1 and θ2 are reversed, that is, player 3 observes
θ2, and player 4’s payoff depends on θ1. In this modified game, the problem cannot be eliminated by specifying
the temporal order in which θ1 and θ2 occur because each would have to occur before the other. But the
refinements introduced in Sections 8 and 5 can eliminate the problem even in this modified example.
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Thus, player 2 should choose y = 1 if she expects θ2 − θ1 to be greater than −1/3 and
she should choose y = −1 otherwise. Player 1 wants to choose an action that player 2 will
match.

Since, for almost every θ1, θ2 is equally likely to be equal to θ1 (in which case θ2 −θ1 = 0)
as to be uniform on [0�1] (in which case E(θ2 − θ1|θ1)= 1/2 − θ1), player 2 should expect
θ2 − θ1 to be no smaller than −1/4, regardless of 1’s strategy. So player 2 should choose
y = 1.

Thus, it seems that all sensible equilibria involve strategies that give probability 1 to
(x� y)= (1�1).

But consider the strategy profile (b12� b23) where b12(θ1)= [−1] if θ1 �= 1, b12(1)= [1],
and b23(x)= [−x].38 This profile gives probability 1 to (x� y)= (−1�1), and is supported
in a perfect conditional ε-equilibrium by the perturbation of nature that does not perturb
θ2 but that with small positive probability perturbs the distribution of θ1 so that it is a mass
point on θ1 = 1. With this perturbation of nature, it is conditionally rational for player 2
to choose y = −1 when she observes x = 1 because she attributes this observation to θ1

being a mass point on 1 and therefore expects the value of θ2 − θ1 to be −1/2.39

Once again, we have an unintuitive equilibrium that can result because the joint distri-
bution of nature’s state coordinates determines the conditionals only almost everywhere.
This unintuitive equilibrium can be eliminated if nature’s states can be perturbed only to
nearby states so as to approximately maintain the informativeness of each coordinate θ1

and θ2 about the other (see the next section), or, if we apply the concept of full conditional
ε-equilibrium from Section 5.

8. AUGMENTING A GAME WITH A NET OF ADMISSIBLE NATURE-PERTURBATIONS

Unintuitive perfect conditional ε-equilibria such as in Examples 7.1 and 7.2 can be
eliminated if we augment a game by including in its specification a net of admissible per-
turbations of nature.

If {pα} is admissible for nature’s probability function p in the multi-stage game �, then
we say that a perfect conditional ε-equilibrium b of � is compatible with {pα} iff there is net
{(bγ�pγ)} of strategy profiles and nature-perturbations that is admissible for (b�p) such
that {pγ} is a subnet of {pα} and, for each γ, bγ is a conditional ε-equilibrium of the game
�(pγ).

For any multi-stage game �, its specified net of admissible nature-perturbations {pα}
should be thought of as an additional element in the structure of the game and that ex-
presses common knowledge aspects of how players update their beliefs about nature in
zero-probability events. No additional topological structure is needed to augment a game
with an admissible net of nature-perturbations. However, in most applications, the various
spaces come equipped with natural topologies. We next define canonical nets of admissi-
ble nature-perturbations that can be used in a wide variety of such applications.

8.1. Canonical Nets of Admissible Nature-Perturbations

We need to add something to the structure of the game because nature’s probability
function pmay not tell us enough about what information could be inferred from observ-
ing the state of nature to be in some set that had probability 0. As Examples 7.1 and 7.2

38See Footnote 35.
39In contrast, because full conditional ε-equilibrium does not require nature-perturbations, the limit as

ε→ 0 of full conditional ε-equilibria gives probability 1 to the action profile (x� y)= (1�1).
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demonstrated, even when two random variables are independent according to the prior
probability distribution p, we may need some additional structure if we want to stipu-
late that even the observation of a probability-0 event defined by one of these random
variables would still not convey any information about the other random variable. More
generally, we may want to express nature’s state at any date t as being composed of several
different coordinates a0t = (a0tj)j∈J (for some index set J), so that we can stipulate that the
inference from observing a probability-0 event that is defined by any one coordinate a0tj

should not go beyond the range of what could be inferred from any positive-probability
events that are defined by this random variable a0tj .

We might also want to specify some partition on the possible values of any coordi-
nate a0tj , so that we can stipulate that the inference from an observation of a0tj taking a
value in any partition element should not go beyond the range of what could be inferred
from observing a0tj in positive-probability subsets of this partition element. Further, with
a topology on the set of possible values of a0tj , we may also want to specify that the play-
ers’ inferences from the observation of a probability-0 value of a0tj must be a limit of
what could be inferred from observing a0tj to be in arbitrarily small positive-probability
neighborhoods of this observed value.

So let � be any multi-stage game with probability function for nature p ∈ T . But sup-
pose that there is a finite index set, J with #J ≥ 1, such that, for any date t, nature’s set
of date-t states is written as A0t =×j∈JA0tj , where each A0tj is a separable metric space
with its Borel sigma-algebra of measurable sets. Suppose also that, for each j ∈ J, there
is a finite or countably infinite partition Q0tj of A0tj into measurable sets, and denote by
Q0tj(a0tj) the element of Q0tj that contains a0tj ∈A0tj .

With this structure, we can define a canonical net of nature-perturbations {pα} for p as
follows.40 Let A0 =×t≤TA0t be nature’s state space. The index set for our net will be the
set,Ω, of all ordered pairs (n�F) such that n is any positive integer and F is any nonempty
finite subset of A0. This index set is a directed set when we partially order its elements by
saying that (n′�F ′) is at least as large as (n�F) iff n′ ≥ n and F ′ ⊇ F . For any (n�F) ∈Ω,
for any date t, and for any j ∈ J, let F0tj be the projection of F onto A0tj .

For any (n�F) ∈ Ω, for any date t, and for any j ∈ J, define the transition probabil-
ity φn�Ftj : A0tj → �(A0tj) so that, for every a0tj ∈ A0tj , if no point in F0tj ∩ Q0tj(a0tj) is
within distance 1

n
of a0tj , then φn�Ftj ({a0tj}|a0tj)= 1. Otherwise, φn�Ftj ({a0tj}|a0tj)= 1 − 1

n
and

φn�Ftj (·|a0tj) distributes the remaining probability 1
n

uniformly over the finite set of points
in F0tj ∩Q0tj(a0tj) that are within distance 1

n
of a0tj .

For any (n�F) ∈Ω, define the perturbation of nature, pn�F , as follows. For every date
t ≤ T , for every a<t ∈A<t , and for every C =×j∈JCj ∈×j∈JM(A0tj),

pn�Ft (C|a<t)=
∫
A0t

∏
j∈J
φn�Ftj (Cj|a0t)pt(da0t|a<t)	 (8)

The perturbation pn�F works as follows. At each date t, and after any history a<t ∈
A<t , a provisional state a0t is first drawn according to nature’s date-t probability measure
pt(·|a<t). Then, independently for each coordinate j ∈ J, the actual jth coordinate of the

40Different partitions,Q0tj , will give different canonical nets. The possibility of controlling the perturbations
in the net by choosing particular partitions Q0tj can be useful, as in our proof of Theorem 9.3.
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date-t state is drawn according to the distribution φn�Ftj (·|a0tj), depending only on the jth
coordinate of the provisional state.41�42

So for large (n�F) ∈ Ω, each perturbation pn�F in a canonical net perturbs nature’s
coordinates independently to nearby values, and only rarely. Perturbing nature’s coor-
dinates independently and to nearby values ensures that observation of any coordinate
value can only convey information that could be available from events in small neighbor-
hoods of that value. Perturbing nature only rarely ensures that, at each date, the antici-
pation of future perturbations of nature will not affect future expected values in the limit
as n→ ∞ and as F expands to include all of nature’s states. We can state the following
result. A proof is in Myerson and Reny (2020).43

THEOREM 8.1: If {pn�F} is a canonical net of nature-perturbations, then {pn�F} is admissi-
ble for p.

To eliminate the unintuitive perfect conditional equilibria in Example 7.1, we should
set J = {1�2} and let A011 =A012 = [−1�3]. Then θ = (θ1� θ2) ∈A011 ×A012, and in any
perturbation of nature from the canonical net, the coordinates θ1 and θ2 of nature’s state
θ will be perturbed independently. Moreover, in any perturbation from the canonical net
in which some state θ̄= (θ̄1� θ̄2) receives positive probability, the conditional distribution
of θ1 given θ2 = θ̄2 will be uniformly close to a uniform distribution on [−1�3]. Conse-
quently, with this specification of the coordinates of nature, the unintuitive equilibrium
fails to be a perfect conditional ε-equilibrium that is compatible with the canonical net of
nature-perturbations. For finite games with a discrete topology on chance moves, there
would be a positive distance between any two alternative moves by nature, and so ev-
ery canonical net of nature-perturbations is eventually (in the net) constant and equal to
nature’s original probability function. So compatibility with the canonical net effectively
rules out any nature-perturbation at all.

9. REGULAR PROJECTIVE GAMES

In this section, we introduce a large class of games—regular projective games—for
which we can prove the existence of a perfect conditional ε-equilibrium which has full
support and is compatible with the canonical net of nature perturbations, for any ε > 0.

DEFINITION 9.1: Let �= (I�T�S�A�M���p�σ�u) be a multi-stage game. Then � is
a regular projective game iff there is a finite index set J and, for all (n� r� j) ∈ I∗ × T × J,
there are sets Anrj such that, for every it ∈L,

41In particular, for each date t, pn�Ft (·|·) is a Blackwell garbling of pt(·|·).
42By the definition of the φn�Ftj mappings, for any a0t in the support of pn�Ft (·|a<t), there is a′

0t in the support
of pt(·|a<t) such that a0tj is within distance 1/n of a′

0tj for each j. Consequently, any a0t outside the support of
pt(·|a<t) is given probability zero by pn�Ft (·|a<t) for all large enough n.

43The idea of the proof is as follows. Since the support of a measure (i.e., the smallest closed set with
measure-zero complement) is well-defined in a separable metric space, for any date t we can let Ct =
{(a0t � a<t) : a0t is in the support of pt(· ∩Q0t (a0t )|a<t)}, where Q0t (a0t ) is the element of×j∈JQ0tj that con-
tains a0t . Then, for any a<t ∈A<t , pt(Cta<t |a<t) = 1, where Cta<t is the slice of Ct through a<t . Moreover, for
any ā0t ∈ Cta<t , and for any (n�F) ∈ Ω with ā0t ∈ F , (8) implies that pn�Ft ({ā0t}|a<t) > 0 because there is a
small enough open set U containing ā0t such that

∏
j∈J φ

n�F
tj ({ā0t}|a0t ) > 0 for every a0t ∈ U ∩ Q0t (ā0t ) and

pt(U ∩Q0t (ā0t )|a<t) > 0 (the latter since ā0t ∈ Cta<t is in the support of pt(· ∩Q0t (ā0t )|a<t)).
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R.1. Ait =×j∈JAitj , �it(sit)=Ait for every sit ∈ Sit , and A0t =×j∈JA0tj ,
R.2. if t > 1, then there is a nonempty set Mit ⊂ I∗ × {1� 	 	 	 � t − 1} × J such that Sit ⊆×nrj∈MitAnrj and σit(a<t) = (anrj)nrj∈Mit , ∀a<t ∈A<t is a projection map; that is, i’s signal

at date t > 1 is just a list of state coordinates and action coordinates from dates up to t
(define Mi1 = ∅ and recall that Si1 = {∅} in a multi-stage game),

R.3. Aitj and A0tj are nonempty compact metric spaces ∀j ∈ J, and all product spaces
are given their product topologies, all subspaces are given their relative topologies, and
the measurable subsets of all spaces are their Borel subsets,

R.4. ui :A→ R is continuous,
R.5. nature’s date-t probability function satisfies pt(C|a<t)= ∫

C
ft(a0t |a<t)[×j∈Jρ0tj]×

(da0t), ∀C ∈ M(A0t), ∀a<t ∈A<t , where ρ0tj ∈ �(A0tj) has full support ∀j ∈ J, and where
ft :A0t ×A<t → [0�∞) is continuous and the subset of A0t ×A<t on which ft is strictly
positive is closed	

If � satisfies R.1 and R.2, we may say that � is a projective game or a game with
projected signals.

REMARK 9.2: (1) One can always reduce the cardinality of J to (T + 1)#I or less by
grouping, for any it ∈ L∗, the variables {aitj}j∈J according to the #I-vector of dates at
which the players observe them, if ever.

(2) Since distinct players can observe the same a0tj , nature’s probability function in a
regular projective multi-stage game need not satisfy the information diffuseness assump-
tion of Milgrom and Weber (1985). Nevertheless, the form of pt assumed in R.5 of Defi-
nition 9.1 is reminiscent of the Milgrom–Weber assumption, and a recent counterexample
to the existence of an (ex ante) ε-Nash equilibrium in a Bayesian game due to Simon and
Tomkowicz (2018) shows that some such assumption is necessary for the existence of even
a conditional ε-equilibrium.

(3) Continuity of ft implies that the subset ofA0t ×A<t on which ft is strictly positive is
open. Hence, condition R.5 implies that points of zero density are topologically isolated
from points of strictly positive density. This is a restrictive condition, but it is always true
for finite games with the discrete topology and for games with each ft strictly positive.
Without a condition of this kind, likelihood ratios can become unbounded in ways that
our proof technique cannot handle.

Examples of regular projective games include the following:
1. All Finite Multi-Stage Games. Any finite multi-stage game (i.e., finite state, action,

and signal sets endowed with their discrete topologies) can be modeled as a regular pro-
jective game simply by letting each player’s signal be a coordinate of the state.

2. Compact and Continuous Multi-Stage Games. The following compact and continuous
games (i.e., all state, action, and signals sets are compact metric spaces, payoff functions
are continuous, nature moves only on date 1 with a date-1 probability function that is
absolutely continuous with respect to the product of its marginals and with a continuous
and positive Radon–Nikodym derivative) are regular projective games.

(i) Bayesian Games. In an N-player Bayesian game (Harsanyi model), there are two
dates. On date 1, nature chooses a state vector withN coordinates. On date 2, each player
i observes only the ith coordinate of nature’s date-1 state and chooses a feasible action.
Payoffs can depend on all actions and on nature’s state vector.

(ii) Finite-Horizon Multi-Stage Games With Observed Actions. In an N-player T -stage
game with observed actions, all players have perfect recall. On date 1, nature chooses a
state vector with N coordinates. On date 2, each player i observes only the ith coordinate
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of nature’s date-1 state and chooses a feasible action. On any date t ∈ {3� 	 	 	 �T }, player i
observes the actions taken by all players on the previous date and then chooses a feasible
action. Payoffs can depend on all actions taken by all players on all dates and on nature’s
date-1 state vector.

(iii) Signaling Games. In a signaling game, there are three dates. On date 1, nature
chooses a state. On date 2, player 1 (the “sender”) observes nature’s date-1 state and
chooses a feasible action (“message”). On date 3, player 2 (the “receiver”) observes the
action chosen by player 1 and then chooses a feasible action. Payoffs can depend on the
actions of both players and on nature’s state.

3. Stochastic Games. Any finite-horizon stochastic game (which includes all finitely-
repeated games) in which nature’s transition probability depends on the history only
through a continuous and positive conditional density function. (We can take #J = 1
since players observe the entire past history on each date.)

9.1. Existence

We can now state our main existence result, whose proof is in Section 11. It states
that, in regular projective games, for every ε > 0, there is a strategy profile that is a
perfect conditional ε-equilibrium, and that, in addition, has full support (and so by Re-
mark 9.4 is a full conditional ε-equilibrium) and is compatible with a canonical net of
nature-perturbations.

THEOREM 9.3: Let � be a regular projective game. Then, for any ε > 0, � has a perfect
conditional ε-equilibrium that has full support and that is compatible with a canonical net of
nature-perturbations.

REMARK 9.4: By Theorem 6.10 and Theorem 9.3, every regular projective game has a
subgame perfect ε-equilibrium for every ε > 0.44 By Theorem 6.9 and Theorem 9.3, every
regular projective game has a full conditional ε-equilibrium.

An immediate consequence of Theorem 9.3 and Theorem 6.7 is the following.

THEOREM 9.5: Every regular projective game � has a perfect conditional equilibrium dis-
tribution μ.

10. CONCLUSION

In order to ensure that all off-path behavior (outside a negligible set) is rational in an
infinite game, we have been led to perturb not only the players’ strategies (as in KW), but
to perturb nature’s probability function as well. Although the effects of nature’s pertur-
bations can sometimes seem unintuitive, the strategy profiles that arise as perfect condi-
tional ε-equilibria satisfy two fundamental properties. For any finite set of outcomes in
the game (outside a negligible set): (i) (finite consistency) all players can agree on a com-
mon perturbation of nature’s probability function and on a common perturbation of the
players’ equilibrium strategies that together give positive probability to—and so can ex-
plain the occurrence of—any of those outcomes, and (ii) (conditional ε-optimality) if any

44See Chakrabarti (1999) for an existence result concerning a related concept, subgame perfect approximate
equilibria, for a different class of games.
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player were ever to observe a signal on the path to any of those outcomes, then the com-
mon explanation of the outcomes that generate that signal would make his equilibrium
continuation behavior given that signal ε-optimal.

In a topological approach to the problem of rationality in extensive-form games, it is
natural to consider conditional ε-equilibria that have full support (with the given topolo-
gies). This full conditional ε-equilibrium concept is attractive because it does not require
any perturbations of nature. However, as we have seen (Example 5.3), to obtain prop-
erties like subgame perfection, we need to consider nets of perturbations of the players’
strategies and of nature’s probability function, as in our perfectness concept.

In standard finite games, the sets of conditional ε-equilibria with full support and per-
fect conditional ε-equilibria are essentially equivalent, and their limits yield the set of
sequential equilibrium strategy profiles.45 The fact that this coincidence of perfectness
and fullness does not extend to infinite games is a basic reason why it has been so difficult
to define sequential equilibria for infinite games. An uncountable infinity of outcomes
cannot all get positive probability from one strategy profile, and so one must either let
the strategy profile satisfy a weaker topological condition of full support, or one must
consider a net of perturbations of the players’ strategies and of nature that can test ratio-
nality in all events but may yield only finite additivity in the limit. We have emphasized
the latter approach as a general solution, but both approaches may be worth considering
in particular applications.

11. PROOF OF THEOREM 9.3

Outline.
The proof is broken into four parts. Part 1 constructs a sufficiently fine finite partition

of the space of outcomes. Part 2 uses the finite partition from part 1 to define a finite
approximating game played by agents it ∈ L, and fixes one of its Nash equilibria, a full-
support strategy profile b̂ in the original infinite game. Part 3 constructs a net {(bα�pα)}
of strategy profiles and nature-perturbations that is admissible for p where the net of
nature-perturbations is canonical. Part 4 shows that every strategy profile bα in the net
is a perfect conditional ε-equilibrium in perturbed game �(pα). Altogether, these steps
show that the full-support strategy profile b̂ is a perfect conditional ε-equilibrium of �
that is compatible with a canonical perturbation of nature.

Preliminaries.
Recall that in any multi-stage game, Si1 =A<1 = {∅} for every i ∈ I. So a<1 = ∅ for any

a ∈A.
The set of Borel subsets of any metric space X will be denoted by B(X).
Let � be a regular projective game, that is, � satisfies the conditions R.1–R.5 of Defini-

tion 9.1, henceforth simply R.1–R.5.
Henceforth, we will write itj for any (it� j) ∈L∗ × J.
For any itj ∈L∗ × J, and for any aitj ∈Aitj , let Bδ(aitj) denote the δ-ball centered at aitj

(Aitj is a metric space by R.3).
If Xitj is any subset ofAitj for each itj ∈L∗ × J and if K is any subset of L∗ × J, then let

XK =×itj∈KXitj , and let aK = (aitj)itj∈K denote a typical element of XK .

45Specifically, let � be any standard finite multi-stage game. Any full conditional ε-equilibrium (with the
discrete topology on the finite Ait) of � is a perfect conditional ε-equilibrium. Conversely, if b is a perfect
conditional ε-equilibrium of �, then for all δ > 0 and for all ε′ > ε, there is a full conditional ε′-equilibrium b′

with ‖b′ − b‖ ≤ δ.
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Recall by R.2 that for every it ∈ L, the subset Mit of I∗ × {1� 	 	 	 � t − 1} × J is the set
of history-coordinates that player i observes at date t. Hence, σit(a<t) = aMit for every
a ∈A, and Sit =AMit . Throughout the proof, we will often denote player i’s set of signals
by AMit and we will often denote a typical signal for player i at date t by aMit ∈AMit . By
convention, we define A∅ = {∅}, a∅ = ∅, and Mi1 = ∅ for every i ∈ I.

Let ρ0 = (ρ01� 	 	 	 � ρ0T ), where, for each date t, ρ0t =×j∈Jρ0tj is the product carrying
measure for nature’s date-t state as specified in R.5. Then ρ0 is an element of T , the set
of alternative probability functions for nature in the game �.

If ζ : X → �(Y) and κ : Y → �(Y) are any pair of transition probabilities, then de-
fine the transition probability ζ ∗ κ : X → �(Y) so that, for every x ∈ X , and for every
measurable subset C of Y ,

[ζ ∗ κ](C|x)=
∫
Y

κ(C|y)ζ(dy|x)	 (9)

Fix any positive real number ε for the remainder of the proof. The steps below es-
tablish the existence of a strategy profile with full support that is a perfect conditional
ε-equilibrium of � that is compatible with a canonical net of nature-perturbations.

Part 1 (construct a sufficiently fine finite partition of the space of outcomes).
We shall construct a finite partition of the space of outcomes so that, within each el-

ement of the partition, the players’ utilities have sufficiently small variation and so that
nature’s density function has bounded relative likelihoods on each partition element that
can have positive probability.

Since in a multi-stage game each ui is bounded, we may choose m̄ > 0 so that

max
a�a′∈A

(
ui(a)− ui

(
a′)) ≤ m̄� ∀i ∈ I	 (10)

The set of outcomes in the regular projective game � is the product set A =×itj∈L∗×JAitj . For every a ∈A, define

f (a)=
∏
r≤T
fr(a0r |a<r)� (11)

define

g(a)=
{
f (a) if f (a) > 0�
1 if f (a)= 0�

(12)

define

h(a)=
{

1 if f (a) > 0�
0 if f (a)= 0�

(13)

and define

H(a)=
∏
t≤T
ρ0t

({
a′

0t ∈A0t : ft
(
a′

0t |a<t
)
> 0

})
	 (14)

Consequently, for every a ∈A,

f (a)= g(a)h(a)	 (15)
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Since fi is continuous and somewhere positive on the compact setA0t ×A<t , it achieves
a maximum, m̄t > 0 say, on A0t ×A<t . Hence, for any a<t ∈A<t ,

ρ0t

({
a′

0t ∈A0t : ft
(
a′

0t |a<t
)
> 0

}) =
∫

{a′
0t∈A0t :ft (a′

0t |a<t )>0}
ρ0t(da0t)

≥
∫
ft(a0t |a<t)

m̄t

ρ0t(da0t)

= 1/m̄t

> 0	 (16)

Consequently,H(a) is bounded away from zero for a ∈A. Notice also that, being a prod-
uct of probabilities, H(a)≤ 1 for a ∈A.

Since, by R.5, the set of outcomes on which f is strictly positive is closed, and since, by
continuity, the set of outcomes on which f is zero is closed, g is continuous on A. Since
g is strictly positive, it therefore achieves a positive minimum on the compact set A. So
because H is positive and bounded away from zero on A, we may choose λ ∈ (0�1) and
γ > 0 so that

2γ+ (
1 − (1 − λ)T(#J))m̄≤ ε

(
inf
a∈A
g(a)H(a)

)
	 (17)

For any nonempty sets X1� 	 	 	 �XK and for any partitions P1 of X1� 	 	 	 �PK of XK , let
P1 ⊗ · · ·⊗PK denote the (product) partition ofX1 × · · ·×XK defined by P1 ⊗ · · ·⊗PK =
{E1 × · · · ×EK :Ek ∈Pk ∀k}.

We claim that we may choose a finite product partition, Q = ⊗
itj∈L∗×J Qitj of A, com-

posed of Borel measurable partitions Qitj of Aitj ∀itj ∈L∗ × J such that, for any a�a′ ∈A
in the same element of the partition Q,∣∣ui(a)g(a)− ui

(
a′)g(a′)∣∣< γ for every player i ∈ I� (18)

and

ft(a0t |a<t) > 0 ⇔ ft
(
a′

0t |a′
<t

)
> 0 for every date t	 (19)

Let us justify this claim. For each i ∈ I, uig is continuous on the compact set A and so
uig is uniformly continuous on A. The compactness of the Aitj sets ensures that, for any
positive diameter, we can partition each Aitj into finitely many measurable sets each with
that diameter or less. If that diameter is sufficiently small, then the uniform continuity
of uig on A implies that (18) will be satisfied. To see that (19) must also be satisfied for
some sufficiently small diameter, notice that otherwise there would be a date t and two
sequences of points in A0t ×A<t that approach one another such that along one of the
sequences ft is strictly positive and along the other ft is zero. By compactness, we may
assume that both sequences converge, and hence they converge to the same point. But
the assumption that ft is strictly positive on a closed set would then imply that ft is strictly
positive at the limit point, and the fact (by continuity) that ft is zero on a closed set would
imply that ft is zero at the limit point, yielding a contradiction and establishing the claim.

For any itj ∈ L∗ × J and for any aitj ∈Aitj , let Qitj(aitj) denote the element of the par-
tition Qitj that contains aitj , and let Qit = ⊗

j∈J Qitj be the finite partition of Ait that is
generated by the partitions Qitj , j ∈ J. We henceforth assume that Q = ⊗

i∈I∗�t≤T�j∈J Qitj

satisfies (18) and (19).
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Part 2 (define a finite approximating game played by agents it ∈ L and fix one of its
equilibria).

For each it ∈L, and for each j ∈ J, let us choose νitj ∈ �(Aitj) so that for each element of
the finite partitionQitj ofAitj , νitj gives positive probability to every point in a dense subset
of that partition element. Such a νitj exists since, by R.3, Aitj is a compact metric space
and therefore every partition element has a countable dense subset, to each element of
which νitj can give positive probability. In particular, νitj gives positive probability to every
open subset of Aitj . For each it ∈L, let νit denote the history-independent strategy in Bit
in which player i at date t chooses from Ait according to the product probability×j∈Jνitj
regardless of the date-t signal that he observes.

Given the λ > 0 chosen in (17), for every itj ∈ L× J define the transition probability
Λitj :Aitj → �(Aitj) as follows. For any aitj ∈Aitj and for any D ∈ B(Aitj),

Λitj(D|aitj)= (1 − λ)νitj
(
D|Qitj(aitj)

) + λνitj(D)�
where νitj(D|Qitj(aitj))= νitj(D∩Qitj(aitj))/νitj(Qitj(aitj)) is the conditional νitj-probability
of D given Qitj(aitj). (Recall that νitj(Qitj(aitj)) > 0 for every aitj ∈Aitj .) So for any aitj ∈
Aitj , Λitj(·|aitj) chooses an element from Aitj according to νitj(·|Qitj(aitj)) with probability
1 − λ and according to νitj with probability λ.

Then (see (9)), for any bit ∈ Bit , bit ∗Λit is the date-t strategy for player i that, given any
signal aMit ∈AMit , first chooses a provisional ait ∈Ait according to bit(·|aMit ), and then,
independently for each coordinate j, chooses the actual coordinate-j action according to
νitj(·|Qitj(aitj)) with probability 1 − λ and according to νitj with probability λ. In partic-
ular, because there is positive probability that all of the coordinate-j actions are chosen
according to νitj , bit ∗Λit gives positive probability to each element of the finite partition
Qit ofAit and gives positive probability to every open subset of Ait , no matter what signal
player i observes at date t. This last fact implies that, for any b ∈ B, the strategy profile
(bit ∗Λit)it∈L has full support in the game �.

Define the probability function for nature p̃= (p̃1� 	 	 	 � p̃T ) ∈ T so that, for every date
t, for every a<t ∈A<t , and for every D ∈ B(A0t),

p̃t(D|a<t)= ρ0t

(
D∩ {

a0t : ft(a0t |a<t) > 0
})

ρ0t

({
a0t : ft(a0t |a<t) > 0

}) � (20)

where the denominator is strictly positive by (16).
There are two important facts to note about p̃. First, p̃t(D|·) is measurable with re-

spect to the product partition Q (and so, in particular, p̃t : A<t → �(A0t) is a tran-
sition probability). Indeed, if a′� a′′ ∈ A are in the same element of Q, then by (19),
{a0t : ft(a0t |a′

<t) > 0} = {a0t : ft(a0t |a′′
<t) > 0} and so p̃t(D|a′

<t) = p̃t(D|a′′
<t). (This same

argument implies also that H(a′) = H(a′′), i.e., that H is Q-measurable, a fact that
we will use below.) Second, given the probability function p̃, and after any date-t his-
tory a<t , the distribution of nature’s date-t state conditional on any positive probabil-
ity element q0t =×j∈Jq0tj ⊆A0t of the partition Q0t = ⊗

j∈J Q0tj is given by the history-
independent product measure ρ0t(·|q0t) =×j∈Jρ0tj(·|q0tj), where ρ0t(·|q0t) denotes the
conditional of ρ0t given q0t =×j∈Jq0tj , and similarly for ρ0tj(·|q0tj). This is because,
if p̃t(q0t |a<t) > 0, then by (19) q0t ⊆ {a0t : ft(a0t |a<t) > 0} and so (20) implies that
p̃t(D∩ q0t |a<t)/p̃t(q0t |a<t)= ρ0t(D∩ q0t)/ρ0t(q0t).

Let ξ : A → A be measurable with respect to Q (i.e., constant on each partition el-
ement) and such that, for every a ∈ A, ξ(a) is in the same element of the partition Q
as a.
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For every i ∈ I, and for every a ∈A, define vi(a)= ui(a)g(a)H(a).
Let the game �v◦ξ(p̃) be identical to � except that, for each i ∈ I, player i’s payoff

function is vi(ξ(a))= ui(ξ(a))g(ξ(a))H(ξ(a)) instead of ui(a), and nature’s probability
function is p̃ instead of p.

Notice that H(ξ(a)) =H(a) because, as observed in the paragraph following (20), H
is Q-measurable. Consequently, because 0 ≤H ≤ 1, (18) implies that for every a ∈A,∣∣ui(ξ(a))g(ξ(a))H(

ξ(a)
) − ui(a)g(a)H(a)

∣∣< γ for every player i ∈ I	 (21)

For each itj ∈ L × J, select precisely one action from each element of the partition
Qitj of Aitj and let the finite set of all of the selected actions be denoted by C̄itj . Let
C̄it =×j∈JC̄itj .

Let �v◦ξ�Λ(p̃) denote the agent normal form of �v◦ξ(p̃) in which each dated player it ∈L
is a separate agent and is restricted to strategies bit ∈ Bit of the form bit = b̃it ∗Λit for some
b̃it ∈ Bit that is measurable with respect to Q and that assigns probability 1 to the finite set
C̄it .

For any strategy bit that is feasible for an agent it in �v◦ξ�Λ(p̃), and for any qit =
(qitj)j∈J ∈ Qit , the conditional distribution of bit given qit is the product measure×j∈Jνitj(·|qitj). So the coordinates of it’s actions are always chosen conditionally inde-
pendently. Also, for any signal aMit ∈AMit , the probability measure bit(·|aMit ) chooses an
action in Ait according to

∏
j∈J νitj with probability at least λ#J > 0. Consequently, every

strategy profile b ∈ B that is feasible in �v◦ξ�Λ(p̃) has full support in the original game �.
The Q-measurability condition means that for any nrj ∈L∗ × J and for any signal coor-

dinate anrj ∈Anrj that a player observes in the original (regular projective) infinite game,
he observes (can condition on) in �v◦ξ�Λ(p̃) only the partition element inQnrj that contains
anrj . Hence, in �v◦ξ�Λ(p̃), for any date t > 1, a signal wit for agent it ∈L is any×nrj∈Mit qnrj ,
where qnrj ∈ Qnrj ∀nrj ∈ Mit .46 Let Wit denote the finite set of it’s signals in the game
�v◦ξ�Λ(p̃). ThenWit = ⊗

nrj∈Mit Qnrj is a finite partition of player i’s date-t signal spaceAMit

in the original infinite game �.
Together, the measurability condition and the fact that the support of each agent’s strat-

egy in �v◦ξ�Λ(p̃) is always a subset of a fixed finite set of actions imply that �v◦ξ�Λ(p̃) is a
finite game.

Let b̂ ∈ B be a Nash equilibrium of the finite game �v◦ξ�Λ(p̃) played by agents it ∈ L.
Then, in particular, b̂ is of the form (b̃it ∗Λit)it∈L for some b̃ ∈ B, and b̂ is a full-support
strategy profile in the original game �.

The remainder of the proof will establish that the full-support strategy profile b̂ is a
perfect conditional ε-equilibrium of � that is compatible with a canonical net of pertur-
bations.

Part 3 (define a net {(bα�pα)} that is admissible for (b̂�p), and where {pα} is a subnet
of a canonical net for p given the partition Q= ⊗

t≤T�j∈J Q0tj of×t≤T�j∈JA0tj).
The index set for our net will be the set, Ω, of all ordered pairs (n�F) such that n is

any positive integer and F is any nonempty finite subsetA. This index set is a directed set
when we partially ordered its elements by saying that (n′�F ′) is at least as large as (n�F)
iff n′ ≥ n and F ′ ⊇ F . For any (n�F) ∈Ω, and for any itj ∈L∗, let Fitj be the projection of
F onto Aitj .

46For t = 1, agent it’s signal in the game �v◦ξ�Λ(p̃) is always equal to the null signal, ∅.
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For any index (n�F) ∈ Ω, and for any itj ∈ L∗ × J, define the transition probabil-
ity φn�Fitj : Aitj → �(Aitj) so that, for every aitj ∈ Aitj , if no point in Fitj ∩ Qitj(aitj) is
within distance 1

n
of aitj , then φn�Fitj ({aitj}|aitj) = 1. Otherwise, φn�Fitj ({aitj}|aitj) = 1 − 1

n
and

φn�Fitj (·|aitj) distributes the remaining probability 1
n

uniformly over the finite set of points
in Fitj ∩Qitj(a0tj) that are within distance 1

n
of a0tj .

For any index (n�F) and for any it ∈ L∗, define the transition probability φn�Fit :Ait →
�(Ait) so that for everyC =×j∈JCj ∈×j∈JM(Aitj), and for every ait ∈Ait ,φ

n�F
it (C|ait)=∏

j∈J φ
n�F
itj (Cj|aitj).

Define a net of strategy profiles and nature perturbations {(bn�F�pn�F)} as follows. For
every index (n�F) ∈Ω and for every it ∈L, define bn�Fit = b̂it ∗φn�Fit and define pn�Ft = pt ∗
φn�F0t . Then (see Section 8.1), {pn�F}(n�F)∈Ω is a subnet of a canonical net of perturbations
of p and so, by Theorem 8.1, {pn�F} is admissible for p.47 We next show that {bn�F}(n�F)∈Ω is
admissible for b̂, from which we can conclude that {(bn�F�pn�F)} is admissible for (b̂�p).

Since bn�Fit = b̂it ∗ φn�Fit , we have ‖bn�F − b̂‖ ≤ 1
n

for every index (n�F) and so
lim(n�F) ‖bn�F − b̂‖ = 0 since lim(n�F) n = +∞. Fix any it ∈ L, fix any sit ∈ Sit , and fix any
ait ∈ �it(sit). To show that {bn�F} is admissible for b̂, we must show that there is an in-
dex (n̄� F̄) such that bn�Fit (ait |sit) > 0 for every (n�F) ∈ Ω such that n ≥ n̄ and F ⊇ F̄ .
Choose (n̄� F̄) so that aitj ∈ F̄itj for every j ∈ J. and let (n�F) be any index such that
n ≥ n̄ and F ⊇ F̄ . Hence, aitj ∈ Fitj for every j ∈ J. Also, φn�Fitj ({aitj}|a′

itj) > 0 for any
a′
itj ∈ Qitj(aitj) that is within distance 1

n
of aitj . But since the product measure×j∈Jνitj is

absolutely continuous with respect to b̂it(·|sit) (by the definition of b̂it), and since each νitj
gives positive probability to each action in a dense subset of Qitj(aitj), b̂it(·|sit) gives pos-
itive probability to every action in a dense subset of×j∈JQitj(aitj). In particular, b̂it(·|sit)
gives positive probability to some a′

0t ∈×j∈JQitj(aitj) such that, for every j ∈ J, a′
0tj ∈

Qitj(a0tj) is within distance 1
n

of a0tj , which implies that
∏

j∈J φ
n�F
itj ({a0tj}|a′

0tj) > 0. Since

bn�Fit ({a0t}|sit) ≥ ∏
j∈J φ

n�F
itj ({a0tj}|a′

0tj)b̂it({a′
it}|sit), we may conclude that bn�Fit ({a0t}|sit) > 0,

as desired. Hence, {bn�F} is admissible for b̂.
Having established that {(bn�F�pn�F)} is admissible for (b̂�p), where {pn�F} is a subnet

of a canonical net for p, let us note an important property of each bn�F . For every it ∈ L,
for every ait ∈Ait , and for every qit ∈Qit , φ

n�F
it (qit |ait) is equal to 1 if ait ∈ qit and is equal

to 0 otherwise. Therefore,

bn�Fit (qit |aMit )= b̂it(qit |aMit )	 (22)

So no matter what signal aMit is observed by agent it, bn�Fit (·|aMit ) generates the same
distribution over the elements of the finite partition Qit as does b̂it(·|aMit ).

Part 4 (show that for each index (n�F) ∈Ω, bn�F is a conditional ε-equilibrium of the
perturbed game �(pn�F)).

47For any (n�F) ∈Ω, let F0 be the projection of F onto nature’s states×t≤TA0t . The net {pn�F } defined
here is a subnet of the canonical net because pn�F is equal to the canonical perturbation of nature defined in
Section 8.1 for the canonical index (n�F0).
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To simplify the notation, we use α to denote a typical element (n�F) of the directed
index set Ω constructed in Part 3 above. So the net {(bn�F�pn�F)}(n�F)∈Ω constructed in
Part 3 will be denoted by {(bα�pα)}α∈Ω for the remainder of the proof.

In this part of the proof, it will be useful to make explicit the dependence of the out-
come distribution and of the players’ expected utilities on the probability function for
nature that is in effect. For example, P(·|b;pα) is the probability distribution over out-
comes under the strategy profile b in the game �(pα), that is, in the game � when nature’s
probability function is pα ∈ T instead of p.

Fix any index α ∈ Ω, fix any it ∈ L, fix any measurable Z ⊆ AMit such that Pit(Z|bα;
pα) > 0, and fix any date-t continuation ci of bαi . To complete the final step of the proof,
we must show that

Ui

(
ci� b

α
−i|Z;pα) ≤Ui

(
bα|Z;pα) + ε	 (23)

Recall thatWit is a finite partition of Sit and the elements ofWit are the signals for agent
it in the finite approximating game �v◦ξ�Λ(p̃). Without loss of generality, we may assume
that there iswit ∈Wit such thatZ ⊆wit (since otherwise we could consider separately each
Z ∩wit that has positive probability in �(pα) under bα, where wit varies over all elements
of the finite partition Wit).

If τ ∈ T is any perturbation of nature, define τ∗φα0 ∈ T to be the perturbation of nature
such that, for every date t ≤ T , [

τ ∗φα0
]
t
= τt ∗φα0t 	

Then, we may define p̃α ∈ T by

p̃α = p̃ ∗φα0 	 (24)

Hence, for any date t, p̃αt :A<t → �(A0t) is a transition probability that, like p̃t , is mea-
surable with respect to Q (see the paragraph following (20)).

Because f = gh, and by the definition of p̃ in (20), we have that for every b ∈ B, and
for every C ∈ B(A),

P
(
C|b;pα) = P

(
C|b;p ∗φα0

)
=

∫
C

f (a)P
(
da|b;ρ0 ∗φα0

)
=

∫
C

g(a)h(a)P
(
da|b;ρ0 ∗φα0

)

=
∫
C

g(a)H(a)

(
h(a)

H(a)

)
P

(
da|b;ρ0 ∗φα0

)

=
∫
C

g(a)H(a)P
(
da|b; p̃ ∗φα0

)
=

∫
C

g(a)H(a)P
(
da|b; p̃α)� (25)

where the fourth equality follows becauseH(a) > 0 for every a ∈A, and the fifth equality
follows because, for every C ∈ B(A),

P
(
C|b; p̃ ∗φα0

) =
∫
C

(
h(a)/H(a)

)
P

(
da|b;ρ0 ∗φα0

)
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Therefore, for any b ∈ B and for any C ∈ B(A),∫
C

ui(a)P
(
da|b;pα) =

∫
C

ui(a)g(a)H(a)P
(
da|b; p̃α)	 (26)

Because ci and bαi agree on dates before t and because date-t signal event proba-
bilities depend only on the player’s strategies on dates before t, Pit(Z|(ci� bα−i);pα) =
Pit(Z|bα;pα). So, because vi(a)= ui(a)g(a)H(a), (26) gives48

Ui

(
ci� b

α
−i|Z;pα) =

∫
{a:aMit ∈Z}

ui(a)P
(
da|(ci� bα−i);pα)

Pit
(
Z|bα;pα)

=

∫
{a:aMit ∈Z}

vi(a)P
(
da|(ci� bα−i); p̃α)

Pit
(
Z|bα; p̃α)

Pit
(
Z|bα; p̃α)

Pit
(
Z|bα;pα)

=
(∫

vi(a)P
(
da|Z� (ci� bα−i); p̃α)

)
Pit

(
Z|bα; p̃α)

Pit
(
Z|bα;pα) 	 (27)

By (21) and because {ξ(a) : a ∈ q} ⊆ q for every q ∈ Q, we may bound the integral in
parentheses on the right-hand side of (27) as follows:∫

vi(a)P
(
da|Z� (ci� bα−i); p̃α) ≤

∫
vi

(
ξ(a)

)
P

(
da|Z� (ci� bα−i); p̃α) + γ	 (28)

Also, by (25), we may bound the ratio of probabilities Pit(Z|bα; p̃α)/Pit(Z|bα;pα) on
the right-hand side of (27) as follows:

Pit
(
Z|bα; p̃α)

Pit
(
Z|bα;pα) =

∫
{a:aMit ∈Z}

P
(
da|bα; p̃α)

∫
{a:aMit ∈Z}

g(a)H(a)P
(
da|bα; p̃α)

≤

∫
{a:aMit ∈Z}

P
(
da|bα; p̃α)

∫
{a:aMit ∈Z}

(
inf
a∈A
g(a)H(a)

)
P

(
da|bα; p̃α)

= 1
inf
a∈A
g(a)H(a)

	 (29)

(Recall from Part 1 above that infa∈A g(a)H(a) > 0.)
We next adjust the deviation ci so that it becomes measurable with respect toQ, without

changing the value of the integral on the right-hand side of (28). This is possible because

48Notice that, by (25), P(·|b;pα) is absolutely continuous with respect to P(·|b; p̃α) for any b ∈ B. So in
particular, Pit(Z|bα;pα) > 0 implies Pit(Z|bα; p̃α) > 0.
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vi ◦ ξ, bα−i, and p̃α are all measurable with respect to Q and so any achievable expected
value of vi ◦ ξ by i is achievable with a strategy for i that is Q-measurable.

For any nr ∈ L, recall from Part 3 above that the finite subset C̄nr of Anr contains pre-
cisely one action from each element of the finite partition Qnr of Anr , and that for any
anr ∈Anr , Qnr(anr) is the element of Qnr that contains anr .

For any date r > t, recall from Section 3 the perfect recall map Ψ̄irt : Sir → Sit in �	6 of
the definition of a multi-stage game. When r = t, define Ψ̄irt : Sir → Sit to be the identity
map.

Define the strategy c̃i ∈ Bi as follows. For any date r < t, let c̃ir = cir (= bαir). For
any date r ≥ t, for any wir ∈ Wir , for any aMir ∈ wir , and for any air ∈ C̄ir , if Pir(wir ∩
Ψ̄−1
irt (Z)|(ci� bα−i); p̃α) > 0, then let

c̃ir
({air}|aMir ) =

∫
cir

(
Qir(air)|sir

)
Pir

(
dsir|wir ∩ Ψ̄−1

irt (Z)�
(
ci� b

α
−i

); p̃α)� (30)

but if Pir(wir ∩ Ψ̄−1
itr (Z)|(ci� bα−i); p̃α)= 0, then let c̃ir({air}|aMir )= 1/(#C̄ir).

For each date r ≥ t, c̃ir ∈ Bir is measurable with respect toQ, and, for each wir ∈Wir and
for each aMir ∈ wir , c̃ir(C̄ir |aMir )= 1. Consequently, c̃ir ∗Λir is feasible for agent ir in the
finite game �v◦ξ�Λ(p̃). Moreover, (30) implies that for every date r ≥ t, for every wir ∈Wir

such that Pir(wir ∩ Ψ̄−1
irt (Z)|(ci� bα−i); p̃α) > 0, and for every qir ∈Qir ,

c̃ir(qir |wir)=
∫
cir(qir |sir)Pir

(
dsir|wir ∩ Ψ̄−1

irt (Z)�
(
ci� b

α
−i

); p̃α)� (31)

and so c̃ir conditional on wir induces the same distribution over the elements of Qir as
does cir conditional on wir and Z.

In the game �v◦ξ(p̃α) and under the strategy profile bα, for each date r and for any
n ∈ I∗ (n may be a player or nature), the distribution of the jth coordinate of n’s date-r
action/state conditional on any element qnrj of the finite partition Qnrj of Anrj is indepen-
dent of any of the other coordinates of n’s date-r action and is independent of the date-r
history (for n = 0, see the paragraph following (20)). Consequently, because bα and p̃α
are measurable with respect to Q, the occurrence of Z and the occurrence of any q ∈Q
are independent events conditional on wit . Therefore, because Z ⊆wit ,

P
(
q|Z�bα; p̃α) = P(

q|wit� bα; p̃α
)

for every q ∈Q	 (32)

In particular, P<t(q<t |Z�bα; p̃α)= P<t(q<t |wit� bα; p̃α) for every element q<t of the finite
partition Q<t = ⊗

nrj∈L∗×J:r<t Qnrj of A<t . Therefore, since changing i’s behavior at dates
r ≥ t does not affect the probability of any date-t history event,

P<t
(
q<t |Z�

(
c̃i� b

α
); p̃α) = P<t

(
q<t |wit�

(
c̃i� b

α
−i

); p̃α) for every q<t ∈Q<t	 (33)

A consequence of (33), of (31) for r ≥ t, and of the Q-measurability of c̃ir , bαjr , and p̃αr
for all j �= i and all r ≥ t, is that

P
(
q|Z� (ci� bα−i); p̃α) = P(

q|wit�
(
c̃i� b

α
−i

); p̃α) for every q ∈Q	 (34)

Therefore, since vi(ξ(a)) is measurable with respect to Q,∫
vi

(
ξ(a)

)
P

(
da|Z� (ci� bα−i); p̃α) =

∫
vi

(
ξ(a)

)
P

(
da|wit�

(
c̃i� b

α
−i

); p̃α)	 (35)
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Recall that b̂ ∈ B is a Nash equilibrium of the agent normal form game �v◦ξ�Λ(p̃) played
by agents in L. For every date r ≤ T , b̂ir is a feasible strategy for agent ir in the game
�v◦ξ�Λ(p̃).

Define c̆i ∈ Bi as follows. For each date r < t, let c̆ir = b̂ir , and for each date r ≥ t, let
c̆ir = c̃ir ∗Λir . Then, for every date r ≤ T , c̆ir is feasible for agent ir in �v◦ξ�Λ(p̃).

Because changing i’s behavior at dates r ≥ t does not affect the probability of any date-
t history event, we have Pit(wit |(c̃i� bα−i); p̃α) = Pit(wit |bα; p̃α) because c̃ir = bαir for r < t,
and we have Pit(wit |(c̆i� bα−i); p̃α) = Pit(wit |(b̂i� bα−i); p̃α) because c̆ir = b̂ir for r < t. Also,
by (22), we have Pit(wit |bα; p̃α)= Pit(wit|(b̂i� bα−i); p̃α) because wit is a union of elements
of Q, and because both bα and p̃α are Q-measurable. Hence, we may conclude that

Pit
(
wit |

(
c̃i� b

α
−i

); p̃α) = Pit
(
wit |

(
c̆i� b

α
−i

); p̃α)	 (36)

By the definition of c̆i, there is probability at least (1 − λ)(T−t+1)(#J) that for every r ≥ t,
c̆ir gives each element of Qir the same probability as does c̃ir regardless of the history of
play. Consequently, by (36), (10), the measurability of vi(ξ(a)) with respect to Q, and
because wit is a union of elements of Q, we have∫

vi
(
ξ(a)

)
P

(
da|wit�

(
c̃i� b

α
−i

); p̃α)
≤

∫
vi

(
ξ(a)

)
P

(
da|wit�

(
c̆i� b

α
−i

); p̃α) + (
1 − (1 − λ)T(#J))m̄� (37)

where we have used the fact that (1 − (1 − λ)(T−t+1)(#J))m̄≤ (1 − (1 − λ)T(#J))m̄.
For every date r, for every a ∈A, and for every q0r ∈Q0r , the product

∏
j∈J φ

α
0rj(q0rj|a0tj)

is equal to 1 if a0t ∈ q0t and is equal to 0 otherwise. Therefore,

p̃αr (q0r |a<r)= p̃r(q0r |a<r)	 (38)

So no matter what is the date-t history, p̃αt generates the same distribution over the ele-
ments of the finite partition Q0t of A0t as does p̃t .

Together, (38) and (22) imply that Pit(wit |b̂; p̃)= Pit(wit |bα; p̃α). Hence, Pit(wit |b̂; p̃) >
0 because Pit(wit |bα; p̃α)≥ Pit(Z|bα; p̃α) > 0. And since c̆i agrees with b̂i on dates before
t, Pit(wit |(c̆� b̂−i); p̃)= Pit(wit |b̂; p̃) > 0. Therefore, (38) and (22) together with the mea-
surability of c̆i, bα−i, and p̃α with respect to Q imply that∫

vi
(
ξ(a)

)
P

(
da|wit�

(
c̆i� b

α
−i

); p̃α) =
∫
vi

(
ξ(a)

)
P

(
da|wit� (c̆i� b̂−i); p̃

)
	 (39)

Together, (28), (35), (37), and (39) imply that∫
vi

(
ξ(a)

)
P

(
da|Z� (ci� bα−i); p̃α) ≤

∫
vi

(
ξ(a)

)
P

(
da|wit� (c̆i� b̂−i); p̃

)+(
1−(1−λ)T(#J))m̄	

Consequently,∫
vi(a)P

(
da|Z� (ci� bα−i); p̃α)

≤
∫
vi

(
ξ(a)

)
P

(
da|wit� (c̆i� b̂−i); p̃

) + γ+ (
1 − (1 − λ)T(#J))m̄
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≤
∫
vi

(
ξ(a)

)
P

(
da|wit� (c̆i� b̂−i); p̃

) + γ+ (
1 − (1 − λ)T(#J))m̄

≤
∫
vi

(
ξ(a)

)
P(da|wit� b̂; p̃)+ γ+ (

1 − (1 − λ)T(#J))m̄
=

∫
vi

(
ξ(a)

)
P

(
da|wit� bα; p̃α

) + γ+ (
1 − (1 − λ)T(#J))m̄

=
∫
vi

(
ξ(a)

)
P

(
da|Z�bα; p̃α) + γ+ (

1 − (1 − λ)T(#J))m̄
≤

∫
vi(a)P

(
da|Z�bα; p̃α) + 2γ+ (

1 − (1 − λ)T(#J))m̄� (40)

where the second inequality follows from the one-shot deviation principle for finite games
with perfect recall because c̆ir = b̂ir for r < t and b̂ gives wit positive probability (see the
paragraph following (38)) and is an equilibrium of the agent normal form of the perfect
recall game �v◦ξ�Λ(p̃) when played by separate agents nr ∈L. The first equality follows be-
cause, by (22) and (38), P(·|wit� b̂; p̃) and P(·|wit� bα; p̃α) generate the same distribution
over the elements of Q. The second equality follows from (32), and the final inequality
follows from (21).

Multiplying both sides of (40) by Pit(Z|bα; p̃α)/Pit(Z|bα;pα) and using (27), (29), and
(17) gives

Ui

(
ci� b

α
−i|Z;pα) ≤

(∫
vi(a)P

(
da|Z�bα; p̃α))Pit

(
Z|bα; p̃α)

Pit
(
Z|bα;pα) + ε

=

∫
{a:aMit ∈Z}

ui(a)g(a)H(a)P
(
da|bα; p̃α)

Pit
(
Z|bα; p̃α)

Pit
(
Z|bα; p̃α)

Pit
(
Z|bα;pα) + ε

=

∫
{a:aMit ∈Z}

ui(a)g(a)H(a)P
(
da|bα; p̃α)

Pit
(
Z|bα;pα) + ε

=

∫
{a:aMit ∈Z}

ui(a)P
(
da|bα;pα)

Pit
(
Z|bα;pα) + ε

= Ui

(
bα|Z;pα) + ε�

where the third equality follows from (25), proving (23). Q.E.D.
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