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The most widely used techniques for community detection in networks, including methods based
on modularity, statistical inference, and information theoretic arguments, all work by optimizing
objective functions that measure the quality of network partitions. There is a good case to be
made, however, that one should not look solely at the single optimal community structure under
such an objective function, but rather at a selection of high-scoring structures. If one does this
one typically finds that the resulting structures show considerable variation, which could be taken
as evidence that these community detection methods are unreliable, since they do not appear to
give consistent answers. Here we argue that, upon closer inspection, the structures found are in
fact consistent in a certain way. Specifically, we show that they can all be assembled from a set of
underlying “building blocks,” groups of network nodes that are usually found together in the same
community. Different community structures correspond to different arrangements of blocks, but the
blocks themselves are largely invariant. We propose an information theoretic method for discovering
the building blocks in specific networks and demonstrate it with several example applications. We
conclude that traditional community detection does in fact give a significant amount of insight into
network structure.

I. INTRODUCTION

Many networks, from social and information networks
to biological networks and the Internet, are found to di-
vide into distinct groups of nodes, referred to variously
as modules, clusters, or communities [1, 2]. Commu-
nity detection—the process of identifying such groups in
unlabeled network data—is widely used as an analyti-
cal tool for exploring the large-scale structure of com-
plex networks. Many algorithms for community detec-
tion have been proposed, but the most widely used ones
all share one feature in common: they operate by opti-
mizing some kind of objective function that measures the
quality of candidate divisions of a network into communi-
ties. Perhaps the most widely used method is modularity
maximization, as embodied for instance in the spectral
modularity and Louvain algorithms, which work by op-
timizing the heuristic objective function known as mod-
ularity [3–5]. Inference methods, such as methods based
on the stochastic block model, work by optimizing the
likelihood of the observed network under an appropriate
network model [6–8]. The widely used InfoMap method
works by maximizing the entropy of a random walk on
the network [9].
However, as pointed out by a number of authors [10–

12], simply reporting the single best division of a network,
as defined by an objective function, misses much of the
insight that is to be gained from community analysis. In
many networks, perhaps most, there are multiple divi-
sions of the nodes that achieve high objective-function
scores and in principle any of these could be the “cor-
rect” division of the network. It is a crucial question
whether these competing divisions are, in some sense,
similar to one another or whether, conversely, they are
substantially different. If all (or most) high-scoring di-
visions are similar, then we may hypothesize that the

community analysis is revealing some genuine underlying
truth about the network: even if we don’t know which
of several candidate divisions is the correct one, we may
still be able to draw insight from them if the candidates
all tell essentially the same story. On the other hand, if
the high-scoring divisions are quite different from one an-
other then it is harder to argue that they are meaningful.
As an example, it is known that even completely ran-

dom networks, such as Erdős–Rényi style random graphs,
have divisions with high modularity scores [10, 13], yet
such random networks have no community structure by
any reasonable definition. Massen and Doye [11] gener-
ated a selection of high-modularity divisions of random
graphs by Monte Carlo sampling and found that compet-
ing divisions of the same graph had little common struc-
ture, suggesting that they are probably not meaningful—
a reasonable conclusion in the case of a random graph.
Subsequent theoretical work has bolstered this viewpoint
using ideas borrowed from the physics of glassy systems.
If we consider the modularity as an energy function for
a thermal model, then the random graph can be shown
to undergo a transition with decreasing temperature to
a replica symmetry broken state where there are many
competing modularity maxima that correspond to essen-
tially unrelated divisions [13–16].
In many real-world networks, by contrast, as well

as certain model networks such as the stochastic block
model, it is believed that there is clear and meaningful
community structure, which we would like to be able to
extract and analyze with our algorithms. In these cases
we would hope that, to the extent that there are com-
peting divisions with high scores, those divisions would
be largely similar to one another, at least in their gross
features. Thus, the existence of true community struc-
ture would be associated with the observation that high-
scoring divisions are similar and its absence with the ob-
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FIG. 1: Two divisions of the same set of network building
blocks. The five building blocks are denoted by the shapes and
colors of the nodes and the community divisions are denoted
by the shaded areas. Each community division can be thought
of as a different way of assembling the building blocks into
communities.

servation that they are different. Equivalently, true com-
munity structure would correspond to replica symmetry
and lack of it to replica symmetry breaking.
Unfortunately, though this picture seems intuitive and

reasonable, it has been found not to apply in many real-
world situations. For example, Good et al. [17] generated
Monte Carlo samples of high-modularity divisions for a
range of networks, including both models and real-world
examples, and found in all cases that even though the
networks in question were believed to possess strong com-
munity structure there were nonetheless a large number
of high-scoring divisions that appeared to be quite dif-
ferent. This raises serious questions about whether our
community detection algorithms are returning meaning-
ful results.
In this paper we revisit this question and argue that

in fact the high-scoring divisions of many networks are

similar, but in a more subtle sense. Specifically, we show
that while it is true that the communities discovered by
these algorithms vary substantially between high-scoring
divisions, the variation is of a limited and specific type.
We show that for both real and model networks it is
possible to find an elemental set of “building blocks,”
groups of nodes such that most high-scoring community
divisions are formed by combining these blocks in one
way or another, while the blocks themselves are essen-
tially indivisible—see Fig. 1 for a sketch. Thus most
high-scoring community divisions are similar in the sense
of being built from the same set of building blocks.

To put this another way, if we know the blocks then
it takes very little additional information to specify how
they are joined together and hence specify the complete
community structure. We use this observation to cre-
ate an information-theoretic algorithm for determining
the building blocks and demonstrate its use on a range
of example networks. Though our results are numerical
only and hence do not constitute a proof, we find that the
algorithm gives convincing and plausible results when ap-
plied to synthetic networks with known blocks, synthetic
networks known to have no blocks, and real-world net-
works. We conclude that community structure analyses
do in fact convey consistent and believable information
about the large-scale structure of networks, when inter-
preted in an appropriate manner.

II. SAMPLING NETWORK DIVISIONS

Like the previous studies discussed above, our investi-
gation starts with the generation of a random sample of
network divisions that score highly according to an ap-
propriate objective function. Previous studies sampled
divisions according to modularity, but this approach is
arguably somewhat ad hoc: there is no rigorous principle
that tells us the relative sampling weight one should give
to divisions with different modularity. Massen and Doye
and others [11, 16–18] have employed a Boltzmann distri-
bution, which is convenient for numerical simulation but
does not have a formal justification in this context. In
our work we use an alternative approach that has become
popular in recent years, that of sampling from the poste-
rior distribution of an appropriate generative model. The
model we use, which is standard in calculations of this
kind, is the degree-corrected stochastic block model [8],
a random graph model in which the probabilities of edges
depend on the communities they belong to. Inverting the
probability relation using Bayes’ rule allows us to calcu-
late the probability of a particular community division
given an observed network and it is from this distribution
that we sample. Specifically, the approach is as follows.
(This part of the paper follows the outline of our pre-
vious presentation in [19]—see that paper for additional
details.)
The degree-corrected stochastic block is a random gen-

erative model of a community-structured network. When
used to generate networks (rather than for community
detection), it works as follows. Initially, each of n nodes
is assigned to one of k groups, then a Poisson-distributed
number of edges is added between each node pair such
that the expected number of edges between nodes i and j
is θiθjωgigj , or a half this many when i = j, where θi and
ωrs are parameters that we choose and gi is the com-
munity to which node i belongs. This leaves θi and ωrs

arbitrary to within multiplicative constants, which are
fixed by normalizing the θi such that their mean is 1 in



3

each community thus:

1

nr

n
∑

i=1

θiδr,gi = 1, (1)

where δij is the Kronecker delta and nr =
∑

i δr,gi is the
number of nodes in group r.

Note that in this model the number of edges between
each node pair is Poisson distributed, meaning there can
in principle be multiple edges between the same nodes.
In some respects this is unrealistic—most real-world net-
works have only single edges between nodes—but for the
common case of sparse networks the probability of mul-
tiple edges is small and can usually be neglected, and the
Poisson model has technical advantages that have made
it the accepted formulation for community detection ap-
plications.
Now consider a specific undirected network with struc-

ture described by its adjacency matrix A having ele-
ments Aij = 1 if there is an edge between nodes i and j
and 0 otherwise. The probability, or likelihood, that this
network is generated by the degree-corrected stochastic
block model defined above is
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where we have used Eq. (1) in the second equality, di =
∑

j Aij is the degree of node i, and

mrs =

{
∑

ij Aijδgi,rδgj ,s when r 6= s,

1
2

∑

ij Aijδgi,rδgj ,r when r = s,
(3)

which is the number of edges between groups r and s.
We have also neglected an overall multiplying factor in
Eq. (2) which is independent of the parameters θ, ω,
and g, and will therefore have no effect on our calcu-
lations.
The values of the parameters θ and ω are not of inter-

est in the present case, so we integrate them out using
maximum-entropy priors as described in [19], to get

P (A|g, k) =
∏

r

nκr

r
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,

(4)

where

κr =
∑

i

diδr,gi (5)

and we have discarded a further multiplying constant.
Now we apply Bayes’ rule to get

P (g, k|A) =
P (A|g, k)P (g, k)

P (A)
. (6)

The denominator P (A) is a simple normalizing constant
that plays the role of a partition function and, like other
constants, will not be important for our calculations. For
the prior probability P (g, k) we again follow our previous
work, making the choice P (g, k) = n−k

∏

r nr!, which is
derived from a simple “restaurant process” [19]. With
this choice, and again neglecting overall constants, we
have

P (g, k|A) = n−k
∏

r

nκr

r
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(nr + κr − 1)!

×
∏

r<s

mrs!

(pnrns + 1)mrs+1

∏

r

mrr!

( 1
2
pn2

r + 1)mrr+1
.

(7)

We now generate community divisions (g, k) from
this distribution using Metropolis–Hastings Monte Carlo
sampling. Our sampling algorithm, which makes specific
use of the structure of the prior on g and k to enhance
sampling speed, is described in detail in [19]. The im-
plementation, which is written in the C programming
language, performs about 1 million Monte Carlo steps
per second on a typical desktop computer, allowing our
calculations to scale to networks of tens or hundreds of
thousands of nodes with relative ease, although we will
have no need of such large networks in this paper.
It is worth mentioning that the methods employed in

this paper to study the building blocks of community
structure are agnostic about the particular scheme we
use for sampling community divisions. While we favor
the algorithm described here for its principled statisti-
cal foundations, other methods such as modularity-based
sampling could be employed as well. One could also make
other choices of the prior P (g, k) on the community divi-
sions, such as the hierarchical prior of Peixoto [20], which
allows for different probabilities for structures at differ-
ent scales. The simple prior we use is representative of
typical applications of community detection in the liter-
ature, making it a good choice for the examples we give,
but others could easily be applied. Indeed, there is some
overlap between our calculations of building blocks and
Peixoto’s hierarchical method, which aims to find com-
munities at all scales simultaneously. In some cases the
smaller communities found in his work may be similar to
the blocks we find, although given the differing nature
and goals of our approaches it seems certain there will
be differences as well.

III. RESULTS

Our goal is to use the algorithm described above to
generate a random sample of high-probability commu-
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FIG. 2: The model network network of Good et al. [17]
with nodes colored to indicate the highest probability division
found over 20 runs of 107 steps of the Monte Carlo algorithm
described in Section II.

nity divisions and then compare the structure of those
divisions to try to determine what features they have in
common. As described in the introduction, we find that
in most cases they can be represented as the union of a
collection of elemental and largely indivisible blocks of
nodes that appear to represent the fundamental “atoms”
of community structure in the network.

A. An example model network

To illustrate our approach we take as a first example a
simple model network proposed by Good et al. [17] pre-
cisely as an illustration of the issues discussed in the in-
troduction. This network, which is shown in Fig. 2 and is
similar to the “connected caveman” model of Watts [21],
is composed of a number of cliques (i.e., completely con-
nected subgraphs) joined together in a ring. In the exam-
ple shown in the figure there are 20 cliques of five nodes
each.
We now apply our Monte Carlo sampling algorithm

to this network. Figure 2 shows the highest probability
division found over twenty runs of the algorithm. The di-
vision is perhaps not the one we would at first guess—it is
not the division into the 20 cliques themselves. Instead,
as the figure shows, the algorithm has divided the net-
work into five groups of varying size. The cliques them-
selves are still intact—none of them has been split be-
tween communities—but some cliques have been joined
together to make larger communities of 10, 20, or even
25 nodes.
As we will see, this result is typical. There are nat-

ural blocks of nodes in many networks that want to

be in the same community—the cliques in this case.
(A somewhat similar idea has been highlighted by
Chakraborty et al. [22], who noted the existence of sub-
sets of nodes in networks that were often assigned to the
same community.) However these blocks are, in most
cases, not themselves communities. The communities
are assembled by putting blocks together. Moreover, it
is easy to see in this case that there are many ways of
putting the blocks together that are as good as the one
shown in Fig. 2, or nearly so. For instance, since the net-
work has a discrete rotational symmetry around the ring,
there are trivially 20 rotational variants of the division
shown that have the exact same probability but which
join the blocks in different ways. The result is that if
one samples many high-scoring divisions of the network
one will see the same blocks repeatedly but not necessar-
ily the same communities. Indeed the communities can
change dramatically from one state of the sampling algo-
rithm to another: large pieces can shear off and form their
own community, or join another. If one were to compare
different community divisions, therefore, particularly us-
ing elementary numerical measures of similarity such as
the Rand index, one might conclude that there was wide
variation between divisions and little consistency—and
hence that the algorithm was not giving useful informa-
tion about network structure. This, however, would be a
mistake. Once we understand the nature of the building
blocks from which the communities are assembled we see
that the structures sampled by the algorithm are in a
sense highly similar and consistent.
One way to make these observations more quantita-

tive is illustrated in Fig. 3. In panel A of the figure we
demonstrate that the individual cliques in the network
are rarely split between communities. The plot shows a
histogram of the probability that each pair of nodes in
the network find themselves in the same community, av-
eraged over a large number of divisions of the network
sampled using the Monte Carlo algorithm. (Such prob-
abilities have been studied in the past—see for example
Ref. [23].) The histogram is colored according to the dis-
tance between cliques, where distance 0 means node pairs
in the same clique, distance 1 means adjacent cliques, and
so forth. As we can see, nodes in the same clique have
probability close to 1 of being in the same community,
but nodes at all other distances have substantially lower
probability.
In Fig. 3B we show another representation of the same

probability measurements, a density plot of the pairwise
probabilities. This plot clearly picks out the individual
building blocks of the network as the dark squares along
the diagonal of the figure. If we did not already know
what the blocks were for this network, we could deduce
them by examining this figure.
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FIG. 6: Main figure: The reduced mutual information, which
describes the average information about communities that is
contained in the building blocks, for various different numbers
of blocks, averaged over 10 000 sampled community structures
for the Les Misérables network. As expected, the value is
small for the case of very many blocks or very few, but there
is an intermediate maximum, in this case at eight blocks,
where the blocks contain the most complete description of
the average community structure. Inset: The structure of the
eight blocks at the mutual information peak.

giving M = 0, then joins together the two blocks that
most increase (or least decrease) the value of M . We
repeat this process, joining blocks in pairs until all blocks
have been joined into one and the value of M is once
again zero. The intermediate state that we pass through
with the largest value of M is then taken to be our block
division for the network.
Figure 6 shows the results of this approach applied to

our social network example. The main plot shows the
value of the reduced mutual information as a function of
the number of blocks over the course of the calculation.
The plot has the expected form, with the value increasing
to a maximum then falling off again. The maximum value
occurs for the case of eight blocks and the corresponding
block structure is shown inset.
This choice of blocks does appear to be a good one.

Referring back to Fig. 4, we show in the insets of panels
B to E a key that gives the mapping from blocks to com-
munities for each of the structures depicted. In each case
it is possible to describe the entire community structure
by saying to which community each block belongs, except
for a small number of nodes, at most seven in any case
(shown in bold), that do not fit the pattern. Thus, while
our community detection algorithm does indeed return a
range of different divisions for this network, it is at the

same time correct to say that those divisions all reflect
essentially the same underlying structure in the network,
since it is possible to express them as combinations of the
same set of basic building blocks.
We note in passing an interesting feature of the blocks

shown in Fig. 6B: some of them are not connected, mean-
ing they consist of two or more parts with no edges be-
tween parts. This arises because our community detec-
tion algorithm is capable of finding disassortative struc-
ture in the network as well as assortative structure. That
is, it finds not only groups with a higher-than-expected
number of edges, but also groups with a lower-than-
expected number. Some of the groups found in this case
fall into the latter category and this is then reflected in
the building blocks too.

D. Random networks

One possible objection to the approach taken here is
that the method we describe might give a similar division
into blocks for any network, whether the communities
found are significant or not. How can we know that the
algorithm is returning meaningful blocks? To shed light
on this question we can apply the same analysis approach
to randomly generated networks, for which we expect
there to be no meaningful blocks, despite the fact that (as
discussed in the introduction) there are typically many
high modularity partitions of the network [10, 13]. Be-
cause these partitions are uncorrelated [11, 13] we would
expect there to be no informational advantage to describ-
ing them as a collection of blocks.
To test this hypothesis, we apply our method to a large

set of randomly generated networks, consisting of Erdős-
Rényi style random graphs with mean degree 10 and
random 3-regular graphs, with n = 2000 in each case.
We sample partitions using the Monte Carlo method of
Refs. [11, 16–18] then compute the optimal blocks for
each network by maximizing the reduced mutual infor-
mation as before. In each case, we find that the reduced
mutual information decreases monotonically as the num-
ber of blocks increases, and hence that, in effect, there are
no blocks in these networks: the optimal choice of blocks
is always to put all nodes in one block together. This
lends credence to the idea that when we find a nontriv-
ial block structure, the blocks—and hence the commu-
nity divisions from which they are inferred—are in fact
meaningful and contain significant information about the
network.

E. Further examples

Let us return to our first example, the “ring of cliques”
network shown in Fig. 2. Our claim in Section IIIA was
that the building blocks of this network were the cliques
themselves, even though the communities found by the
community detection algorithm are mostly larger than a
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appears at first to be a bad sign for community detec-
tion algorithms, the situation is actually more promising
than it seems. The observed structures are, in essence,
all variants of the same basic template, and the complete
set of community divisions in fact provides significant in-
formation about the large-scale structure of the network.
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