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Abstract

Sodium-ion batteries have attracted significant attention for the application in emerging grid-scale
energy storage owing to the abundant Na resources and its low-cost, in which layered oxides are
the subject of intensive investigation for their high structural compatibility to provide good
electrochemical performance. However, the main challenge is to realize long-term cycling
stability in combination with an accessible capacity, which still remains elusive, correlated with
the peculiar crystal chemistry. Herein, we propose a promising P2-type material with high Na-
content, Nass/salLia/saNiie5aMnz4/5402, where the high Na-content (~45/54 mol) usually undergoes
an O3-type structure with respect to NaxTMO> (TM=transition metal). Results demonstrate that
this P2 material exhibits ultra-long cycle life (up to 3,000 cycles) and better rate capability (up to
3,200 mA g!). Moreover, through a multi-electron reaction of Ni*>*/Ni*" , more than 100 mAh g’!
were accumulated upon first charge to 4.0 V directly, compared to ~80 mAh g! in low Na-content
(~0.67 mol) materials. The origin of the favorable structure properties reveals that high Na-
content P2 materials offer large potential to develop long-cycle-life Na-ion cathodes and beyond.

Science Advances Page 2 of 23



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Introduction

Recently, sodium-ion batteries (NIBs) have gained much attention in battery field, both academic
and industrial, owing to their potential application in large-scale electrical energy storage systems
(EESs).(1-3) Significant efforts have been made in searching for suitable electrode materials with
the desired properties, including high energy density, excellent cycle/rate capability, high
Coulombic efficiency (CE), and favorable economic aspects. Generally, layered oxides constitute
one class of suitable electrodes for NIBs due to their high structural compatibility towards Na-ion
insertion, where the properties can be tailored via the introduction of various transition metal
(TM) elements. Until now, several layered Na-ion electrodes have been reported, including high-
capacity Mn-based (P2-Nay;3Fe12Mni202(4)) and Ni-rich (O3-Na[NiCoMn]O2(5)) compounds;
low-cost Cu-based (03-Nag.9oCuo22Fe030Mno4802(6)) and high-voltage Ni-based P2-
Naz3NizsTe1302(7).

Na-based layered oxides can be categorized into two main structural groups, O3- and P2-type
structures, compared to layered electrodes for Li-ion batteries (LIBs), which mostly crystallize in
an O3-type structure. O represents that Na ions are accommodated at the octahedral (O) sites and
P denotes Na ions at trigonal prismatic (P) sites; the number 2 or 3 represents the number of edge-
sharing TMOs octahedra with the oxygen stacking in ABBA or ABCABC packings, respectively,
as shown in fig. S1 and S2.(8) It is noteworthy that O- and P-type oxides often experience
detrimental structural transitions during the charge-discharge process, making it a challenge to
realize good cycling performance. Compared to the O3-type structure, P2 frameworks enable fast
Na" diffusion owing to the open prismatic diffusion pathways between the TMO; slabs.(9, 10)
This provides the opportunity to achieve high cycle and/or rate capabilities. However, it is well
established that P2-type electrodes offer a low initial charge capacity of ~80 mAh g! below 4.1
V(4, 11, 14-21) and an low average voltage <3.2 V(/3, 15, 19, 22). In addition, they often suffer
from a detrimental phase transition from P2 to O2, and OP4/'Z' phases upon charging, which
compromises the cyclability.(4, 17-15)

Various methods have already been developed to improve the performance of P2-type
materials. Ion-substitution and/or doping, with Li*, Mg**, AI**, Ti*', and Zn*" having no or fully
occupied d orbitals(1/, 16, 23-26) and Cu®" inducing the Jahn-Teller effect(15), are widely used to
alleviate the structural transitions or increase the specific capacity. Wang et al. used 5% Mg to
substitute Ni in Naz;3Nii;3sMn2302, where the global O2 phase transition was inhibited to some
extent, resulting instead in the integrated P2-O2 or 'Z' phase transition.!! For TM**-based P2-type
oxides with transition metals such as V**?%), Mn**U#24 Fe3*™® and Co®"?”) a higher initial charge
capacity of >100 mAh g™! below 4.1 V has been observed. However, the redox potential of these
P2-type cathode materials is always lower than 3.0 V, and they often suffer from large structural
transitions in both the high-voltage (P2 to O2, OP4/'Z') and low-voltage (P2 to P'2) regions. An
additional disadvantage is that these TM>*'-based materials are often sensitive to water and
moisture in the air.(28) The Na" content plays a dominant role in the structural stability of the P2
host, because Na" shields the electrostatic repulsions between the TMO slabs. Upon desodiation
the decreased shielding will drive the gliding of TMO: slabs, resulting in the structure transition
from the P to O type configuration. Therefore, an important goal is to develop P2 materials with
high Na content, so that more Na” to be retained in the NaO, slabs to prevent the structure
transition, while reaching or exceeding the capacity of P2 materials with low Na content.

To gain a better insight into the performance of this kind of P2-type oxides, we aimed to
prepare P2-type materials with maximized Na content and explored their properties for
application as Na-ion cathodes. However, several questions must be taken into account during the
materials design. What is the highest Na content in P2-type oxides and if such a material could be
easily synthesized? What types of TM ions should be included to ensure a high voltage and
enough charge compensation for Na' deintercalation? In this work, we use P2-type
NazsNiisMnp30; as a starting model to explore the potential high Na-content P2 materials.
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NaxsNi13Mn2302 s a typical low Na-content P2-type material, which exhibits a low initial charge
capacity of ~80 mAh g! below 4.1 V, and the unwished P2 to O2 or OP4/'Z' phase transition.?
The dichotomy example companied with the concentration gradient design was employed
to search for the Na content in P2 material from 2/3 to 1 mol per unit via introducing different
elements into the pristine structure, such as Li*, Mg?*, Cu**, Mn**, Fe*", and Ti*', to substitute the
Mn*"/Ni?" partly or entirely and maintain overall charge balance of the P2-type oxides. After all
of our trials, several high Na-content materials were obtained with Na concentration from 42/54
to 45/54 mol per unit.

Results

Structural analysis

In this work, a P2-type material with high Na content, Nass/s4Lis/54Ni16/54Mn34/5402, was prepared
based on the known P2-type NaxsNiisMny302, and selected as the research model due to their
similar components as well as the same synthesis method (see Methods). In the as-prepared
material, 34/54 mol Mn ions and 16/54 mol Ni ions exist in the tetravalent state and divalent state,
as in the Nay;3NiisMny302 material. The small fraction of Li ions allows an increase in Na
composition by balancing the charge. Inductively coupled plasma atomic emission spectrometry
(ICP-AES) analysis confirms the composition of Nag gsLi0.0sNi0.30Mno.6202, as shown in table S1.
The morphology of this as-prepared material is characterized by scanning electron microscopy
(SEM), shown in fig. S3, displaying plate-like particles with a distribution of sizes in the range of
8~12 um. The crystal structure and phase purity were evaluated by Rietveld refinement analysis
of X-ray diffraction (XRD) pattern presented in Fig. l1a. All the diffraction peaks can be indexed
by the hexagonal structure with the space group of P63/mmc, reflecting the disordered Ni/Mn
distribution. Crystallographic data, atomic coordinates, occupancies and anisotropic displacement
parameters of this structure are listed in table S2 and S3. Compared to the lattice parameters of
Naz/3Ni1/3Mn2/302(29) (Cl = 2.885 A, c = 11.155 A), those of Nao.gs5Li0.08Nio.30Mno.6202 (a =
2.89058(7) A and ¢ = 11.07541(18) A) indicate an expanded a-b plane and a contracted c axis,
originating from an increased Na*-Na" electrostatic repulsions in the NaO> in-plane direction and
an increased O*-Na'-O> electrostatic cohesions between NaOg and TMOs polyhedra,
respectively. The detailed crystal structure is further investigated by high-resolution transmission
electron microscopy (HRTEM), where the interplanar distance between the adjacent lattice
fringes corresponds to the d spacing value of the (002) planes of the obtained P2 phase shown in
fig. S4. Naions occupy two kinds of trigonal prismatic sites, amounting 0.536 mol in the 2d site
and 0.313 in the 25 site. The prismatic NaOg 2b site shares two faces with the lower and upper
octahedral TMOs, which can be expected to be less stable than the that 2d site which shares edges
with six octahedral TMOg rationalizing the difference in site occupancy. The TM columns of Ni
and Mn positions are revealed by the spherical aberration-corrected scanning transmission
electron microscopy (STEM) shown in Fig. 1b, where both high angle annular dark-field
(HAADF) and annular bright-field (ABF) images are provided for comparison. The faint bright
contrast represents the Na and O columns between the octahedral TMO» slabs in the ABF-STEM
image which is consistent with the P2-type structure as demonstrated by the inset. The distance of
the adjacent layer dirm-tv) in HAADF-STEM image is measured to be ~0.558 nm, which closely
corresponds to the interslab distance from the XRD refinement. Atomic-scale STEM imaging and
electron energy loss spectroscopy (EELS) mappings of this P2 material was carried out to confirm
the elemental distribution, and the corresponding elemental mappings of Na, Mn, Ni and O are
exhibited in Fig. 1c. TM sites are occupied by Mn and Ni in a disordered arrangement, while Na
is located in the sites between the TMO; layers.

Prediction of stability of high Na-content P2-type oxide
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First-principles density functional theory (DFT)(30-32) calculations are used to explore the high
Na content in P2-type Nai2LiNisMngO24 oxide. We firstly study Li/Mn/Ni ordering in transition
metal (TM) layer with a fully occupied Na layer (composition NalLii/12Ni14Mn2302). A P2-
NaTMO: supercell with 12 metal sites was built, resulting in 910 symmetrically inequivalent
configurations for Li:Ni:Mn ratio of 1:3:8. The total energies of these configurations were
evaluated and the one with the lowest energy is selected as the ground state of Naj2LiNizMngOza4,
as shown in Fig. 2a. Using the as-identified Na;2LiNi3MngOz4 structure, we then explored
symmetrically inequivalent Na/vacancy configurations at Na sites in the NappLiNizMngOz4
structure for different compositions (Na/vacancy ratios). The Nai2-xLiNi3MngO24-LiNi3MngO24
convex hull (Fig. 2b) is constructed by calculating the formation energies of all configurations
with respect to the end member phases. Two high Na-content phases are identified, having a Na
composition of 9/12 and 10/12, which is larger than the well-known structure with a Na
composition of 8/12 per super cell. The highest Na composition was further evaluated by a Na-Li-
Ni-Mn-O phase diagram (in fig. S5), which demonstrates an energy of ~1.68 eV/atom lower than
the combination of stable phases: NaMnO: + LixMnO3; + NaxMn3;0O7 + NaxO; + NaNiO;. The
predicted stability of the P2-type phase reflects the feasibility of preparing this material.

Electrochemical performance

As shown in Fig. 3a, this high Na-content material delivers a high capacity of ~102.3 mAh g™ in
the voltage range of 2.0-4.0 V, which is higher than that of ~82 mAh g' for P2-type
Naz3NisMnz302 (see fig. S4). In NazsNisMnas02, the initial charge capacity has been
demonstrated to originate from the single electron oxidation of the Ni**/Ni** redox couple below
4.0 V.(16) However, the high Na-content P2-type material contains a smaller amount of Ni**
(16/54 mol) compared to 1/3 mol in Naz;3Nii;sMn2302 and nevertheless exhibits a capacity that is
1.25 times higher in the same voltage range. The rate performance was evaluated using electrodes
with a large mass loading of 8-10 mg cm™ from 0.1C (16 mA g!) to 20C (3,200 mA g!) as
shown in Fig. 3b. When cycled at 10C the capacity retention is ~ 65% of its initial capacity,
corresponding to a relatively large current density of 1,600 mA g™'. After the cycling rate test up
to 20C, a reversible capacity of ~100 mAhg ! reached at 0.5C also indicating excellent
cyclability. This is perhaps the most appealing property of the as-prepared high Na-content
Nags/salia/saNiresaMn34/5402 material, where the ultra-stable long-term cycling stability is shown
in Fig. Ic, demonstrating more than 3,000 cycles with a capacity retention of >68% at a current
rate of 3.0C (540 mA g). The average capacity decay is 0.012% per cycle. More than 70% of the
capacity is retained up to 2,500 cycles with a CE that approaches 100%, which was acquired in
cells that were not optimized for industrial use, indicating the large application potential of this
material in NIBs. To the best of our knowledge, this high Na-content P2-type material shows the
best cycling performance among all reported P2-type cathodes in Na-ion batteries so far. Clearly,
the present high Na-content material also shows superior electrochemical properties compared to
the low Na-content materials.(4, 11, 14-21)

Understanding the desodiation process and charge compensation

Although a cut-off voltage over ~4.0 V will more Na" deintercalation from the host structure and
provide a larger capacity, this usually results in the uncontrolled structural failure and electrolyte
decomposition, the related issues of which remains to be further addressed. As a fundamental
research, since there is sufficient Na source to be deintercalated in this
Nays/saliasaNiresaMnsas402, a larger capacity is expected at a higher cut-off voltage. Indeed,
when charged to 4.60 V, a capacity of ~150 mAh g™! is obtained, corresponding to ~0.58 mol Na*
being deintercalated (per formula unit Nass/salia/54N116/54Mnz4/5402). However, it is worth noting
that ~0.58 mol Na" is still lower than the maximum capacity that can be provided by the two-
electron transfer from 16/54 (~0.296) mol Ni** to Ni*". This suggests that oxygen does not
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participate in the redox reaction for the present material when charged up to 4.6 V.(33, 34) To
examine the origin of the charge compensation during the electrochemical desodiation, the
formation energy during the desodiation is evaluated as plotted in Fig. 4b and 4c. Based on the
calculated formation energies the voltage is obtained, which is in good agreement with the
experimentally observed curve. To obtain more insight in the redox activity, the magnetization of
the Ni and O ions are determined from the DFT calculations, shown in Fig. 4d and 4e, in which
the number of unpaired electrons reflect the oxidation states of the ions. Two intermediate phases
are highlighted, x=5 and 7 in NajoxLiNizMngO»4, where x=5 corresponds to charging to 4.0 V,
and x=7 to 4.60 V (the cut-off voltage). Further Na-deintercalation at higher potentials are not
investigated due to the limited oxidation stability of the electrolyte. The calculated magnetization
of the Mn ions is shown in fig. S8, which indicates that Mn*' is not participating in the redox
reaction.

Upon desodiation NajoxLiNi3sMngOo4 (0<x<5) the Ni magnetization first decreases from 1.78
up (bohr magneton) to 1.077 up at x=3, corresponding to the oxidation from Ni** to Ni*".
Meanwhile, the O magnetization maintains a value between 0.028 and 0.112 ug, which indicates a
relative constant redox state of the O* anion. This is also reflected by the partial density of states
(pDOS) of the O 2p and Ni 3d orbitals shown in Fig. 4f, in which Ni 3d £, orbitals have a much
larger contribution to the valence band below the Fermi level (Er) than Mn 3d and O 2p states.
Further desodiation to NasLiNizMngOzs (x=5) results in a decrease in Ni magnetization to
0.965~0.073 ug, which indicates that all Ni*" ions are oxidized to Ni*" and that 1/6 of the Ni*" is
further oxidized to Ni*". Meanwhile, O ions are still in O* state as the O magnetization retains a
value between 0.002 and 0.158 ug. Based on the above results, the desodiation results in partial
oxidation of Ni** to Ni* below 4.0 V. Upon further desodiation from NasLiNizMngO24 (x=5) to
NazLiNisMngOz4 (x=7), about 1/12 of the O ions display an increase in magnetic moment to 0.35
ug. However, compared to the O magnetization of 0.69 up in LisMn2Os32), an anion redox
cathode material, the significantly lower 0.35 ug in this material should not be attributed to the
oxidation of O* to O'". The Ni magnetization show the opposite trend, as residual Ni** is not
further oxidized but reduced. As shown in Fig. 4g, comparing the contributions of the O 2p and
Ni 3d tg orbitals, the latter still dominate the valence band immediately below the Er level, which
implies a preference for electron extraction from Ni during the charge process (Najo-
xLiN13MngOa4, 5<x<7). On the other hand, as shown in Fig. 4h, during desodiation the Ni 3d
states and O 2p states increasingly overlap near the Er level in the valence band. This suggests a
small amount of electron transfer from O to Ni*", hence reduction of Ni*' reduction to low states
and oxidation of O* to high states.(35, 36)

Soft X-ray absorption spectroscopy (XAS), which can probe the bulk material up to a depth of
1~100 nm based on the different modes(37), is been widely used to investigate charge
compensation mechanisms of electrode materials. Ni L-edge spectra of partial fluorescence yield
(PFY) mode measurements were carried out at different states of charge (SOCs) shown in fig. S9.
The split high-energy (Lshigh) and low-energy (Lslow) features of the pristine spectrum
demonstrate that Ni ions are in the divalent state, consistent with previous reports.(38) During the
desodiation process, both Ni L3- and L>-edge sXAS spectra shift towards higher energies, which
indicates that the Ni oxidation states increases. When increasing the potential from 3.5 Vto 4.0 V
the Lshigh and Lhigh features increase further, in good agreement with those reported for
Ni** (38, 39) Furthermore, a delocalized hole density at the SOC corresponding to 4.60 V is found
near the O orbitals surrounding Ni** and Ni*", which suggests the existence of the itinerant bands
with a mixed O/Ni orbital symmetry.*’ This agrees with the decreased Ni magnetization upon
desodiation from NasLiNisMngOz4 (x=5) to Na3LiNizsMngO»4 (x=7) in Fig. 4d. The features of
pre-edge peak in the ligand O K-edge spectra can exhibit important information on the chemical
bonding between ligand and TM atomic species. Generally, the pre-edge peaks in the range of
527 to 535 eV are due to the electronic transitions from the O 1s state to the O(2p)-TM(3d)
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hybridized states, which can be further divided into a lower energy peak of the band, and a higher
peak of the O(2p)-TM(3d-e,) hybridized states. The increase of O(2p)-TM(3d-e,) hybridized state
(in fig. S10) shows that oxidization of Ni creates more holes in the antibonding eg orbital leading
to the increase of the O K-edge in PFY mode measurements. This is further supported by the
increasing overlap of Ni 3d states and O 2p states near the Er level during desodiation, as shown
in Fig. 4h. The small amount of valence electrons in the desodiated sample promotes charge
transfer from O to Ni via ligand-to-metal charge transfer in the local bonding configuration.(40)
Furthermore, O K-edge spectra from surface-sensitive total electron yield measurements (TEY)
demonstrate the presence of oxygen-containing decomposition products of the electrolyte and
surface densification at 4.60 V. This can suppress the O(2p)-TM(3d) hybridization features for the
electrodes resulting in a relative lower average valence state of Ni/Mn ions as shown in fig. S11
and S12. (47) Meanwhile, the Mn L-edge PFY results show negligible changes upon cycling, as
demonstrated in fig. S12, suggesting that the Mn*" ions do not participate in the charge
compensation.(42)

Structural evolution

To explore the structural evolution of the high Na content cathode, in-situ XRD experiments are
carried out during the charge-discharge process as shown in Fig. 5a. At the onset of desodiation,
the (002) and (004) diffraction lines slightly shift to a lower angle, while (100), (102), and (103)
lines move towards a higher angle. This evolution takes only place up to ~5 mAhg ' charge
capacity. Subsequently, (002) and (004) reflections become asymmetric and broader, and two new
P2 phases (phase 2 and 3) appear upon further charging. The (002) reflection of the pristine P2
phase (phase 1) continuously shifts to lower angles, while the (002) reflections of the new P2
phases keep increasing gradually without a shift even at the end of charging at 4.60 V. The main
discrepancy between these P2 phases their Na content and occupancy in the unit cell. (43) (43)
(43) (43) (43) 4 4447.48.55 The material charged to 4.60 V can be very well fitted with three P2-
NaxNiie/54Mnza/s4Lia5402 phases having very similar cell parameters (as presented in fig. S14 and
table S4). These three P2 phases can all be indexed in the hexagonal P63/mmc symmetry with
phase fractions of 5.1(2)%, 32.3(2)%, 62.6(2)%, and lattice parameters of a = 2.878(33) A and c
=11.21(13) A, a = 2.8668(4) A and ¢ = 11.2335(15) A, a = 2.8135(13) A and ¢ = 11.2763(14) A,
respectively. The average Na content obtained from the refinement is ~0.24 mol, in good
agreement with ICP results (~0.245 mol based on the normalized value of Mn). During the
refinement, a relatively large 2b Na” occupation is found in Na-poor phases. This indicates that
Na" at the 2d sites is preferentially deintercalated from the structure, which is should be expected
based on the larger energy associated with occupying this site.(44, 45) Another difference is the
~3.5 % difference in volume between the Na-poor P2 phase (phase 3) and pristine phase (phase
1). In addition, a different distance between the adjacent TM layers is obtained, where the Na-
poor phase 2 and 3 exhibit at the larger distance as compared to phase 1. During the desodiation
process, new P2 phases with a large interlayer distance are formed and their fractions increase
simultaneously. Meanwhile, the deintercalated Na comes mainly from the pristine Na-rich P2
phase. The newly formed P2 phases can be held for the stability of the materials, as opposed to
the commonly reported O2, OP4/'Z' phase transition.

During Na® intercalation upon discharging, the coexisting Na-poor and Na-rich phases
gradually recombine to a single P2 phase as shown in Fig. 5b. By fitting the XRD patterns at
different charge-discharge states, see fig. S15, it becomes apparent that the (002) reflection
becomes increasingly asymmetric due to a broad feature when fully discharging to 2.0 V. This
could indicate a rearrangement of the P2 phase in the material. To further study the structural
stability after cycling, Rietveld refinement was conducted of an electrode after 100 cycles (ex-
situ) as shown in fig. S16. All diffraction lines can be indexed with the hexagonal structure
having a space group of P6s/mmc and no additional diffraction peaks are detected. The lattice
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parameters are presented table S5 and S6. In contrast to the pristine P2
Nays/saliasaNiies4Mnsa/5402 material, the lattice parameter evolutions are highly reversible, which
can be held for the excellent cycling stability. The evolution of the structure is also studied at
different current rates, the results of which are presented in fig. S17 and the Supplementary
discussion S2.

Given the large amount of Na“ as well as facile ionic transport in this structure, excellent
electrode performance can be expected for the presented high Na-content P2-type material. The
Na' kinetics is studied by first-principles molecular dynamics (FPMD) simulations. Fig. 5c¢
exhibits the results of the FPMD simulations for the high Na-content P2-type material where the
diffusion coefficients are determined from Na' mean square displacements (MSDs) from
simulations ranging from 600 to 1800 K (fig. S17). In Fig. 5c, the trajectories of Na' are
displayed to illustrate the migration pathways. As expected, Na" migrates through the two-
dimensional planes of NaO» layers. As compared to the low Na material (0.667 mol), the
trajectories are better interconnected showing many more jumps for the present high Na-content
P2 material.(9, 16) Fig. 5d shows the Arrhenius plot of the calculated diffusion coefficient,
resulting in a very low activation energy for diffusion (~0.28 eV) and a very large room
temperature diffusion coefficient (~0.55x10'° cm? s™!) as compared to layered Na cathodes(9, 10,
14, 16, 43, 46), signifying the excellent Na* mobility of the present high Na content in P2-type
material.

Accelerated aging measurement and full cell

To further study the chemical stability, a measurement was designed to accelerate the aging, by
storing the P2-type material in air for half a year after which it was soaked in deionized water for
2 h. The XRD patterns and the electrochemical results, shown in fig. S19 and S20, indicate that
the material is stable against water and air. NIBs utilizing a hard carbon anode were assembled to
investigate the full cell long-term cyclability of the high Na-content P2-type cathode, having a
relatively high active mass loading of approximately 8 mg cm™ as shown in fig. S21-23. The
electrochemical results show that the reversible capacity is above 100 mAh g based on the mass
of the cathode at a current rate of 0.1C and high average operation voltage of ~3.3 V in the
voltage of 1.5-4.0 V. The full cells have excellent capacity retention, exceeding >90 % over 400
cycles at the current rate of 2.5C.

Discussion
The P2-type layered framework ensures facile Na* diffusion, yet the lower Na content (~2/3 mol
per unit) and structural transitions of this family of electrodes compromises both charge capacity
and cycle life. Therefore, developing P2 materials with high Na content is paramount for
advanced NIBs. Compared to the typical modifications, such as ion doping and/or substitution,
microstructure design (surface coating, morphological control), etc., developing high Na-content
P2-type materials presents a promising strategy, potentially providing a rich family of new
cathode materials. The findings on the present high Na-content P2-type material provides several
advantages that may be achieved by this type of materials.

Promoting oxidization of the low-valent cations (e.g., Ni*") to their valence high states even for
a relatively low cut-off charge voltage. For Nass/salissaNiiesaMnsa5402, the Ni*"/Ni** redox
couple is successfully activated, providing a high-capacity even below 4.0 V, which is an
essential ingredient for the design of high-performance Ni-based P2-type cathodes. Generally,
Ni%* to Ni*' redox occurs at voltages exceeding 4.2 V. Such a higher redox potential introduces
two disadvantages, structural transitions and activation of the oxygen redox potentially leading to
oxygen loss. Both will degrade the performance of cathode materials in terms of capacity and
structural stability. Introducing a large amount of Na (0.75~0.83 mol per unit) into the P2-type
material results in a lower average oxidation state of the TM ions as compared to low Na-content
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(~0.67 mol) P2 materials. The low TM oxidation state in high Na content P2 materials can
increase the contribution of low-valent cations in valence band below the Fermi level to provide
electron transfer. To rationalize this finding, DFT calculations were performed as shown in Fig.
6a. We compare the pDOS of two P2-type materials Naog3Lii2NiisMn2s0Oz and
Nao.s7L11/12N114Mn2302 with average oxidation states of TM ions in +3.167 and +3.333,
respectively, where the former displays a larger contribution near the Fermi level. This implies
easier participation of Ni?* in the charge compensation. On the other hand, the high Na-content P2
phase is less stable than that the low Na-content material as demonstrated in Fig. 2b, due to the
stronger Na'-Na" electrostatic repulsions within NaO, slabs (which may also contribute to the
easier oxidation of Ni** to Ni*" at low voltages). Recently, many disordered rock salt-type oxides
have been explored as cathodes for Li-ion batteries, where, indeed, most of these materials are
thermodynamically metastable, offering a higher capacity.(32, 47)

Realizing a stable P2 structure that prevents degradation through phase transitions. The large
amount of Na in the P2-type host structure can ensure a high structural stability in a large
compositional range during the desodiation, as demonstrated in Fig. 6b. For low Na P2 materials,
structural transitions from P2 to O2 or OP4/'Z' occur for voltages below ~4.2 V when the Na
composition in the crystal host drops below 1/3 mol Na. The higher Na content allows to maintain
more Na" in the interlayers when the same amount of Na is deintercalated, which suppresses the
phase transition. A smaller amount of Na in the NaO; slabs lowers TM""-TM"" and Na"™-TM""
electrostatic repulsions, resulting in gliding of the TMO: slabs, which induces the undesired phase
transitions, leading to large volumetric changes and rapid capacity decay. Our results demonstrate
that during desodiation of Nags/saLia/saNi1e/54Mnz4/5402, Na-poor phases have a similar structure as
the pristine material. These newly formed phases have a larger interlayer distance compared to
that of the pristine structure, which is expected to be beneficial for Na" migration. The phase
fractions of these desodiated phases increases upon charging, and reversible transform back to the
pristine structure upon discharging (sodiation) as illustrated in Fig. 6b.

Summary

In this work, we have explored the peculiar structural chemistry of high Na-content P2-type oxide
as Na-ion cathodes. As a proof of concept, a high Na-content material of
Nags/salia/saNitesaMn3as402 has been successfully prepared. This material shows a higher
reversible capacity of 100 mAh g with the promising multi-electron reaction from Ni**/Ni*"
redox couple in a stable electrochemical window between 2.0 to 4.0 V. More importantly, this
material shows an ultra-long cycle life up to 3,000 cycles with good rate performance. The
underlying origins reveal that high Na-content can promote the oxidization of low-valent cations
to high redox states at a low cut-off voltage during charge, and stabilize the structure without
degradation or phase transitions. The advantages of the presently developed high Na-content P2-
type material highlights the importance to further explore high Na-content electrode materials for
NIBs, most likely opening new opportunities and understanding. Possible dopant/substituting
elements that may enable alternative high Na-content P2-type materials are multi-valent elements
(e.g., Ca**, Mg?*, Y3', La*"), which located at the Na sites will also promote the oxidation of TM
ions and stabilize the structure during the charge and discharge process. The present study also
reveals a promising strategy to realize multi-electron transfer toward a high oxidation state,
potentially relevant in fields beyond energy storage, e.g., catalysts.

Materials and Methods

Sample synthesis.

The resulting materials, Naas/salia/s4Ni16/54Mn34/5402 and Naz;sNiisMn2302 were prepared by a
solid-state reaction. The stoichiometric precursors of NaNO3 (>98%), NiO (>98%), MnO2 (99%)
and Li2CO3 (99.5%) were thoroughly mixed in an agate mortar and pressed into pellets under
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pressure of 10 MPa, which was further calcined at 950-1050 °C for 24 h with an intermediate

grinding and cooled to room temperature naturally. After the heat treatment, the material was
directly put into an Ar-filled glovebox to prevent any moisture exposition. Hard carbon anode was
prepared according to our previous report, where the obtained samples were carbonized at 1400
°C for 3 h in a tube furnace under argon flow with a heating rate of 3°C min™'.(48)

Materials characterizations.

Powder X-ray diffraction (XRD) was performed using a Bruker D8 Advance diffractometer
equipped with a Cu Ko radiation source (A1=1.54060 A, 1,=1.54439 A) and a LynxEye XE
detector. Rietveld refinement of the XRD was carried out using the General structure analysis
system (GSAS) software with the EXPGUI software interface.(49) High-resolution transmission
electron microscopy (HR-TEM) images and scanning transmission electron microscopy (STEM)
image and electron energy loss spectroscopy (EELS) mappings were obtained using a 300kV
aberration-corrected (S)TEM (JEM-ARM300F, JEOL Ltd) operated at 300kV with a cold field-
emission gun and double dodeca-poles Cs correctors. The convergence angle was 18mrad and the
angular range of collected electrons for high-angle annular dark field (HAADF) imaging is about
54-220mrad. The morphologies of the materials were investigated using a scanning electron
microscope (Hitachi S-4800). The stoichiometry of the as-synthesized compound was determined
measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). In the in-situ
XRD studies, the working electrode was prepared using PVDF as binder on an Al foil. A
specially designed Swagelok cell equipped with an X-ray transparent Al window was used for the
in-situ measurements on charge and discharge. Mn/Ni L-edge and O K-edge X-ray absorption
spectroscopy (XAS) were performed for pristine and cycled samples in the electron (surface) and
fluorescence yield (bulk) modes at beamline 4-ID-C of the Advanced Photon Source. Samples
were transferred from a glovebox into a transfer container and then an X-ray absorption chamber
via an argon environment. This was done in order to maintain a clean sample. During the
measurement, SroRuOs, MnO and Ni metal were used as standards for the energy calibration of O
K-edge, Mn L-edge and Ni L-edge, respectively. The spectra were processed using the Athena
software package.(50)

Electrochemical measurement.

The cathodes were prepared via mixing 80 wt.% active material with 10 wt. % acetylene black
and 10 wt. % polyvinylidene fluoride (PVdF) on Al foil with the loading mass of the active
material was about 8-10 mg cm™. The anodes were prepared via mixing 80 wt.% active material
with 10 wt.% conductive additives (acetylene black: super P = 8:2) and 10 wt.% sodium alginate
binder on Cu foil with the loading mass of the active material was 1.6~2 mg cm™. The prepared
electrodes were dried at 100 °C under vacuum for 12 h and then were fabricated into CR2032
coin-type cells with pure sodium foil as the counter electrode in an argon-filled glove box (H20,
02 < 0.1 ppm). A glass fiber was used as the separator, and 0.2 M NaPFs and 0.8 M NaClOg4 in
ethylene carbonate/diethyl carbonate (EC/DEC = 4:6 in volume) with fluoroethylene carbonate
(5% in volume) was used as the electrolyte. The charge and discharge measurements were carried
out on a Land BT2000 battery test system (Wuhan, China) under room temperature.

Accelerated aging measurement.

In order to check the water stabilities of the electrode materials, the as-synthesized materials were
first placed in deionized water with pH values of 7 for 2 h. Then, the materials were separated
from the solution and dried in an oven at 100 °C for overnight. Note that this is an extreme
condition which will never be happened for practical materials process. However, this result can
reflect the stability of the material against water in a short time.

Computational methods.

All first-principles DFT calculations reported in this study were performed using the Vienna Ab-
initio Simulation Package (VASP)(5/-53) with the projector augmented wave (PAW)
potentials(54) and the Perdew-Becke-Ernzerhof (PBE)(55) exchange-correlation. A plane wave
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basis with a cutoff energy of 520 eV and [I-centered k-meshes with a density of 8000 A-points per
reciprocal atom were used for all calculations. All calculations were spin-polarized, with Mn
atoms initialized in a high-spin configuration and relaxed to self-consistency with the
ferromagnetic (FM) configurations applied. The DFT + U method introduced by Dudarev et
al.(56) was used to treat the localized 3d electrons of Mn, Ni with a U of 3.8 and 6.1 eV, obtained
by fitting it to experimental and calculated formation enthalpies in a previous study(57).

The average sodiation/desodiation voltage can be computed using the negative of the reaction free
energy per Na added/removed, as shown

AGe
~ FANy,

where F is the Faraday constant, ANya is the amount of Na added/removed, and 4Gt is the (molar)
change in free energy of the reaction. Considering a two-phase reaction between NayTMO and

Na, TMO Na,TMO + (y — x)Na — NayTMO AG; can be approximated by the total internal energies
from DFT calculations neglecting the entropic contributions (7= 0 K)
AE = E(Na,TMO) — E(Na,TMO) — (¥ — x) E(Lipcta)

where E(Na,TMO) and £ (Na, TMO) are the DFT energies at the respective compositions. The
neglect of entropic contributions means that the lithiation voltage profiles will follow the 7= 0 K
ground-state convex hull and consist of a series of constant voltage steps along the two-phase
regions of the convex hull, separated by discontinuities that indicate the single-phase compounds
on the hull. It is worth mentioning here that, in practice, sodiation/desodiation do not necessarily
proceed through two-phase reactions. Thus, the calculated 7 = 0 K voltage profiles should be
viewed as an approximation to the actual voltage profiles(58). At finite temperatures (for
example, room temperature), the “steps” in the voltage profile became more rounded because of
entropic effects(57).

The first-principles molecular dynamics (FPMD) calculations is used to investigate the Na ions
transport properties in this high Na-content P2-type oxide. This FPMD simulations are carried out
for 10 ps at each temperature by a Nose-Hoover thermostat, and a time step of 1 fs is used to
integrate the equation of motion, where the I"point is used for the Brillouin zone in order to keep
the computational cost at a reasonable level. The ionic diffusion behavior in this system is
calculated by a time-dependent mean square displacement (MSD),

MSD(t) = (r2(0)) = (I (t) — :(0) )
where 7(f) is the position of the i-th Na" at the time ¢, and the average is over the time steps and
all the Na*. According to the Einstein equation, the slope of the MSD presents the diffusion
coefficient D,
1 d
D= lim 5 (r*(0)

therefore, the activation energy barrier for Na* diffusion can be extracted from the diffusion
coefficients at various temperatures according to Arrhenius equation.

Supplementary Materials
Fig. S1. Crystal structure of the O3 type oxide in the Rhombohedral structure with the
space group of R-3m (166).
Fig. S2. Crystal structure of the P2 type oxide in the hexagonal structure with the space
group of P63/mmc (193).
Fig. S3. Scanning electron microscope (SEM) image of this high Na-content P2-type
Nays/saNi1e/54Mnza/s4Lia/5402 compound.
Fig. S4. High-resolution transmission electron microscope (HRTEM) image of this high
Na-content P2-type Nass/5aNiie/54Mn3a/s4Lias402 compound.
Fig. S5. Evaluation the stability of the Nas/sLi1/12N114Mn230; phase in the Na-Li-Ni-Mn-
O chemical space.
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Fig. S6. Galvanostatic charge-discharge curves of Na>3Nii3Mny;30: at a rate of 0.15C in
the voltage range of 2.0 and 4.0 V vs. Na'/Na.

Fig. S7. Cycling stability of Naas/s4Ni16/54Mnz4/54L.14/5402 with first three cycles at 0.1C and
following at 3.0C in the voltage ranges of 2.0-4.0 V vs. Na*/Na.

Fig. S8. The magnetization and oxidation state evolution during the desodiation process of
Mn ions in intermediate phases from NasssLii/12N114Mn2302 to Liy12Ni14Mn230z.

Fig. S9. Ni L-edge X-ray absorption spectra (XAS) of electrochemically cycled
Nays/54Ni16/548Mn34/54L14/5402 electrodes in partial fluorescence yield (PFY) mode.

Fig. S10. O K-edge XAS spectra of electrodes cycled to different states of charge (SOCs)
using PFY mode.

Fig. S11. O K-edge XAS spectra of electrodes cycled to different SOCs using total
electron yield (TEY) mode.

Fig. S12. Ni and Mn L-edge XAS spectra of electrodes cycled to different SOCs using
TEY mode.

Fig. S13. Mn L-edge XAS spectra of electrodes cycled to different SOCs using PFY
mode.

Fig. S14. XRD Rietveld refinement of the electrochemically oxidized Na-o.25
Ni16/54Mn34/54Li4/54Oz sample.

Fig. S15. LeBail refinements of in-situ XRD patterns at different charge-discharge states
of pristine, charged to 4.0 V, and discharged to 2.0 V.

Fig. S16. Rietveld refinement of ex-situ X-ray diffraction (XRD) pattern of
Naus/saNiie/54MnsasaliasaOn (a = 2.87831(19) A, ¢ = 11.1629(11) A) after 100 cycles, and
the inset showing the enlarged pattern of (002) peak.

Fig. S17. Structural evolution under electrochemical Na" deintercalation to 4.0 V under
different charged rates.

Fig. S18. Mean square displacement (MSD) curves for each kind of ions in
Nas/sLi1/12N114Mn230x.

Fig. S19. XRD patterns of the samples after stored half of a year a and soaked in neutral
water for 2h b.

Fig. S20. Electrochemical performance of high Na-content P2 type cathode after soaked in
neutral water for 2h.

Fig. S21. Electrochemical performance of hard carbon anode.

Fig. S22. Galvanostatic charge-discharge curves of high Na-content P2-type cathode
Naus/s4N116/54Mn3a/54L14/5402//hard carbon full cells.

Fig. S23. Cycling stability of high Na-content P2-type cathode
Naus/s4N116/54Mn34/54L14/5402//hard carbon full cells.

Table S1. Stoichiometry from the inductively coupled plasma atomic emission
spectrometry (ICP-AES) analysis.

Table S2. Crystallographic and Rietveld refinement data of the as-prepared
Nasassalia/54N116/54Mn34/5402 compound.

Table S3. Atomic coordinates, occupancies and isotropic displacement parameters (A?).
Table S4. Crystallographic and Rietveld refinement data of the sample charged to 4.5 V.
Table S5. Crystallographic and Rietveld refinement data of the sample after 100 cycles.
Table S6. Atomic coordinates, occupancies and isotropic displacement parameters (A?)
after 100 cycles.
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749 Fig. 1. Structural characterization of the high Na-content P2 type oxide. a, Rietveld
750 refinement of X-ray diffraction (XRD) pattern of Naas/s4Li4/54Ni16/54Mn34/5402 (a =
751 2.89058(7) A, ¢ = 11.07541(18) A), and the inset showing the enlarged pattern of
752 (002) peak. b, Atomic-resolution high-angle annular dark field (HAADF) and
753 annular bright field (ABF)-scanning transmission electron microscopy (STEM)
754 images at the [010] zone axis. ¢, Electron energy loss spectroscopy (EELS)
755 mappings of Na, Mn, Ni, and O elements.
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Fig. 2. Determination the Na/vacancy ordering and phase stability in convex hull. a,

Determination of the Li/Ni/Mn (dis)ordering in the system of Nai2.xLiNi3sMngOa4.
The detailed information of determination on the ground state structure and
Li/Ni/Mn (dis)ordering in the system of Naj2xLiNizsMngO»4 is presented in the
Supporting discussion S1. b, Phase stability in Nai2xLiNiz3MngO24-LiNi3MngO»4
convex hull. The formation energy was calculated considering all possible Na and
their vacancy configurations, and the potential structures with different Na
contents were predicted in this study. Red crosses indicate the energies of different
enumerated phases computed at the Na content. Blue circles are ground states, as
they are part of the convex energy hull in solid line.
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Fig. 3. Electrochemical performance of high Na-content P2 type cathode of

Na4s/saLia/saNi1es4Mn345402.  a, Galvanostatic charge-discharge curves of
electrode at a rate of 0.15C (corresponding to ~22 mA g!) in the voltage range of
2.0-4.0 V vs. Na*/Na. b, Rate capability from 0.1C (16 mA g') to 20C (3,200 mA
g'h). ¢, Discharge capacity retention of with first the three cycles at 0.1C (18 mA g
1 and following cycled at 3.0C (540 mA g). The capacity is normalized by that of
3.0C. Above 70 % capacity is retained up to 2,500 cycles with approximate 100%
Coulombic efficiency (CE), but the CE is found to be unstable in the following
cycles; after 3,000 cycles, ~68% capacity is remained (see fig. S7 for the details).
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Fig. 4. The desodiation process and redox sequence during the first charging process.

a, Galvanostatic charge-discharge curves of Nass/saNiie5aMnsa/s4lia/540; at a rate
of 0.15C in the voltage range of 2.0-4.60 V. b and ¢, The calculated formation
energy of desodiation structures of NajoxLiNi3MngOz4 (0<x<7) convex hull and
the corresponding voltage profile during the desodiation process in
Nags/saligsaNiiesaMnzas402. d and e, The magnetization and oxidation state
evolution during the desodiation process of Ni and O ions in intermediate phases
from NajoLiNisMngO24 to Na3LiNizsMngOz4. Electronic structure evolution on
partial density of states (pDOS) of the Ni 3d t2g, Mn 3d 25 and O 2p orbitals of the
x=0 (f), 5 (g), and 7 (h) in NajoxLiNisMngOz4. The Fermi energy is set to 0 eV.
Insets show the iso-surface of the charge density for the lowest unoccupied states
of different desodiated states.
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Fig. 5. Structural evolution and Na* ion transport properties of this P2-type cathode.

a, In-situ XRD patterns recorded at a rate of 0.05C charged to 4.60 V. The peaks
marked by an asterisk is from the case of in-situ Swagelok cell. b, In-situ XRD
patterns recorded at a high rate of 0.5C in voltage range of 2.0-4.0 V. ¢, Pathway
of Na" migration in this high Na-content P2-type oxide simulated at a temperature
of at ~1400 K from a period of 6 ps. The detailed views of Na" layers are given in
the right and below panels, where the yellow spheres indicate the trace of Na”
positions during MD simulations. d, Arrhenius plot of diffusion coefficients, from
which the Na" ion migration energy barrier of 0.28 eV is obtained in a low
temperature range from the room temperature (RT) to 1800 K.
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Fig. 6. Illustration of the electronic and structural evolution mechanism in this high

Na-content P2-type material of Nass/s4Lis/s4Nit6/54Mn34/5402. a, The electronic
evolution during the charge process. The large amount of Na in P2-type materials
makes the average oxidation state of the TM 1ons lower than that of commonly low
Na-content P2 materials. The low-valent cations can be oxidized to the much
higher  states  easily. b,  Structural  evolution  mechanism  of
Nags/s4l14/54N116/54Mn34/5402 during the desodiation process.
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