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ABSTRACT

This review assesses harmful algal bloom (HAB) modeling in the context of climate change, examining
modeling methodologies that are currently being used, approaches for representing climate processes, and
time scales of HAB model projections. Statistical models are most commonly used for near-term HAB
forecasting and resource management, but statistical models are not well suited for longer-term
projections as forcing conditions diverge from past observations. Process-based models are more
complex, difficult to parameterize, and require extensive calibration, but can mechanistically project HAB
response under changing forcing conditions. Nevertheless, process-based models remain prone to failure
if key processes emerge with climate change that were not identified in model development based on
historical observations. We review recent studies on modeling HABs and their response to climate
change, and the various statistical and process-based approaches used to link global climate model
projections and potential HAB response. We also make several recommendations for how the field can
move forward: 1) use process-based models to explicitly represent key physical and biological factors in
HAB development, including evaluating HAB response to climate change in the context of the broader
ecosystem; 2) quantify and convey model uncertainty using ensemble approaches and scenario planning;
3) use robust approaches to downscale global climate model results to the coastal regions that are most
impacted by HABs; and 4) evaluate HAB models with long-term observations, which are critical for

assessing long-term trends associated with climate change and far too limited in extent.
1. Motivation and background

Climate change is expected to affect the frequency, magnitude, biogeography, phenology, and toxicity of
harmful algal blooms (HABs) (Moore et al. 2008; Hallegraeff 2010; Anderson et al. 2015; Wells et al.
2015). Projecting likely responses of HABs to climate change is critical for informing the development of
societal response strategies to mitigate their impacts and requires development and application of various
types of models. Models used to project HAB response range from simple conceptual exercises to
complex, highly resolved dynamical systems (Anderson et al., 2015). Regardless of model complexity,
their efficacy depends on how well fundamental physical, biological, and biogeochemical processes are
represented, as well as the ability to prescribe accurate initial conditions (i.e., model starting conditions)
and model forcing at boundaries (i.e., time series of external variables essential to run the model). The
challenges associated with representing physical and biological processes important for HAB
development and prescribing accurate forcing vary greatly by region, HAB species, and time horizon, and
inevitably introduce some level of uncertainty in model output. HAB scientists have struggled with how
to address this uncertainty, as the complexity and multitude of processes that influence HAB response can

be overwhelming (e.g., Wells et al. 2015). This difficult conundrum of anticipating climate change effects
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but struggling with how to evaluate potential HAB response has been described as a “formidable
predictive challenge” (Hallegraeff 2010), and has inhibited the development of actionable projections to

increase resilience to future HABs.

The term “harmful algal bloom” applies to a diverse subset of algae that cause a variety of negative
impacts when they bloom, including human illness from eating contaminated food, drinking contaminated
water, or breathing harmful aerosols, fish kills, and environmental degradation due to high biomass
(Erdner et al. 2008). Major types of HABs include toxin-producing pelagic diatoms (e.g., Pseudo-
nitzchia), dinoflagellates (e.g., Alexandrium, Pyrodinium, Gymnodinium, Dinophysis, Karenia), and
cyanobacteria (e.g., Microcystis, Nodularia); toxin-producing benthic dinoflagellates (e.g.,
Gambierdiscus); fish-killing raphidophytes (e.g., Heterosigma); and high-biomass events (e.g.,
Phaeocystis, Ulva). Consistent with this diversity in HAB organisms, the expected HAB response to
climate change is also diverse. The sensitivity and even the sign of the response of HABs to climate
change may vary depending on the organism and the setting. For example, increased temperature may
increase growth rates of organisms that are currently at the poleward limit of their thermal habitat at a
particular location, but may also result in some locations becoming too hot to support growth (e.g., Kibler

et al. 2015).

A number of in-depth reviews of climate change impacts on HABs identify a range of potential responses
to environmental factors including warming temperature, increased stratification, altered nutrient
availability and composition, light intensity, and ocean acidity (Moore et al. 2008; Hallegraeff 2010;
Anderson et al. 2015; Wells et al. 2015). HAB response may also depend on how climate change will
affect zooplankton grazers or microbial pathogens that limit their growth, which is particularly difficult to
characterize since grazer activity may also respond to the same changes in environmental factors that
determine HAB response and are also likely to be regionally specific (Wells et al. 2015). Many of the
projected responses of HABs to changing environmental factors rely primarily on theory or laboratory
studies that isolate particular organisms or processes. The derived rates and responses from these culture
studies do not always correspond with those observed in the field, potentially reflecting variation among
isolates, effects of competition, and/or interactions among factors that occur in the environment (Fu et al.
2012; Wells et al. 2015). Consequently, these interactions are typically not well parameterized in HAB
models, if they are included at all. This may lead to greater uncertainty in model projections if
interactions emerge or become more important to HAB formation in the future as a result of changing

climate conditions.

Directly linking changes in observed HAB distribution, frequency, or intensity to shifts in climatic

forcing remains difficult (Moore et al. 2008; Wells et al. 2015), but examples are emerging as time series
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of observations accumulate. Identifying HAB responses (or lack thereof) to anomalous climate events or
natural climate cycles provide the best opportunities for formulating hypotheses as to how HABs might
respond to climate change (Trainer et al., 2019 this special issue). For example, anomalously warm water
associated with the 2014-16 northeast Pacific marine heatwave was associated with an intense,
widespread Pseudo-nitzschia bloom along the U.S. West Coast beginning in spring 2015 that may have
been fueled by the combination of higher growth rates at warmer temperatures and nutrients supplied by
upwelling (McCabe et al. 2016). Increased closures of shellfish harvesting due to domoic acid from
Pseudo-nitzschia and saxotoxin from Alexandrium were linked with anomalously warm sea surface
temperatures off the coast of Oregon during a positive phase of the Pacific Decadal Oscillation (PDO) and
strong El Nifio event (McKibben et al. 2015). In the Rias Baixas along the Northwest Iberian Peninsula, a
decrease in upwelling intensity over the past 40 years was linked to increased time scales for flushing,
which corresponded with increased Dinophysis occurrence and shellfish harvest closures (Alvarez-
Salgado et al. 2008). The frequency and magnitude of Pseudo-nitzschia blooms off the coast of Southern
California was linked to the PDO and more directly with the North Pacific Gyre Oscillation (NPGO), but
the correlations were weak and exact mechanisms unclear (Sekula-Wood et al. 2011). Long time series
also reveal systems that are not responsive to climate regimes. For example, warm water anomalies in
Puget Sound (Washington State) generated during El Nifio winters do not persist into the seasonal
window (summer and fall) when blooms of the dinoflagellate Alexandrium typically occur. Because of
this mismatch in timing, no robust relationship exists between levels of paralytic shellfish toxins in Puget
Sound shellfish and an index of the El Nifio-Southern Oscillation (ENSO) (Moore et al. 2010). The use of
models prognostically to represent mechanistic links between climate and HABs enables some hypotheses

of HAB response to future climate change to be tested and remains a research priority.

Most models used to project HAB response at climate time scales (i.e., decades to a century) were
initially developed and applied over shorter time scales (i.e., several days to a season) to provide
hindcasts or forecasts of present conditions. Other reviews have richly detailed the current state of HAB
modeling over shorter time scales (Glibert et al. 2010; McGillicuddy 2010; Flynn and McGillicuddy
2018; Franks 2018), so modeling applications of present conditions will be addressed here only in the
context of how such models might be applied to understand future conditions. As a simplification, most
HAB models can be characterized as being primarily statistical or process-based. Statistical models are
developed from relationships between input and response variables in observations. While they have
proven effective for hindcasts and near-term forecasts, the statistical relationships become less predictable
as forcing conditions shift outside the range of past observations (Flynn and McGillicuddy 2018).
Process-based models may be more robust for projecting HAB response under novel environmental

conditions, but this assumes that the dominant processes remain unchanged under a different set of
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forcing conditions. Additionally, models of response to climate change are dependent on the ability to
predict forcing conditions such as water temperature, wind strength, or river discharge at spatial and
temporal scales relevant to the processes represented in the HAB model. The uncertainty in the
environmental conditions increases greatly with the time scale of forecast, in part because of greater
uncertainty in the global circulation models (GCM) at longer time scales but also because the
unpredictability of human behavior becomes a greater factor. For example, representing the source of
nutrients that might fuel a bloom or affect toxicity could depend on resolving shifts in upwelling wind
intensity or hydrologic response to precipitation events from local watersheds, but changes in land use or
direct anthropogenic nutrient inputs may have even greater effects on regional nutrient concentrations
(Glibert et al. 2010). The paucity of successful HAB models at even interannual time scales and the
uncertainties in predicting future environmental conditions make extending meaningful projections to

climate time scales challenging.

This review examines the state of HAB modeling in the context of climate change. We assess the key
components of modeling HAB response to climate change, starting with an overview of the HAB
modeling methodologies currently in use, reviewing studies that have examined HAB response to climate
change, and offering recommendations on how to move forward by incorporating approaches used in the
broader climate and ecosystem modeling communities. Considerations include the spatial resolution, time
horizon, and forecast accuracy of HAB models developed in the present climate, representation of future
forcing conditions that govern bloom development and transport, and an assessment of whether the
models developed and calibrated under present forcing conditions can adequately represent future

response, or if additional factors might emerge to dominate bloom dynamics.
2. Modeling HABs in the present climate

Most HAB models currently in use for present climate conditions focus on either hindcasts in process
studies or near-term (a few days to seasonal) forecasts for operational and management uses. These
existing HAB models are the most likely bases for projecting future response to climate change. They use
a wide range of methodologies, in part reflecting the diversity of HAB species, the availability of data for
model forcing or calibration, and differences in motivation for model development. Here we broadly
classify HAB models as those that apply statistical (or empirical) techniques, process-based formulations,
or merge multiple approaches (i.e., hybrid models). The categorizations are not meant to be rigid. Other
key model attributes could instead be used to distinguish methodologies, such the level of complexity
from a single organism to full ecosystem, the degree of spatial and temporal resolution, the time scales of
simulation (event, seasonal, interannual, or longer), and whether models are diagnostic hindcasts or

prognostic forecasts. Nevertheless, we find our categorization of the current modeling approaches
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facilitates thinking about how each of the methodologies might be adapted to assess HAB response to
climate change. A brief summary of the modeling studies reviewed here is given in Table 1, including

this categorization, HAB organism, geographic region, and model type and time scales.
2.1 Statistical models

Statistical models use observations to relate key forcing variables (e.g., a nutrient concentration,
temperature, upwelling wind index, or time of year) to relevant measures of HABs (e.g., the timing of
HAB events or the abundance, toxicity, and spatial distributions of HAB species). A wide range of
forcing variables are typically considered during model development, some of which may be interrelated
(e.g., temperature and time of year, salinity and river discharge). While the choice of forcing variables is
often guided by our understanding (theoretical or empirical) of the underlying physical and biological
processes, statistical models do not attempt to represent those processes directly, only the cumulative
effects of them. Statistical models require extensive observations to develop robust relationships between
forcing variables and HAB response. As such, some of the most compelling examples come from regions
with long records of HAB monitoring and investigation. Examples include Pseudo-nitzschia and
Dinophysis blooms off the Iberian Peninsula and Ireland (Raine et al. 2010; Cusack et al. 2015; Diaz et al.
2016), Pseudo-nitzschia off the U.S. West Coast (Anderson et al. 2009; Lane et al. 2009), Alexandrium in
Puget Sound and the U.S. Northeast (Moore et al. 2009; Ralston et al. 2014), Karenia in the Gulf of
Mexico (Stumpf et al. 2009), and multiple HABs on the Northwest European Shelf and in Chesapeake
Bay (Anderson et al. 2010; Brown et al. 2013). Statistical models are typically used in hindcasting, but
may provide nowcasts if real-time observations of forcing variables are available or limited forecasts if
lags are built in to the model. Alternatively, output from operational physical models can be used in place
of observations to provide input for statistical models, enabling near-term forecasts of HABs. A wide
variety of statistical approaches have been used to model HABs in the present climate, ranging from
simple linear regressions to more complex analyses using artificial neural networks, fuzzy logic, or
Bayesian inference. Here, we highlight a few approaches that have been used to predict the timing and

distribution of HABs.

Statistical analysis of observational data sets that record HAB response to changes in environmental
forcing at climate-relevant time scales can be informative for identifying forcing variables that are climate
sensitive. Past performance is no guarantee of future results, but multi-decadal observations provide
evidence at time scales relevant to climate change of HAB variation with forcing conditions. For
example, in Puget Sound (Washington State), optimal conditions for Alexandrium catenella blooms —
warm air and water temperatures in combination with low river discharge and wind speed — have become

more common over the past 30 years, as have the frequency and duration of toxic blooms (Moore et al.
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2009). In many cases, identification of a “window of opportunity” with increased risk for bloom
development and toxin accumulation, and potential alterations to that window of opportunity with climate
change, is a primary goal of HAB modeling rather than representing specific events or the phytoplankton
community. Another example is a study of a 30-year record of Dinophysis acuta in the rias of northwest
Spain that used a general additive model (GAM) based on upwelling intensity, thermocline depth, tidal
range, and inoculum strength to predict cell abundances. The analysis did not find evidence for increasing
trends in bloom frequency or intensity, nor clear relationships to long-term climate indices like the North
Atlantic Oscillation (NAO) (Diaz et al. 2016). The study did, however, find that an exceptional bloom in
1989-1990 appeared to be associated with high positive anomalies in sea surface temperature (SST) and
the NAO index. That analysis did not extend their GAM to climate time scales. To do so effectively, a
GCM would need to represent the combination of upwelling and solar heating that are ideal for HAB
development. These ideal physical conditions occur relatively briefly and infrequently, and remain
challenging to reproduce in finer scale regional models that would be needed to adequately represent the

blooms (Ruiz-Villarreal et al. 2016).

Forcing variables that represent dominant physical and biogeochemical processes can serve as the basis
for forecasting the timing of HABs. For example, in southwestern Ireland, stratified, wind-driven
circulation during summer months can bring harmful Dinophysis spp. from the continental shelf into
coastal embayments where they can cause toxic events (Raine et al. 2010). A simple model based on the
5-day weather forecast for cross-shore wind and time of year was used to predict Dinophysis import
events and Diarrheic Shellfish Poisoning (DSP) toxicity, and these model results were used to guide near-
term shellfish resource management. In Monterey Bay (California), a logistic regression model
incorporating multiple forcing factors including time of year, chlorophyll, silicic acid, water temperature,
upwelling index, river discharge, and nitrate was developed from 8 years of observations and used to
predict the probability of Pseudo-nitzschia blooms (Lane et al. 2009). Similarly, Pseudo-nitzschia blooms
off the coast of Ireland were linked to upwelling, and a statistical model using a wind index, water
temperature, and recent cell densities helped predict the timing, but not intensity, of bloom events

(Cusack et al. 2015).

Statistical models that spatially resolve forcing variables can provide information on HAB distribution
based on habitat suitability for the causative organism. For example, a regression model using satellite
ocean color and sea surface temperature (SST) detected 98% of toxic Pseudo-nitzschia blooms in Santa
Barbara Channel (California) with less than 30% false positive cases (Anderson et al. 2009). In Lake Erie,
satellite imagery of Microcystis spp. bloom extent was correlated with river discharge and nutrient

loading, and could be used to generate a seasonal forecast because of the several month lag between input
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variables and bloom response (Stumpf et al. 2012). In northwest Spain, the presence or absence of
Pseudo-nitzschia blooms in several coastal embayments was linked to location, day of year, temperature,
salinity, upwelling index, and, most importantly, recent bloom occurrence using a support vector
machine, which is a common machine-learning algorithm (Gonzalez Vilas et al. 2014). In Chesapeake
Bay, a Generalized Linear Model (regression-based approach allowing for both Gaussian and non-
Gaussian distributions) was developed with 22 years of cell abundance data and used to make hindcast
maps of Pseudo-nitzschia bloom probability based on factors including time of year, temperature, salinity,
nutrients (phosphate, nitrate, silicic acid), river discharge, dissolved organic carbon, and Secchi depth
(Anderson et al. 2010). Another approach in Chesapeake Bay used output from a physical model as input
for empirical habitat suitability models to make near-term forecasts of HAB occurrence (Brown et al.
2013). The methodologies (neural network or logistic regression) and input variables (time of year,
temperature, salinity, chlorophyll, nutrients, Secchi depth, total suspended solids, dissolved oxygen) for
the habitat models varied for the three HAB species (Karlodinium veneficum, Prorocentrum minimum,
and Microcystis aeruginosa) modeled. This approach relied on both physical model results and extensive

HAB observations for development of the empirical model.
2.2 Process-based models

Process-based (or mechanistic) models use mathematical equations to explicitly simulate key physical and
biological processes that govern HABs and HAB outcomes. Their development requires detailed
knowledge of critical life history characteristics and the factors that modulate them as well as transport
pathways. As such, they require large amounts data to represent the many processes in the system and can
be limited by their parameterizations of rates of growth, mortality, mobility, toxin production, and other
key processes that are typically derived from simplified laboratory studies of isolated strains. In situations
where observational or laboratory data are limited, process-based models instead may be informed by
data on similar organisms or may be limited to focusing on a subset of processes that are particularly
important to bloom dynamics. Because process-based models are more comprehensive than statistical
models, they take more time and effort to develop and are more computationally expensive to run.
Process-based models can be difficult to constrain given the nonlinearity and intermittency of HABs, but
they are usually more transferable across regions because of their explicit representation of physical and

biological processes.

In systems where transport processes are negligible, models based only on biological processes have
utility. For example, in Nauset Estuary on Cape Cod (Massachusetts), a small embayment with limited
exchange and long residence times, interannual variability in timing of 4. catenella blooms was

reproduced with a simple model based temperature-dependent growth rates (Ralston et al. 2014). In
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contrast, for many HABs physical transport provides the dominant control on bloom distribution. For
these cases a common approach is to use velocity fields from a circulation model to advect particles that
are representative of the HAB. For example, the accumulation of Dinophysis acuminata in the Bay of
Biscay at temperature and salinity gradients associated with river plumes, and subsequent dispersion of
the bloom by winds and tides, was well represented by passive particle tracking and circulation model
hindcasts (Velo-Suarez et al. 2010). A passive particle tracking approach was also used in a forecast
system for Dinophysis for the rias (drowned river valleys) of the northwestern Iberian coast (Ruiz-
Villarreal et al. 2016). Particle tracking similar to that used for oil spills was used for a Microcystis
aeruginosa bloom in western Lake Erie by linking satellite ocean color observations and a hydrodynamic
model, and importantly the study included quantitative skill assessment of the predictions relative to

persistence, or no influence of transport on the bloom (Wynne et al. 2011).

More commonly, both physical and biological processes play important roles in HAB development and
they cannot be treated independently. Individual-based models (IBMs), like passive particle tracking, can
be run within a circulation model or offline using model output to represent advection by currents, but
IBMs also can incorporate biological processes specific to the organism of interest. For example, an IBM
with growth dependent on temperature, mortality dependent on shear and population density, and
phototaxic vertical migration was used to hindcast Karenia mikimotoi blooms along coastal Scotland
(Gillibrand et al. 2016). Results showed a strong dependence on bloom source region and uncertainty in
the biological rate parameters, making the model less practical for forecasts. In the Gulf of Mexico, an
IBM of Karenia brevis that included vertical migration based on internal nutrient ratios was used to

identify potential source regions by running simulations backwards in time (Henrichs et al. 2015).

Rather than IBMs, HAB growth, mortality, and redistribution can also be represented as cell
concentrations within circulation or biogeochemical models. For example, a model of A. catenella that
represents cyst germination, growth dependent on temperature, salinity, nutrients, and light, and mortality
has been used in diagnostic hindcasts and operational forecasts in the Gulf of Maine (Stock et al. 2005; Li
et al. 2009), and a related model that also imposed diel vertical migration was used to simulate 4.
catenella in an estuary (Ralston et al. 2015). Those models treated the HAB as independent of the broader
plankton community by simulating only the species of interest and prescribing the nutrient field based on
observations rather than having it evolve dynamically. A more complete ecosystem, biogeochemical, and
circulation model of the northwest European shelf incorporated multiple phytoplankton, zooplankton, and
bacteria functional groups and benthic-pelagic coupling to simulate high biomass events, providing

predictions after calibration to satellite ocean color (Allen et al., 2008).
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In general, the many biological processes that contribute to HAB development remain poorly defined and
present major sources of uncertainty in process-based models. Passive particle tracking models ignore this
and IBM or Eulerian-based hindcasts typically calibrate model parameters within acceptable ranges that
optimally correspond to observed blooms. However, models used to generate forecasts that have
operational utility cannot rely on retrospective calibration, and so many adopt hybrid approaches that use
physical models to predict transport processes along with empirical models to integrate biological
response. For example, near-term forecasts for Pseudo-nitzschia in Bantry Bay in southwest Ireland were
based on the combination of a passive particle tracking model to represent cross-shore advection by
upwelling, a circulation model, satellite observations, and in-situ sensors to characterize local water
properties, and recent toxicity reports (Cusack et al. 2016). Similarly, transport of Pseudo-nitzschia from
formation regions offshore to the coast depending on upwelling or relaxation along the Pacific Northwest
coast of the U.S. was simulated with particle tracking, and the rate of false positives for toxicity events
was reduced by incorporating thresholds for overall phytoplankton abundance from an ecosystem model
(Giddings et al. 2014). A hybrid approach using satellite SST and ocean color along with particle tracking
was used to explain accumulations of Karenia spp. in the eastern Gulf of Mexico (Stumpf et al. 2008),
although bloom forecasts are based primarily on satellite data (Stumpf et al. 2009). Satellite algorithms
for bloom identification are important components of many hybrid systems for early warning, using either
overall levels of chlorophyll-a (Stumpf et al. 2008; Cusack et al. 2016) or specific spectral response like
for Microcystis in Lake Erie (Stumpf et al. 2012). The utility of satellite data in hybrid models depends on
the HAB, as for example in Europe it was found to be useful for early warning of Karenia mikimotoi and

Lepidodinium chlorophorum but not Dinophysis (Maguire et al. 2016).
3. Modeling HABs in a changing climate — what has been done?

Projecting HAB response to climate change involves extending the simulation period of existing HAB
models to decades, centuries, or potentially paleo time scales for retrospective climate analyses. Data
describing future forcing conditions can be obtained from GCM simulations and used as input variables to
HAB models. GCMs forecast ocean circulation and water properties under future climate scenarios
informed by various greenhouse gas concentration trajectories. These scenarios describe a range of
possible futures based on greenhouse gas emissions, economic development, population growth, and
other factors. The output generated by GCMs quantify changes in physical and biogeochemical conditions
and can be combined with statistical relationships from past observations to project changes in HABs.
Additional model layers to represent climate change effects outside of the ocean, such as watershed
hydrology or land use, can also be integrated. This offers a relatively simple approach for examining

climate impacts on HABs, but statistical models become increasingly error-prone when projecting into
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conditions different from the training data set (Flynn and McGillicuddy 2018). This is because the
statistical relationships may represent the cumulative effect of multiple processes or interactions that
cannot be extrapolated, and also because thresholds or tipping points that were not identified or
characterized by prior observations may be exceeded in the projections. Process-based models are less
prone to these potential issues, but they represent only a portion of the physical and biological complexity
due to computational constraints and data limitations, and so even process-based models validated under
present conditions may not simulate many of the hypothesized responses to climate change. Here we
discuss some of the approaches for using statistical and process-based HAB models to project HAB
response to climate change. The different approaches vary in complexity in terms of how many forcing

variables are considered and how they are derived.
3.1 Statistical models

A statistical modeling approach was used to link HAB observations in Puget Sound (Washington State)
with physical observations and climate model forecasts to evaluate long-term shifts in environmental
conditions favorable for blooms (Moore et al., 2011). Based on a 15-year record of paralytic shellfish
poisoning toxins in shellfish tissues, 4. catenella blooms were associated with warm air and water
temperatures, low streamflow, weak winds, and small tidal height variability. The relationship was
extrapolated back in time using observations of the forcing variables, and the annual window of favorable
environmental conditions for A. catenella was found to have increased from 1967 to 2006, with two step-
like increases occurring in 1978 and 1992 when higher annual values were attained compared to previous
years. The 1978 step change may have been related to the reversal of the Pacific Decadal Oscillation
(PDO) from cool to warm phase in 1977. The 1992 shift did not directly correspond with regional climate
indices, and a lagged response to a regime shift to warmer summer SST off the Washington coast in 1989
could not be distinguished from natural variability. Projections of the statistical relationship using output
from a GCM indicated that by the end of the 21* century, the duration of favorable environmental

conditions for 4. catenella would increase by about 2 weeks annually on average (Moore et al., 2011).

Another statistical approach to climate response defined habitat zones for the shelf sea of northwest
Europe based on temperature, salinity, depth, and stratification from regional climate projections, finding
a general northward shift in HAB species composition (Townhill et al. 2018). Species distribution
modeling based on current distributions was projected forward using a maximum entropy approach for
multiple HAB species. On the shelf, Dinophysis acuta and Gymnodinium catanatum had the greatest
northward shift of 200-500 km by 2055, while optimal habitat suitability for three species (4. ostenfeldii,
A. minutum, and P. australis) shifted southward. The southward shift was attributed to factors in addition

to temperature change, including how the regional bathymetry affects habitat suitability.



350
351
352
353
354
355
356

357

358
359
360
361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

12

Models of HAB response have also been coupled to models of future changes in freshwater or nutrient
delivery from rivers, which are often not resolved in global models. For example, a Bayesian network
model was used to link GCM results with process-based models of watershed hydrology and a lake
ecosystem model to project climate impacts on cyanobacteria biomass in Lake Vansje (Norway) (Moe et
al. 2016). The Bayesian approach allowed assessment of multiple land use scenarios and incorporation of
monitoring data and expert knowledge in the probabilistic links between nodes. Results suggest that the

benefits of better land-use management were partly counteracted by future warming.
3.2 Process-based models

Temperature is a keystone parameter of climate change, and warming of the sea surface is apparent in
many regions in observational records from satellites and in-situ measurements. Because temperature is a
strong determinant of growth, changes in temperature can be used to approximate changes in potential
growth rates of HAB organisms. Warmer waters may already be affecting bloom dynamics. For example,
sea surface temperature records from 1982 to 2016 were combined with laboratory-based growth rates for
A. catenella (fundyense) and D. acuminata (Gobler et al. 2017). In the North Atlantic, calculated mean
growth rates increased by about 0.01 d! over the study period and the duration of favorable growth
conditions increased by 2 to 3 weeks. In the North Pacific trends were less clear, but some regions (the
Salish Sea and coastal Alaska) were identified as having increasingly favorable growth conditions and

HAB prevalence.

Temperature is an important forcing variable in nearly every HAB model of climate response reviewed
here. A number of studies use projected changes in sea surface temperature at certain locations to
approximate changes in growth rates and identify expansions (or contractions) of optimal growth
windows for HAB organisms. The windows are defined as the number of days each year when
temperatures are projected to be within thresholds that support optimal growth (e.g., Moore et al. 2008).
For example, an ensemble of GCM projections were used to quantify changes in temperature-dependent
growth rates of Gambierdiscus and Fukuyoa species, dinoflagellates associated with ciguatera fish
poisoning (CFP), at six sites in the Gulf of Mexico through the end of the 21* century (Kibler et al. 2015).
The results suggest increased abundance and diversity of Gambierdiscus spp. and greater CFP risk in the
Gulf of Mexico, but a shift in the species composition at higher temperatures suggests lower overall risk
in the Caribbean. A similar ensemble approach was used to calculate shifts in the timing of temperature
growth windows for A. catenella and Vibrio spp. bacteria in Puget Sound and Chesapeake Bay, with the
A. catenella bloom period predicted to start 1 month earlier and end 1 month later (Jacobs et al. 2015). In
addition to changes in bloom timing, the study identified geographic shifts in optimal temperature zones

along coastal Alaska for Vibrio, which while not a HAB, presents a methodology that could be applied in
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HAB studies to examine potential latitudinal shifts in species distribution without directly simulating

HAB dynamics.

Potential shifts in the timing of optimal growth windows as well as the spatial distributions of HABs can
be evaluated by utilizing spatially resolved information on future forcing conditions from GCMs or
regional models of climate change rather than projections at a single location. For example, in Puget
Sound, regional scale atmospheric, ocean, and hydrologic models were combined to represent multiple
potential influences on optimal temperature (and salinity) windows for growth of A. catenella (Moore et
al. 2015). Comparing model results for circa-1990 and circa-2050, atmospheric heating was projected to
increase the duration of favorable growth conditions by 30 days per year with the biggest increases in
HAB-favorable conditions occurring in the North Basin and Strait of Juan de Fuca. Changes in the timing
and magnitude of river discharge and upwelling on temperature and salinity were found to have less effect
on calculated growth rates. The study did not address potential changes in nutrient loading due to

upwelling or anthropogenic sources.

In addition to HAB growth rates, warming temperature may also be expected to increase growth rates of
some grazers that prey on HAB species, including zooplankton, benthic invertebrates, and fishes.
Moreover, predator-prey interactions and the response to changing environmental conditions are more
complex than species growth rates, as changes in the distribution, abundance, community composition,
toxicity, and nutritional quality of HAB species may all depend on temperature and can affect the relative
balance of growth rates and loss from predation, and thus bloom development (Wells et al. 2015).
Representing quantitatively the many factors contributing to effects of predation on HAB growth and
decline, including temperature, remains a major challenge for process-based models in both current and
climate change scenarios. To this point, most of the modeling of temperature impacts has focused on

HAB growth rates alone rather than assessing the potentially differential responses of grazers and prey.

The above examples directly link changes in temperature to temperature-dependent growth rates of HAB
organisms to examine changes in bloom timing and spatial distribution. Some other examples also
consider salinity, but the relatively small changes in salinity projected in the study regions meant that the
growth responses were primarily driven by changes in temperature. Nutrients are another forcing variable
that strongly determine growth rates and toxicity of HAB organisms and are projected to be altered by
climate change. For example, a model of the mixotrophic dinoflagellate Karlodinium veneficum and its
algal prey, Rhodomonas salina, was used to simulate growth under various temperature and nutrient
stoichiometry scenarios (Lin et al. 2018). While these scenarios were not directly linked to GCM output
of future climate change scenarios, they were informative of future HAB response and suggest that

warmer, wetter springs combined with increased nitrogen inputs to Chesapeake Bay may be more
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favorable to HAB development. In contrast, GCM output was used as boundary conditions for a coupled
oceanographic and biogeochemical model with four classes of phytoplankton, three for zooplankton, one
for bacteria, nitrogen and phosphorous in different forms, and benthic mineralization on three regional
grids at 1/10-degree resolution to assess conditions for Prorocentrum and Karenia spp. around 2100
(Glibert et al. 2014). The study defined regions of suitable habitat or propensity for toxicity based on
temperature, salinity, and nutrients for two time slices: the period 1980-1990 for the present day and
2090-2100 for the future climate scenario. Model results showed expansion both spatially and temporally
of both species on the northwest European shelf and northeast Asia, and relatively little change in

southeast Asia.
4. Modeling HABs in a changing climate — what should be done?

The fact that relatively few modeling studies quantitatively project how climate change may affect the
distribution and abundance of HAB populations or toxicity is symptomatic of the challenges associated
with this important task. Challenges associated with understanding the biological response of HABs to
climate change, as well as suggestions for best practices that should be employed to address them, are
discussed in Wells et al. (2015); however, little attention was given to the modeling infrastructure needed
to project HAB response to climate change. Generating useful projections of HAB response to climate
change will require engagement with other communities that can help refine the representation of future
conditions in HAB models, including climate scientists, marine ecologists, watershed hydrologists,
invasive species biologists, and environmental managers and policy makers (Glibert et al. 2010). Here we
offer several suggestions to improve modeling of HABs in a changing climate, schematically summarized

in Figure 1.
4.1 Use process-based models

Even though there are challenges associated with uncertainty in model parameterizations, nonlinear
feedbacks, and computing power, process-based models have distinct advantages over statistical
approaches for projecting impacts of climate change on HABs. In many cases, data limitations initially
hinder development of process-based models for emergent HABs or regions without many observations,
and so statistical models can be extremely important in the diagnosis of bloom mechanisms and
development of process-based models. Statistical models are often well suited for shorter-term projections
and management applications, particularly when the models incorporate a dominant influence of periodic
forcing like from ENSO or PDO. Importantly for climate change response, process-based models
explicitly represent physical and biological mechanisms involved in HAB development, and so they are

less likely to lose validity when forcing variables are applied that extend outside of periods of historical
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observation. Incorporating multiplicative effects of changes in temperature, nutrient availability, or
stratification (among other factors) into process-based HAB models requires focused, process-oriented
field or laboratory studies that record organism response beyond just abundance, ideally in the context of
the ecosystem response rather than just for individual strains (Flynn and McGillicuddy 2018). Changes in
HAB severity will depend on the cumulative effects of factors including differential responses of
predators and prey, changing nutrient availability, and shifts in transport patterns rather than a simple
parameter dependence from on lab studies. Circulation models can be directly coupled with ecosystem
models to simulate projected physical and biogeochemical changes at climate time scales. This approach
is intrinsic to many earth system models that have been used to examine changes in ecosystem and
nutrient dynamics globally and regionally using various downscaling methods. For HAB models, the
limited understanding of complex predator-prey interactions and competition among classes within the
ecosystem limit our ability to parameterize process-based models (Wells et al. 2015), and should be a

focus of future research.

Process-based models are typically more complex than statistical models. The introduction of additional
processes and parameters may improve model fit, but can also reduce predictive skill if not based on a
robust representation of the underlying processes (Bell and Schlaepfer 2016). Regime shifts, in which the
dominant processes or forcing variables controlling bloom development change in large, abrupt, and
persistent ways, are particularly challenging to model, and additional complexity may increase variability
in the results without incorporating the relevant combination of stressors leading to the regime shift,
particularly if the model is not validated with data independent from the training region and forcing
conditions. HAB models used to assess climate impacts should be rigorously evaluated to identify model
parameters that most sensitively determine model outcomes, and this should guide efforts to simplify
complex models and to focus laboratory and field studies to refine the uncertainty in those key parameters
(Flynn and McGillicuddy 2018). The development of process-based models requires parallel efforts of
laboratory and observational studies to refine key rate parameters and process dependencies, including the
effects of changes to multiple forcing factors changing simultaneously. The applicability of process-based
models is predicated on validation across a broad set of forcing conditions, and so data collection is
particularly critical for in developing models for HABs in regions that have a sparse history of monitoring
and research. Statistical approaches should continue to play an important role in HAB modeling,
particularly for resource management and public health protection over event to seasonal time scales, but

extending statistical models to predict climate change response has limited merit.

4.2 Use an ensemble approach
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An ensemble approach can be used to address the uncertainty that is introduced to long-term projections
of HAB response from a wide range of sources, including HAB or ecosystem model parameterizations,
variability in the climate model forcing (GCM selection, emissions scenario, downscaling approach), and
the stochastic response of non-linear physical-biological interactions within the model system. An
ensemble approach considers multiple model scenarios to quantify how different choices of key input
factors, and potentially within the model formulation as well, affects the uncertainty in model projections.
The selection of scenarios to use in an ensemble approach depends on the particular application and
available resources, but sensitivity testing based on a subset of potential cases can be used to identify
components of the model system that are particularly important sources of uncertainty in the long-term
response. The central tendency (or “most likely” scenario) of the ensemble might be the focus of analysis
and reporting on the modeling, but it may also be informative to select scenarios that encompass the full
range of possible future outcomes. The process used to develop the scenarios and the sensitivity to
various model aspects within the ensemble provide critical context for interpreting the results and for

guiding future research efforts to minimize or mitigate model uncertainty.

HAB models constitute a small subset of the broader array of ocean biogeochemical models, so models
representing similar processes can provide context for assessing climate change response. A common
approach is to couple global or regional circulation models with biogeochemistry models of varying
complexity to project ecosystem response under future climate forcing. The ecosystem response depends
both on the circulation model and the biogeochemical formulation, so generally an ensemble approach
evaluating multiple, independent models with the same set of forcing conditions provides critical context
for evaluating model results. For example, a study using six climate model simulations along with an
empirical model for predicting chlorophyll from physical model fields projected a global increase in
primary productivity of 0.7-8% in response to warming over the 21 century (Sarmiento et al. 2004). In
contrast, analysis of four coupled climate-carbon cycle models projected a global decrease in primary
productivity of 2-20% (Steinacher et al. 2010). The differences between the results were attributed to
differences in the biological model formulations, in that nutrient availability was incorporated in the
coupled model but not directly in the empirical approach. Both studies found large regional variability in
the response to climate change, as well as regional differences in the agreement among the ensemble
members. Model skill varied regionally depending on the model, so appropriately weighting the ensemble
members based on their skill regionally can provide a better solution than a simple average of ensemble
members, and quantifying the inter-model variation provides a valuable measure of the uncertainty in the
region of interest (Steinacher et al. 2010; Stock et al. 2011). Evaluation of model skill for ecosystem
response requires long-term observations, as discussed in greater detail below. For chlorophyll,

identifying observational declines at both regional and global scales required using Secchi depth
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measurements spanning more than 100 years because fluctuations in chlorophyll at the interannual to
decadal time scales were sufficiently large that long-term trends were not robust over the ~30 years of

satellite data (Boyce et al. 2010).

Modeling studies of climate impacts on HABs have typically examined responses at time scales of 50 to
100 years (e.g., Moore et al. 2008; Glibert et al. 2014; Townbhill et al. 2018), as this is when greenhouse
gas concentration trajectories associated with the different potential futures diverge and high emission
scenarios become distinguishable from natural variability. Yet for management and public policy
decisions, characterizing changes in HAB risks at shorter time scales (i.e., decadal) may be more critical.
For physical models, projection of climate response at decadal time scales remains a major challenge
(Zhang and Kirtman 2019). At decadal time scales, both external forcing and internal ocean response can
be dominated by noise, making model response unpredictable. Internal climate variations like ENSO,
AMO, or PDO may dominate responses of key climate variables like upwelling strength or river
discharge, particularly at decadal time scales, swamping trends at century time scales that are more
robustly represented across the suite of climate models. Climate predictability at decadal time scales
varies regionally with the local modes of internal variability, such that some regions have greater
predictability (North Pacific, North Atlantic, Southern Ocean) than others (tropical Pacific) (Zhang and
Kirtman 2019). An understanding of the regional predictability of climate model, including variation
among models, is particularly important for HAB models that are typically only simulating regional

scales at decadal time scales.

Using validation and sensitivity testing to understand uncertainty in HAB models, in addition to the
uncertainty in projections of the physical and biogeochemical conditions, is a critical step prior to
projecting HAB response to climate change. HAB models of present conditions need to include more
thorough assessments of model uncertainty, with ensemble sensitivity studies or more formal means like
Bayesian models that incorporate uncertainty estimates in the results (Anderson et al. 2015), as the
uncertainty compounds when run in climate forecast scenarios. HAB model failures also are instructive
particularly in the context of potential regime shifts with climate change when major shifts in forcing
conditions are not adequately represented in the model setup, as with anomalous conditions that affected

Alexandrium in the Gulf of Maine (McGillicuddy et al. 2011).

Scenario planning is becoming a popular approach for decision-makers to address uncertainty in future
projections and help prepare for conditions that may be substantially different from current conditions
(Star et al. 2016). Scenario planning involves crafting stories about how the world might turn out in the
future, it is not about predicting what will happen. Scenarios are developed around major uncertainties, or

what ifs, in how key parameters m ight change in the future. Scenario planning can combine both
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quantitative and qualitative components, and involve input from researchers as well as stakeholders.
Working through scenarios not only informs the development of societal response strategies to deal with
future HABs, but also helps to understand how socioecological systems work and respond to HABs under
current climate conditions. Benefits from scenario planning include increased flexibility to react quickly
to a changing world, more thoughtful strategic planning and decisions, innovative ideas, early and broad
risk assessment, and increased ability to achieve a common vision (Star et al. 2016). The use of scenario
planning for evaluating HAB response to climate change offers a path forward for addressing some of the
major uncertainties in biological responses identified in Wells et al. (2015) while still providing

actionable projections.
4.3 Use downscaled climate models

Global earth system models typically have spatial resolution too coarse (nominally 1° for CMIP5
generation of climate models) to represent regional variability like tides, river inflows, coastal
topography, or water column structure in detail. Even high resolution global models at 1/12° can’t resolve
features at the scale of the baroclinic Rossby radius (ci/f, where ¢; is the internal wave speed and f'the
Coriolis parameter), which is relevant to coastal upwelling, frontal jets, and buoyant plumes, in more than
90% of the coastal ocean. To get to 70% coverage, 6 times higher resolution would be required (Holt et
al. 2017). Higher resolution regional circulation models provide better model skill for resolving
stratification and variability at seasonal time scales, but linking regional scale models to forcing from
GCMs requires accounting for the coarse resolution and regional biases through downscaling, bias
corrections, and multi-model ensembles (Stock et al. 2011). Resolving physical and biogeochemical
processes at coastal scales is critical for HAB modeling, as the HABs that have the greatest impacts on

fisheries, aquaculture, or through direct exposure typically occur near the coast.

Downscaling from global models can be statistical or dynamical. Dynamical downscaling provides
physically consistent representations of the dynamical system at higher resolution, but it is comparatively
expensive to setup and run the models and remains subject to regional biases in the global models (Stock
et al. 2011). For example, dynamical downscaling was used to model the North Sea at 3 km resolution to
project changes in bottom temperature and salinity, and these physical model fields were used to project
changes in distributions of 75 benthic species (Weinert et al. 2016). The results indicated northward shifts
for about 2/3 of species and southward shifts for the rest, and the downscaled model illustrated the strong
influence of bottom topography on habitat gains and losses. An ensemble of dynamically downscaled
regional models of the Baltic Sea with different nutrient loading scenarios was used to assess hypoxic and
anoxic extent and potential influences of changes in river discharge, air-sea fluxes, and intensified

nutrient cycling (Meier et al. 2011). The variance in biogeochemical response with forcing from three
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physical models with different structures but similar forcing provided a metric of the robustness of the

results relative to model variability.

Statistical downscaling can take various forms, including linear regression, general additive models, and
neural networks, and can link global climate model output variables to variables of interest in a particular
region. Approaches for selecting appropriate downscaling approaches are reviewed elsewhere (e.g.,
Wilby et al. 2004; Haylock et al. 2006). The robustness of the downscaling depends in part on the data
available to develop statistical relationships between predictor and response variables, and it requires
keeping a subset of the observations separate from the training data for validation. Statistical downscaling
also faces limitations when extrapolating into climate conditions that are outside the bounds of the
observational record, as model failures may not be apparent even when using independent validation data

from the same parameter space as the training data (Bell and Schlaepfer 2016).

Various statistical downscaling approaches have been used to link climate model outputs to
biogeochemical models at regional, coastal, or estuarine scales. A constructed analogues approach that
represents sharp geographical gradients and daily variability through linear regressions of model output to
observations (Hidalgo et al. 2008) was used to relate air temperatures from GCMs to water temperature in
the San Francisco Estuary, and thus project climate impacts on an endangered fish species (Brown et al.
2016). Four different downscaling methods were trained on 20 years of observations to downscale air
temperature and precipitation fields from four GCMs to the Susquehanna River watershed to generate
inputs to a water balance model and predict changes in surface salinity and temperature in Chesapeake
Bay (Muhling et al. 2018). Those downscaled salinity and temperature projections were combined with
habitat models for three Vibrio species to predict future increases in the seasonal duration and spatial
extent of the pathogens (Muhling et al. 2017). Several examples using statistical downscaling, bias
correction, and ensemble approaches to model climate change impacts on regional fisheries are examined
in Stock et al. (2011), which details many of the considerations in using downscaled climate models to

drive ecosystem forecasts that are relevant to HAB models.
4.4 Evaluate models with long-term observations

Global climate models are known to have biases and skill that vary regionally, and these can be assessed
by comparison with observation records during GCM model hindcast periods. Observations to evaluate
physical parameters like air temperature or wind speed, and to lesser extent water temperature and
salinity, are far more prevalent than long-term observations of biogeochemical parameters like nutrient or
chlorophyll concentrations. Extended time series of HAB abundance or toxicity that are needed to

evaluate HAB model hindcasts at climate time scales are even rarer. Long-term observations of
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biologically relevant data are critical to identify trends in what are often sparse, patchy distributions
(Ducklow et al. 2009), and they also need to be incorporated into assessments of climate forecasts.
Fisheries surveys are an example of a rich data type that has been used to identify decadal scale variability
associated with the PDO or NAO as well as seasonal to interannual variability with ENSO (Lehodey et al.
2006). Models of climate impacts on fisheries incorporate these long-term records into statistical
relationships between physical fields and the response of the variable of interest, and those relationships
can be continually updated as additional data are collected (Hollowed et al. 2009; Hare et al. 2010). The
Continuous Plankton Recorder (CPR) survey is another observational record that goes back more than
half a century, and it has been used to document shifts in community composition with decreased
abundance of dinoflagellates and increases of some diatoms, including Pseudo-nitzschia, which were
attributed to increased sea surface temperatures and stronger stratification (Hinder et al. 2012). CPR data
were used to identify increases in warm-water phytoplankton and zooplankton species and decreases in
cold-water species that were correlated with sea surface temperature in the northeastern Atlantic, air
temperature in the Northern Hemisphere, and the NAO (Beaugrand and Reid 2003). Northward shifts in
community composition in a coupled physical and biogeochemical model that were consistent with CPR
observations were used to diagnose the processes leading to the changes, and showed that in addition to
warmer temperatures that changes in circulation and stratification contributed to the patterns in the model

(Barton et al. 2016).

To be useful for assessing climate impacts on biological systems, models must be able to distinguish the
response to climate variability from internal biological dynamics (Lehodey et al. 2006), and ideally HAB
models of climate response should help in identifying similar responses among different regions.
Successful modeling approaches can be transferred to new regions, but requires accounting for
similarities and differences in the physical environment, ecosystem characteristics, and HAB population,
all of which are multi-dimensional and difficult to quantify without observations. Identifying climate
effects in observations requires at least several decades of consistent HAB monitoring, and yet few
regions have such high-quality time series data, nor is there monitoring in regions where future outbreaks
may occur (Anderson et al. 2015; Wells et al. 2015). In addition to climate change, anthropogenic
stressors such as fishing pressure, nutrient inputs, and invasive species introduction increase the
challenges of identifying trends in observations of HAB abundance and distribution. Nutrient inputs have
increased more than ten-fold in some coastal regions over the past few decades with usage of synthetic
nitrogen fertilizer usage and urbanization, but the impacts vary widely (Howarth 2008). Projecting future
nutrient conditions may require accounting for regional increases or decreases in nutrient loading with
watershed land-use changes (Bouwman et al. 2009; Glibert et al. 2010) in addition to physical changes in

the nutrient delivery by river discharge or coastal upwelling that are incorporated in models of HAB
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dynamics presently. Shifts in nutrient inputs by eutrophication or climate change may also affect nutrient
limitation and require incorporating currencies in addition to nitrogen into HAB models (Flynn and

McGillicuddy 2018).

While it is generally accepted that HABs are globally increasing in severity and extent, the role of climate
change in the observed trends has been challenging to isolate mechanistically among the many other
contributing factors (Moore et al. 2008). HAB models applied retrospectively at climate time scales may
provide a useful means of hypothesis testing as opposed to focusing on predictions of future impacts. As
has been done with observations (Moore et al. 2011), weather events, anomalous seasonal conditions, or
sharp changes in forcing can be simulated retrospectively with HAB models as analogues for climate
change impacts. Such scenarios can more realistically incorporate multiple stressors, and allow for
quantitative assessment of model performance and uncertainty using observations that are independent
from the model calibration. For example, laboratory studies have found that growth rates for Alexandrium
spp. increase up to 20-24 °C (Watras et al. 1982; Etheridge and Roesler 2005; Bill et al. 2016), suggesting
that warmer water will lead to faster growth and greater bloom intensity. Observations of 4. catenella in
an estuary in the northeastern U.S. found that the blooms in warmer years occurred earlier but did not
have longer duration or greater maximum cell abundance, and instead the blooms terminated before water
temperatures reached the values corresponding with maximum growth rates from the laboratory (Ralston
et al. 2014). A process-based, single-species model that used the laboratory growth rates could effectively
reproduce the growth phase across multiple years with widely varying temperature conditions, but an
empirical formulation for mortality that was not strictly temperature-dependent was needed to represent
bloom termination across the years, and could only be calibrated based on comparison with the multi-year
observations (Ralston et al. 2015). Bloom dynamics in that system remained similar enough over several
years that the empirical formulation for mortality had predictive skill, but climate change can potentially
induce more fundamental shifts in ecosystem dynamics, for example changing from bottom-up (nutrient
availability regulating growth) to top-down (grazing control) control (Wells et al. 2015). Developing
robust models of the interactions between HAB growth rates and grazer response under changing forcing
conditions, particularly when the relationships may be strongly non-linear, remains a central challenge for

HAB modeling across all simulation time scales (Flynn and McGillicuddy 2018).
5. Conclusions

Modeling HAB response to future climate change is still an emerging field, as evidenced by the limited
number of studies (fewer than 10) and diversity of approaches reviewed here. Extending HAB models to
decadal time scales or longer, extrapolating into forcing regimes that are outside historical observations,

representing potential regime shifts in the dominant processes controlling HAB development, and
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incorporating uncertainty and variability in physical climate model projections are challenging but
feasible tasks. Based on this review, we offer several recommendations for how to best move forward
with modeling HAB response to climate change. Statistical models have predominantly been used for
near-term and operational HAB forecasts, but the uncertainty in model output increases as forcing
conditions diverge from the historical observations that were used to develop them. Process-based models
more directly represent key physical and biological factors in bloom development, and thus are better
suited to extrapolation into future climate forcing conditions. HAB models should be developed in the
context of the ecosystem response to climate change, recognizing that the response of many key processes
and the potential for regime shifts are common to the broader ecosystem. Uncertainty in HAB model
projections associated with process formulations or climate model forcing should be quantified and
conveyed using ensemble approaches and scenario planning. Downscaling of global (and potentially
regional) climate models to coastal scales should be done robustly in collaboration with physical climate
modelers to preserve features of the forcing that are key to HAB development. Finally, long-term
observations of HABs and forcing conditions are essential to identify trends associated with climate
change and for rigorously assessing HAB model results. Long-term observations are critically lacking in
many HAB impacted regions, and this may represent the biggest impediment to the development of
models that can effectively assess HAB response to climate change. Multiple decades of HAB monitoring
are often necessary to distinguish long-term trends from the response to cyclic climate forcing, so any
model-based assessment of HAB response to climate change needs to be closely coupled to high quality
observations. Modeling studies of HAB response to climate change will likely expand as resource
managers and policy makers increasingly demand projections of HAB impacts at both near-term and
longer time scales. As such, HAB models will be crucial for informing the development of strategies to
reduce socioeconomic and public health impacts as well as to increase resilience of socioecological

systems to future HABs.
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Figure
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Figure 1. Schematic diagram summarizing considerations for improving modeling of HAB response to
climate change. Multiple global earth systems models, emissions scenarios/relative concentration
pathways, and downscaling approaches should be considered in an ensemble approach to generate
downscaled climate and ocean model output. Downscaling is necessary to resolve critical physical and
biogeochemical processes for HAB development at coastal scales. These downscaled data should be used
to force process-based models of HAB response with the results considered in an ecosystem context.
Models should be evaluated with long-term observations. This step can be informative for selecting
global models, identifying biases in downscaled model projections, and validating models of HAB and
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ecosystem response. An important final step is to identify components of the model system that are key
sources of uncertainty in the long-term HAB response (i.e., evaluate uncertainty) and to develop
scenarios (i.e., scenario planning) around those sources of uncertainty in the development of societal
response strategies.
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Table

Table 1. Table summarizing the HAB modeling studies reviewed here. Models are categorized based on whether they focus on present-day

(hindcasts, event-based, near-term forecasts) or future climate conditions (using climate model projections) and the modeling approach (statistical,
process-based, or a hybrid). Information on the HAB organism being modeled, geographic region, and a brief description of the model formulation

and timescale are listed.

Present vs Model type HAB organism Region Brief description
future climate

Allen et al., 2008 Present Process-based | High biomass species | NW European shelf | Ecosystem + circulation; seasonal

Anderson et al., 2009 Present Statistical Pseudo-nitzschia California Regression; spatial + temporal; seasonal

Anderson et al., 2010 Present Statistical Pseudo-nitzschia Chesapeake Bay Generalized linear regression; spatial +
temporal; interannual

Brown et al., 2013 Present Statistical Karlodinium, Chesapeake Bay Neural network and logistic regression;

Prorcentrum, spatial + temporal; interannual
Microcystis

Cusack et al., 2015 Present Statistical Pseudo-nitzschia SW Ireland Zero-inflated negative binomial
regression; interannual

Cusack et al., 2016 Present Hybrid Pseudo-nitzschia SW Ireland Observations + particle tracking; near-
term

Diaz et al, 2016 Present Statistical Dinophysis Portugal General additive model; interannual

Giddings et al., 2014 Present Hybrid Pseudo-nitzschia Pacific NW Particle tracking + ecosystem; seasonal
to interannual

Gillibrand et al., 2016 Present Process-based | Karenia mikimotoi Scotland IBM with growth; event

Gonzélez Vilas et al., Present Statistical Pseudo-nitzschia NW Spain Machine learning; spatial + temporal;

2014 interannual

Henrichs et al., 2015 Present Process-based | Karenia brevis Gulf of Mexico IBM with behavior; interannual

Lane et al., 2009 Present Statistical Pseudo-nitzschia California Logistic regression; interannual

Stock et al., 2005; Li et Present Process-based | Alexandrium Gulf of Maine Ecosystem + circulation; seasonal to

al., 2009 interannual

Moore et al., 2009 Present Statistical Alexandrium Puget Sound Regression + trend analysis; interannual

Raine et al., 2010 Present Statistical Dinophysis SW Ireland Based on wind index, near-term forecast

Ralston et al., 2014 Present Process-based | Alexandrium Cape Cod Local growth; seasonal to interannual

Ralston et al., 2015 Present Process-based | Alexandrium Cape Cod Ecosystem + circulation; seasonal to
interannual

Ruiz-Villarreal et al., 2016 | Present Process-based | Dinophysis NW Spain Particle tracking; seasonal to interannual
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Stumpf et al., 2008; Present Hybrid Karenia Gulf of Mexico Observations + particle tracking; near-
Stumpf et al., 2009 term forecast
Stumpf et al., 2012 Present Statistical Cyanobacteria Lake Erie Regression; spatial + temporal; seasonal
Velo-Suarez et al., 2010 Present Process-based | Dinophysis NW Spain Particle tracking; event
Wynne et al., 2011 Present Process-based | Microcystis Lake Erie Particle tracking; event
Gobler et al., 2017 Future Process-based | Alexandrium, NE and NW Growth rates (temperature)
Dinophysis Atlantic, NE Pacific,
Alaska
Jacobs et al., 2015 Future Process-based | Alexandrium, Vibrio Chesapeake, Puget | Growth rates/windows (temperature)
Sound, Alaska
Kibler et al., 2015 Future Process-based | Gambierdiscus Caribbean Growth rates (temperature)
Lin et al., 2018 Future Process-based | Karlodinium Chesapeake Bay Growth rates (temperature, nutrients)
Moe et al., 2016 Future Statistical Cyanobacteria Norway lake Bayesian network linking ecosystem and
watershed models
Moore et al., 2011 Future Statistical Alexandrium Puget Sound Regression + trend analysis; growth
window
Moore et al., 2015 Future Process-based | Alexandrium Puget Sound Regional physical models; growth
windows (temperature, salinity)
Glibert et al., 2014 Future Process-based | Prorocentrum, NW European Regional physical + ecosystem models;
Karenia shelf, NE Asia, SE habitat suitability (temperature, salinity,
Asia nutrients)
Townbhill et al., 2018 Future Statistical Pseudo-nitzschia, NW European shelf | Habitat suitability (temperature, salinity,

Alexandrium,
Dinophysis

bathymetry); maximum entropy
approach
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