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A B S T R A C T

Driving distraction is a leading cause of fatal car accidents, and almost nine people are killed in the US each day
because of distracting activities. Therefore, reducing the number of distraction-affected traffic accidents remains
an imperative issue. A novel algorithm for detection of drivers’ manual distraction was proposed in this
manuscript. The detection algorithm consists of two modules. The first module predicts the bounding boxes of
the driver's right hand and right ear from RGB images. The second module takes the bounding boxes as input and
predicts the type of distraction. 106,677 frames extracted from videos, which were collected from twenty par-
ticipants in a driving simulator, were used for training (50%) and testing (50%). For distraction classification,
the results indicated that the proposed framework could detect normal driving, using the touchscreen, and
talking with a phone with F1-score 0.84, 0.69, 0.82, respectively. For overall distraction detection, it achieved
F1-score of 0.74. The whole framework ran at 28 frames per second. The algorithm achieved comparable overall
accuracy with similar research, and was more efficient than other methods. A demo video for the algorithm can
be found at https://youtu.be/NKclK1bHRd4.

1. Introduction

1.1. Motivation

Driving distraction is defined as “the delay in the recognition of
information needed to safely accomplish the driving task because some
event, activity, object, or person within or outside the vehicle compels
or induces the driver's shifting attention away from the driving task”
(Ranney, 2008). It is the leading cause of fatal car crashes. According to
the National Highway Traffic Safety Administration (NHTSA), over 8%
percent of fatal crashes are distraction-affected. The number of fatalities
in distraction-affected crashes in 2017 was 3166. In other words, almost
nine people are killed each day because of distracting activities.
Therefore, reducing the number of distraction-affected traffic accidents
remains an imperative issue. For that reason, establishing a metho-
dology for monitoring the driver's status is critical for improving
driving safety. Furthermore, acquiring the inattention status of the
driver is also an essential part of the co-pilot system to determine the
driving mode (Kim et al., 2016).

In a naturalistic driving study of adolescent drivers, a range of

distracting behaviors were summarized. These behaviors include the
driver: holding a cell phone to his or her ear, taking on a hands-free
phone, operating on electronic devices or suspected of operating elec-
tronic devices, adjusting the controls of the vehicle, grooming, eating or
drinking, reaching for an object in-vehicle, communicating with
someone outside vehicle, turning around, reading, etc. (Foss and
Goodwin, 2014). According to a study of the driver's engagement of
distracting behaviors (Stutts et al., 2005), manipulating music/audio
controls is the most common in-vehicle distracting activity among
drivers (91.4%); smoking (includes lightning and extinguishing) takes
up the most of time in potentially distracting activities during vehicle
moving (21.1%). Other top-ranked activities among drivers include
drinking/eating/spilling (71.4%), grooming (45.7%), reading or
writing (40%) and using cell phone/pager (34.3%). Therefore, de-
tecting the most frequent non-driving activities is crucial to the estab-
lishment of the driver's monitoring system.

1.2. Detecting distraction through image tracking

Distracting activities cause excess manual, visual, and cognitive
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demands (Fernández et al., 2016). In most cases, a single non-driving
task will involve at least two or three kinds of increased demands, e.g.
using the touchscreen during driving will lead to both extra visual and
manual demands. While cognitive demands associated with these dis-
tractions can be difficult to observe, most non-driving tasks can be
detected through exploiting information from the driver's response to
the increased manual or visual demands, because many common dis-
tractions involve different kinds of overt features like the driver's hand
movement, or gaze direction, etc. (Stutts et al., 2005). For example, the
event “hands off the wheel” can be a universal indicator for the start of
distracting activities; the event “right hand and right ear get very close”
can be used to infer the cell phone use. Thus, through applying vision-
based algorithms, the driver's status can be inferred from those visually
observable features.

1.3. Related work

Previous research has used combined signals of human responses to
the manual, visual, and cognitive demands induced by distractions. In
general, they fall into two primary categories.

The first one mainly exploits facial features combined with other
physiology signals, which typically include eye closure, eyelids, blink
rate, gaze direction, eye saccadic movement, mouth opening size, and
head movements (Sigari et al., 2013, 2014; Sigari, 2009). A previous
study (Liang et al., 2007) used eye movement and measures of driving
data (steering wheel angle, lane position, and steering error trans-
formed from steering wheel angle) to train a Support Vector Machine
(SVM) for detecting distraction. Another study (Miyaji et al., 2009)
adopted eyes, head movement and electrocardiogram (ECG) data as
input, and used adaboost as the classifier. Two types of distraction,
having conversation and doing mental arithmetic, were detected at an
accuracy of 89.8% and 90.3% respectively. Eye-tracking is also one of
the most frequently used techniques Hurtado and Chiasson (2016). A
very recent study Schwarz et al. (2019) used a driver monitoring system
(DMS) placed on the steering column for classifying observational rat-
ings of drowsiness (ORDs), and achieved 82% accuracy in classifying
three levels of drowsiness based on ORDs ratings (from being awake to
severely drowsy).

The major limitation for these methods is that the predictive outputs
are often binary. It is hard to distinguish what kind of distraction occurs
simply from the driver's eye gaze or facial expressions. Furthermore,
while facial expressions encode rich emotional and intentional in-
formation Majumder et al. (2016), one or more cameras need to be
placed in front of the face (e.g. 40–50 cm if placed on the dashboard)
for satisfactory resolution (Gokturk et al., 2002; Fridman, 2018; Vicente
et al., 2015). The corresponding algorithms are also subject to more
environmental challenges, such as a constantly changing illumination
level (Zhang et al., 2017).

The second category extracts contextual information primarily from
in-vehicle image input combined with other secondary signals like lane
keeping data for detection. Image data can be acquired simply through
installing an in-vehicle video camera, which is non-intrusive to drivers
and low-cost. Moreover, the contextual information is more general-
izable compared to personalized facial features.

A previous study (Wollmer et al., 2011) trained a Long Short-Term
Memory (LSTM) deep neural network on head movement and lane
tracking data, and achieved 91.6% in accuracy for two-class classifi-
cation, and 43.3% for six-class classification. Another research (Ngan Le
et al., 2016) proposed a multi-scale faster regional convolutional neural
network (faster-RCNN) to detect the driver's hands, wheel and cell
phone simultaneously. The event “cell phone intersects with hand”
indicated cell phone use. The event “hand off the wheel” became a
universal indicator for non-driving tasks. While they achieved good
accuracy in detecting both events, a potential limitation was the overall
efficiency. The reported frame per second (FPS) was 0.09, which is not
likely to be sufficient for a real-time application.

Manual distractions are generally associated with one or more body
segments and joints, such as upper arms, lower arms and hands. The
hand usually serves as the end effector during distracting tasks.
Previous research successfully used its location relative to other body
segments for recoginizing manual distraction (Gallahan et al., 2013). In
our previous study (Li et al., 2019), spatial data of driver's right hand
collected from inertial measurement units (IMUs) proved to be effective
for inferring different types of distraction, including drinking, texting,
talking on a cell phone, using touchscreen and placing a marker in a cup
holder. However, the results indicated that talking on a cell phone is the
least discernible event. Because of similar spatial patterns of the right
hand among different events, the algorithm was less sensitive in dis-
tinguishing making a phone call from using the touchscreen and
texting. Therefore, more spatial features are needed for a more robust
detection algorithm.

In this paper, we propose a novel image-based driver distraction
recognition method by detecting and situating the driver's right hand
and right ear. The distractions include drinking, texting, talking on a
cell phone, using touchscreen and placing a marker in a cup holder. The
detection of the right ear will further assist in classifying different
distracting events, especially for making a phone call where a driver
needs to hold the phone by the ear. The method consists of two major
modules. The first module incorporates You Only Look Once (YOLO), a
fast and robust deep neural network for object detection. It addresses
the issue of low FPS. The second module takes the coordinates of re-
gions of interest (ROIs) of the ear and hand as input, and a multi-layer
perceptron is designed to infer the driver's status from the ROIs. This
framework provides a prototype for detecting more types of distraction.
To evaluate the performance of this framework, video data of five dif-
ferent types of distracting activities was collected in a driving simulator.

2. Method

2.1. Overview

The proposed method consists of two modules (Fig. 1). In the first
module, YOLO, an object detection deep neural network (DNN), was
adopted. It takes images as input and detects the driver's right ear and
right hand simultaneously. The second module is a multi-layer per-
ceptron, which takes the ROIs as input and outputs the predicted type of
distraction.

In a basic object detection task, the input is an image with or
without target objects, and the output is the bounding box of each
target object, which is formulated as:

x y w h( , , , ) (1)

The notation is illustrated in Fig. 2.
Ideally, the output bounding boxes are supposed to cover the re-

gions of interest (ROIs). For a common object detection task, an object
can be categorized into a certain class. However, the categorization of
an object is dependent on the training set rather than the actual division
of natural objects. In this paper, the neural network was trained only to
detect the driver's right hand and right ear, so other similar objects like
left hand or left ear were regarded as negative examples. We also in-
cluded prior knowledge during detection, which assumes that only the
right hand and the right ear of a driver were visible in the camera view,
so for each class we took the bounding box with the highest confidence
score as the final classification.

The first module detects the driver's right hand and right ear and
outputs their bounding boxes. As mentioned before, each bounding box
can be formulated as a 4-D vector, and so two 4-D vectors were con-
catenated into a single 8-D vector. Each convolutional neural network
can be regarded as a regression function that takes an image as input
and projects it to a fixed-dimensional vector defined previously. It
follows that module one can be formulated as:
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= FBBox (Img)1 (2)

= x y w h x y w hBBox [ , , , , , , , ]
def

hand hand hand hand ear ear ear ear (3)

Where F1 refers to the network in module one; Img represents the input
image, which is a N×M×3 matrix (N stands for number of rows; M
denotes number of columns; ‘3’ denotes number of color channels); and
BBox is the concatenated vector of the two bounding boxes, which is the
output of the first module.

The previously proposed multi-scale faster-RCNN (Ngan Le et al.,
2016) is essentially a counterpart of YOLO in module one, which de-
tects the steering wheel and the driver's hands simultaneously, and the
intersection of them is the indicator for normal driving. However, due
to the projection in the pinhole camera model, the intersection on the
image plane does not necessarily mean actual intersection in 3-D space,
which could lead to a high miss rate for detecting manual distractions.
In this study, the second module seeks to alleviate this problem. The
output 8-D vector not only encodes spatial information on the image
plane (x and y) but also the depth information through w and h, i.e.
objects farther from the camera will have a smaller projected size.

The second module takes the 8-D vector as input and outputs the
type of distraction, which can be formulated as follows:

=C F (BBox)2 (4)

Where F2 refers to the network in module two; and C represents the
type of distraction (e.g. C= i represents the ith type of distraction).
Therefore, the method proposed in this paper can be formulated as:

=C F F( (Img))2 1 (5)

In the following sections, the two modules are described in detail.

2.2. Module one: YOLO

YOLO is one of the fastest and most accurate among all of the state-
of-the-art object detection algorithms. It was first proposed in Redmon
et al. (2016) and was further improved in Redmon and Farhadi (2017),
Redmon and Farhadi (2018) with faster speed and more accurate per-
formance. The third version was adopted in the current module one
(Fig. 4).

In this module, each input image was first reshaped to 416×416
pixels and then divided into ×S Sh w grid cells (9× 11 in this study). It
was assumed that each grid cell contained one object at most. Second,
nine manually defined anchor boxes with different sizes were first
centered at the center of each grid cell. A bounding box was then de-
rived by refining the outcomes of the anchor boxes. More specifically,
the network first checked the regions covered by anchor boxes, and
optimized their size and location until they reached the maximum
confidence score. The sizes of anchor boxes were determined initially
by running K-nearest neighbors (KNN) on the training set to pick up the
most frequent sizes. For example, the bounding boxes covering the right
ear over video frames are usually vertical rectangles in the camera
view. Thus, the anchor boxes were initialized as a vertical rectangle to
accelerate the training. Note that the size of anchor box could be
smaller or larger than the size of the grid cell during the initialization
and optimization stage, depending on the actual size of the target ob-
jects. The following layers then optimized the location as well as the
size based on the anchor boxes. The final classification was chosen from
the optimized anchor boxes using non-maximum suppression (NMS). B
is the number of anchor boxes for each cell (set as nine). So for each
image, there were × × =S S B 891h w anchor boxes in total. The classi-
fication flow is illustrated in Fig. 3, . The network minimized the dis-
crepancy between its classification and the ground truth during
training, which was measured by the loss function. Details of the loss
function can be found in Redmon and Farhadi (2017).

2.3. Module two: a multi-layer perceptron

In this module, the task is to classify an 8-D vector generated from
module one. The input 8-D vector encodes the 2D spatial information as
well as the depth information of the right hand and ear. The labeler was
asked to use their best judgment to guess the location of the ear when
the ear was blocked by other body segments. During the training phase,
module two would learn to make corresponding classifications on the
occluded cases.

To be specific, a six-layer perceptron was designed (see structure in
Fig. 5). Batch normalization was added after each dense layer (Ioffe and

Fig. 1. Method overview. The framework consists of two modules. The first module adopted YOLO for detection of the driver's hand and ear. The second model is a
multi-layer perceptron. It predicted the type of distraction based on the spatial patterns of the driver's hand and ear.

Fig. 2. Formulation of bounding box. x and y represent the coordinates for the
center of the bounding box. w and h denote the width and height.
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Szegedy, 2015). The batch normalization layer normalizes the raw
output from each dense layer, and mitigates internal covariate shift. It
can also accelerate the training. Rectified Linear Units (RELU) (Nair and
Hinton, 2010) were chosen as the activation function for each layer.
The RELU function filters images with positive responses and avoids
gradients saturation by keeping the magnitude of the positive response
on the feature map. A dropout layer with dropout probability 0.1
(Srivastava et al., 2014) was added for each layer, which could mitigate
overfitting during training. During training, Adam (Kingma and Ba,
2014) was used as the optimizer for updating the parameters. The
multi-layer perceptron projects the 8-D vector into a 6-D vector, of
which each element represents the confidence score for each type of
task, and the cross-entropy of softmax was used as the loss function,
which is given as:

=
∑=

z
q
q

ˆ
exp( )
exp( )

i
i

i
N

j1 (6)

∑= −
=

z zloss log ˆ
i

N

i i2
1 (7)

Where qi is the confidence score for the ith class, and ẑi is the softmax of
the ith class to avoid numerical issue. zi is the ground truth one-hot
vector. N represents the total number of classes. loss2 is the cross-en-
tropy loss. So the final classification can be written as:

=C zargmax ˆ
i

i
(8)

Learning rate was set to 1.0× 10−3. Batch stochastic gradient descent
was used to optimize the loss with batch size equals to 150, and the
network was trained for 100 epochs.

3. Data collection

3.1. Participants

Twenty participants (8 females and 12 males, 25–55 years old, all
with valid drivers’ licenses) were recruited for the experiment. This
experiment was approved by the New England Institutional Research
Board (IRB Study # 1394).

Fig. 3. The YOLO Model. The image is divided into ×S Sh w grid cells (left image). For each cell, bounding boxes, confidence and class probabilities are predicted. In
the bottom picture, the red grid cells have higher probability for the hand, and yellow grid cells are more likely to contain the ear. The upper image shows candidate
bounding boxes. Finally, the unified detection framework of these three components finally gives the correct predicted bounding boxes of each objects with class
labels (right image). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Structure of YOLO network in module
one. a1× a2× a3 represents the dimension of
the layer, i.e. width×height× filters. The
residual block used 1× 1 and 3×3 kernels.
All other layers were convolved with 3×3
kernels. The first module takes images as input,
and outputs the predicted bounding boxes for
target objects.
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3.2. Driving simulator

A RTI driving simulator (Ann Arbor, MI) was used for the study,
which is a fixed-based simulator that consists of an open-cab vehicle
mock up, including accelerator and brake pedals, steering wheel,
dashboard, instrument panel, and center console. Three 46-inch wide
screen LCD displays were adopted to present driving environments for
the participants, which provided 200° of forward visual angle from the
driver's view point. Various driving environments and traffic scenarios
were generated using RTI SimCreator and SimVista software. Video
footage collected from the right side of the driver was used in this study.

3.3. Driving scene

Participants were driving under various driving situations: in the
city street scenario they were (1) driving on a straight road, (2) making
a left turn at an intersection, (3) making a right turn at an intersection,
(4) stopping and proceeding straight through an intersection with
traffic light, and (5) driving on a curved road. Participants also drove in
the highway road scenario with both straight road and curved road
conditions. During the experiment, violating the traffic rules was not
allowed.

3.4. Distraction tasks

During each experiment trial, participants were assigned to five
types of non-driving tasks, which include, talking on a cell phone
(phone), texting (text), drinking water (drink), using the touchscreen
(touchscreen), and placing a marker into the cup holder (marker).

3.5. Procedures

The experiment follows a within-subject design. Before conducting
the main experiments, each participant practiced until they felt com-
fortable to operate the driving simulator. During each experimental
block, participants performed the five distracting tasks mentioned
above in a random order. Verbal instructions regarding the to-be-per-
formed task were provided through the vehicle speakers. In-vehicle
tasks were self-paced and participants pushed a button on the steering
wheel when the task was complete. Verbal instructions for the next task
were played approximately twenty seconds later. A complete experi-
ment for one participant included six blocks, each of which lasted for
approximately fifteen minutes. Five of the six blocks included all the
distraction tasks. The rest one did not include any distraction task and
was used as the baseline to enhance the performance of classification.
Between each block, a five-minute break was given. Due to simulator
sickness, not every participant completed all six blocks. Across all

participants, data from 97 blocks were available for modeling.

3.6. Data processing

One experimental block was randomly selected from each partici-
pant. Considering that each video had more than 27,000 frames, only
one frame was extracted from every five frames to reduce redundancy.
There were 106,677 frames extracted from twenty participants in total.
Fig. 6 shows examples of performing different distracting tasks. Each
task can be represented with four key events, which are ‘start’, ‘initiate’,
‘return’ and ‘end’. ‘Start’ represents the frame the participant starts
move their right hand off the wheel. ‘Initiate’ represents the frame
when the participant initiates contact with the target object. ‘Return’
denotes the frame when the task is finished. ‘End’ represents the right
hand moves back to the steering wheel. The frames between ‘start’ and
‘end’ were annotated with the corresponding distraction class. Then the
driver's right hand and right ear were labeled in each frame using
MATLAB computer vision toolbox. Fig. 7 plots the hand locations of
four participants during different distracting tasks. Clustering can be
clearly seen in the picture. 5626 frames were extracted from each
participant on average (Table 1). The extracted frames were used for
training and testing, the details of which will be given in the following
sections.

4. Result

4.1. Model training

The two above mentioned modules were trained separately. For the
first module, the model was pre-trained by the hand annotations from
five participants plus VIVA hand tracking dataset (a public hand de-
tection dataset) (Viva hand tracking dataset, 2016), which include
23,705 and 4744 samples, respectively. The hand and ear annotations
were then used for training on the pre-trained model, which includes
1000 samples in total (100 from ten participants). Because VIVA hand
tracking dataset includes diverse hand annotations in naturalistic set-
tings, adding this dataset in the pre-training step can save the number of
training samples while still keeping the capacity of the network. In-
cluding this dataset can also enhance the generalizing ability of the
model and thus mitigate overfitting. For the second module, the an-
notated hand and ear and activity IDs were used as paired data for
training, which included 1000 samples in total (100 from ten partici-
pants, same with the second training step in module one).

In summary, labeled data from ten participants were used for
training, and the rest data from the other ten participants were used for
testing. During training, module one took three hours, and module two
took less than one minute. The hardware information is summarized in

Fig. 5. The structure of multi-layer perceptron in module two. It consists of six dense layers. The first layer takes the bounding boxes as input, and the last layer
outputs the type of distraction. x y w h( , , , )h h h h and x y w h( , , , )e e e e are the bounding box features of hand and ear, respectively.
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Table 2.

4.2. Evaluation metrics

Since the two modules were trained separately, they were evaluated
with different metrics. The first module was evaluated with mean ac-
curacy precision (mAP) Everingham et al. (2010).

• Mean average precision (mAP): mAP calculates the mean of the
average precision rate among different target object classes (i.e.
hand and ear in module one) and each detection of that class. It
measures the overlapping area of the bounding boxes from the
ground truth and detection result, and was used to evaluate the
detection accuracy of module one. Specifically:

=IoU
Intersection of BBox and BBox
Union of BBox and BBox

pred gt

pred gt (9)

=mAP
Number of IoUs greater than 0.5

Total number of IoUs (10)

Where BBoxpred and BBoxgt represent the bounding box of the clas-
sification and ground truth, respectively; Intersection over Union
(IoU) calculates the intersection of two bounding boxes divided by
their union; and mAP is the percentage of classifications having IoU
greater than 0.5.

The second module was evaluated with classification metrics. Common
classification metrics include precision, recall and F1-score, which are

Fig. 6. Distracting tasks. Each task can be described by four key events, which are ‘start’, ‘initiate’, ‘return’ and ‘end’. Note that ‘phone’ only refers to talking on the
phone, which is different from ‘text’.

Fig. 7. Right hand tracking. The location, color and size of the points are encoded by the x & y, w & h, and type of distraction, respectively. Note that (x, y) represents
the center point of the bounding box (illustrated in Fig. 2).
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given as follows:

=
+

Precision
tp

tp fp (11)

=
+

Recall
tp

tp fn (12)

=
+

F1score 2·Precision·Recall
Precision Recall (13)

Where tp represents true positives; fn is the number of false negatives;
and fp is the false positives. However, they are designed for binary
classification and tend to over-estimate the error rate for multi-class
classification. For a more comprehensive evaluation, metrics proposed
in Sokolova and Lapalme (2009) for multi-class classification were
adopted.

• Average accuracy and error rate: The average accuracy and error
rate measure the overall performance of the multi-class classifica-
tion (Van Asch, 2013), and are calculated as follows:

=
∑=

+

+ + +

l
Accuracy

i
l

average
1

tp tn
tp fn fp tn

i i

i i i i

(14)

=
∑=

+

+ + +

l
Error

i
l

average
1

fp fn
tp fn fp tn

i i

i i i i

(15)

Where tpi represents true positives for the ith class; tni denotes true
negatives; fni is the number of false negatives; and fpi is the number
of false positives. l equals total number of classes.

• Micro-averaging: The micro-averaging measures give each class a
weight according to the sample size (Van Asch, 2013). Therefore,
they favor the classes with more samples. They are given as follows:

=
∑

∑ +

=

=

Precision
tp

(tp fp )
μ

i
l

i

i
l

i i

1

1 (16)

=
∑

∑ +

=

=

Recall
tp

(tp fn )
μ

i
l

i

i
l

i i

1

1 (17)

=
+

F1score
2·Precision ·Recall
Precision Recallμ

μ μ

μ μ (18)

Where precisionμ and Recallμ evaluate the effectiveness of a classifier
to identify class labels if calculated from the sums of per-text

decisions, and the Fscoreμ reveals the relationships between the
data's positive labels and those from the classifier based on the sums
of per-text decisions.

• Macro-averaging: The macro-averaging treats all classes more
equally, which is more suitable for an imbalanced dataset. The
formulas are given in the following:

=
∑= +

l
PrecisionM

i
l
1

tp
tp fp

i

i i

(19)

=
∑= +

l
RecallM

i
l
1

tp
tp fn

i

i i

(20)

=
+

F1score 2·Precision ·Recall
Precision RecallM

M M

M M (21)

The macro-averaging measures the agreement of the average per-
class of a classifier to identify class labels. These systematic mea-
sures gave a more objective and reliable evaluation for the algo-
rithm.

4.3. Model validation

The whole framework ran at 28 FPS. For module one, the mAP for
hand and ear detection was 56.6%. Besides multi-class classification,
the proposed network was also evaluated with binary classification.
That is, five distracting tasks were all labeled by single category of
“distracted driving”, and the network predicted whether a distracting
activity is present for each frame using the same structure for the six-
class classification. The average of k-fold (k=5) cross-validation was
taken as the final result.

Table 3 shows the confusion matrix for multi-class classification. Let
Vij represent the value of the ith row and the jth column in the confusion
matrix. Vij equals to the number of the ith distraction that were clas-
sified as the jth distraction.

Table 4 and Table 5 show the evaluation results and multi-class
results under two averaging metrics introduced in the previous section.
The algorithm achieved results in discerning distracting activities and
normal driving with F1-score 0.74 and 0.87, respectively, but also re-
vealed variation in accuracy of detecting different types of distraction.
Normal driving had the highest F1-score (0.84), followed by phone
(0.82), and touchscreen (0.69). The F1-scores for other types of dis-
traction were below 0.5. For multi-class classification metrics, the al-
gorithm achieved results in terms of average accuracy (0.92). For the
micro-averaging, the algorithm achieved an average F1-score of 0.75,
and 0.60 for the macro-averaging. The algorithm demonstrated better
performance under micro-averaging because the samples of normal
driving have much more weight than other classes under micro-aver-
aging compared to macro-averaging.

The normal driving resulted in the most type I and type II error
(around 71%) among all distracting activities. This is because the dri-
ver's right hand is very close to the wheel at the ‘start’ and ‘end’ of a
distracting task (Fig. 6), and can thus be confused with normal driving.

Table 1
Number of frames extracted from each participant. One block was randomly selected from each participant. One frame was extracted from every five frames to avoid
redundancy.

ID Total ID Total ID Total ID Total

Participant 01 6945 Participant 06 5190 Participant 11 5451 Participant 16 5341
Participant 02 6698 Participant 07 5359 Participant 12 5035 Participant 17 6009
Participant 03 5150 Participant 08 5235 Participant 13 5828 Participant 18 5844
Participant 04 4912 Participant 09 5227 Participant 14 5778 Participant 19 5930
Participant 05 5828 Participant 10 5445 Participant 15 6096 Participant 20 5220

Table 2
Hardware information.

Compiler Python 2.7
Backend Keras with tensorflow
CPU Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz
GPU 2×Titan V
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Table 6 shows the similarity level of each pair of distractions. The
value on the ith row and the jth column denotes the percentage of the
jth distraction in the type I error cases of the ith distraction. Drink-
touchscreen, touchscreen-marker, and touchscreen-text are the top
three pairs that were the most frequently misclassified by the algorithm.
The reason is that using the touchscreen event is the most ‘neutral’
among all events. It lies in between the hand lifting up and reaching
down, and it involves the minimum manual moving distance from the
wheel. Therefore, the spatial features of other classes were frequently
misclassified as touchscreen.

5. Discussion

The primary aim of this study was to develop a robust and efficient
image-based algorithm for detecting driving distraction. Table 7 com-
pares the overall performance of the proposed method with other si-
milar studies intended for driving distraction-related classification
(note that the overall accuracy in each study should be interpreted with
caution since the algorithms were evaluated on different datasets and
hardware). Among these algorithms, the neural network-based algo-
rithms (MS-RCNN (Ngan Le et al., 2016) and LSTM (Wollmer et al.,
2011)) demonstrated higher overall accuracy, while the traditional
machine learning algorithms were better in efficiency (Adaboost,
Random Forest (Seshadri et al., 2015), SVM (Li et al., 2017), and RF
model (Atiquzzaman et al., 2018)). Our method demonstrated com-
parable accuracy in both binary and multi-class classification while
achieving the top efficiency through leveraging the CNN and multi-
layer perceptron. The convolutional operations and parallel computa-
tion abilities of GPUs made the CNN an efficient low-level feature ex-
tractor. The multi-layer perceptron was easy to implement and de-
monstrated great performance in regression over low-dimensional data.
Moreover, stacking the two neural network-based modules and loading
them onto GPUs as a whole further enhanced the network efficiency.

The architecture of the proposed method also provides flexibility for
future modification and improvements. The first module does not need
further fine-tuning if improvements are later made to the second

module, because the accuracy of the second module only depends on its
structure and the output of the first module. For example, more ad-
vanced structures can be stacked into the second module with the first
module unchanged. The categories of distractions could also be ex-
tended towards a more comprehensive monitoring system through the
adjustment of module two. In comparison, an end-to-end pipeline may
lose the flexibility.

However, several limitations are faced in this study. The results
revealed substantial variation in F1-scores among different classes. The
reason can be two-fold. First, the proposed algorithm is detection-

Table 3
Confusion matrix for six-class classification. Rows represent the actual class and columns represent the predicted class. The diagonal entries show the number of
samples correctly classified.

Normal driving Marker Drink Touchscreen Text Phone Total

Normal driving 31,108 801 1185 2046 1272 596 37,008
Marker 1255 820 71 130 96 77 2449
Drink 806 184 941 128 269 266 2594
Touchscreen 320 0 15 3044 2 1 3382
Text 3003 123 175 312 2390 184 6187
Phone 386 40 57 70 134 4225 4912

Total 36,878 1968 2444 5730 4163 5349 56,532

Table 4
Precision, recall and F1-score of testing result. ↑ denotes a larger value is preferred; ↓ means a smaller value is preferred.

Class Precision↑ Recall↑ F1-score↑ Type I error↓ Type II error↓

Binary classification Normal driving 0.85 0.90 0.87 0.15 0.10
Distracted driving 0.78 0.70 0.74 0.22 0.30

Average 0.82 0.80 0.81 0.19 0.20

Multi-class classification Normal driving 0.84 0.84 0.84 0.16 0.16
Marker 0.42 0.34 0.37 0.58 0.66
Drink 0.38 0.36 0.37 0.62 0.64
Touchscreen 0.53 0.90 0.69 0.47 0.10
Text 0.57 0.39 0.46 0.43 0.61
Phone 0.79 0.86 0.82 0.21 0.14

Average 0.59 0.62 0.59 0.41 0.39

Table 5
Multi-class classification measures (Sokolova and
Lapalme, 2009). μ and M indices represent micro-
and macro-averaging.

Measure Value

Average accuracy↑ 0.92
Error rate↓ 0.08
Precisionμ↑ 0.75
Recallμ↑ 0.75
Fscoreμ↑ 0.75
PrecisionM↑ 0.59
RecallM↑ 0.61
FscoreM↑ 0.60

Table 6
Similarity matrix. The entry at (i, j) represents the percentage of the jth dis-
traction in the false-positives of the ith distraction, e.g. for the false-positives of
marker event, drink event took up 19% of them.

Marker Drink Touchscreen Text Phone

Marker – 0.19 0.35 0.26 0.21
Drink 0.22 – 0.15 0.32 0.31
Touchscreen 0 0.83 – 0.11 0.06
Text 0.15 0.22 0.39 – 0.23
Phone 0.13 0.19 0.23 0.45 –
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based, while the human movements are continuous. When the activity
is at its ‘start’ and ‘end’, the features are very close to the previous
activity and the algorithm could misinterpret the action. Thus, the
performance of the detection-based algorithm could be less robust at
making distinction among continuous events. Second, although ex-
tracting spatial features of the hand and ear is sufficient for many dis-
tractions, specific distractions may need more features like gestures or
other parts of body for their encoding. Regarding the efficiency, the
algorithm was implemented at 28 FPS, which is nearly fast enough for
real-time monitoring. The bottleneck of efficiency is mainly from the
YOLO module. To further improve the speed, accuracy would need to
be sacrificed (e.g. the tiny YOLO, a simplified version of YOLO, and it
reportedly can run at 150 FPS on Titan while sacrificing mAP by around
24% (Redmon and Farhadi, 2017)). The cost of the training step could
be another limitation for the proposed method. The generalizing abil-
ities of the algorithm largely depend on the training dataset due to the
data-driven nature of deep learning. The labeling for the training set
could take weeks and proficient labelers are needed.

Future work will seek to address the limitations in this study. First,
more advanced network architectures could be explored to further in-
crease the robustness of the algorithm, like building a hierarchical
structure for each activity and combining the temporal information, so
that each activity can be further divided into more sub-tasks with more
discernible features. Future studies could also use the recurrent neural
network (RNN) to learn the temporal features, which may further im-
prove the robustness of the algorithm.

Second, more features in driving cab could be extracted to improve
the inference accuracy. Ideally, the features encoded in the collected
data should be the sufficient statistics of a driver's status to guarantee
the best accuracy. As drivers’ behaviors under naturalistic settings vary
substantially, the more data that are collected, the more likely the data
include the sufficient statistics. Therefore, other data, like drivers’ facial
features, heart rate and gesture, could be collected for training a unified
and more robust neural network. However, labeling these additional
data could also require considerably more labor.

6. Conclusion

In this paper, a novel algorithm for detecting drivers’ manual dis-
traction is proposed. The algorithm consists of two modules, where the
first module detects the driver's right hand and right ear, and the second
module predicts the status of drivers based on their spatial patterns. The
algorithm was evaluated with driving videos collected from a driving
simulator. Results indicated that the proposed algorithm is comparable
with results from similar work in overall accuracy, and is more efficient
than other methods. Future work will focus on exploring data fusion
and temporal relations of frames to further enhance the robustness of
driving distraction detection.
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