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1. Introduction

Budish (2011) considers the indivisible-goods combinatorial
assignment problem in the context of an economy in which all
goods are in fixed supply and agents are endowed only with
fiat money. Budish establishes the existence of an approximate
competitive equilibrium in which the agents have nearly equal
money endowments and in which markets clear up to an error
that is independent of both the number of agents and of the
total supplies of all of the goods.1 That money endowments can
be made nearly equal is important for establishing a number of
results on the fairness of the final allocation.

A careful look at Budish’s proof reveals that it provides an
improved error bound for the Shapley–Folkman theorem. The
purpose of this note is to provide an explicit statement and proof
of this result. We also show that the improved bound can be up to
30% tighter and we provide an application to the course allocation
problem in which this maximal improvement is nearly attained.

2. The Shapley–Folkman theorem

Throughout, ∥·∥ denotes the Euclidean norm in Rm, and, for
any subset X of Rm, coX denotes its convex hull.

For any nonempty subset S of Rm, define the diameter of S by

diam(S) := sup
x,y∈S

∥x − y∥ ,
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1 Reny (2017) extends Budish’s (2011) result to settings with both divisible
and indivisible goods.

define the radius of S by

rad(S) := inf
y∈Rm

sup
x∈S

∥x − y∥ ,

define the inner diameter of S by

indiam(S) := sup
y∈coS

inf
{T⊆S:y∈coT }

diam(T ),

and define the inner radius of S by

inrad(S) := sup
y∈coS

inf
{T⊆S:y∈coT }

rad(T ).

When S is compact, all of the infima and suprema above are
attained.

Because T can always be chosen to be equal to S, it is clear that
indiam(S) ≤diam(S) and inrad(S) ≤ rad(S). It is also not difficult
to show that,2

diam(S)
2

≤ rad(S), (2.1)

from which it follows that,3

indiam(S)
2

≤ inrad(S). (2.2)

If S is a sphere or if #S = 2, then (2.1) and (2.2) are
equalities. However, the inequalities can be strict, e.g., if S =

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then diam(S)/2 =
√
2/2 <

√
6/3 =

rad(S). Our improved bound exploits inequalities (2.1) and (2.2).

2 Suppose rad(S) = supx∈S ∥x − y∗∥ and diam(S) =
x̂ − ŷ

 for some y∗
∈ Rm

and x̂, ŷ ∈ S. Then, by the triangle inequality,
x̂ − ŷ

 ≤
x̂ − y∗

 +
y∗

− ŷ
 ,

and so rad(S) ≥ max(
x̂ − y∗

 ,
y∗

− ŷ
) ≥

x̂ − ŷ
 /2.

3 Indeed, if diam/2 ≤ rad, then the number, diam(T ), that appears on the
right-hand side of the definition of indiam(S), is less than or equal to 2rad(T ),
implying that the right-hand side is less than or equal to 2inrad(S).
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The version of the Shapley–Folkman theorem that has been
most useful in the literature is as follows (see Starr, 2008).

Theorem 2.1 (Shapley–Folkman). Suppose that n ≥ m. If S1, . . . , Sn
are compact subsets of Rm, if y ∈ co(S1 + · · · + Sn), and if R =

max(rad(S1), . . ., rad(Sn)), then there exist xi ∈ Si and yi ∈coSi,
i = 1, . . . , n, such that y =

∑
i yi, yi = xi for all but at most m

indices i, andy −

n∑
i=1

xi

 ≤ R
√
m.

By using the inner radii of the sets Si rather than their radii,
Starr (1969) obtains the following result with an improved error
bound.

Theorem 2.2 (Starr). Suppose that n ≥ m. If S1, . . . , Sn are compact
subsets of Rm, if y ∈co(S1 +· · ·+ Sn), and if r = max(inrad(S1), . . .,
inrad(Sn)), then there exist xi ∈ Si and yi ∈co Si, i = 1, . . . , n, such
that y =

∑
i yi, yi = xi for all but at most m indices i, andy −

n∑
i=1

xi

 ≤ r
√
m.

Remark 1. The Shapley–Folkman and Starr Theorems 2.1 and 2.2
each have more refined versions (see Starr, 1969). The statement
of the more refined Shapley–Folkman theorem is as follows: If
S1, . . . , Sn are compact subsets of Rm and if y ∈co(S1 + · · · + Sn),
then there exist xi ∈ Si and yi ∈coSi, i = 1, . . . , n, such that
y =

∑
i yi, yi = xi for all but at most min(m, n) indices i, andy −

n∑
i=1

xi


2

≤

∑
(rad(Si))2,

where the sum on the right-hand side is over the min(m, n) high-
est among the n numbers (rad(S1))2, . . . , (rad(Sn))2. The state-
ment of the more refined Starr theorem is the same except that
inrad(Si) everywhere replaces rad(Si).

3. An improved bound

We can improve on the error bounds in Theorems 2.1 and 2.2
by using the diameters of the Si instead of their radii, and by
using the inner diameters of the Si instead of their inner radii.
Our results are as follows.

Theorem 3.1. Suppose that n ≥ m. If S1, . . . , Sn are compact
subsets of Rm, if y ∈co(S1 +· · ·+ Sn), and if D = max(diam(S1), . . .,
diam(Sn)), then there exist xi ∈ Si and yi ∈coSi, i = 1, . . . , n, such
that y =

∑
i yi, yi = xi for all but at most m indices i, andy −

n∑
i=1

xi

 ≤ D
√
m/2.

Theorem 3.2. Suppose that n ≥ m. If S1, . . . , Sn are compact
subsets of Rm, if y ∈co(S1+· · ·+Sn), and if d = max(indiam(S1), . . .,
indiam(Sn)), then there exist xi ∈ Si and yi ∈coSi, i = 1, . . . , n, such
that y =

∑
i yi, yi = xi for all but at most m indices i, andy −

n∑
i=1

xi

 ≤ d
√
m/2.

Remark 2. That the inequality bounds in Theorems 2.1, 2.2,
3.1 and 3.2 can all be satisfied with equality for any given di-
mension m is established by the following example. Let ẑ =

(
−1

2(m−1) , . . . ,
−1

2(m−1)

)
∈ Rm and for each i = 1, . . . ,m, let

Si = {(0, ẑ−i), (1, ẑ−i)}. Then diam(Si) =indiam(Si) = 1 and
rad(Si) =inrad(Si) = 1/2 for every i = 1, . . . ,m. Moreover,
0 =

1
2

(∑
i(0, ẑ−i)

)
+

1
2

(∑
i(1, ẑ−i)

)
∈co(S1 + · · · + Sm), and, for

every z ∈ S1 + · · · + Sm, the ith coordinate of z is ±
1
2 for every

i = 1, . . . ,m. Hence, ∥0 − z∥ = ∥z∥ =
√
m/2 = R

√
m = r

√
m =

D
√
m/2 = d

√
m/2, where R, r , D, and d are as in Theorems 2.1,

2.2, 3.1 and 3.2.

3.1. How much better?

Our next result requires the following lemma.

Lemma 3.3. If S is any nonempty subset of Rm whose convex hull
contains the origin, and ∥x∥ = 1 for every x ∈ S, then diam(S) ≥
√
2(1 + 1/m).

With this lemma in hand, we can show that the bounds offered
in Theorems 3.1 and 3.2, while always at least as small as the
bounds in 2.1 and 2.2, respectively, are never more than a factor
of

√
2/2 (≈ .707) smaller, uniformly in the dimension of the

ambient space. Indeed, we can show the following.

Proposition 3.4. For any m ≥ 1 and for any nonempty compact
subset S of Rm,

diam(S) ≥

√
2(1 + 1/m)rad(S).

Moreover, for any m ≥ 1, there are subsets S of Rm for which
equality holds.

Remark 3. As a consequence of Proposition 3.4, if R, r , D, and d
are as in Theorems 2.1, 2.2, 3.1, and 3.2, then
√
2(1 + 1/m)

2
R ≤

D
2

≤ R,

and
√
2(1 + 1/m)

2
r ≤

d
2

≤ r,

where the right-hand inequalities in the two displays follow from
(2.1) and (2.2), respectively.

Hence, the bounds that we obtain by using D and d are smaller
than those obtained by using R and r by a factor of at best
√
2(1 + 1/m)/2, which decreases to

√
2/2 = 0.707... as m → ∞.

So our bound is at most 30% tighter than the Shapley–Folkman
bound. In particular therefore, using our tighter bound instead of
the Shapley–Folkman bound in results on the rate of convergence
to competitive equilibrium (or the core) as the number of con-
sumers grows would leave that rate of convergence unchanged.
Nevertheless, as the example in the next section suggests, the
30% reduction can be of some importance in applications for
economies with finitely many agents.

To see that, for each m, there are subsets S of Rm for which
the best possible reduction of

√
2(1 + 1/m)/2 is achieved, it is

convenient to consider Rm as a subset of Rm+1, specifically, as the
(isometrically isomorphic) subset Lm = {(x1, . . . , xm+1) ∈ Rm+1

:

x1 + · · · + xm+1 = 1} of Rm+1. For any i ∈ {1, . . . ,m + 1},
let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm+1, where the 1 appears in
the ith coordinate. It is straightforward to verify that the subset
S = {e1, . . . , em+1} of Lm has both diameter and inner diameter
equal to

√
2, and has both radius and inner radius equal to

√
m/(m + 1), which is the distance of any ei to the barycenter,

(1/(m+ 1), . . . , 1/(m+ 1)), of S. Hence, the ratio of the diameter
to the radius (and of the inner diameter to the inner radius) is
√
2(1 + 1/m), as desired.



50 E. Budish and P.J. Reny / Journal of Mathematical Economics 89 (2020) 48–52

4. An example

As an application, let us consider the problem of allocating
courses to students. There are m courses. Feasible consumption
bundles consist of any k of them courses, and we assume that k <

m/2. For example, if m = 100 and k = 5, then the set of feasible
consumption bundles is the set of vectors with 5 elements equal
to +1 and 95 elements equal to 0. So (1, 1, 1, 1, 1, 0, . . . , 0) is
a feasible consumption bundle in which the student consumes
courses 1 through 5.4

Budish (2011) shows that one can allocate courses to students
in a manner that is almost competitive but that might not quite be
feasible, and he provides a bound on how much excess demand
for them courses there can be. From the analysis in Budish (2011),
or Reny (2017), it is evident that either one of the bounds in
Theorems 2.1 or 3.1 can serve as a bound on the Euclidean norm
of the vector of market-clearing errors in the m courses.5 Our
modest objective here is to compare these two bounds in this
practical setting.

What is the Diameter, D, of the set of feasible consumption
bundles? It is the maximum distance between any two of them.
This is

√
2k here since k < m/2.

What is the Radius, R, of the set of feasible consumption
bundles? It is the minimum, among all choices of x ∈ R, of the
distance between (x, x, . . . , x) and any vector with k one’s and
m−k zero’s. Since this distance is

√
k(1 − x)2 + (m − k)x2, which

is minimized at x = k/m, the radius is approximately
√
k when

m is large relative to k.
The ratio between this radius,

√
k, and half the diameter,√

2k/2, corresponds to the “how much better” discussion in Sec-
tion 3.1.

Using the Shapley–Folkman bound (Theorem 2.1) gives R
√
m

as an upper bound on the norm of the excess demands across
the m courses. Using the approximation for the radius of

√
k,

above, this is a bound of
√
km. For k = 5 and m = 100, this

is
√
500 = 22.36. The exact radius is

√
19/2, which gives the

slightly better bound of
√
100

√
19/2 = 21.79. So an upper bound

on the maximum possible excess demand in any one course is
21 students (and then all other courses must have zero excess
demand), and an upper bound on the maximum possible average
excess demand is 2.1 students per course.6

Using our improved bound (Theorem 3.1) gives D
√
m/2, or

√
km/2 as an upper bound on the norm of the vector of excess

demands. So with m = 100 and k = 5, this bound is
√
1000/2 =

15.8. So a better upper bound on the maximum possible excess
demand in any one course is 15 students (and then all other
courses must have zero excess demand), and a better upper
bound on the maximum possible average excess demand is 1.5
students per course.7

4 The choices m = 100 and k = 5 are reasonable parameters for realistic
course allocation problems. Harvard Business School allocates 50 course-sections
in a semester, of which students choose 5. Wharton allocates as many as 200
course-sections in a semester, of which students choose 5. So m = 100 splits
the difference as it were.
5 The market-clearing error for a course whose price is positive is the

absolute value of the excess demand for that course. The market-clearing error
for a course whose price is zero is either the excess demand for that course or
zero, whichever is larger.
6 This maximum average is achieved when 86 courses have excess demands

of two students and each of the 14 remaining courses have excess demands of
three students.
7 This maximum average is achieved when 49 courses have excess demands

of one student and each of the 51 remaining courses have excess demands of
two students.

So the tighter bound produced by Theorem 3.1 on in both the
upper bound on the maximum possible excess demand in any
one course (from 21 students to 15) and in the upper bound on
the maximum possible average excess demand across the 100
courses (from 2.1 students to 1.5). This is close to the maximum
possible reduction that can be achieved by our improved bound
as discussed in Section 3.1.

In practice, algorithms for finding solutions to the course
allocation problem (or any assignment problem) are guided by a
variety of criteria. When these criteria include targets for market-
clearing errors – as in Budish et al. (2017) – tightening those
targets can, at least in principle, provide improvements in the
solution that one obtains and so one should employ the tightest
theoretical bound that is available (i.e., that given in Theorem 3.1).
It would be interesting, though far from trivial, to consider some
large collection of problems and determine whether or not the
tighter bound given here translates into improved solutions, in
some statistical sense, in practice.

5. Proofs

Proof of Theorem 3.1. Since y ∈co(S1 + · · · + Sn) and be-
cause co(S1 + · · · + Sn) =coS1 + · · · +coSn, we can write y =∑n

i=1
∑

k αikxik, where the sums are finite, all of the finitely many
αik are nonnegative,

∑
k αik = 1 for each i, and xik ∈ Si for each i

and k.
For each i = 1, . . . , n, let ei denote the ith unit vector

(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, and, for any z ∈ Rm, let (ei, z) ∈ Rn+m

denote the concatenation of ei and z. Then
∑

i,k(αik/n)(ei, xik) =

(1, . . . , 1, y)/n and therefore, because
∑

i,k(αik/n) = 1,

1
n
(1, . . . , 1, y) ∈ co

(
∪

n
i=1({ei} × Si)

)
⊆ ∆n × Rm, (5.1)

where ∆n denotes the n − 1 dimensional unit simplex.
Because the convex set ∆n has dimension n − 1 (even though

it is a subset of Rn), the convex set co
(
∪

n
i=1({ei} × Si)

)
, being a

subset of ∆n×Rm, has dimension no more than n−1+m. Hence,
by Caratheodory’s theorem (Rockafellar, 1970) (1, . . . , 1, y)/n can
be written as a convex combination of n + m or fewer points
belonging to ∪

n
i=1({ei} × Si). Thus, for some positive integer K we

may write

1
n
(1, . . . , 1, y) =

n∑
i=1

K∑
k=1

λik(ei, xki ), (5.2)

where the λik’s are nonnegative and sum to one, at most n + m
of the λik are strictly positive and each xki is in Si. 8

For each i = 1, . . . , n, let S+

i = {xki : λik > 0}. Since the
first n coordinates of the vector on the left-hand side of (5.2) are
equal to 1 and hence are positive, each S+

i contains at least one
element. Reindexing if necessary, let S+

1 , . . . , S+

j denote those S+

i
that contain two or more elements. So S+

j+1, . . . , S
+
n are singletons,

and, since at most n+m of the λik are strictly positive, the union
of S+

1 , . . . , S+

j contains no more than m + j elements.
Since S+

i is a finite subset of Si, the distance between any point
in S+

i and the simple average of all of the points in S+

i is no greater
than diam(Si)(#S+

i − 1)/(#S+

i ). Hence

rad(S+

i ) ≤ diam(Si)(#S+

i − 1)/(#S+

i ), for every i. (5.3)

8 Zhou (1993) makes essentially the same use of an algebraic fact that
is closely related to Caratheodory’s theorem. Zhou does not consider the
implications for the error bound.
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The equality in (5.2) for the first n coordinates implies that∑K
k=1 nλik = 1 for each i, and the equality for the last m

coordinates then implies that y is contained in the sum of the
convex hulls of the sets S+

1 , . . . , S+
n . Hence, y is contained in the

convex hull of S+

1 +· · ·+S+
n . 9 Consequently, by (5.3) and because

rad(S+

i ) = 0 for i > j, the refined Shapley–Folkman theorem
(see Starr, 1969 or Remark 1 in Section 2) implies that there exist
xi ∈ S+

i and yi ∈coS+

i , i = 1, . . . , n, such that y =
∑n

i=1 yi, yi = xi
for all but at most m indices i, and,y −

n∑
i=1

xi


2

≤

j∑
i=1

(
(#S+

i − 1)diam(Si)
#S+

i

)2

.

It is easy to show that #S+

i ≥ 2 implies that
(
(#S+

i − 1)
/

(#S+

i )
)2

≤ (#S+

i − 1)/4. Therefore, since #Si ≥ 2 for every
i = 1, . . . , j, we have,y −

n∑
i=1

xi


2

≤

j∑
i=1

(#S+

i − 1)(diam(Si))2

4
≤ D2m/4,

where the second inequality follows because the union of the
sets S+

1 , . . . , S+

j contains no more than m + j elements and so∑j
i=1(#S

+

i − 1) ≤ m. Hence, we may conclude thaty −

n∑
i=1

xi

 ≤ D
√
m/2. □

Proof of Theorem 3.2. Since y ∈ co(S1 + · · · + Sn) =coS1 +

· · · +coSn, there exist zi ∈coSi, i = 1, . . . , n, such that y =

z1 + · · · + zn.
Fix any ε > 0. By the definition of the inner diameter, for

each i = 1, . . . , n, there is Ti ⊆ Si such that zi ∈coTi and
diam(Ti) ≤indiam(Si) + ε.

Hence, y = z1 + · · ·+ zn ∈coT1 + · · ·+coTn = co(T1 + · · ·+ Tn)
and so, letting D = max(diam(T1), . . .diam(Tn)), Theorem 3.1
implies that there exist xi ∈ Ti ⊆ Si and yi ∈coTi ⊆coSi, i =

1, . . . , n, such that y =
∑

i yi, yi = xi for all but at most m indices
i, andy −

n∑
i=1

xi

 ≤ D
√
m/2.

Setting d = max(indiam(S1), . . .,indiam(Sn)), we have D ≤

d + ε and so,y −

n∑
i=1

xi

 ≤ (d + ε)
√
m/2.

Letting ε → 0 and taking convergent subsequences of the
xi ∈ Si and the yi ∈coSi completes the proof. □

Proof of Lemma 3.3. Since 0 ∈ coS, Caratheodory’s theorem
implies that there are m + 1 not necessarily distinct points,
x0, x1, . . . , xm, in S and there are nonnegative λ0, λ1, . . . , λm that
sum to 1 such that

∑m
i=0 λixi = 0. Let X = {x0, . . . , xm}. Since

S ⊇ X , we have diam(S) ≥diam(X). Hence, it suffices to show
that diam(X) ≥

√
2(1 + 1/m).

Without loss of generality, we may assume that λ0 ≥ λi for
every i = 0, 1, . . . ,m. In particular, λ0 > 0.

9 Using once again that the sum of the convex hulls of any finite number of
sets is equal to the convex hull of their sum.

For any xi ∈ X ,

∥xi − x0∥2
= ∥xi∥2

− 2xix0 + ∥x0∥2

= 2 − 2xix0,

where the second equality follows because ∥xi∥ = ∥x0∥ = 1.
Since

∑m
i=0 λixi = 0, we have

m∑
i=1

λixix0 = −λ0 ∥x0∥2
= −λ0.

Hence there is j ∈ {1, . . . ,m} such that λjxjx0 ≤ −λ0/m < 0,
which implies that −xjx0 ≥

(
λ0/λj

)
(1/m) ≥ 1/m, since λ0 ≥ λj.

Hence,

(diam(X))2 ≥
xj − x0

2
= 2 − 2xjx0

≥ 2 + 2/m. □

Proof of Proposition 3.4. We first prove the lemma for finite
subsets S of Rm. So, let S be any nonempty finite subset of Rm and
suppose that rad(S) = ρ. By the definition of rad(S) and because
S is finite, there exists y∗

∈ Rm such that maxx∈S ∥y∗
− x∥ = ρ.

Let S∗
= {x ∈ S : ∥y∗

− x∥ = ρ}.
We claim that y∗

∈coS∗. To prove this claim, let us suppose
not. Then, by the separating hyperplane theorem, there is p ∈ Rm

such that py∗ < px for every x ∈ S∗. But then

d
dt

⏐⏐⏐⏐
t=0

y∗
+ tp − x

2
= 2(py∗

− px) < 0, for every x ∈ S∗,

from which we can conclude, since S is finite, that there is a small
t∗ > 0 such that maxx∈S ∥y∗

+ t∗p − x∥ < ρ for every x ∈ S. But
this contradicts rad(S) = ρ and proves the claim.

Let Ŝ = (1/ρ)(S∗
− {y∗

}). Then 0 ∈coŜ and ∥x∥ = 1 for every
x ∈ Ŝ. Consequently, by Lemma 3.3, diam(Ŝ) ≥

√
2(1 + 1/m).

Moreover, since diam(Ŝ) = diam((1/ρ)(S∗
− {y∗

})) = (1/ρ)
diam(S∗), this implies that diam(S∗) ≥

√
2(1 + 1/m)ρ =

√
2(1 + 1/m)rad(S). Finally, since S ⊇ S∗ implies that diam(S) ≥

diam(S∗), we obtain diam(S) ≥
√
2(1 + 1/m)rad(S), proving the

lemma for finite S.
To prove the lemma for nonempty compact S, choose any

ε > 0 and let S ′ be a finite ε-dense subset of S.10 Let us first
show that rad(S) ≤ rad(S ′) + ε.

By the definition of rad(S ′), there is y′
∈ Rm such that

supx∈S′

y′
− x

 =rad(S ′). Therefore, by the definition of the
radius of S, rad(S) ≤ supx∈S

y′
− x

. By the compactness of S,
there is x∗

∈ S such that supx∈S

y′
− x

 =
y′

− x∗
. And since

S ′ is ε-dense in S, there is x′
∈ S ′ such that

x′
− x∗

 < ε. Hence,

rad(S) ≤ sup
x∈S

y′
− x

 =
y′

− x∗


≤
y′

− x′
 +

x′
− x∗


≤ sup

x∈S′

y′
− x

 + ε = rad(S ′) + ε,

where the second inequality is the triangle inequality, and the
third inequality follows because x′

∈ S ′.
By what we have already shown for finite sets, diam(S ′) ≥

√
2(1 + 1/m)rad(S ′). Hence, diam(S) ≥diam(S ′) ≥

√
2(1 + 1/m)

rad(S ′) ≥
√
2(1 + 1/m)(rad(S) − ε), where the first inequality

follows because S ⊇ S ′. Taking the limit as ε → 0 gives the
desired result.

10 Recall that one set is ε-dense in another if for every point in the second
set there is a point in the first set that is within distance ε of it.
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That the inequality in Proposition 3.4 can be achieved as an
equality for any m has already been demonstrated in the main
text (see the end of Section 3.1). □
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