Message passing on networks with loops
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Message passing is a fundamental technique for performing calcula-
tions on networks and graphs with applications in physics, computer
science, statistics, and machine learning, including Bayesian infer-
ence, spin models, satisfiability, graph partitioning, network epidemi-
ology, and the calculation of matrix eigenvalues. Despite its wide
use, however, it has long been recognized that the method has a fun-
damental flaw: it works poorly on networks that contain short loops.
Loops introduce correlations that can cause the method to give in-
accurate answers, or to fail completely in the worst cases. Unfor-
tunately, most real-world networks contain many short loops, which
limits the usefulness of the message passing approach. In this paper
we demonstrate how to rectify this shortcoming and create message
passing methods that work on any network. We give two example
applications, one to the percolation properties of networks and the
other to the calculation of the spectra of sparse matrices.
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N etworks occur in a wide range of contexts in physics, biol-
ogy, computer science, engineering, statistics, the social
sciences, and even arts and literature (1). Message passing (2
4), also known as belief propagation or the cavity method,
is a fundamental technique for the quantitative calculation
of a wide range of network properties, with applications to
Bayesian inference (3), NP-hard computational problems (4, 5),
statistical physics (4, 6, 7), epidemiology (8), community de-
tection (9), and signal processing (10, 11), among many other
things. Message passing can be used both as a numerical
method for performing explicit computer calculations and as
a tool for analytic reasoning about network properties, lead-
ing to new formal results about percolation thresholds (7),
algorithm performance (9), spin glasses (12), and other topics.
Many of the most powerful new results concerning networks in
recent years have been derived from applications of message
passing in one form or another.

Despite the central importance of the message passing
method, however, it also has a substantial and widely discussed
shortcoming: it only works on trees, i.e., networks that are free
of loops (4). More generously, one could say that it works to
a good approximation on networks that are “locally tree-like,”
meaning that they may contain long loops but no short ones,
so that local neighborhoods within the network take the form
of trees. However, most real-world networks that occur in
practical applications of the method contain short loops, often
in large numbers. When applied to such “loopy” networks the
method can give poor results, and in the worst cases can fail
to converge to an answer at all.

In this paper, we propose a remedy for this problem. We
present a series of methods of increasing elaboration for the
solution of problems on networks with loops. The first method
in the series is equivalent to the standard message passing
algorithm of previous work, which gives poor results in many
cases. The last in the series gives exact results on any network
with any structure, but is too complicated for practical appli-

cation in most situations. In between lies a range of methods
that give progressively better approximations, and which can
be highly accurate in practice, as we will show, yet still simple
enough for ready implementation. Indeed even the second
member of the series—just one step better than the standard
message passing approach—already gives remarkably good
results in real-world conditions. We demonstrate our approach
with two example applications. The first is to the solution of
the bond percolation problem on an arbitrary network, includ-
ing the calculation of the size of the percolating cluster and
the distribution of sizes of small clusters. The second is to
the calculation of the spectra of sparse symmetric matrices,
where we show that our method is able to calculate the spectra
of matrices far larger than those accessible by conventional
numerical means.

A number of approaches have been proposed previously for
message passing on loopy networks. The most basic, which
goes by the name of “loopy belief propagation,” is simply to
apply the standard message passing equations, ignoring the
fact that they are known to be incorrect in general. While this
might seem rash, it gives reasonable answers in some cases (11)
and there are formal results showing that it can give bounds
on the true value of a quantity in others (4, 7). Perturbation
theories that treat loopy belief propagation as a zeroth-order
approximation have also been considered (13). Broadly, it is
found that these methods are suitable for networks that contain
a sub-extensive number—and hence a vanishing density—of
short loops, but not for networks with a non-vanishing density.

Some progress has been made for the case of networks that
are composed of small subgraphs or “motifs” which are allowed
to contain loops but which on a larger scale are connected
in a loop-free way (14-16). For such networks one can write
down exact message passing equations that operate at the
higher level of the motifs and which give excellent results for

Significance Statement

Message passing, a celebrated family of methods for perform-
ing calculations on networks, has led to many important results
in physics, statistics, computer science, and other areas. The
technique allows one to divide large network calculations into
manageable pieces and hence solve them either analytically
or numerically. However, the method has a substantial and
widely recognized shortcoming, namely that it works poorly on
networks that contain short loops. Unfortunately, most real-
world networks contain many such loops, which can cause the
method to give inaccurate answers, or even to fail completely
in some cases. In this paper we give a solution for this prob-
lem, demonstrating how message passing can be extended to
any network, regardless of structure, allowing it to become a
general tool for the quantitative study of network phenomena.
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problems such as structural phase transitions in networks,
network spectra, and the solution of spin models (6, 14-17).
While effective for theoretical calculations on model networks,
however, this approach is of little use in practical situations.
To apply it to an arbitrary network one would first need to
find a suitable decomposition of the network into motifs, and
no general method for doing this is currently known, nor even
whether such a decomposition exists.

A third approach is the method known as “generalized
belief propagation,” which has some elements in common
with the motif-based approach but is derived in a different
manner, from approximations to the free energy (18, 19).
This method, which is focused particularly on the solution of
inference problems and related probabilistic calculations on
networks, involves a hypergraph-like extension of traditional
message passing that aims to calculate the joint distributions
of three or more random variables at once, by contrast with the
standard approach which focuses on two-variable distributions.
Generalized belief propagation was not originally intended
as a method for solving problems on loopy networks but can
be used in that way in certain cases. It is, however, quite
involved in practice, requiring the construction of a nested
set of regions and sub-regions within the network, leading to
complex sets of equations.

In this paper we take a different approach. In the following
sections we directly formulate a message passing framework
that works on real-world complex networks containing many
short loops by incorporating the loops themselves directly
into the message passing equations. In traditional message
passing algorithms each node receives a message from each of
its neighbors. In our approach they also receive messages from
nodes they share loops with. By limiting the loops considered
to a fixed maximum length, we develop a series of progressively
better approximations for the solution of problems on loopy
networks. The equations become more complex as loop length
increases but, as we will show, the results given by the method
are already impressively accurate even at shorter lengths.

Message passing with loops

Message passing methods calculate some value or state on
the nodes of a network by repeatedly passing information be-
tween nearby nodes until a self-consistent solution is reached.
The approach we propose is characterized by a series of mes-
sage passing approximations defined as follows. In the zeroth
approximation, which is equivalent to the standard message
passing method, we assume there are no loops in our network.
This implies that the neighbors of a node are not connected to
each other, which means they have independent states. It is
this independence that makes the standard method work. In
the next approximation we no longer assume that neighbors
are independent. Instead, we assume that any correlation can
be accounted for by direct edges between the neighbors, which
is equivalent to allowing the network to contain triangles, the
shortest possible kind of loop. In the next approximation after
this, we assume that neighbor correlations can accounted for
by direct edges plus paths of length 2 between neighbors. Gen-
erally, in the rth approximation we assume that correlations
between neighbors can be accounted for by paths of length r
and shorter.

These successive approximations can be thought of as ex-
pressing the properties of nodes in terms of increasingly large
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Fig. 1. (a) A node (open circle) and its immediate surroundings in a network. (b) In the
zeroth (tree) approximation the neighborhood we consider consists of the neighbors
of the focal node only. (c) In the first approximation we also include all length 1 paths
between the neighbors. (d) In the second approximation we include all paths of length
1 and 2, and so forth.

neighborhoods and the edges they contain. The zeroth neigh-
borhood Ni(o) of node ¢ contains ¢’s immediate neighbors and
the edges connecting them to i, but nothing else. The first
neighborhood N, i(l) contains i’s immediate neighbors and edges
plus all length one paths between neighbors of i. The second
neighborhood Ni@) contains i’s neighbors and edges plus all
length one and two paths between neighbors of 7, and so forth.
Figure 1 shows an example of how these neighborhoods are
constructed.

Just as the conventional message passing algorithm is exact
on trees, our algorithms will be exact on networks with short
loops. We define a primitive cycle of length r starting at node 3
to be a loop such that at least one node is not on a shorter
loop beginning and ending at ¢. Then our rth approximation is
exact on networks that contain primitive cycles of length r + 2
or less only. For networks that contain longer primitive cycles
it will be an approximation, although as we will see it may be
a good one.

Applications

Our approach is best demonstrated by example. In this section
we derive message passing equations on loopy networks for
two specific applications: the calculation of cluster sizes for
bond percolation and the calculation of the spectra of sparse
matrices.

Percolation. Consider the bond percolation process on an undi-
rected network of n nodes, where each edge is occupied inde-
pendently with probability p (20, 21). Occupied edges form
connected clusters and we wish to know the distribution of
the sizes of these clusters and whether there exists a giant or
percolating cluster that occupies a non-vanishing fraction of
the network in the limit of large network size.

Let us define the rth neighborhood Ni(r) of node 7 as pre-
viously, then define a random variable I'; for our percolation
process to be the set of nodes within Ni(r) that are reachable
from i by traversing occupied edges only. Our initial goal will
be to compute the probability 7;(s) that node ¢ belongs to a
non-percolating cluster of size s. We will do this in two stages.
First we will compute the conditional probability 7;(s|T';) of
belonging to a cluster of size s given the set of reachable nodes.
Then we will average over I'; to get the full probability 7;(s).
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Suppose that node i belongs to a cluster of size s. If
our network contains no primitive cycles longer than r + 2,
then the set of nodes I'; would become disconnected from one

another were we to remove all edges in the neighborhood N, fr)—

the removal of these edges removes any connections within
the neighborhood and there can be no connections via paths
outside the neighborhood since such a path would constitute a
primitive cycle of length longer than r + 2. Hence the sizes s;
of the clusters to which the nodes in Nz-(T) would belong after
this removal must sum to s — 1 (the sth and last node being
provided by ¢ itself). This observation allows us to write

= [l

{sj:d€Ti} =jely

mi(s|Ts) = =13 er, 5), 1]

where ;;(s) is the probability that node j is in a cluster of
size s once the edges in Ni(r) are removed.

We can now write a generating function for m;(s|I';) as
follows

Z Hmej (s5) ] s—l,zjeris

{sj JEL;} “jET;

H 2 (s5)- 2]

i s;=1

To calculate the full probability ;(s) we average m;(s|I';) over
sets T'; to get m;(s <7rZ s|Ts > with the average weighted

according to the sum of the probablhtles of all edge configu-
rations that correspond to a particular I';. The probability
of any individual edge configuration is simply p*(1 — p)™~*,
where p is the edge occupation probability as previously, m is
the number of network edges in the neighborhood NZ.(T)7 and k
is the number that are occupied. Performing the same average

on Eq. (2) gives us
Hi(z) =Y mi(s) 2* = 2Gi(Hic (), 3]

where G;(y) =

the random variable w;;, which takes the value 1 if j € I'; and
0 otherwise, and H; (z) is the vector with elements H;;(z)
for nodes 7 in Ni(r). (A detailed derivation of Eq. (3) is given
in the Supplementary Information.)

To complete the calculation we need to evaluate Hi;(z),
whose computation follows the same logic as for H;(z), the
only difference being that in considering the neighborhood of
node j we must remove the entire neighborhood of ¢ first, as
described above. Doing this leads to

Wi 5 . . .
<H].€Ni(r) Y; >F11 is a generating function for

Hicj(2) = 2Gicj (Hj(2)), [4]

where G ;(y) is the equivalent of G;(y) when Ni(r) is removed.
If we can solve this equation self-consistently for Hj. (2),
we can substitute the solution into Eq. (3) to compute the
full cluster size generating function. The message passing
method involves solving Eq. (4) by simple iteration: we choose
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suitable starting values, for instance at random, and iterate
the equations to convergence.

From the cluster size generating function we can calculate
a range of quantities of interest. For example, the proba-
bility that node ¢ belongs to a small cluster (of any size) is
H;(1) = > mi(s). If it does not belong to a small cluster then
necessarily it belongs to the percolating cluster and hence the
expected fraction S of the network taken up by the percolating

cluster is 1
S:I—EE:HJD. [5]

Similarly, the average value of s; is

where H' is the derivative of H and 0;@; is the partial deriva-
tive of G; with respect to its jth argument. H;, ;(1) can be
found by differentiating Eq. (4) and setting z = 1 to give the
self-consistent equation

+ > H

(r)
kEN .}

Hi ;(1)= 1) 0kGiy (Hje),  [7]

7,47‘7

where N7 denotes the neighborhood N Jm with N removed.

While these equations are straightforward in principle,
implementing them in practice presents some additional
challenges. Computing the generating functions G;(y) and
Gi—;(y) can be demanding, since it requires us to perform an
average over the occupancy configurations of all edges within
the neighborhoods Nim and N(TL and the number of configu-
rations increases exponentially with neighborhood size. For
small neighborhoods, such as those found on low-dimensional
lattices, it is feasible to average exhaustively, but for many
complex networks this is not possible. In such cases we in-
stead approximate the average by Monte Carlo sampling of
configurations—see the Supplementary Information for details.
A nice feature of the Monte Carlo procedure is that the sam-
ples need be taken only once for the entire calculation and can
then be reused on successive iterations of the message passing
process.

In practice the method gives excellent results. We show
example applications to two real-world networks in Fig. 2,
the first a social network of coauthorship relations between
scientists in the field of condensed matter physics (22) and the
second a network of trust relations between users of the PGP
encryption software (23). Both networks have a high density
of short loops. For each network the figure shows, as a function
of p, several different estimates of both the average size (s) of
a small cluster and the size S of the percolating cluster as a
fraction of n. First we show an estimate made using standard
message passing (dashed line)—the r = 0 approximation in
our nomenclature—which ignores loops and is expected to give
poor results. Second, we show the next two approximations
in our series, those for r =1 and r = 2 (dotted and solid lines
respectively), with G;(y) and G;;(y) estimated by Monte
Carlo sampling as described above. We use only eight samples
for each node i but the results are nonetheless impressively
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Fig. 2. Percolating cluster size (x symbols) and average cluster size (+ symbols)
for two real-world networks. Top: the largest component of a coauthorship network
of 13,861 scientists (22). Bottom: a network of 10,680 users of the PGP encryption
software (23).

accurate. Third, we show for comparison a direct numerical
estimate of the quantities in question made by conventional
simulation of the percolation process.

For both networks we see the same pattern. The traditional
message passing method fares poorly, as expected, giving
estimates that are substantially in disagreement with the
simulation results, particularly for the calculations of average
cluster size. The r = 1 approximation, on the other hand,
does significantly better and the r = 2 approximation does
better still, agreeing closely with the numerical results for all
measures on both networks. In these examples at least, it
appears that the r = 2 method gives accurate results for bond
percolation, where standard message passing fails.

The message passing algorithm is relatively fast. For r <1
each node receives a message from each neighbor on each
iteration, and so on a network with mean degree c there are
cn messages passed per iteration. For r > 2 the number
of messages depends on the network structure. On trees the
number of messages remains unchanged at cn as r increases but
on networks with loops it grows and for large numbers of loops
it can grow exponentially. In the common sparse case where
the size of the neighborhoods does not grow with n, however,
the number of messages is linear in n for fixed r and hence so is
the running time for each iteration. It is not known in general
how many iterations are needed for message passing methods
to reach convergence, but elementary heuristic arguments
suggest the number should be on the order of the diameter
of the network, which is typically O(logn). Thus we expect
overall running time to be O(nlogn) for sparse networks at
fixed r.

This makes the algorithm quite efficient, although direct
numerical simulations of percolation run comparably fast, so
the message passing approach does not offer a speed advantage

over traditional approaches. However, the two approaches are
calculating different things. Traditional simulations of per-
colation perform a calculation for one particular realization
of bond occupancies. If we want average values over many
realizations we must perform the average explicitly, repeat-
ing the whole simulation for each realization. The message
passing approach, on the other hand, computes the average
over realizations in a single calculation and no repetition is
necessary, making it potentially the faster method in some
situations.

In the next section we demonstrate another example ap-
plication of our method, to the calculation of the spectrum
of a sparse matrix, where traditional and message passing
calculations differ substantially in their running time, the mes-
sage passing approach being much faster, making calculations
possible for large systems whose spectra cannot be computed
in any reasonable amount of time by traditional means.

Matrix spectra. For our second example application we show
how the message passing method can be used to compute the
eigenvalue spectrum of a sparse symmetric matrix. Any n x n
symmetric matrix can be thought of as an undirected weighted
network on n nodes and we can use this equivalence to apply
the message passing method to such matrices.

The spectral density of a symmetric matrix A is the quan-
tity

pla) = =3 dw = M), 8

where \i is the kth eigenvalue of A, and 6(z) is the Dirac
delta function. Following standard arguments (24), we can
show that the spectral density is equal to the imaginary part
of the complex function

n

1 1 1 1
- - Tr(:I-A
p(z) nmw zZ— Ak nmw r(z )
k=1
1 == X7
= —-— L 9
nwz ;Z; zs’ 19

where X; = [A®]i; is the ith diagonal element of A®, and
z = x + in and we take the limit as 7 — 0 from above. The
imaginary part 7 acts as a resolution parameter that broadens
the delta-function peaks in Eq. (8) by an amount roughly
equal to its value.

The quantities X; = [A°®];; can be related to sums over
closed walks in the equivalent network. If we consider the
“weight” of a walk to be the product of the matrix elements
on the edges it traverses, then X; is the sum of the weights of
all closed walks of length s that start and end at node 3.

A closed walk from i need not visit 7 only at its start and
end, however. It can return to ¢ any number of times over the
course of the walk. The simplest case, where it returns just
once at the end of the walk, we will call an excursion. A more
general closed walk that returns to node ¢ exactly m times can
be thought of as a succession of m excursions. Such a walk
will have length s if those m excursions have lengths s1 ... sm
with 23:1 Su = S.

With this in mind, let Y;® be the sum of the weights of all
excursions of length s that start and end at node i. Then the
sum X; over closed walks of length s can be written in terms
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Fig. 3. An example excursion from the central node (open circle). The excursion is
equivalent to an excursion inside the neighborhood, shown with green arrows, plus
closed walks to regions outside of the neighborhood, shown in blue.

of Y% as
Xi=2 |2 2 o Xihe) [y |- 1o
m=0 [Ls1=1 sm=1 u=1

Using this result, and defining the function
o0 Y;S
Hi(z) =)~ [11]
s=1

we find after some algebra that

n

p(z) = —% Z_;H(Z) [12]

i=1

(See the Supplementary Information for a detailed derivation.)

Thus, if we can calculate H;(z) then we can calculate p(z).

This we do as follows.

Consider the neighborhood Nim around 3. If there are no
primitive cycles of length longer than r + 2 in our network
then all loops starting at i are already included within the
neighborhood, which means that any excursion from i takes
the form of an excursion w within the neighborhood plus some
number of additional closed walks outside the neighborhood
that each start at one of the nodes in w and return some time
later to the same node—see Fig. 3. The additional walks must
necessarily return to the same node they started at since if they
did not they would complete a loop outside the neighborhood,
of which by hypothesis there are none.

Let the length of the excursion w be [ + 1, meaning that
it visits [ nodes ji...j; (not necessarily distinct) within the
neighborhood other than the starting node i, and let s; be
the length of the external closed walk (if any) that starts at
node j, or zero if there is no such walk. The total length of
the complete excursion from ¢ will then be [ 4+ 1 + ZjEw S;
and the sum of the weights of all excursions of length s with
w as their foundation will be

ol > a(si+1+3 ,s) [[ XL, 03]
{s_j:jew} jew

s

where |w| is the weight of w itself and X7, ; is the sum of

weights of length-s walks from node j if the neighborhood NV, i(T)
is removed from the network. By a similar argument to the
one that led to Eq. (10), we can express X;, ; in terms of the

sum Y;_; of excursions from j thus:

m

Xicy = 1> D a(s > sa) [ v | 14

m=0 Ls1=1 sm=1 u=1
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And the quantity Y;® appearing in Eq. (11) can be calculated
by summing Eq. (13) first over the set of excursions of length
[+ 1 in the neighborhood of ¢ and then over [. This allows us
to write Eq. (11) as

(=3 Wl [] = [15]

weW; JEwW

where W; is the complete set of excursions of all lengths in
the neighborhood of ¢ and we have defined

[eo]

Hiej(2) =Y Yooy [16]

Zsfl
s=1

Following an analogous line of argument for this function we
can show similarly that

Hij(z) = Z ] H m -

weWjy\; kew

Equation (17) defines our message passing equations for the
spectral density. By iterating these equations to convergence
from suitable starting values we can solve for the values of
the messages H;j(z), then substitute into Egs. (12) and (15)
and to get the spectral density itself.

As with our percolation example, the utility of this approach
relies on our having an efficient method for evaluating the
sum in Eq. (17). Fortunately there is such a method, as
follows. Let v;—; be the vector with elements v, jr = Aji if
nodes j and k are directly connected in N;(Z and 0 otherwise.

Further, let A*~7 be the matrix of the neighborhood of j with
the neighborhood of ¢ removed, such that

iy At
Ak(l_J = {

0 otherwise,

for k,1 # j and edge (k,1) € NI}, 18]

and let D/ (z) be the diagonal matrix with entries D}5 7 =
z — Hjr(z). As shown in the Supplementary Information,
Eq. (17) can then be written

Hiej(2) = Aj; + Vi, (D' = A™) viy [19]

Since the matrices in this equation are the size of the neighbor-
hood, each message update requires us to invert only a small
matrix, which gives us a linear-time algorithm for each itera-
tion of the message passing equations and an overall running
time of O(nlogn) for sparse networks with fixed neighborhood
sizes, or for the equivalent sparse matrices.

As an example of this method, we show in Fig. 4 spectra for
the same two real-world networks that we used in Fig. 2. To
demonstrate the flexibility of the method we calculate different
spectra in the two cases: for the coauthorship network we
calculate the spectrum of the graph Laplacian; for the PGP
network we calculate the spectrum of the adjacency matrix.
For each network the black curve in the figure shows the
spectral density calculated using the message passing method
with 7 = 1. We also calculate the full set of eigenvalues of
each network directly using traditional numerical methods and
substitute the results into Eq. (9) to compute the spectral
density, shown as the shaded areas in the figure. As we can
see, the agreement between the two methods is excellent for
both networks. There are a few regions where small differences
are visible but in general they agree closely. Extending the
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Fig. 4. Matrix spectra for the same two networks that were used in Fig. 2. Top: the
spectrum of the graph Laplacian of the coauthorship network. Bottom: the spectrum
of the adjacency matrix of the PGP network. The shaded areas show the spectral
density calculated by direct numerical diagonalization. The black lines show the » = 1
message-passing approximation. The broadening parameter n was set to 0.05 in the
top panel and 0.01 in the bottom panel.

calculation to the next (r = 2) approximation gives a modest
further improvement in the results.

The O(nlogn) running time of the message passing al-
gorithm significantly outstrips that of traditional numerical
diagonalization. Complete spectra are normally calculated
using the QR algorithm, which runs in time O(n®) and is
consequently much slower as system size becomes large. The
Lanczos algorithm is faster, but typically gives only a few
leading eigenvalues and not a complete spectrum—it takes
time O(rn) to compute r eigenvalues of a sparse matrix. The
kernel polynomial method (25) is capable of computing com-
plete spectra for sparse matrices, but requires Monte Carlo
evaluation of the traces of large matrix powers which has slow
convergence and is always only approximate, even in cases
where our method gives exact results.

This opens up the possibility of using our approach to calcu-
late the spectral density of networks and matrices significantly
larger than those that can be tackled by traditional means.
As an example, we have used the message passing method
to compute the spectral density of one network with 317 080
nodes. This is significantly larger than the largest systems
that can be diagonalized using the QR algorithm, which on
current (non-parallel) commodity hardware is limited to a few
tens of thousands of nodes in practical running times.

Conclusions

In this paper we have described a new class of message passing
methods for performing calculations on networks that contain
short loops, a situation in which traditional message passing
often gives poor results or may fail to converge entirely. We
derive message passing equations that account for the effects of

loops up to a fixed length that we choose, so that calculations
are exact on networks with no loops longer than this. In
practice we achieve excellent results on real-world networks
by accounting for loops up to length three or four only, even
if longer loops are present.

We have demonstrated our approach with two example ap-
plications, one to the calculation of bond percolation properties
of networks and the other to the calculation of the spectra of
sparse matrices. In the first case we develop message passing
equations for the size of the percolating cluster and the average
size of small clusters and find that these give good results, even
on networks with an extremely high density of short loops.
For the calculation of matrix spectra, we develop a message
passing algorithm for the spectral density that gives results in
good agreement with traditional numerical diagonalization but
in much shorter running times. Where traditional methods
are limited to matrices with at most a few tens of thousands
of rows and columns, our method can be applied to cases with
hundreds of thousands at least.

There are a number of possible directions for future work
on this topic. Chief among them is the application of the
method to other classes of problems, such as epidemiological
calculations, graph coloring, or spin models. Many extensions
of the calculations in this paper are also possible, including
the inclusion of longer primitive cycles in the message passing
equations, development of more efficient algorithms for very
large systems, and applications to individual examples of
interest such as the computation of spectra for very large
graphs. Finally, while our example applications are to real-
world networks, the same methods could in principle be applied
to model networks, and in particular to ensembles of random
graphs, which opens up the possibility of new analytic results
about such models. These possibilities, however, we leave for
future research.
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