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Message passing is a fundamental technique for performing calcula-

tions on networks and graphs with applications in physics, computer

science, statistics, and machine learning, including Bayesian infer-

ence, spin models, satisfiability, graph partitioning, network epidemi-

ology, and the calculation of matrix eigenvalues. Despite its wide

use, however, it has long been recognized that the method has a fun-

damental flaw: it works poorly on networks that contain short loops.

Loops introduce correlations that can cause the method to give in-

accurate answers, or to fail completely in the worst cases. Unfor-

tunately, most real-world networks contain many short loops, which

limits the usefulness of the message passing approach. In this paper

we demonstrate how to rectify this shortcoming and create message

passing methods that work on any network. We give two example

applications, one to the percolation properties of networks and the

other to the calculation of the spectra of sparse matrices.
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Networks occur in a wide range of contexts in physics, biol-
ogy, computer science, engineering, statistics, the social

sciences, and even arts and literature (1). Message passing (2–
4), also known as belief propagation or the cavity method,
is a fundamental technique for the quantitative calculation
of a wide range of network properties, with applications to
Bayesian inference (3), NP-hard computational problems (4, 5),
statistical physics (4, 6, 7), epidemiology (8), community de-
tection (9), and signal processing (10, 11), among many other
things. Message passing can be used both as a numerical
method for performing explicit computer calculations and as
a tool for analytic reasoning about network properties, lead-
ing to new formal results about percolation thresholds (7),
algorithm performance (9), spin glasses (12), and other topics.
Many of the most powerful new results concerning networks in
recent years have been derived from applications of message
passing in one form or another.

Despite the central importance of the message passing
method, however, it also has a substantial and widely discussed
shortcoming: it only works on trees, i.e., networks that are free
of loops (4). More generously, one could say that it works to
a good approximation on networks that are “locally tree-like,”
meaning that they may contain long loops but no short ones,
so that local neighborhoods within the network take the form
of trees. However, most real-world networks that occur in
practical applications of the method contain short loops, often
in large numbers. When applied to such “loopy” networks the
method can give poor results, and in the worst cases can fail
to converge to an answer at all.

In this paper, we propose a remedy for this problem. We
present a series of methods of increasing elaboration for the
solution of problems on networks with loops. The first method
in the series is equivalent to the standard message passing
algorithm of previous work, which gives poor results in many
cases. The last in the series gives exact results on any network
with any structure, but is too complicated for practical appli-

cation in most situations. In between lies a range of methods
that give progressively better approximations, and which can
be highly accurate in practice, as we will show, yet still simple
enough for ready implementation. Indeed even the second
member of the series—just one step better than the standard
message passing approach—already gives remarkably good
results in real-world conditions. We demonstrate our approach
with two example applications. The first is to the solution of
the bond percolation problem on an arbitrary network, includ-
ing the calculation of the size of the percolating cluster and
the distribution of sizes of small clusters. The second is to
the calculation of the spectra of sparse symmetric matrices,
where we show that our method is able to calculate the spectra
of matrices far larger than those accessible by conventional
numerical means.

A number of approaches have been proposed previously for
message passing on loopy networks. The most basic, which
goes by the name of “loopy belief propagation,” is simply to
apply the standard message passing equations, ignoring the
fact that they are known to be incorrect in general. While this
might seem rash, it gives reasonable answers in some cases (11)
and there are formal results showing that it can give bounds
on the true value of a quantity in others (4, 7). Perturbation
theories that treat loopy belief propagation as a zeroth-order
approximation have also been considered (13). Broadly, it is
found that these methods are suitable for networks that contain
a sub-extensive number—and hence a vanishing density—of
short loops, but not for networks with a non-vanishing density.

Some progress has been made for the case of networks that
are composed of small subgraphs or “motifs” which are allowed
to contain loops but which on a larger scale are connected
in a loop-free way (14–16). For such networks one can write
down exact message passing equations that operate at the
higher level of the motifs and which give excellent results for
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Suppose that node i belongs to a cluster of size s. If
our network contains no primitive cycles longer than r + 2,
then the set of nodes Γi would become disconnected from one
another were we to remove all edges in the neighborhood N

(r)
i —

the removal of these edges removes any connections within
the neighborhood and there can be no connections via paths
outside the neighborhood since such a path would constitute a
primitive cycle of length longer than r + 2. Hence the sizes sj

of the clusters to which the nodes in N
(r)
i would belong after

this removal must sum to s − 1 (the sth and last node being
provided by i itself). This observation allows us to write

πi(s|Γi) =
∑

{sj :j∈Γi}

[

∏

j∈Γi

πi←j(sj)

]

δ
(

s − 1,
∑

j∈Γi
sj

)

, [1]

where πi←j(s) is the probability that node j is in a cluster of

size s once the edges in N
(r)
i are removed.

We can now write a generating function for πi(s|Γi) as
follows

Hi(z|Γi) =

∞
∑

s=1

πi(s|Γi) z
s

=

∞
∑

s=1

z
s

{

∑

{sj :j∈Γi}

[

∏

j∈Γi

πi←j(sj)

]

δ(s − 1,
∑

j∈Γi
sj)

}

= z
∏

j∈Γi

∞
∑

sj =1

z
sj πi←j(sj). [2]

To calculate the full probability πi(s) we average πi(s|Γi) over
sets Γi to get πi(s) =

〈

πi(s|Γi)
〉

Γi

, with the average weighted

according to the sum of the probabilities of all edge configu-
rations that correspond to a particular Γi. The probability
of any individual edge configuration is simply pk(1 − p)m−k,
where p is the edge occupation probability as previously, m is
the number of network edges in the neighborhood N

(r)
i , and k

is the number that are occupied. Performing the same average
on Eq. (2) gives us

Hi(z) =

∞
∑

s=1

πi(s) z
s = zGi

(

Hi←(z)
)

, [3]

where Gi(y) =
〈
∏

j∈N
(r)
i

y
wij

j

〉

Γi

is a generating function for

the random variable wij , which takes the value 1 if j ∈ Γi and
0 otherwise, and Hi←(z) is the vector with elements Hi←j(z)

for nodes j in N
(r)
i . (A detailed derivation of Eq. (3) is given

in the Supplementary Information.)
To complete the calculation we need to evaluate Hi←j(z),

whose computation follows the same logic as for Hi(z), the
only difference being that in considering the neighborhood of
node j we must remove the entire neighborhood of i first, as
described above. Doing this leads to

Hi←j(z) = zGi←j

(

Hj←(z)
)

, [4]

where Gi←j(y) is the equivalent of Gi(y) when N
(r)
i is removed.

If we can solve this equation self-consistently for Hj←(z),
we can substitute the solution into Eq. (3) to compute the
full cluster size generating function. The message passing
method involves solving Eq. (4) by simple iteration: we choose

suitable starting values, for instance at random, and iterate
the equations to convergence.

From the cluster size generating function we can calculate
a range of quantities of interest. For example, the proba-
bility that node i belongs to a small cluster (of any size) is
Hi(1) =

∑

s
πi(s). If it does not belong to a small cluster then

necessarily it belongs to the percolating cluster and hence the
expected fraction S of the network taken up by the percolating
cluster is

S = 1 −
1

n

∑

i

Hi(1). [5]

Similarly, the average value of si is

〈si〉 =

∞
∑

s=1

sπi(s) = H
′
i(1)

= Hi(1) +
∑

j∈N
(r)
i

H
′
i←j(1) ∂jGi(Hi←), [6]

where H ′ is the derivative of H and ∂jGi is the partial deriva-
tive of Gi with respect to its jth argument. H ′i←j(1) can be
found by differentiating Eq. (4) and setting z = 1 to give the
self-consistent equation

H
′
i←j(1) = Hi←j(1) +

∑

k∈N
(r)

j\i

H
′
j←k(1) ∂kGi←j (Hj←) , [7]

where N
(r)

j\i
denotes the neighborhood N

(r)
j with N

(r)
i removed.

While these equations are straightforward in principle,
implementing them in practice presents some additional
challenges. Computing the generating functions Gi(y) and
Gi←j(y) can be demanding, since it requires us to perform an
average over the occupancy configurations of all edges within
the neighborhoods N

(r)
i and N

(r)

j\i
, and the number of configu-

rations increases exponentially with neighborhood size. For
small neighborhoods, such as those found on low-dimensional
lattices, it is feasible to average exhaustively, but for many
complex networks this is not possible. In such cases we in-
stead approximate the average by Monte Carlo sampling of
configurations—see the Supplementary Information for details.
A nice feature of the Monte Carlo procedure is that the sam-
ples need be taken only once for the entire calculation and can
then be reused on successive iterations of the message passing
process.

In practice the method gives excellent results. We show
example applications to two real-world networks in Fig. 2,
the first a social network of coauthorship relations between
scientists in the field of condensed matter physics (22) and the
second a network of trust relations between users of the PGP
encryption software (23). Both networks have a high density
of short loops. For each network the figure shows, as a function
of p, several different estimates of both the average size 〈s〉 of
a small cluster and the size S of the percolating cluster as a
fraction of n. First we show an estimate made using standard
message passing (dashed line)—the r = 0 approximation in
our nomenclature—which ignores loops and is expected to give
poor results. Second, we show the next two approximations
in our series, those for r = 1 and r = 2 (dotted and solid lines
respectively), with Gi(y) and Gi←j(y) estimated by Monte
Carlo sampling as described above. We use only eight samples
for each node i but the results are nonetheless impressively
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