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ARTICLE INFO ABSTRACT

Keywords: Real-time risk assessment for work-related musculoskeletal disorders (MSD) has been a challenging research

RULA problem. Previous methods such as using depth cameras suffered from limited visual range and wearable

Deep learning sensors could cause intrusiveness to the workers, both of which are less feasible for long-run on-site

MSD risk assessment applications. This document examines a novel end-to-end implementation of a deep learning-based algorithm
for rapid upper limb assessment (RULA). The algorithm takes normal RGB images as input and outputs the
RULA action level, which is a further division of RULA grand score. Lifting postures collected in laboratory
and posture data from Human 3.6 (a public human pose dataset) were used for training and evaluating the
algorithm. Overall, the algorithm achieved 93% accuracy and 29 frames per second efficiency for detecting
the RULA action level. The results also indicate that using data augmentation (a strategy to diversify the
training data) can significantly improve the robustness of the model. The proposed method demonstrates its
high potential for real-time on-site risk assessment for the prevention of work-related MSD. A demo video can
be found at https://github.com/LLDavid/RULA_2DImage.

1. Introduction

Work-related musculoskeletal disorders (WMSDs) are a leading
cause of pain, suffering, and disability in American workplaces (Kang
et al., 2014). According to the US Bureau of Labor Statistics, in
2017 there were 344,970 nonfatal occupational injuries and illnesses
associated with musculoskeletal disorders (MSDs) involving days away
from work (DAFW) across all industries (Bureau of Labor Statistics,
2017b). Especially in manufacturing, MSDs accounted for 31.4% of
DAFW cases (Bureau of Labor Statistics, 2017a). It is estimated that
in the U.S., the annual direct cost of workers’ compensation associated
with MSDs is approximately $20 billion (Kang et al., 2014). Indirect
costs, such as those associated with hiring and training replacement
workers, are as much as five times the direct cost (Kang et al., 2014).
Thus, there is a great necessity for developing an efficient and robust
assessment tool for the prevention of WMSDs.

Physical risk factors for WMSDs include rapid work pace and
repetitive motion, forceful exertions, non-neutral body postures, vibra-
tion (Punnett and Wegman, 2004), and lack of rest. Previous studies
have proposed several observational tools for performing MSD risk
assessment of certain jobs, including rapid upper limb assessment
(RULA) (McAtamney and Corlett, 1993), rapid entire body assessment
(REBA) (Hignett and McAtamney, 2000), the revised NIOSH lifting
equation (RNLE) (Waters et al., 1993), postural loading on the upper

* Corresponding author.
E-mail address: xxu@ncsu.edu (X. Xu).

https://doi.org/10.1016/j.apergo.2020.103138

body assessment (LUBA) (Kee and Karwowski, 2001), and occupational
repetitive actions (OCRA) (Occhipinti, 1998). Among these observa-
tional tools, RULA has been widely adopted for safety practitioners
in industry practice (Manghisi et al., 2017; Namwongsa et al., 2018;
Cao et al., 2019). It requires minimal previous skills in observation
technique and is easy to learn (Dockrell et al., 2012). A safety practi-
tioner observes a worker’s joint angles, body motion frequency, muscle
use level, and carrying load weight, and then uses a series of RULA
tables to determine the scores associated with each risk factor. In
general, extreme joint angles, highly repetitive motions, and greater
muscle use yield larger scores. By summing the scores from each risk
factor, the total score of an observational method indicates the overall
risk of musculoskeletal disorders. Previous studies (Oztiirk and Esin,
2011; Sezgin and Esin, 2015) have shown that greater scores of an
observational method are significantly correlated with self-reported
MSD symptoms.

However, observational methods suffer from two major weaknesses.
In current industrial practice, workers’ postures need to be manually
observed, coded, and inputted into a standardized form, which is time-
consuming and less practical for long-term observation of workers
rotating among multiple tasks. Second, scoring accuracy is mainly
dependent on the proficiency of raters and viewing angles. Trained
raters usually provide more valid scoring.
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Previous studies (Manghisi et al., 2017; Yan et al., 2017a) sought
to address these weaknesses by applying different technologies, such
as wearable sensors and computer vision, to infer the risk of MSDs
through automated observational methods. The wearable sensors, such
as inertial measurement units (IMUs) (Yan et al., 2017a; Vignais et al.,
2013; Peppoloni et al., 2014; Hsu and Lin, 2019), allow for real-time
reconstruction of a human pose for postural risk assessment in 3-D.
IMUs enable field studies and provide an objective assessment of work-
ing postures (Balaguier et al., 2017). However, IMUs must be fastened
tightly to the trunk and limbs with straps to eliminate skin artifact.
Mounting IMUs on a worker’s body not only interferes with natural
motion (Manghisi et al., 2017) but also causes discomfort (Ribeiro and
Santos, 2017).

Also used for postural risk assessment are depth cameras, such as the
Microsoft Kinect and Intel RealSense (Manghisi et al., 2017; Diego-Mas
and Alcaide-Marzal, 2014; Abobakr et al., 2017; Bhatia et al., 2019).
Depth cameras can capture RGB-Depth data. Some studies show that
using depth cameras for postural risk assessment in human pose detec-
tion is both accurate and efficient (Manghisi et al., 2017; Parsa et al.,
2019; Umar et al., 2018). One limitation of depth cameras, however,
is that the coverage of the infrared emitter limits the working range
(e.g., 4.5 m for Kinect V2) (Gonzalez-Jorge et al., 2015). Therefore,
the depth camera needs to be placed very close to the worker being
observed. In lieu of depth cameras, stereo cameras can also be used
for pose reconstruction, where the detected 2-D poses are integrated
from two or more cameras placed on-site (Guo and Qian, 2007; Lopez-
Quintero et al., 2016). A previous study for ergonomic analysis (Liu
et al., 2016) adopted two cameras for a tracking-based pose reconstruc-
tion. However, to ensure the effectiveness of this method, the workers
needed to limit their movement in the intersection area of the visual
field of all of the cameras.

Ideally, a single regular RGB camera could address the above-
mentioned difficulties in human pose reconstruction (Yan et al., 2017b;
Ding et al.,, 2019). A regular camera has greater visual field depth
and is not intrusive to workers’ natural motion. However, pose re-
construction with a single camera has been a challenging research
problem in the computer vision community (Toshev and Szegedy, 2014;
Shakhnarovich et al., 2003). Difficulties arise from the large feature
space of the image and the high level of abstraction of the task.
In the past few years, the development of deep learning and more
powerful graphical processing units (GPUs) has allowed a great number
of researchers to adopt the convolutional neural network (CNN), a form
of deep neural structures, for vision-based human pose reconstruction,
and greatly improved the accuracy of the reconstructed pose (Newell
et al., 2016; Wei et al., 2016). In addition, the advent of Tensorflow
Lite makes deploying deep learning-based methods on mobile devices
possible (Manning et al., 2018), so that postural risk assessment can be
performed on a hand-held cell phone.

This study aims to develop an efficient, robust, and practical method
to automate RULA assessment. The proposed method assesses a posture
in real-time by applying a deep neural network on streamed images
captured with a regular camera (Fig. 1). The first part of the proposed
method is a pose detector, which takes a single inspection at a monoc-
ular RGB image of a person and predicts the corresponding 2-D pose.
The second part is a RULA estimator, which takes the coordinates of the
detected 2-D pose as inputs and predicts the RULA action level directly,
which is a further division of the RULA grand score (McAtamney and
Corlett, 1993). This assessment method was trained with images of lift-
ing tasks taken in a laboratory setting (Xu et al., 2011) and images from
Human 3.6 (Ionescu et al., 2011, 2013), which is a public human pose
dataset with full-body kinematics marker data. The proposed algorithm
achieved results comparable with other recent related studies. Below,
the method section introduces the methods including the proposed
algorithm and data; the result section shows the test results; and the
discussion section discusses the main contributions, limitations, and
future work.
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2. Method
2.1. RULA Scoring

The inputs to RULA assessment are body segment angles (upper
arm, lower arm, wrist, neck, and upper trunk), muscle use, and ex-
ternal load. The output is the grand score (numbered 1-7). Scores
1-7 are further categorized into four levels of actions needing to be
taken McAtamney and Corlett (1993) (illustrated in Fig. 2).

Previous work (Parsa et al., 2019) has revealed that the RULA grand
score is highly sensitive to changes in rotation of a single segment,
e.g., a minor change of neck position can lead to a significant change
in neck score. Thus, postures that land between two scores have low
reliability. To alleviate this problem, RULA action level was chosen as
the algorithm output instead of the RULA grand score because it is less
sensitive to minor changes in rotation. Besides, interventions could be
given based on the estimated action level directly.

The RULA scores for training and testing were manually derived by
two experimenters with experiences in ergonomics risk assessment. The
camera setup in this study does not provide high enough resolution to
recognize hand gestures with pixel-level details. Therefore, wrist score,
muscle use, and workload were assumed to be uniform among all data.
An on-screen ruler was used as reference for measuring segment angles
on extracted frames. The scored images were used for training and
validating the algorithm.

2.2. Pose detector

A 2-D pose detector was used in this study. The pose estimation
can be regarded as a regression problem. The input is an RGB image,
represented by an N x M x 3 matrix. N and M represent the number
of rows and columns of pixels, respectively, which are determined by
the resolution of the raw image. The color of each pixel is represented
by a 3-D vector (RGB). The pose detector outputs detected 2-D pose,
which consists of 17 key joint locations (referred as key points, and
illustrated in Fig. 3) on the image plane. Each key point is represented
by a 2-D vector (x, y), representing its location (width and height) on
the input image. The choice of key points was based on two primary
considerations. First, the key points must possess certain distinguish-
able image features that are invariant under different conditions (Lowe,
2004), including scaling, viewing angle rotation, etc. Second, the key
points should give an articulated representation of the human pose.
Therefore, the shoulder, elbow, wrist, etc., are the most commonly used
key points (Yan et al., 2017b; Ding et al., 2019). The 17 key points used
in this study follow the choice of OpenPose (Cao et al., 2017), a recently
published open-access pose detection library.

Note that it is very challenging to perform 3-D pose reconstruction
from an image using deep neural networks. However, the estimated
3-D poses are more prone to error, because pose depth information is
missing and must be inferred (Ionescu et al., 2011, 2013). Additionally,
in our previous work (Li and Xu, 2019), we used a three-layer neural
network to predict RULA score from 2-D poses. The results indicated
that an end-to-end 2-D pipeline is less computationally demanding
for a real-time RULA assessment. Therefore, in the current study, we
used an end-to-end RULA assessment algorithm with an integrated 2-D
pose estimation. The proposed algorithm demands less computational
power, and so has the potential to be used on mobile devices.

In this study, the pose detector was built on OpenPose (Cao et al.,
2017), a convolutional neural network (CNN)-based pose detection
approach. CNN is a popular choice for dealing with 2-D graphical input
because the convolutional operations are extremely good at extracting
low-level spatial information. More sophisticated tasks can be com-
pleted by stacking multiple CNN layers. However, one problem of using
CNN is that the demand for computational resources snowballs rapidly
as the size and number of layers increase.
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Detected pose

DNN #1

Raw image
) sl

Pose detector

Assumed wrist score,
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DNN #2

Action
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Fig. 1. Method overview. The first deep neural network (DNN #1) takes the raw image as input and outputs the detected pose. The wrist score, muscle use and workload were
assumed during data labeling. DNN #2 takes the detected pose as input and estimates the action level, which is a further division of RULA grand score (McAtamney and Corlett,

1993).

Action Grand Description
level score
L1 1-2 Posture is acceptable if it is not maintained or repeated for long periods.
L2 3-4 Further investigation is needed and changes may re required.
L3 5-6 Investigation and changes are required soon.
L4 7 Investigation and changes are required immediately.

1~2

34

576

Fig. 2. Requirements for action levels (McAtamney and Corlett, 1993). RULA grand scores are divided into 4 levels according to the actions needing to be taken.

The pre-trained weights using COCO (a large-scale human key
points dataset (Lin et al., 2014)) were loaded for the CNN-based pose
detector in this study. The image was first reshaped into a fixed N x
M x 3 matrix, which was then fed into the CNN. The CNN not only
detects the key points but also learns the associations between those key
points. The learned associations further refined the detected key points
for a predetermined number of times. The detailed architecture of the
network can be found in Cao et al. (2017). The CNN took the maximum
value from the confidence map for each key point and outputted the 34

coordinates for each of the 17 key points (Fig. 4).

2.3. RULA Estimator

This study aims to infer the action level from 2-D joint coordinates
derived from pose detection. The inference is performed by a second
deep neural network.

The input to the RULA estimator is a 34 x 1 vector generated by
the pose detector, and the output is a 4 x 1 vector corresponding to
the four action levels based on the RULA grand score (see Fig. 2).

Fig. 5 shows the architecture of the RULA estimator. It consists of
four dense layers. For each layer, batch normalization was added to
prevent covariate shift (Ioffe and Szegedy, 2015). Rectified linear units
(RELU) were chosen as the activation function (Nair and Hinton, 2010).
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Fig. 3. Indexing for the 17 key points. 1-right ear; 2-left ear; 3-right eye; 4-left eye; 5-nose; 6-right shoulder; 7-left shoulder; 8-right elbow; 9-left elbow; 10-right wrist; 11-left
wrist; 12-right hip; 13-left hip; 14-right knee; 15-left knee; 16-right ankle; 17-left ankle. Note that although RULA is designed for upper limb assessment, the lower limb locations
are still necessary for determining the upper trunk bending angle and whether legs/feet are supported. The markers attached to the subject were for other research purposes and

are irrelevant to this study.

34 x 1 vector
X,
Y,
X,
Y,

Raw image

output

Wi

Fig. 4. Pose detector. (X,,Y;) represents the ith key point on the X;th column and
Y;th row of the input image. The details of the convolutional neural network (CNN)
structure can be found in Cao et al. (2017).

The equation is given as follows:

x, if x>0
0,if x<0

where x is the output from the previous layer. Note that the RELU
function sets all negative values to zero, which could create non-
linearities to the network, and it is efficient to implement the RELU
function during training because the gradient is a constant (0 if the
input is negative). However, the limitation of using RELU is that
some information encoded in the negative values could be lost during
training.

RELU(x) = { (@]

2.4. Data preparation and augmentation for RULA estimator training

The RULA estimator was trained by combining data from our pre-
vious lifting study (Xu et al., 2011) with existing human motion data,
including the data from Human 3.6 (lonescu et al., 2011, 2013), which
is one of the largest human motion databases (Fig. 6). Data used in this
study is available at https://github.com/LLDavid/RULA_2DImage.

34 x 1 vector input

X,

Y,

X,

Y, Dense layer 4 x 1 vector
X, 128x 1 L1
Y, ] L2
Batch output | L3
e normalization L4
Xis i

Yis

X RELU
Yl 6
). X4
Yl 7

Fig. 5. RULA estimator: The dense layer is also called the fully connected (FC) layer.
Batch normalization is one of the normalization methods used to prevent covariate
shift. RELU represents rectified linear units, which is one of the most popular activation
functions in deep learning. L1 to L4 denote four corresponding action levels (Fig. 2).

To make the algorithm more generalizable, the selected lifting
postures contain a wide range of upper extremity motions, including
upper arm flexion (approximately 0° to 110°), forearm flexion (approx-
imately 0° to 150°), and upper trunk twisting. The Human 3.6 motion
data is mostly daily postures, including more complex and diverse
upper extremity motions (Fig. 6). Combining the lifting postures with
the Human 3.6 motion data can enhance the generalizing abilities of
the trained RULA estimator. The generalizing abilities are especially
enhanced, considering that subjects in the lifting tasks were half-
naked, and the subjects in Human 3.6 were wearing varied clothing.
Therefore, a combined dataset with different clothing conditions can
enhance the algorithm generalizability during the automated RULA
assessment. On the other hand, the data from the previous lifting study
provides specificity to the RULA estimator regarding a variety of RULA
risk levels. Lifting tasks are also strongly associated with low-back
MSDs and commonly analyzed by RULA. The original source for lifting
postures were video clips. The images were extracted every five frames


https://github.com/LLDavid/RULA_2DImage

L. Li et al.

Raw image

Lifting postures

Detected

image
Daily postures Raw image
from Human 3.6

Detected

image

Applied Ergonomics 87 (2020) 103138

Fig. 6. Examples of lifting postures and Human 3.6 postures. Red dots are the detected key points using the pose detector. Limbs are painted with random colors.

to reduce redundancy, and a total of 423 images were extracted from
the video clips. For asymmetric body postures, the left and right side of
the body were scored separately, and the maximum of the two scores
was taken as the final score since the higher score is of greater concern.
The distribution of the action levels based on the RULA grand score
from the two datasets is shown in Fig. 7.

Note that the distribution of the raw data is skewed, i.e., scores
‘2’ and ‘3’ take up the majority. To avoid overfitting to the majority
and underfitting to the minority in training, two data augmentation
techniques were adopted (Fig. 8). First, each key point was randomly
‘hidden’ on purpose. This is because, in practice, the algorithm will
‘miss’ some key points due to the occlusion by lifted objects or self-
occlusion, as shown in Fig. 6. Manually creating such cases in the
training data can enable the algorithm to deal with these occlusion
cases and thus improve the robustness of the algorithm. The coordinates
of the ‘missed’ or ‘hidden’ key points were set to (—1,—1) since the con-
volutional layers are sensitive to negative values. The RELU function
can easily filter out the negative values Eq. (1) so that the network can
better distinguish these entries from the others.

Second, the raw output of the pose detection network is the proba-
bility heatmap. It is assumed that the predicted key points are normally
distributed and thus centered around the actual location (illustrated in
Fig. 8). The formula is given as follows:

[xaug] - [xraw] te (2)
yaug YVraw

where e follows a normal distribution with zero mean. x,,, and y,,, are
the augmented coordinates. x,,,, and y,,,, are the original coordinates.
The actual locations were manually moved to neighboring locations to
create more training data, and the shiftings of key points are mutually
independent. The shifted points do not compromise the feasibility of
the original pose because more than 90% of them are within two
neighboring pixels of the actual locations. Rather, this augmentation
method can enhance the robustness of the algorithm under noise. As
shown in Fig. 7, the augmented data is less skewed than the original
data. Note that in Human 3.6, there are zero training samples (or
postures represented by joint coordinates and the corresponding image)
with a RULA score equal of 1, so data augmentation is unnecessary.

2.5. Network training

The pre-trained weights using COCO dataset (Lin et al., 2014) were
loaded into the pose detector. Note that the markers attached to the
subjects were for other research purposes and were not used to train
the pose detector. Thus, the markers would not have impacted the
pose inference in this study. For the RULA estimator, the network was
trained from scratch using pairs of 2-D poses and corresponding action
levels in a fully supervised learning manner.

K-fold (k=5) cross-validation was used to validate the model. In
each fold, the training data included 80% of the total data, and the
remaining 20% was used as the test data. Adam Grad was adopted
as the optimizer (Kingma and Ba, 2014), and the batch size was set
to 10 (i.e., 10 training samples were used to optimize the parameter
for each iteration). The model was trained for 50 epochs. In each
epoch, the network was trained with 10 training samples at a time until
iterating over all the data. Categorical cross-entropy (Goodfellow et al.,
2016) was calculated as the training loss. It measures the difference
between the distribution of the predicted and the actual action levels.
The training was performed on a workstation with Intel Xeon CPU
E5-1560 v4 @ 3.60 GHz and two Titan Vs.

3. Results

The average of the k-fold (k=5) validation was calculated as the
final result. The dataset was first split into five groups. During each
‘fold’, one group was selected as the validation set, and the remaining
four groups were used for the training. Fig. 9 reports the training loss
and validation loss under different data preparation and augmentation
conditions. The difference between the training loss and validation loss
reflects the level of overfitting. In the first case, where only the lifting
postures were included in the training set, the model is slightly over-
fitted (around 0.75 for loss difference). After implementing the data
augmentation introduced in Fig. 8, the overfitting issue was mitigated.
In the end, the training loss and validation loss were very close to each
other. In the last case, the augmented lifting data was mixed with the
data from Human 3.6, and the results show slight overfitting (approx.
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Fig. 7. Histogram of RULA score distribution before and after data augmentation. The horizontal axis represents the RULA score (1-7). L1 to L4 denote the four corresponding

action levels (Fig. 2), e.g., RULA score 1 and 2 belong to L1.

Image

0.00 0.01 0.02 0.01 0.00
0.01 0.06 0.17 0.09 0.01
0.02 | 0.09 -'0:1'7"0102'-"'
0.01  0.06 0.09 0.09 0.01

0.00 0.01 0.02 0.01 0.00

A5 by 5 (in pixel) patch on the image.

Randomly hide one key point

Fig. 8. Two data augmentation methods. Augmentation one randomly hides one key point (set to (—1,—1)). Augmentation two adds a random noise to the original key point
location. The value in each grid in the left matrix represents the probability that the original key point (red dot) translates to that grid. The two augmentation methods are

intended to increase the variability of the original dataset.

Lifting postures

0 10 20 30 40 50 0 10 20

Training loss

Augmented lifting postures

Mixed with Human 3.6

30 40 50 0 10 20 30 40 50

Epochs

Validation loss

Fig. 9. Training and validation loss. The left graph is from model training with lifting postures exclusively. The middle diagram indicates training with augmented lifting postures.
The right graph shows the results for training with augmented lifting postures mixed with Human 3.6 data.

0.65 for loss difference), but not as strong as the first case. In other
words, the model in the last case has better generalizability but also
has greater classification errors on a specific dataset.

Fig. 10 shows the RULA action level for a full lifting task. Note that
only the posture was measured, and the wrist score and workload were
assumed to be uniform. So at the beginning and the end of the lifting
task, the action level is at the lowest level, as well as when the subject
lifted the box at around the elbow height. When the subject lifted the
box above shoulder height, the RULA action level was at the highest
level.

Table 1 indicates the confusion matrix for the three cases. Table 2
shows the results of applying different evaluation metrics calculated
from the confusion matrix. Note that the precision, recall, and F1-
score metrics are designed for binary classification. They generally
underestimate the sensitivity of an algorithm. For a more comprehen-
sive evaluation, metrics (i.e., micro-averaging and macro-averaging)
that are specifically designed for multi-class classification (Sokolova

and Lapalme, 2009) were adopted. The formulas for these evaluation
metrics can be found in Appendix.

Table 3 compares the proposed method with other vision-based
postural risk assessment algorithms. Because the mixed dataset includes
more diverse postures and different viewing angles, the statistical mea-
sures are less likely to overfit. Our method achieved comparable overall
accuracy and higher efficiency. However, it should be noted that the
results should be interpreted with caution because different algorithms
were evaluated with different metrics, hardware configurations, and
posture dataset.

4. Discussion

The primary aim of this study was to develop a robust and efficient
vision-based algorithm to automate RULA assessment. In this study,
a CNN-based pose detector was adopted to infer 2-D poses from RGB
images, and a second DNN was designed to estimate RULA action levels
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Table 1

Confusion matrix for three treatments. The entries on the diagonal in each matrix represent the number of cases that were correctly classified.
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Action level

Predicted

Lifting postures Augmented Mixed with Human 3.6
1 2 3 4 1 2 3 4 1 2 3 4
1 42 1 0 0 1 120 0 1 131 5 6 0
True class 2 2 13 4 3 2 10 119 1 0 2 16 168 0
3 0 4 6 1 3 0 89 0 3 8 7 119 0
4 2 0 1 6 4 0 0 0 47 4 0 0 66
Table 2
Evaluation results. 1 represents when the larger value is preferred. Avg. denotes the inter-class average. y denotes micro-averaging. M denotes macro-averaging.
Lifting postures Augmented Mixed with Human 3.6
1 2 3 4 Avg. 1 2 3 4 Avg. 1 2 3 4 Avg.
Precision? 0.91 0.72 0.55 0.60 0.78 0.92 0.98 0.99 1.00 0.97 0.85 0.93 0.95 1.00 0.93
Recallt 0.98 0.59 0.55 0.67 0.79 0.98 0.92 1.00 1.00 0.97 0.92 0.91 0.89 1.00 0.93
F1-score? 0.94 0.65 0.55 0.63 0.79 0.95 0.95 0.99 1.00 0.97 0.88 0.92 0.92 1.00 0.93
Precision“T 0.79 0.97 0.92
Recall 1 0.79 0.97 0.92
Fl-score, 1 0.79 0.97 0.92
Precisiony 1 0.70 0.97 0.93
Recally 1 0.69 0.97 0.93
Fl-scorey 0.70 0.97 0.93

Table 3

Comparison of vision-based postural risk assessment algorithms. The algorithm reported in Manghisi et al. (2017) only introduced the p-value for the Z-test. In Yan et al. (2017b),
results from different algorithms were reported (Neural network (NN), K-nearest neighbor (KNN), decision tree (DT), and ensemble classifier (EC)). The overall accuracy takes the

average of all the algorithms.

@

represents that information was not mentioned in the paper.

Assessment  Overall accuracy Efficiency (FPS) Hardware
Our method RULA 0.93 29 CPU Xeon(R) CPU E5-1650 v4 @ 3.60 GHz, 128 GB RAM, GPU Titan V
Kinect v2 Manghisi et al. (2017) RULA P<0.001 10 CPU Intel Core i5-4200 @ 2.50 GHz, 4 GB RAM, GT 740 M
Kinect V1 Diego-Mas and Alcaide-Marzal (2014) OWAS 0.89 25 CPU @ 3.4 GHz processor, 4 GB RAM
NN/KNN/DT/EC Yan et al. (2017b) OWAS 0.88 - -

—e— Action level

#45

60

S
S

#65

#130

#130

#150

Fig. 10. Predicted action level of a lifting task. Note that the wrist score, muscle use, and workload were assumed uniform. Presented pictures represent several key timestamps
across the lifting task. The numbers below the graph represent the frame IDs.

from the detected 2-D pose. The proposed algorithm yielded 93% over-
all accuracy, and 29 FPS in efficiency. Under multi-class classification

metrics, it achieved high accuracy in both micro-averaging (92%) and

macro-averaging (93%). Most of the misclassified testing samples are
distributed around action levels 2 to 3. In other words, the algorithm
is more sensitive to extreme cases, where the posture is either very safe



L. Li et al.

or very risky. This is because the extreme cases (very safe or risky) have
wider margin, while cases in the middle sometimes fall on the decision
boundary, which causes the algorithm to fail.

In this study, manual RULA scores by observers were used as true
labels. The other way to score postures is by directly calculating the
RULA score from kinematics data, which can have higher reliability.
To determine segment scores from kinematics data, anatomical planes
(e.g., upper body sagittal, coronal, and transverse planes) need to be
defined as a reference, which requires precise choice and tracking
of anatomical landmarks. However, RULA assessment was initially
designed as an observation-based method, and the original paper in-
troducing RULA (McAtamney and Corlett, 1993) only gives general
guidelines for determining segment angles. Therefore, the choice of
anatomical landmarks could have significant impacts on the consis-
tency of RULA assessment. This is one important reason why we used
manual scoring in this study, rather than acquiring RULA score from
kinematics data. The trained algorithm learned the latent relations
between 2-D pose and RULA scores from manual scoring.

One problem of applying machine learning algorithms in RULA
assessment is the lack of training samples. Because manually scoring
one posture with RULA takes around 5-7 min, acquiring a large-
scale dataset is time-consuming and costly. Because of the data-driven
nature of machine learning algorithms, the robustness of algorithms is
largely dependent on the size and variability of the dataset. This study
proposed two specific data augmentation methods, and the results show
that the proposed methods could be used to expand the dataset and
augment the performance of the algorithm by (approximately 18% in
overall accuracy). This is very useful for on-site applications where
we have limited resources to score postures with RULA for algorithm
training.

This work modularized a pose detector and RULA estimator. The
two neural networks were trained separately. The advantage of training
separately is that it preserves the flexibility to extend to other appli-
cations. With modifications to the RULA estimator, it is possible to
easily apply this real-time framework for other observational methods,
such as REBA, LUBA, and OWAS, because they all have postures as the
primary input.

Tensorflow was used as the backend in this study. The advent of
Tensorflow Lite allows the proposed algorithm to be transferred onto
Andriod and IOS platforms (Manning et al., 2018). The images used
in this study were extracted from streamed videos, and the proposed
algorithm can process 29 streamed images per second (29 FPS), which
exceeds most webcam frame rates (15 FPS) and is very close to the
frame rate of a regular camcorder (29.97 FPS). Therefore, the pro-
posed algorithm can be run on a hand-held cell phone to perform a
real-time end-to-end RULA assessment onsite, and the user can easily
evaluate an ongoing task. Through analysis of the predicted scores
over time (Fig. 10), the user has convenient access to the average,
percentile, maximum, and variation of RULA scores of a task. It should
be noted that one can use a wide-angle camera to improve the field of
view, and thus cover a greater area while the worker moves around.
However, a high-resolution camera may compromise the processing
efficiency of the algorithm because the image input may be larger di-
mensions. The trade-off between efficiency and field of view is usually
application-dependent.

Additionally, due to the adoption of the end-to-end pipeline, the
availability of intermediate outputs (e.g., segment angles) used for
RULA calculation was sacrificed for efficiency. In the case that the
intermediate segment angles are needed for work redesign, safety
practitioners can review the detected images that have a high RULA
score and find which body segment resulted in the high RULA score.
For example, for postures with action level 4 (high-risk postures), safety
practitioners should check the associated images immediately; and for
postures within action level 2-3 (low and medium risk postures), safety
practitioners could check review at a later time if time is limited. This
will substantially reduce the workload of safety practitioners as they
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will not need to observe the task of interest for the entire period and can
prioritize the potentially riskier postures. These selected postures could
be further investigated through video-based tools (Hanse and Forsman,
2001; Reiman et al., 2014) for a more detailed evaluation.

A major limitation of this study is that wrist score, muscle use, and
workload were assumed uniform. Also, the proposed algorithm only
examines static postures. Body movement frequency and the level of
muscle use are not considered. Therefore, the application of the current
algorithm is limited to light-duty tasks with moderately repetitive body
motions. To date, there have been few pioneering studies attempting to
estimate object weight from an image (Standley et al., 2017). A very
recent study (Liu, 2019) used a deep learning-based method to estimate
lifting frequency, duration, and muscle load from videos. However,
results showed that the model is highly task-specific, and the accuracy
of the estimated object weight needs to be further improved to infer
muscle use. Moreover, the wrist postures are indistinguishable or even
invisible in a full-body image because of image resolution and self-
occlusion. In the current study, the wrist score was assumed to be
uniform among all data. An additional telephoto camera dedicated to
capturing wrist posture may be necessary for inferring the RULA score
of the wrists (e.g., Leap Motion (Marin et al., 2014)).

Although the algorithm demonstrated sufficient performance on
scoring postures in different laboratory environments, its performance
in on-site applications may not be guaranteed. For example, visual
noise could challenge the algorithm. The unpredictable nature of on-
site environments, factors such as lighting conditions, and dust could
result in noise on the images collected. Current CNN structures with a
fully-supervised learning framework can only learn features present in
the training data, so overfitting would be inevitable when visual noise is
introduced. The accuracy achieved in a laboratory environment should
be interpreted as the best scenario for testing in an on-site environ-
ment. Therefore, images of a variety of postures collected from actual
workplaces need to be further coded to improve the generalizability
and robustness of this approach.

In the future, other pose detectors and more structures of RULA
estimator will be explored further to enhance the robustness and ef-
ficiency of the algorithm. In addition, our ongoing study is focusing
on collecting a more comprehensive set of working postures covering a
wider range of on-site postures. The collected posture data, as well as
the synchronized videos will be made publically available. We expect
that it will further contribute to the application of vision-based RULA
assessment.

5. Conclusion

In this study, a novel vision-based real-time RULA assessment
method was explored. It allows for efficient RULA assessment of a single
image taken by a normal RGB camera. The method was trained and
validated with postures during lifting tasks and daily activities. This
method achieved an overall accuracy of 93% in RULA action level infer-
ence, and can be implemented with 29 FPS, which guarantees real-time
applications. The results also indicate that using data augmentation
techniques can augment the performance for action level inference and
demonstrate the potential for real-time RULA assessment with a single
camera.
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Appendix. Metrics used in evaluation

A.1. Precision, recall and F1-score

1
Precision = —L— &)
tp+fp
1
Recall = —2__ (C))
tp+ fn
Fscore = PrecisionRecall (5)

Precision + Recall

Where 7p represents true positives; tn denotes true negatives; fn is the
number of false negatives and fp is the false positives.

A.2. Micro-averaging

!
Z,':] tpi

Precision, = - 6)
Z,-=1 (tp; + fp;)
!
Recall” = IZ,;’P; @
Y (tpi + fny)
2 X Precision, Recall,
Flscore” = (€]

Prectstonﬂ + Recallﬂ

Where, tp; represents true positives for the ith class; rn; denotes true
negatives; fn; is the number of false negatives; and fp; is the number
of false positives. / equals total number of classes. Precision, and
Recall, evaluate the effectiveness of a classifier to identify class labels if
calculated from sums of per-text decisions, and the Fscore,, reveals the
relationships between the data’s positive labels and those from classifier

based on sums of per-text decisions.

A.3. Macro-averaging:

! tp;
Zi=1 Pi

ipi+/p;

Precisiony = ] ®
S

Recally = ++f (10)

Flscorey = 2 X Precisionys Recall y, an

Precisiony, + Recall

The macro-averaging measures the agreement of the average per-class
of a classifier to identify class labels. These systematic measures will
give a more objective and reliable evaluation for the algorithm.
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