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Abstract

Truth Discovery is an important learning problem arising in data analytics re-

lated fields. It concerns about finding the most trustworthy information from

a dataset acquired from a number of unreliable sources. The problem has been

extensively studied and a number of techniques have already been proposed.

However, all of them are of heuristic nature and do not have any quality guar-

antee. In this paper, we formulate the problem as a high dimensional geometric

optimization problem, called Entropy based Geometric Variance. Relying on a

number of novel geometric techniques, we further discover new insights to this

problem. We show, for the first time, that the truth discovery problem can be

solved with guaranteed quality of solution. Particularly, it is possible to achieve

a (1 + ϵ)-approximation within nearly linear time under some reasonable as-

sumptions. We expect that our algorithm will be useful for other data related

applications.
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1. Introduction

Truth discovery is an emerging topic in data analytics which has received a

great deal of attentions in recent years [2]. Despite its extensive studies in the

fields of data mining, database, machine learning, and big data [2, 3, 4, 5, 6, 7, 8],

it has yet to be seriously considered by the theory community (to our best knowl-5

edge). The problem arises in scenarios where data are acquired from multiple

sources which may contain false or inconsistent information, and the truth dis-

covery problem is to find the most trustworthy information from these sources.

The problem finds many applications in different areas, such as healthcare [9],

crowd/social sensing [10, 11], and knowledge bases aggregation [12]. For exam-10

ple, in online social networks, a user’s information can be recorded by multiple

websites which may not be always consistent; thus it is desirable to find the most

trustworthy information for each user. Similar problem also occurs in health-

care where medical records of a patient may be acquired by multiple hospitals

or laboratories.15

The main challenge of truth discovery comes from its unsupervised nature,

i.e., the level of reliability of each source is unknown in advance. A straightfor-

ward way for solving the problem is to take the average if the data are continu-

ous or conduct majority voting if the data are categorical. Such approaches are

implicitly based on the assumption that all sources are equally reliable. How-20

ever, in many applications the level of reliability of each source could be quite

different which may make the yielded solution significantly different from the

truth, due to the neglect of “the wisdom of minority” [2, 3]. See the example

in Figure 1 from [2]. Thus, estimating the reliability of each source should be

taken into account when building the optimization model for truth discovery.25

In general, the two components, reliability estimation and truth finding,

are tightly coupled and thus are expected to be solved simultaneously, where

the truth should be closer to the source with higher reliability, and as a feed-

back, the source providing closer information should have a higher reliability.

Another challenge of truth discovery is how to handle large-scale datasets when30
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the number of sources and the data size of each source are both large.

A closely related research topic is crowdsourcing aggregation. A well known

crowdsourcing platform is Amazon Mechanical Turk which provides a cost-

efficient way to solicit labels from crowd workers [13]. Many mechanisms and

inference algorithms have been developed for inferring true labels and workers’35

quality [14, 15, 16, 17, 18, 19]. As mentioned in [2], the main difference between

crowdsourcing aggregation and truth discovery is that the former is an active

procedure (one can control what and how much data to be generated by work-

ers) while the latter is a passive procedure (one can only choose from available

data sources).40

George Abraham Mahatma John Barack Franklin
Washington Lincoln Gandhi Kennedy Obama Roosevelt

Source 1 Virginia Illinois Delhi Texas Kenya Georgia
Source 2 Virginia Kentucky Porbandar Massachusetts Hawaii New York
Source 3 Maryland Kentucky Mumbai Massachusetts Kenya New York

Majority Voting Virginia Kentucky Delhi Massachusetts Kenya New York
Truth Discovery Virginia Kentucky Porbandar Massachusetts Hawaii New York

Figure 1: Three sources are providing the birthplaces of 6 politicians. For Mahatma Gandhi,

each source has an individual answer (i.e., a tie case), and majority voting can only randomly

pick one. More importantly, for Barack Obama, voting provides a totally wrong answer.

However, truth discovery tries to distinguish reliable and unreliable sources and thus provide

the right answer. In this example, the algorithm in [2] finds that source 2 has a higher

reliability than the other two.

1.1. Problem Formulation and Existing Approaches

We first introduce the problem formulation of truth discovery used in the

data mining community, and then convert it to a new geometric optimization

problem, called entropy based geometric variance.

To model the truth discovery problem, the data from each source can be45

represented as a (possibly high dimensional) vector, where each dimension cor-

responds to one attribute/property (e.g., age, income, or temperature). For

categorical data, we can reduce them to continuous data as follows [2]. Suppose
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that one attribute has t categories; then it can be represented as a t-dimensional

binary sub-vector, where each dimension indicates the membership of one cat-50

egory. We can finally embed all these sub-vectors (corresponding to the cat-

egorical attributes) into one unified vector in higher dimensional space. Note

that this representation for categorical data may cause fractional memberships

in the final solution, which is often acceptable in practice (e.g., we may claim

that one object belongs to class 1, 2, and 3 with probabilities of 70%, 20%, and55

10%, respectively). Furthermore, we need a variable to represent the reliability

of each source.

Definition 1 (Truth Discovery[4, 2]). Let P = {p1, p2, · · · , pn} be a set of vec-

tors in Rd space with each pi representing the data from the i-th source (among a

set of n sources). The truth discovery problem is to find the truth vector p∗ ∈ Rd
60

and the reliability (weight) wi for each i-th source, such that the following ob-

jective function is minimized,

n∑
i=1

wi||p∗ − pi||2, s.t.

n∑
i=1

e−wi = 1. (1)

In the above optimization problem (1), both p∗ and the weights are variables.

It is easy to see that when each wi is fixed, p
∗ is simply the weighted mean, i.e.,

1∑n
i=1 wi

∑n
i=1 wipi. This means that the higher the weight of pi, the closer it is65

to p∗, which is consistent with the principle of truth discovery.

Weight normalization function. In the above optimization problem,

equation
∑n

i=1 e
−wi = 1 is used to normalize the source weights. This way

of normalization was initially introduced in [4] (with no justification) and has

demonstrated experimentally its superior performance. To understand the ra-70

tionale behind this, below we give a theoretical justification. Firstly, we notice

that some straightforward ways, such as
∑n

i=1 w
p
i = 1 for some p > 0, are inap-

propriate for weight normalization [4], since otherwise, p∗ can trivially choose

any pl as its solution and set wl = 1 and wi = 0 for all i ̸= l (in this way

the objective value will always be equal to the smallest possible value 0). By75

using equation
∑n

i=1 e
−wi = 1, we can easily avoid this issue. Secondly, this ex-
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ponential normalization function ensures that the resulting solution minimizes

the entropy, which implies that the solution contains more information from

the input according to Shannon’s information theory [20]. To see this, we first

borrow the following lemma from [4], which can be shown by using the Lagrange80

multipliers method.

Lemma 1 ([4]). If the truth vector p∗ is fixed, the following value for each

weight wl minimizes the the objective function (1),

wl = log(

∑n
i=1 ||p∗ − pi||2
||p∗ − pl||2

). (2)

Let S denote the total squared distance to p∗ (i.e., S =
∑n

i=1 ||p∗ − pi||2),
and fl denote the contribution of each pl to S (i.e., fl =

||p∗−pl||2
S ). Then the85

induced entropy is

H = −
n∑

l=1

fl log fl

= −
n∑

l=1

||p∗ − pl||2
S

log
||p∗ − pl||2

S

=
1

S

n∑
l=1

||p∗ − pl||2 log
S

||p∗ − pl||2
. (3)

Below, we define the Entropy based Geometric Variance.

Definition 2. Given a set of points P and a point p∗ in Rd, the entropy base

geometric variance induced by p∗ is H × S, where H and S are respectively the

entropy and variance defined in the above discussion.90

From Lemma 1 and the formula (3), we know that the objective function (1)

is equal to the multiplication of S and H, i.e., the entropy based geometric

variance.

Theorem 1. The optimization problem (1) is equivalent to finding a point p∗

to minimize the entropy based geometric variance.95

Generally speaking, S represents the total variance from the sources to the

truth vector, and the entropy H indicates how disorder the system is, where the
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higher the entropy, the greater disorder the system is. Since we minimize both

of them, this implicitly explains the better performance of using the exponential

normalization function in Definition 1.100

Non-convexity. As shown in [4], when the truth vector or the weights are

fixed, the optimization problem (1) is convex. However, when both of them

are variables, the problem is non-convex in general. To see this, consider the

following simple example. Suppose n = 2. Then the objective value is 0 when p∗

coincides with either p1 or p2, according to Lemma 1 (note limx→0 x log(1/x) =105

0). This means that it is possible to have multiple isolated local or global optimal

solutions for truth discovery, implying that truth discovery is non-convex.

Existing Approaches. To the best of our knowledge, all existing meth-

ods for truth discovery are based on some heuristic ideas, which achieve only

a local optimal solution and have no quality guarantee on global optimal-110

ity. A commonly used strategy is alternating minimization (or expectation-

maximization) [4, 5, 10], which alternatively fixes either the weights or the

truth vector, and optimizes the other. The optimization problem becomes con-

vex when one of the two types of variables is fixed. This means that such

approaches are guaranteed to converge to some local optima. Other approaches115

follow similar ideas and the reader is referred to a recent survey [2] for a com-

prehensive introduction to these approaches. Recently, Xiao et al. [7] showed

an expectation-maximization based algorithm with quality guarantee, but their

algorithm needs some strict probabilistic assumption on the input and requires

the number of sources to be large enough. For general case of the truth discovery120

problem, it is still an open problem for bounding the errors of the alternating

minimization and expectation-maximization methods [2].

The methods of alternating minimization and expectation-maximization are

very common optimization techniques that have been extensively studied in the

past. For example, Jain et al. [21] and Hardt [22] considered using alternating125

minimization to solve the matrix completion problem; Jain and Tewari [23]

studied the performance of alternating minimization for regression problems.

We also refer the reader to the survey [24] for more details of the expectation-
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maximization algorithms.

1.2. Preliminaries and Our Main Results130

Different from existing approaches, our goal is to achieve a quality guaran-

teed solution for the truth discovery problem. In general, we assume that the

number of sources n and the size of the data in each source d are both large.

As a starting point, the following theorem suggests that it is easy to generate a

2-approximation in quadratic time (see Appendix for the proof).135

Theorem 2. If one tries every point in {pi | 1 ≤ i ≤ n} as a candidate for the

truth vector, at least one yields a 2-approximation for the objective function in

(1), and the total running time is O(n2d).

Theorem 2 implies that any further improvement needs to decrease either

the approximation ratio or the running time. In this paper, we aim to achieve140

a (1 + ϵ)-approximation for truth discovery and also keep the time complexity

as low as possible.

For ease of discussion, we use the following notations throughout the rest of

this paper. Let Lmin = min{||pi−pi′ || | 1 ≤ i ̸= i′ ≤ n}, Lmax = max{||pi−pi′ || |
1 ≤ i ̸= i′ ≤ n}, and the spread ratio ∆ = Lmax

Lmin
. To achieve a (1 + ϵ)-145

approximation for the truth discovery problem for any given small value 1 >

ϵ > 0, we consider the following two cases.

• Case 1. min1≤i≤n ||p∗ − pi|| ≤ ϵ
√
S

4
√
n∆

, i.e., some pi locates very close to

p∗.

• Case 2. min1≤i≤n ||p∗ − pi|| > ϵ
√
S

4
√
n∆

, i.e., no pi locates very close to p∗.150

In following sections, we will present efficient algorithms to solve the two

cases separately. For case 1, we show that the nearest point pi to p∗ is actually

a (1+ϵ)-approximation (Section 2). For case 2, we first give a simple linear time

algorithm with large approximation ratio (Section 3), based on an analysis on

the distribution of the weights; then in Section 4, we reveal several new insights155

to the weights by using a novel Log-Partition technique, and perform a sequence
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of geometric operations to obtain a (1+ ϵ)-approximation. The time complexity

depends on ∆. Note that spread ratio is commonly used as a parameter in

many geometric algorithms and appears in the time complexity (such as [25]).

Finally, in Section 5 we show that when ∆ is not too large, the time complexity160

for both cases can be improved to nearly linear (O(nd × poly(log n))); also

through dimension reduction, the complexity can be further improved to linear

(O(nd)).

We introduce the following two folklore lemmas [26, 27] which are repeatedly

used in our analysis. For the completeness we show their proofs in Appendix.165

Let Q = {qi | 1 ≤ i ≤ n} be a set of n points in Rd with each qi associated

with a weight wi ≥ 0, W =
∑n

i=1 wi, and m(Q) be the weighted mean of Q i.e.,

m(Q) =
∑n

i=1 wiqi/W .

Lemma 2. For an arbitrary point q,
∑n

i=1 wi||q − qi||2 = W ||q − m(Q)||2 +∑n
i=1 wi||m(Q)− qi||2.170

Lemma 3. Let Q1 be a subset of Q with a total weight of αW for some 0 <

α ≤ 1, and m(Q1) be the weighted mean point of Q1. Then ||m(Q1)−m(Q)|| ≤√
1−α
α δ, where δ2 = 1

W

∑n
i=1 wi||qi −m(Q)||2.

2. A (1 + ϵ)-Approximation for Case 1

In this section, we consider case 1. Without loss of generality, we assume175

that ||p∗ − pi0 || ≤ ϵ
√
S

4
√
n∆

, i.e., pi0 is the point very close to p∗. Then, we have:

Lemma 4. For any i ̸= i0, ||p∗ − pi|| ≥ (1− ϵ
4 )||pi0 − pi||.

Proof. Since p∗ is the weighted mean
∑n

i=1 wipi∑n
i=1 wi

, we know that for any 1 ≤ l ≤ n,

||p∗ − pl|| = ||
∑n

i=1 wipi∑n
i=1 wi

− pl|| ≤
n∑

i=1

(
wi∑n
i=1 wi

)||pi − pl|| ≤ Lmax. (4)

Thus, we have S ≤ nL2
max, and consequently

||p∗ − pi0 || ≤
ϵ
√
S

4
√
n∆

≤ ϵ

4

Lmax

∆
=

ϵ

4
Lmin. (5)
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Furthermore, due to triangle inequality, we have180

||p∗ − pi|| ≥ ||pi0 − pi|| − ||p∗ − pi0 ||

≥ ||pi0 − pi|| −
ϵ

4
Lmin

≥ (1− ϵ

4
)||pi0 − pi|| (6)

for any i ̸= i0.

Now we can obtain a (1 + ϵ)-approximation for case 1.

Theorem 3. For case 1, if one tries every point in {pi | 1 ≤ i ≤ n} as a

candidate for the truth vector, at least one yields a (1+ϵ)-approximation for the

objective function in (1), and the total time complexity is O(n2d).185

Proof. We prove this theorem by showing how large the objective value will

increase if p∗ is moved to pi0 . Firstly, we suppose that the weights are fixed

temporarily. Then, by Lemma 4 and the fact that 0 < ϵ < 1, we have

||pi0 − pi||2
||p∗ − pi||2

≤ 1

(1− ϵ/4)2
≤ 1 + ϵ (7)

for any i. This means that the objective value is increased by a factor no

more than 1 + ϵ. Once p∗ is moved to pi0 , we can further update the weights190

according to Lemma 1, and the objective value will not increase. Note that the

contribution of pi0 to the objective value will become 0 since limx→0 x log
S
x = 0.

Since we need to try every point to find out pi0 (as the candidate for the truth

vector) and each point takes O(nd) time to evaluate the objective function, the

total time complexity is thus O(n2d).195

3. A Simple Linear Time Algorithm for Case 2

In this section, we present a simple linear time approximation algorithm for

case 2. Although the approximation ratio is relatively large (O(log n∆
ϵ )), the

idea used in the algorithm sheds some lights on how to find a more refined

solution, e.g., (1 + ϵ)-approximation in Section 4. Additionally, we believe that200

this simple linear time algorithm is also of some independent interest.
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We first estimate the range for the weights. Lemmas 5 and 6 provides the

upper and lower bounds for each wi, and Lemma 7 shows a lower bound on

their summation.

Lemma 5. For case 2, each weight wi ≤ 2 log n∆
ϵ .205

Lemma 5 can be easily obtained from the assumption min1≤i≤n ||p∗ − pi|| >
ϵ
√
S

4
√
n∆

and Lemma 1. Note that we assume n ≥ 16 here; otherwise, we just need

to increase the front constant “2” (of 2 log n∆
ϵ ) a little bit.

Lemma 6. For any constant 2 > c > 1, at least one of the following two events

happens:210

1. min1≤i≤n wi ≥ log c;

2. all weights except one are at least log c
c−1 .

Proof. Suppose that the first event does not happen, i.e., min1≤i≤n wi < log c.

Then, by Lemma 1 we know that there exists a pl such that ||p∗−pl||2∑n
i=1 ||p∗−pi||2 > 1

c .

Since 1
c > 1

2 , there is at most one such pl, and each of the other points should215

have a weight at least log 1
1−1/c = log c

c−1 , i.e., the second event happens. Thus

the lemma is true.

Lemma 7. The sum of the weights
∑n

i=1 wi ≥ n log n.

Proof. From Lemma 1, we know that
∑n

i=1 wi =
∑n

i=1 log
S

||p∗−pi||2 . It is easy

to see that the function f(x) = log S
x is convex, since f ′′(x) = 1

x2 > 0. By220

Jensen’s inequality, we have

n∑
i=1

log
S

||p∗ − pi||2
≥ n log

S∑n
i=1 ||p∗ − pi||2/n

= n log n. (8)

This completes the proof.

Before introducing the algorithm, we first find a proper value for c in Lemma 6.

For this purpose, we consider the second event in Lemma 6. If this event hap-

pens, we know that there exists one point, say pl, with weight less than log c,225

and all other weights are at least log c
c−1 . This implies that

||p∗ − pl||2 >
1

c
S; and ||p∗ − pi||2 < (1− 1

c
)S ∀i ̸= l. (9)
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This means that pl is farther away from p∗ than all other points, and the smaller

c, the larger difference is. To differentiate pl from other pis, we consider the

ratio of the largest over the second largest distances from other points

to pl (see Figure 2), which is smaller than230

(

√
1

c
+

√
1− 1

c
)/(

√
1

c
−

√
1− 1

c
) (10)

due to triangle inequality and the fact that when x > y > 0, the function

f(x, y) = x+y
x−y is decreasing on x and increasing on y. Similarly, the ratio for

any other pi for i ̸= l is bigger than

(

√
1

c
−
√
1− 1

c
)/(2

√
1− 1

c
). (11)

To make (11) larger than (10), we need to have

c < 10− 4
√
5 ≈ 1.056, (12)

and (11) = (10) ≈ 1.618 if c = 10 − 4
√
5. Consequently, we have the following235

lemma.

p∗p∗ plpl

pipi

Figure 2: pl and pi are connected by dashed lines to their respective farthest and second

farthest points; the blue point is p∗.

Lemma 8. It is possible to find the point pl with the smallest weight in O(nd)

time, if the second event in Lemma 6 happens with 1 < c < 10− 4
√
5.

Proof. To prove this lemma, we can arbitrarily pick one point from the input

and compute the ratio of the largest over the second largest distances from other240

points to it. From the above analysis, we know that if the ratio is smaller than

1.618, this point is pl; otherwise the farthest point to it is pl. Obviously, the

total time of the above procedure is linear, i.e., O(nd).
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Algorithm 1 Linear time algorithm for case 2

Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd

1. Compute the (unit weighted) mean of P , and denote it as p∗1.

2. Arbitrarily pick one point from P and compute the ratio of the largest

and second largest distances from other points to it,

(a) remove the selected point from P if the ratio is smaller than 1.618;

(b) or remove the farthest point to it otherwise.

3. Compute the mean of the remaining points, and denote it as p∗2.

4. Take the one from {p∗1, p∗2} with a smaller objective value as the truth

vector.

Now we are ready to present our algorithm (see Algorithm 1).

Theorem 4. Algorithm 1 yields a (2 log n∆
ϵ / log c)-approximation for case 2,245

where c ≈ 1.056 and the time complexity is O(nd). In short, the approximation

ratio is O(log n
ϵ ) if ∆ is a polynomial of n, or O(log ∆

ϵ ) otherwise.

Proof. To prove this theorem, we consider the two events in Lemma 6 separately.

If the first event happens, we have wi ≥ log c for any i. Since p∗1 is the mean

of P , we have250

n∑
i=1

||p∗1 − pi||2 ≤
n∑

i=1

||p∗ − pi||2. (13)

Consequently, if we fix the weights and move p∗ to p∗1 (note that we can use

Lemma 1 to update the weights and further reduce the objective value), the
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objective value of (1) will be

n∑
i=1

wi||p∗1 − pi||2 ≤ 2 log
n∆

ϵ

n∑
i=1

||p∗1 − pi||2

≤ 2 log
n∆

ϵ

n∑
i=1

||p∗ − pi||2

≤ 2 log
n∆

ϵ

n∑
i=1

wi

log c
||p∗ − pi||2

= (2 log
n∆

ϵ
/ log c)

n∑
i=1

wi||p∗ − pi||2 (14)

based on Lemma 5 & 6, which implies that p∗1 is a (2 log
n∆
ϵ / log c)-approximation.

Now we consider the second event. Let pl denote the point removed in step255

2(a) or 2(b). From the proof of Lemma 8, we know that pl has the smallest

weight. Let p̃∗ be the weighted mean of P \ {pl}. Suppose that the total weight
of P \ {pl} is α

∑n
i=1 wi, then from Lemma 7 and the fact that wl ≤ log c < 1,

we have α > n logn−1
n logn . As a consequence, by Lemma 3 we have

||p̃∗ − p∗||2 <
1

n log n− 1

∑n
i=1 wi||p∗ − pi||2∑n

i=1 wi
. (15)

Then applying Lemma 2 in Section 1.2, we get260

n∑
i=1

wi||p̃∗ − pi||2 ≤ n log n

n log n− 1

n∑
i=1

wi||p∗ − pi||2. (16)

(16) indicates that p̃∗ can replace p∗ without causing much increase on the

objective value. If we continue to move p̃∗ to p∗2, the objective value becomes

n∑
i=1

wi||p∗2 − pi||2 =
∑
i̸=l

wi||p∗2 − pi||2 + wl||p∗2 − pl||2. (17)

For the first term in the right hand side of (17), by a similar calculation to (14),

we know that
∑

i ̸=l wi||p∗2 − pi||2 < (2 log n∆
ϵ / log c

c−1 )
∑

i ̸=l wi||p̃∗ − pi||2. For
the second term in the right hand side of (17), by an estimation similar to (10),265

we have
||p∗

2−pl||
||p̃∗−pl|| ≤ (

√
1
c +

√
1− 1

c )/(
√

1
c −

√
1− 1

c ) ≈ 1.618. (Note that both

p∗2 and p̃∗ are a convex combination of P \ pl). Putting (16) and (17) together,
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we know that p∗2 is a solution with approximation ratio

n log n

n log n− 1
×max{2 log n∆

ϵ
/ log

c

c− 1
, 1.618} ≤ 2 log

n∆

ϵ
/ log c. (18)

Finally, it is easy to know that the time complexity is O(nd).

4. A (1 + ϵ)-Approximation for Case 2270

In this section, we present a (1+ ϵ)-approximation for case 2. In Theorem 4,

we consider only two groups of the points, i.e., the point with the smallest

weight and all others. In this section we show that by further partitioning the

input points into more groups, it is possible to obtain a much better solution.

Definition 3 (Log-Partition). In case 2, let pl and pl′ be the points with the275

smallest and the second smallest weights, respectively. Then the log-partition is

to divide the points in {pi | 1 ≤ i ≤ n} into k = ⌈log1+β
2 log(n∆/ϵ)

wl′
⌉+ 1 (where

β is a small positive number that will be determined later) groups as follows:

• G1 = {pl}.

• Gj = {pi | (1 + β)j−2wl′ ≤ wi < (1 + β)j−1wl′} for j ≥ 2.280

Note that we cannot explicitly obtain the log-partition since we do not know

the weights in advance. We can only assume that such a partition exists, which

will be useful in the following analysis.

From Lemmas 5 and 6 and the fact that log(1 + β) ≈ β when β is a small

positive number, we can easily have the following lemma.285

Lemma 9. In the log-partition, k = O( 1β log log n∆
ϵ ).

In each Gj , their weight difference is no more than a factor of (1 + β);

as a consequence, their weighted mean and weighted standard deviation are

very close to their mean and standard deviation respectively. In the remaining

parts, we denote the mean and weighted mean of each Gj by m̂j and mj , the290

standard deviation
√

1
|Gj |

∑
pi∈Gj

||pi − m̂j ||2 and weighted standard deviation√
1∑

pi∈Gj
wi

∑
pi∈Gj

wi||pi −mj ||2 by δ̂j and δj , respectively.
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Lemma 10. For each Gj in the log-partition, ||m̂j − mj || ≤ β
√
1 + βδj, and

δj ∈ [ 1√
1+β

δ̂j ,
√
1 + βδ̂j ].

Proof. We first prove ||mj − m̂j || ≤ β
√
1 + βδj . Without loss of generality, we295

can assume that m̂j is the origin, i.e.,
∑

pi∈Gj
pi = 0, which does not change

the distance between mj and m̂j . For simplicity, we denote α = (1 + β)j−2wl′ .

Then all the points in Gj have weights between α and (1 + β)α.

Firstly, mj = 1∑
pi∈Gj

wi

∑
pi∈Gj

wipi = 1∑
pi∈Gj

wi

∑
pi∈Gj

(wi − α)pi since

m̂j = 0. Thus we have300

||mj ||2 =
1

(
∑

pi∈Gj
wi)2

||
∑
pi∈Gj

(wi − α)pi||2

≤ 1

(
∑

pi∈Gj
wi)2

|Gj |
∑
pi∈Gj

(wi − α)2||pi||2

≤ 1

(|Gj |α)2
|Gj |

∑
pi∈Gj

(βα)2||pi||2

=
β2

|Gj |
∑
pi∈Gj

||pi||2. (19)

In addition, we have

δ2j =
1∑

pi∈Gj
wi

∑
pi∈Gj

wi||pi −mj ||2

≥ 1∑
pi∈Gj

wi

∑
pi∈Gj

α||pi −mj ||2

≥ 1∑
pi∈Gj

wi

∑
pi∈Gj

α||pi − m̂j ||2

=
1∑

pi∈Gj
wi

∑
pi∈Gj

α||pi||2

≥ 1

(1 + β)α|Gj |
∑
pi∈Gj

α||pi||2

=
1

(1 + β)|Gj |
∑
pi∈Gj

||pi||2. (20)

Combining (19) and (20), we have ||mj − m̂j || = ||mj || ≤ β
√
1 + βδj (note

that m̂j is already translated to the origin).

15



Next, we show the relationship between δj and δ̂j . From (20), we directly

have that δ2j ≥ 1
1+β δ̂

2
j . Further, we have305

δ2j =
1∑

pi∈Gj
wi

∑
pi∈Gj

wi||pi −mj ||2

≤ 1∑
pi∈Gj

wi

∑
pi∈Gj

wi||pi − m̂j ||2

=
1∑

pi∈Gj
wi

∑
pi∈Gj

wi||pi||2

≤ 1

α|Gj |
∑
pi∈Gj

(1 + β)α||pi||2

=
1 + β

|Gj |
∑
pi∈Gj

||pi||2 = (1 + β)δ̂2j . (21)

Thus, we have δj ∈ [ 1√
1+β

δ̂j ,
√
1 + βδ̂j ].

Using Lemma 10, we can obtain a (1 + ϵ)-approximation algorithm for case

2. Below is the sketch of our idea.

Synopsis. The essential task of truth discovery is to find the weighted mean310

without knowing the weights in advance. Using log-partition, we can first divide

the input points implicitly into k groups, and Lemma 10 enables us to ignore

the weights inside each group. Then by applying random sampling techniques,

we can estimate the weighed mean of each group, and find the weighted mean of

the whole input using simplex lemma. We elaborate our ideas in the following315

subsections.

4.1. Modified Simplex Lemma

In [26], Ding and Xu introduced a simplex lemma for solving a large class of

constrained clustering problems in high dimensional space. In this subsection,

we show that despite developed for a different purpose, the simplex lemma is320

still applicable to our truth discovery problem.

Lemma 11 (Simplex Lemma [26]). Given an unknown weighted point-set Q ⊂
Rd, which is implicitly divided into k mutually exclusive groups {Qj | 1 ≤ j ≤ k},

16
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q2q2

q3q3

q4q4ττ

m(Q)m(Q)

Figure 3: An illustration for Lemma 11 with k = 4; each oj has a bounded distance to qj ,

the corresponding exact weighted mean of Qj , and the distance between τ and m(Q) is also

bounded.

and k points {oj | 1 ≤ j ≤ k} satisfying the condition that for each j, the

distance between oj and the weighted mean of the unknown Qj is no more than325

a fixed value L ≥ 0, it is possible to construct a grid of size (8k/ϵ)k inside the

simplex determined by {oj | 1 ≤ j ≤ k} such that at least one grid point τ

satisfies the following inequality

||τ −m(Q)|| ≤ √
ϵδ(Q) + (1 + ϵ)L, (22)

where m(Q) and δ(Q) are the weighted mean and weighted standard deviation

of Q, respectively.330

Simplex lemma shows that it is possible to find an approximate weighted

mean of an unknown point-set. The only known information is the approximate

weighted mean of each unknown subset. L is a slack parameter to control the

error bound in (22). See Figure 3. Also, a nice feature of the simplex lemma

is that it needs to consider only a low dimensional subspace determined by the335

simplex (k ≪ d), and thus can be applied to problems in high dimensional space.

It is easy to see that the simplex lemma is immediately applicable to the truth

discovery problem for finding the weighted mean, if we are able to obtain the

weighted mean (or only the mean due to Lemma 10) of each Gj . The difficulty

is that since some Gj could be quite small in its cardinality, it is extremely340

challenging to estimate the mean by using random sampling techniques. The

17



following modified simplex lemma shows that it is actually possible to ignore

such small-size groups.

Lemma 12 (Modified Simplex Lemma). Let Q, Qj, ϵ, δ, and k be defined

as in Lemma 11, and Γ = {j | w(Qj)
w(Q) ≥ ϵ

k}, where w(·) is the total weight of345

a point-set. Then it is possible to construct a grid of size (8k/ϵ)k inside the

simplex determined by {oj | j ∈ Γ} such that at least one grid point τ satisfies

the following

||τ −m(Q)|| ≤ 2

√
ϵ

1− ϵ
δ(Q) + (1 + ϵ)L. (23)

Proof. Let QΓ = ∪j∈ΓQj . Then by Lemma 11, we immediately have the follow-

ing inequality.350

||τ −m(QΓ)|| ≤
√
ϵδ(QΓ) + (1 + ϵ)L, (24)

where Q is simply replaced by QΓ. Now, we consider the differences between

m(Q), δ(Q) and m(QΓ), δ(QΓ), respectively. Similar to (15) in Theorem 4 for

proving the distance between p̃∗ and p∗, based on Lemma 3 we have

||m(QΓ)−m(Q)||2 ≤ w(Q \QΓ)

w(QΓ)
δ2(Q) ≤ ϵ

1− ϵ
δ2(Q), (25)

where the last inequality comes from the facts that w(Q\QΓ) ≤ k× ϵ
kw(Q) and

w(QΓ) ≥ (1− ϵ)w(Q). Furthermore, since w(Q)δ2(Q) ≥ w(QΓ)δ
2(QΓ), we have355

δ2(QΓ) ≤
w(Q)

w(QΓ)
δ2(Q) ≤ 1

1− ϵ
δ2(Q). (26)

Plugging (25) and (26) into (24), we have

||τ −m(Q)|| ≤ ||τ −m(QΓ)||+ ||m(QΓ)−m(Q)||

≤ √
ϵδ(QΓ) + (1 + ϵ)L+

√
ϵ

1− ϵ
δ(Q)

≤ √
ϵ

1√
1− ϵ

δ(Q) + (1 + ϵ)L+

√
ϵ

1− ϵ
δ(Q)

= 2

√
ϵ

1− ϵ
δ(Q) + (1 + ϵ)L. (27)

This completes the proof.
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4.2. The Algorithm Using Modified Simplex Lemma

The following two lemmas are commonly used random sampling techniques

in Euclidean space. Lemma 13 shows that in order to estimate the mean of360

a point-set, one just needs to take the mean of a randomly selected sample.

Lemma 14 further shows how to sample points in order to ensure that there are

enough number of points in the sample from a hidden subset.

Lemma 13 ([28]). Let T be a set of n points in Rd space, T ′ be a randomly

selected subset of size t from T , and m̂(T ), m̂(T ′) be the mean points of T and365

T ′ respectively. With probability 1 − η, ||m̂(T ) − m̂(T ′)||2 < 1
ηt δ̂

2(T ), where

δ̂2(T ) = 1
n

∑
s∈T ||s−m(T )||2 and 0 < η < 1.

Lemma 14 ([26]). Let Ω be a set of elements, and T be a subset of Ω with

|T |
|Ω| = α for some α ∈ (0, 1). If randomly select

t log t
η

log(1+α) = O( t
α log t

η ) elements

from Ω, then with probability at least 1 − η, the sample contains t or more370

elements from T for 0 < η < 1 and t ∈ Z+.

By Lemma 12, we know that only those groups with large enough weight

need to be considered. The following lemma further shows that each of such

groups contains a significant fraction of the input points. This means that we

can directly apply Lemmas 13 and 14 to estimate their means.375

Lemma 15. In the log-partition for case 2, if a group Gj has a total weight

no less than ϵ
k

∑n
i=1 wi, it contains at least ϵ logn

2k log(n∆/ϵ)n points, i.e., |Gj |/|P | ≥
ϵ logn

2k log(n∆/ϵ) .

Proof. Let |Gj | and w(Gj) denote the number of points and the total weight in

Gj , respectively. From previous discussion (i.e., Lemmas 5 and 7), we know that380

w(Gj) ≤ 2 log
n∆

ϵ
|Gj |;

n∑
i=1

wi ≥ n log n. (28)

With the assumption w(Gj) ≥ ϵ
k

∑n
i=1 wi, we have |Gj | ≥ ( ϵ

k

∑n
i=1 wi)/(2 log

n∆
ϵ )

≥ ϵ logn
2k log(n∆/ϵ)n.
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Algorithm 2 (1 + ϵ)-algorithm for case 2

Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd, and α = ϵ3 logn
2(log log(n∆/ϵ))2 log(n∆/ϵ) .

1. Randomly take a sample N from the input with size 4k
αβ2 log

16k2

β2 .

2. Enumerate all the subsets having 4k/β2 points from N , compute their

means, and put them into a set U .

3. For any k′-tuple from U , where k′ is enumerated from {1, 2, · · · , k},
apply Lemma 12 to build a grid inside the simplex determined by the

k′-tuple.

4. Try all the grid points, and output the one with the smallest objective

value of (1) in Definition 1.

Now we are ready to present our refined algorithm for truth discovery.

Firstly, we use Lemmas 14 and 15 to sample an enough number of points from

each group with large enough weight. Then, we apply Lemma 13 to obtain385

their approximate means. Finally, we use the modified simplex lemma (i.e.,

Lemma 12) to obtain the desired (1 + ϵ)-approximation. See Algorithm 2. Be-

low, we analyze the correctness of the algorithm. For convenience, we denote the

weighted standard deviation induced by p∗, i.e.,
√

1∑n
i=1 wi

∑n
i=1 wi||p∗ − pi||2,

by δ(P ).390

A key step for analyzing the correctness of the algorithm is to determine the

value of β for log-partition. When applying the modified simplex lemma, we

have to keep the value of L to be roughly O(
√
ϵδ(P )), such that the obtained

grid point τ can result in a (1 + O(1)ϵ)-approximation solution by Lemma 2.

Note that the value of L depends on two parts, the distance between mj and395

m̂j (Lemma 10), and the error for estimating the position of m̂j (Lemma 13),

respectively. For simplicity, we only consider the first part temporarily, and

actually the following analysis will show that the first part dominates the value

of L. First, when j ∈ Γ (see Lemma 12), we have the upper bound of ||mj−m̂j ||,

β
√
1 + βδj < 2βδj ≤ 2β

√
k

ϵ
δ(P ) (29)
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by Lemma 10. Meanwhile, we know that k = O( 1β log log n∆
ϵ ) by Lemma 9.400

Thus, we need to set

β =
ϵ2

log log n∆
ϵ

(30)

to guarantee that L = O(
√
ϵδ(P )). And as a consequence,

k =
1

ϵ2
(log log

n∆

ϵ
)2. (31)

Also, (31) together with Lemma 15 implies that |Gj |/|P | ≥ ϵ3 logn
2(log log(n∆/ϵ))2 log(n∆/ϵ)

for each j ∈ Γ. By simple calculations and Lemmas 14, we know that with prob-

ability (1− 1
4k )

k ≥ 1− 1/4 = 3/4 the sample N contains at least 4k/β2 points405

from each of such group Gj . From Lemma 13, we know that with probability

(1− 1
4k )

k ≥ 3/4, for each of such Gj the mean of the corresponding 4k/β2 points

has a distance no more than βδ̂j ≤ β
√
1 + βδj = O(

√
ϵδ(P )) to its mean (the

inequality comes from Lemma 10). In total, L is bounded by O(
√
ϵδ(P )), and

we have a (1 +O(1)ϵ)-approximation (by Lemma 2).410

As for the running time, we note that k = 1
ϵ2 (log log

n∆
ϵ )2. In Step 2 of

Algorithm 2, we enumerate all the subsets having 4k/β2 points from N and put

their means into the set U , and thus |U | = O
(
|N |4k/β2)

; in Step 3, we enumerate

all the k′-tuples from U for k′ = {1, 2, · · · , k}, and apply Lemma 12 to build

a grid inside the simplex determined by each of the k′-tuples. So there are415

O
(
(|N |4k/β2

)k
)
simplexes in total, and the grid size of each simplex is (8k/ϵ)k

(from Lemm 12). Consequently, the total number of grid points is

O
(
(|N |4k/β2

)k(8k/ϵ)k
)
= 2O( 1

ϵ8
(log logn∆)7). (32)

Since 1
ϵ8 (log log n∆)7 < σ log n∆ for any small positive σ if ϵ is fixed and n∆ is

large enough, the time complexity is O(2σ logn∆nd) = O((n∆)σnd).

Through the above analysis, we have the following theorem.420

Theorem 5. With probability 9/16, Algorithm 2 outputs a (1+ϵ)-approximation

for case 2, and the time complexity is O((n∆)σnd), where σ could be any small

positive number. In short, the time complexity is O(n1+σd) if ∆ is a polynomial

of n, or O(∆σnd) otherwise.
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5. Improving the Time Complexity425

A common strategy adopted by the (1 + ϵ)-approximation algorithms in

Section 2 and 4 for the two cases is to first identify a set of candidates for

the truth vector, then compute the objective value for each candidate, and

finally output the candidate with the smallest objective value. Since computing

the objective value for each candidate costs O(nd) time, the total time is thus430

O(z × nd), where z is the number of candidates (i.e., z = n for case 1 and

z = (n∆)σ for case 2). In this section, we show that when the spread ratio ∆ is

not too large, the amortized time complexity for computing all the objective

values of the candidates can be reduced to sub-linear, and consequently the

overall time complexity is nearly linear.435

Recall that Theorem 1 tells us that the objective value is equal to the entropy

based geometric variance S × H induced by p∗. In order to reduce the time

complexity for computing the objective value, below we show how to efficiently

compute S and H, respectively.

Lemma 16. The value of S for all the z candidates can be computed in a total of440

O((n+ z)d) time, i.e., O(ndz + d) amortized time complexity for each candidate.

Proof. Let m̂(P ) be the (unit weighted) mean of the point-set P , i.e., m̂(P ) =

1
n

∑n
i=1 pi. Then in O(nd) time, we can compute the value of Ŝ =

∑n
i=1 ||m̂(P )−

pi||2. For each candidate p∗, we know that its total variance S =
∑n

i=1 ||p∗ −
pi||2 = n||p∗−m̂(P )||2+ Ŝ (by Lemma 2 in Section 1.2). Clearly, the variance of445

p∗ can be computed in O(d) time by using the value of Ŝ. This implies that the

total time for computing the value of S for all z candidates is O(nd+ zd).

From Lemma 16, we know that it is possible to compute the total variance

S in an amortized sub-linear time. Below we discuss how to efficiently compute

the entropy H. The following lemma comes from [29] for entropy estimation.450

Lemma 17 ([29]). Let F = {fi | 1 ≤ i ≤ n} be a discrete probabilistic distri-

bution with the entropy H =
∑n

i=1 −fi log fi, and two parameters ϵ, δ ∈ (0, 1).
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There exists an algorithm outputting a value H̃ ∈ [(1 − ϵ)H, (1 + ϵ)H] with

probability 1− δ, which makes at most O( 1
ϵ2H log n log( 1δ )) queries on F .

To estimate H, the algorithm presented in [29] does not read all the values in455

F . Instead, it takes only a subset of O( 1
ϵ2H log n log( 1δ )) samples (i.e., queries)

from F . From the above lemma, we know that if H is small, the number

of needed queries could be quite large, and consequently the time complexity

could be high. To avoid this issue, we show in the following lemma that H

can actually be lower bounded in our problem if ∆ is not too large. Also note460

that in our problem each query costs only O(d) time, since it can be computed

by equation fi = ||p∗−pi||2
S , where S is the total variance already obtained in

Lemma 16.

Lemma 18. If ∆ = Õ(
√
n) (= O(

√
n× poly(log n))), H ≥ 1

poly(logn) .

For simplicity, we let l2i = ||p∗ − pi||2. Then H =
∑n

i=1
l2i
S log S

l2i
. Since465

we only need to care about the ratio
l2i
S , without loss of generality we can

assume that mini<j ||pi−pj ||2 = 1 and maxi<j ||pi−pj ||2 = ∆2. Before proving

Lemma 18, we first have the following lemma.

Lemma 19. Except for the smallest value in {l2i | 1 ≤ i ≤ n}, all other values

are between 1
4 and ∆2. Furthermore, S > 1

4∆
2.470

Proof. Firstly, if there exist i1 ̸= i2 such that both l211 and l2i2 are smaller than

1/4, then from triangle inequality we know that

||pi1 − pi2 || ≤ ||pi1 − p∗||+ ||pi2 − p∗|| < 1, (33)

which contradicts our assumption that mini<j ||pi − pj ||2 = 1. Secondly, from

the construction of the set of candidates for p∗ in both cases (see Sections 2

and 4), we know that p∗ is always inside the convex hull of P . Thus, we have475

max{l2i | 1 ≤ i ≤ n} ≤ ∆2 due to triangle inequality as well.

Assume that ||pi1 − pi2 || = maxi<j ||pi − pj || = ∆. Again, from triangle

inequality we know that either ||pi1 − p∗|| or ||pi2 − p∗|| is at least ∆/2. Thus

we can easily know that S > 1
4∆

2.
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xaxa xbxb xb + ηxb + ηxa − ηxa − η

Figure 4: The curve of g(x) with S = 10.

Proof. (of Lemma 18) Let h = min{S,∆2}, and g(x) = x
S log S

x for any x ∈480

[1/4, h], which is concave (as g′′(x) = − 1
Sx < 0). Considering two values 1/4 <

xa ≤ xb < h, we know that

g(xa) + g(xb) > g(xa − η) + g(xb + η), (34)

where η = min{xa−1/4, h−xb} (see Figure 4), and the sum of xa−η and xb+η

is always xa + xb. This suggests that to find a lower bound of H for a fixed S,

we can first identify two values 1/4 < l2i1 ≤ l2i2 < h, and then decrease l2i1 and485

increase l2i2 in the same speed until either l2i1 = 1/4 or l2i2 = h. After repeating

the above operation at most n − 1 times, we have at most one l2i ∈ (1/4, h),

one smaller than 1/4 (recall Lemma 19), and all the others are either 1/4 or h.

Suppose that t of them have a value of 1/4 and n− 2− t of them have a value

of h in {l2i | 1 ≤ i ≤ n}, where 0 ≤ t ≤ n− 2. Then we have:490

H ≥ t

4S
log(4S) +

(n− 2− t)h

S
log

S

h
; (35)

(t+ 1)
1

4
+ (n− 2− t)h ≤ S ≤ (t+ 1)

1

4
+ (n− 1− t)h. (36)

If S ≤ 2∆2, we know that at most two items equal to h (i.e., n − 2 − t ≤ 2).

Consequently, we know that the right hand side of (35) is at least t
4S log(4S) ≥

n−4
4S log(4S). Also notice that S ∈ (∆2/4, 2∆2] in this case (where S > ∆2/4

comes from Lemma 19). Thus, we have

H ≥ n− 4

4S
log(4S) ≥ n− 4

8∆2
log∆2. (37)

To bound the right hand side of the above inequality, we can actually assume495

that ∆2 ≥ 2. Otherwise, from Lemma 19 and some simple calculations, we
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know that H =
∑n

i=1
l2i
S log S

l2i
= Θ(log n). Thus, (37) becomes

H ≥ n− 4

8∆2
log 2 ≥ 1

poly(log n)
, (38)

and the lemma is true.

Now, we consider the case of S > 2∆2, which immediately implies that

h = ∆2. Note that t ∈ [0, n− 2]. From (35) and (36), we have500

H ≥ t

(t+ 1) + 4(n− 1− t)∆2
log(4S) +

4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2
log

S

∆2

≥ (
t

(t+ 1) + 4(n− 1− t)∆2
+

4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2
) log 2

=
t+ 4(n− 2− t)∆2

(t+ 1) + 4(n− 1− t)∆2
log 2

=
t+ 4(n− 2− t)∆2

t+ 4(n− 2− t)∆2 + 1 + 4∆2
log 2

≥ n− 2

n− 2 + 1 + 4∆2
log 2 ≥ 1

poly(log n)
. (39)

The second inequality follows from S ≥ 2∆2.

This completes the proof of Lemma 18.

From previous discussion, we know that the time complexity can be improved

to nearly linear if ∆ = Õ(
√
n). We can take the union of the candidates in both

case 1 and case 2 (i.e., min1≤i≤n ||p∗ − pi|| ≤ ϵ
√
S

4
√
n∆

or min1≤i≤n ||p∗ − pi|| >505

ϵ
√
S

4
√
n∆

), and denote it as Z, where |Z| = n + (n∆)σ = O(n) since ∆ = Õ(
√
n).

Note that in case 2, the candidates are obtained by using random sampling

which takes sub-linear time (see Section 4.2). Consequently, finding such a set

Z needs only O(|Z|d) = O(nd) time. By Lemmas 16, 17 , and 18, we have the

following theorem (when applying Lemma 17, we should replace the parameter510

δ by O( δn ) since we have to guarantee the success for all the O(n) candidates;

the number of queries increases only by a factor of log n).

Theorem 6. Given an instance P of the truth discovery problem with ∆ =

Õ(
√
n) and two parameters ϵ, δ ∈ (0, 1), there exists an algorithm yielding a

(1+ ϵ)-approximation with success probability 9
16 (1− δ). The time complexity is515

Õ(nd), where the hiding constant in the big-O notation depends on ϵ and δ.
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In some real world applications, the dimensionality d (which is the maximum

size of the data from each source) could be much larger than n. For this case, we

can first apply the well known JL-Lemma [30] to reduce the dimensionality from

d to O( logn
ϵ2 ) and then apply our algorithm. Note that this can only slightly520

increase the objective value, since p∗ is the weighted mean and consequently we

have

n∑
i=1

wi||pi − p∗||2 =
1

2
∑n

i=1 wi

n∑
i=1

n∑
j=1

wiwj ||pi − pj ||2, (40)

where JL-Lemma based dimension reduction approximately preserves the pair-

wise distances (see Section 6.4 in Appendix for the details). As for the running

time, we know that a straightforward approach is just multiplying the data525

matrix A ∈ Rd×n with the random projection matrix R ∈ RO( log n

ϵ2
)×d, which

costs O(nd log n/ϵ2) time in total. We can also let R be a rescaled random sign

matrix [31] and use the technique in [32] to further reduce the time complexity

to O(nd logn
ϵ2 log d ).

Corollary 1. When d = Ω(nc) for some constant c > 0, the time complexity in530

Theorem 6 can be further improved to O(nd logn
ϵ2 log d + n× poly(log n)) = O(nd),

where the hiding constant depends on c, ϵ and δ.

Remark 1. Following our work published in [1], Huang, together with the two

authors of this paper, developed a new algorithm [33] which removes the depen-

dence of ∆ in the time complexity, but has a worse running time than the ones535

in Theorem 6 and Corollary 1. Their result is based on a novel range cover

technique, which is interesting in its own right.
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6. Appendix

6.1. Proof of Lemma 2

We use < x, y > to denote the inner product of x and y in Rd. The left hand645

side of the equation is

n∑
i=1

wi||q − qi||2 =

n∑
i=1

wi||q −m(Q) +m(Q)− qi||2

=

n∑
i=1

wi(||q −m(Q)||2 + 2 < q −m(Q),m(Q)− qi > +||m(Q)− qi||2)

=

n∑
i=1

wi||q −m(Q)||2 + 2 < q −m(Q),

n∑
i=1

wi(m(Q)− qi) >

+

n∑
i=1

wi||m(Q)− qi||2

= W ||q −m(Q)||2 +
n∑

i=1

wi||m(Q)− qi||2,

where the final equality follows from the fact that
∑n

i=1 wi(m(Q)− qi) = 0.

6.2. Proof of Lemma 3

Let Q2 = Q \Q1, and m(Q2) be its weighted mean point. By Lemma 2, we

have the following two equalities.650 ∑
qi∈Q1

wi||qi −m(Q)||2 =
∑

qi∈Q1

wi||qi −m(Q1)||2 + αW × ||m(Q1)−m(Q)||2, (41)

and∑
qi∈Q2

wi||qi −m(Q)||2 =
∑

qi∈Q2

wi||qi −m(Q2)||2 + (1− α)W × ||m(Q2)−m(Q)||2. (42)

Let L = ||m(Q1)−m(Q2)||. By the definition of weighted mean point, we have

m(Q) =
1

W

∑
qi∈Q

wiqi

=
1

W
(
∑

qi∈Q1

wiqi +
∑

qi∈Q2

wiqi)

=
1

W
(αWm(Q1) + (1− α)Wm(Q2)). (43)
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Thus the three points {m(Q),m(Q1),m(Q2)} are collinear, while ||m(Q1) −
m(Q)|| = (1 − α)L and ||m(Q2) −m(Q)|| = αL. Meanwhile, by the definition

of δ, we have655

δ2 =
1

W
(
∑

qi∈Q1

wi||qi −m(Q)||2 +
∑

qi∈Q2

wi||qi −m(Q)||2). (44)

Combining (41) and (42), we have

δ2 ≥ 1

W
(αW × ||m(Q1)−m(Q)||2 + (1− α)W × ||m(Q2)−m(Q)||2)

= α((1− α)L)2 + (1− α)(αL)2

= α(1− α)L2. (45)

Thus, we have L ≤ δ√
α(1−α)

, which means that ||m(Q1)−m(Q)|| = (1−α)L ≤√
1−α
α δ.

6.3. Proof of Theorem 2

Let Opt =
∑n

i=1 wi||p∗−pi||2 be the optimal objective value. Then we know660

that at least one point, say pl, has its squared distance to p∗ no bigger than the

average, i.e., ||p∗ − pl||2 ≤ Opt∑n
i=1 wi

. By applying Lemma 2, we have

n∑
i=1

wi||pl − pi||2 = (

n∑
i=1

wi)||pl − p∗||2 +
n∑

i=1

wi||p∗ − pi||2 ≤ 2Opt. (46)

Once p∗ is replaced by pl, we can further update the weights according to

Lemma 1, and the objective value will not increase. Note that the contribution

of pl to the objective value will become 0 since limx→0 x log
1
x = 0.665

Thus, pl is a 2-approximation. Furthermore, finding such a pl needs to try

n times with each time costing O(nd) time, which means that the total time

complexity is O(n2d).

6.4. Quality Preserving After Applying JL-Lemma

We first prove the formula (40). Let W =
∑n

i=1 wi. From Lemma 2 we have670

n∑
j=1

wj ||pi − pj ||2 = W ||pi − p∗||2 +
n∑

j=1

wj ||pj − p∗||2. (47)
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Consequently, we get

n∑
i=1

n∑
j=1

wiwj ||pi − pj ||2 =

n∑
i=1

wi

n∑
j=1

wj ||pi − pj ||2

=

n∑
i=1

wi(W ||pi − p∗||2 +
n∑

j=1

wj ||pj − p∗||2)

= W

n∑
i=1

wi||pi − p∗||2 +W

n∑
j=1

wj ||pj − p∗||2

= 2W

n∑
i=1

wi||pi − p∗||2, (48)

which implies formula (40). Suppose that p̂∗ is a (1 + ϵ)-approximation in the

O( logn
ϵ2 )-dimensional subspace after the random projection, and the correspond-

ing weights are {ŵ1, · · · , ŵn}. Also let the projection of each pi be p̂i. From

(40) we have675

1

2
∑n

i=1 ŵi

n∑
i=1

n∑
j=1

ŵiŵj ||p̂i − p̂j ||2

≤ (1 + ϵ)
1

2
∑n

i=1 wi

n∑
i=1

n∑
j=1

wiwj ||p̂i − p̂j ||2. (49)

If we apply JL-Lemma on both sides of (49), we have

1

2
∑n

i=1 ŵi

n∑
i=1

n∑
j=1

ŵiŵj ||pi − pj ||2

≤ (1 + ϵ)2

1− ϵ

1

2
∑n

i=1 wi

n∑
i=1

n∑
j=1

wiwj ||pi − pj ||2. (50)

Let q = 1∑n
i=1 ŵi

∑n
i=1 ŵipi. Then we know that it is a (1+ϵ)2

1−ϵ ≈ (1 + 3ϵ)-

approximation in the original Rd space.
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