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Abstract

Truth Discovery is an important learning problem arising in data analytics re-
lated fields. It concerns about finding the most trustworthy information from
a dataset acquired from a number of unreliable sources. The problem has been
extensively studied and a number of techniques have already been proposed.
However, all of them are of heuristic nature and do not have any quality guar-
antee. In this paper, we formulate the problem as a high dimensional geometric
optimization problem, called Entropy based Geometric Variance. Relying on a
number of novel geometric techniques, we further discover new insights to this
problem. We show, for the first time, that the truth discovery problem can be
solved with guaranteed quality of solution. Particularly, it is possible to achieve
a (1 + €)-approximation within nearly linear time under some reasonable as-
sumptions. We expect that our algorithm will be useful for other data related
applications.
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1. Introduction

Truth discovery is an emerging topic in data analytics which has received a
great deal of attentions in recent years [2]. Despite its extensive studies in the
fields of data mining, database, machine learning, and big data [2] [3], 4. [5], [6] [7, ],
it has yet to be seriously considered by the theory community (to our best knowl-
edge). The problem arises in scenarios where data are acquired from multiple
sources which may contain false or inconsistent information, and the truth dis-
covery problem is to find the most trustworthy information from these sources.
The problem finds many applications in different areas, such as healthcare [9],
crowd/social sensing [I0, 1], and knowledge bases aggregation [12]. For exam-
ple, in online social networks, a user’s information can be recorded by multiple
websites which may not be always consistent; thus it is desirable to find the most
trustworthy information for each user. Similar problem also occurs in health-
care where medical records of a patient may be acquired by multiple hospitals
or laboratories.

The main challenge of truth discovery comes from its unsupervised nature,
i.e., the level of reliability of each source is unknown in advance. A straightfor-
ward way for solving the problem is to take the average if the data are continu-
ous or conduct majority voting if the data are categorical. Such approaches are
implicitly based on the assumption that all sources are equally reliable. How-
ever, in many applications the level of reliability of each source could be quite
different which may make the yielded solution significantly different from the
truth, due to the neglect of “the wisdom of minority” [2], [3]. See the example
in Figure [1] from [2]. Thus, estimating the reliability of each source should be
taken into account when building the optimization model for truth discovery.
In general, the two components, reliability estimation and truth finding,
are tightly coupled and thus are expected to be solved simultaneously, where
the truth should be closer to the source with higher reliability, and as a feed-
back, the source providing closer information should have a higher reliability.

Another challenge of truth discovery is how to handle large-scale datasets when
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the number of sources and the data size of each source are both large.

A closely related research topic is crowdsourcing aggregation. A well known
crowdsourcing platform is Amazon Mechanical Turk which provides a cost-
efficient way to solicit labels from crowd workers [13]. Many mechanisms and
inference algorithms have been developed for inferring true labels and workers’
quality [14} [15] [16] 17, 18] 19]. As mentioned in [2], the main difference between
crowdsourcing aggregation and truth discovery is that the former is an active
procedure (one can control what and how much data to be generated by work-
ers) while the latter is a passive procedure (one can only choose from available

data sources).

George Abraham | Mahatma John Barack | Franklin

Washington  Lincoln Gandhi Kennedy Obama | Roosevelt

Source 1 Virginia Ilinois Delhi Texas Kenya Georgia
Source 2 Virginia Kentucky | Porbandar | Massachusetts | Hawaii | New York
Source 3 Maryland ~ Kentucky | Mumbai | Massachusetts | Kenya | New York

Majority Voting Virginia Kentucky Delhi Massachusetts | Kenya | New York
Truth Discovery Virginia Kentucky | Porbandar | Massachusetts | Hawaii | New York

Figure 1: Three sources are providing the birthplaces of 6 politicians. For Mahatma Gandhi,
each source has an individual answer (i.e., a tie case), and majority voting can only randomly
pick one. More importantly, for Barack Obama, voting provides a totally wrong answer.
However, truth discovery tries to distinguish reliable and unreliable sources and thus provide
the right answer. In this example, the algorithm in [2] finds that source 2 has a higher
reliability than the other two.

1.1. Problem Formulation and Ezisting Approaches

We first introduce the problem formulation of truth discovery used in the
data mining community, and then convert it to a new geometric optimization
problem, called entropy based geometric variance.

To model the truth discovery problem, the data from each source can be
represented as a (possibly high dimensional) vector, where each dimension cor-
responds to one attribute/property (e.g., age, income, or temperature). For

categorical data, we can reduce them to continuous data as follows [2]. Suppose



50

55

60

65

70

75

that one attribute has t categories; then it can be represented as a t-dimensional
binary sub-vector, where each dimension indicates the membership of one cat-
egory. We can finally embed all these sub-vectors (corresponding to the cat-
egorical attributes) into one unified vector in higher dimensional space. Note
that this representation for categorical data may cause fractional memberships
in the final solution, which is often acceptable in practice (e.g., we may claim
that one object belongs to class 1, 2, and 3 with probabilities of 70%, 20%, and
10%, respectively). Furthermore, we need a variable to represent the reliability

of each source.

Definition 1 (Truth Discovery[d, 2]). Let P = {p1,pa, -+, pn} be a set of vec-
tors in RY space with each p; representing the data from the i-th source (among a
set of n sources). The truth discovery problem is to find the truth vector p* € R?
and the reliability (weight) w; for each i-th source, such that the following ob-
jective function is minimized,

n

n
Zwin* —pill?, st Ze‘wi =1 (1)
i=1

i=1

In the above optimization problem , both p* and the weights are variables.
It is easy to see that when each w; is fixed, p* is simply the weighted mean, i.e.,
ﬁ Z?:l w;p;. This means that the higher the weight of p;, the closer it is
to p*, which is consistent with the principle of truth discovery.

Weight normalization function. In the above optimization problem,
equation Z;;l e Wi = 1 is used to normalize the source weights. This way
of normalization was initially introduced in [4] (with no justification) and has
demonstrated experimentally its superior performance. To understand the ra-
tionale behind this, below we give a theoretical justification. Firstly, we notice
that some straightforward ways, such as Z?zl w? =1 for some p > 0, are inap-
propriate for weight normalization [4], since otherwise, p* can trivially choose
any p; as its solution and set w; = 1 and w; = 0 for all ¢ # [ (in this way
the objective value will always be equal to the smallest possible value 0). By

using equation Y1, e~ =1, we can easily avoid this issue. Secondly, this ex-
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ponential normalization function ensures that the resulting solution minimizes
the entropy, which implies that the solution contains more information from
the input according to Shannon’s information theory [20]. To see this, we first
borrow the following lemma from [4], which can be shown by using the Lagrange

multipliers method.

Lemma 1 ([]). If the truth vector p* is fized, the following value for each
weight w; minimizes the the objective function ,

S llpt — pill?

w; = log
STt

(2)

Let S denote the total squared distance to p* (i.e., S = Y1, ||p* — pil[?),
and f; denote the contribution of each p; to S (i.e., f; = M). Then the

induced entropy is

H = =Y filogf,
=1

z”:\lp*—pzlP1 |lp* — pu|[?
_ og
LS 5

I,
= EZHP —pil|*log
=1

Below, we define the Entropy based Geometric Variance.

lp* =l

Definition 2. Given a set of points P and a point p* in R%, the entropy base
geometric variance induced by p* is H x S, where H and S are respectively the

entropy and variance defined in the above discussion.

From Lemma and the formula , we know that the objective function
is equal to the multiplication of S and H, i.e., the entropy based geometric

variance.

Theorem 1. The optimization problem s equivalent to finding a point p*

to minimize the entropy based geometric variance.

Generally speaking, S represents the total variance from the sources to the

truth vector, and the entropy H indicates how disorder the system is, where the
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higher the entropy, the greater disorder the system is. Since we minimize both
of them, this implicitly explains the better performance of using the exponential
normalization function in Definition [l

Non-convexity. As shown in [4], when the truth vector or the weights are
fixed, the optimization problem is convex. However, when both of them
are variables, the problem is non-convex in general. To see this, consider the
following simple example. Suppose n = 2. Then the objective value is 0 when p*
coincides with either p; or po, according to Lemma (note lim,_,¢ zlog(1/z) =
0). This means that it is possible to have multiple isolated local or global optimal
solutions for truth discovery, implying that truth discovery is non-convex.

Existing Approaches. To the best of our knowledge, all existing meth-
ods for truth discovery are based on some heuristic ideas, which achieve only
a local optimal solution and have no quality guarantee on global optimal-
ity. A commonly used strategy is alternating minimization (or expectation-
maximization) [4, Bl 0], which alternatively fixes either the weights or the
truth vector, and optimizes the other. The optimization problem becomes con-
vex when one of the two types of variables is fixed. This means that such
approaches are guaranteed to converge to some local optima. Other approaches
follow similar ideas and the reader is referred to a recent survey [2] for a com-
prehensive introduction to these approaches. Recently, Xiao et al. [7] showed
an expectation-maximization based algorithm with quality guarantee, but their
algorithm needs some strict probabilistic assumption on the input and requires
the number of sources to be large enough. For general case of the truth discovery
problem, it is still an open problem for bounding the errors of the alternating
minimization and expectation-maximization methods [2].

The methods of alternating minimization and expectation-maximization are
very common optimization techniques that have been extensively studied in the
past. For example, Jain et al. [2I] and Hardt [22] considered using alternating
minimization to solve the matrix completion problem; Jain and Tewari [23]
studied the performance of alternating minimization for regression problems.

We also refer the reader to the survey [24] for more details of the expectation-
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maximization algorithms.

1.2. Preliminaries and Our Main Results

Different from existing approaches, our goal is to achieve a quality guaran-
teed solution for the truth discovery problem. In general, we assume that the
number of sources n and the size of the data in each source d are both large.
As a starting point, the following theorem suggests that it is easy to generate a

2-approximation in quadratic time (see Appendix for the proof).

Theorem 2. If one tries every point in {p; | 1 <i < n} as a candidate for the
truth vector, at least one yields a 2-approximation for the objective function in

, and the total running time is O(n2d).

Theorem [2] implies that any further improvement needs to decrease either
the approximation ratio or the running time. In this paper, we aim to achieve
a (1 4 €)-approximation for truth discovery and also keep the time complexity
as low as possible.

For ease of discussion, we use the following notations throughout the rest of
this paper. Let Lyin = min{||p;—ps|| | 1 <@ # i < n}, Linax = max{||p;—pi'|| |
1 < i # i < n}, and the spread ratio A = % To achieve a (1 + €)-
approximation for the truth discovery problem for any given small value 1 >

€ > 0, we consider the following two cases.

e Case 1. mini<;<, ||p* — pil| < jﬁ i.e., some p; locates very close to

NN
*

p .

e Case 2. minj<;<y |[p* — pil| > 45\/51, i.e., no p; locates very close to p*.

In following sections, we will present efficient algorithms to solve the two
cases separately. For case 1, we show that the nearest point p; to p* is actually
a (1+¢)-approximation (Section . For case 2, we first give a simple linear time
algorithm with large approximation ratio (Section , based on an analysis on
the distribution of the weights; then in Section [d] we reveal several new insights

to the weights by using a novel Log-Partition technique, and perform a sequence
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of geometric operations to obtain a (14 ¢)-approximation. The time complexity
depends on A. Note that spread ratio is commonly used as a parameter in
many geometric algorithms and appears in the time complexity (such as [25]).
Finally, in Section [ we show that when A is not too large, the time complexity
for both cases can be improved to nearly linear (O(nd x poly(logn))); also
through dimension reduction, the complexity can be further improved to linear
(O(nd)).

We introduce the following two folklore lemmas [26], [27] which are repeatedly
used in our analysis. For the completeness we show their proofs in Appendix.
Let @ = {g¢; | 1 < i < n} be a set of n points in R? with each ¢; associated
with a weight w; > 0, W = >""" | w;, and m(Q) be the weighted mean of Q i.e.,
m(Q) = Z?zl wiq; /W.

Lemma 2. For an arbitrary point q, >, wi|lg — ¢||> = W|lg — m(Q)|> +
Z?:l wi||m(Q) — gil[*.

Lemma 3. Let Q1 be a subset of Q with a total weight of aW for some 0 <
a <1, and m(Q1) be the weighted mean point of Q1. Then ||m(Q1) —m(Q)|| <

V526, where 8 = & S willas — m(Q)].

2. A (1 + €)-Approximation for Case 1

In this section, we consider case 1. Without loss of generality, we assume

that |[p* — s, || < 4%, i.e., pi, is the point very close to p*. Then, we have:

Lemma 4. For any i # io, ||p* — pil| > (1 — 9)|pi, — pill-

Proof. Since p* is the weighted mean % we know that for any 1 <[ < n,

S wipi
|p* —pl|\—||z“ = l\|<Z ||pl p1l] < Linax- (4)
7 1

Thus, we have S < nL?

max?

and consequently

VS € Linax €
i < < - = 7Lmin- 5
|Ip* poll_4fﬁ_4 2 1 (5)
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Furthermore, due to triangle inequality, we have

lp* —=pill > lpic — pill = [IP™ — pio ||
€
> ||pi0 7piH - ZLmin
€
> (1= Plpio —pill (6)
for any i # 4. O

Now we can obtain a (1 4 ¢)-approximation for case 1.

Theorem 3. For case 1, if one tries every point in {p; | 1 < i < n} as a
candidate for the truth vector, at least one yields a (1+ €)-approzimation for the

objective function in , and the total time complexity is O(n%d).

Proof. We prove this theorem by showing how large the objective value will
increase if p* is moved to p;,. Firstly, we suppose that the weights are fixed

temporarily. Then, by Lemma [4] and the fact that 0 < € < 1, we have

pis — il
< <l+e 7
o —pillE = A= /Ay @)

for any i. This means that the objective value is increased by a factor no
more than 1 + €. Once p* is moved to p;,, we can further update the weights
according to Lemmall] and the objective value will not increase. Note that the
contribution of p;, to the objective value will become 0 since lim,_,o  log % =0.

Since we need to try every point to find out p;, (as the candidate for the truth
vector) and each point takes O(nd) time to evaluate the objective function, the

total time complexity is thus O(n?d). O

3. A Simple Linear Time Algorithm for Case 2

In this section, we present a simple linear time approximation algorithm for

. . .. . A
case 2. Although the approximation ratio is relatively large (O(log "=)), the
idea used in the algorithm sheds some lights on how to find a more refined
solution, e.g., (1 + €)-approximation in Section [4] Additionally, we believe that

this simple linear time algorithm is also of some independent interest.
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We first estimate the range for the weights. Lemmas [§] and [6] provides the
upper and lower bounds for each w;, and Lemma [7] shows a lower bound on

their summation.
Lemma 5. For case 2, each weight w; < 2log %.

Lemma [5 can be easily obtained from the assumption mini<;<n [|p* — ps|| >

VS
1vnA

to increase the front constant “2” (of 2log %) a little bit.

and Lemma Note that we assume n > 16 here; otherwise, we just need

Lemma 6. For any constant 2 > ¢ > 1, at least one of the following two events
happens:

1. minlgign w; > IOg C;

C
c—1"

2. all weights except one are at least log

Proof. Suppose that the first event does not happen, i.e., min;<;<, w; < logec.
* 2

Then, by Lemma |1| we know that there exists a p; such that % > 1
i=1 K

Since % > %, there is at most one such p;, and each of the other points should

have a weight at least log 1%1/6 =log =5, i.e., the second event happens. Thus

the lemma is true. O

Lemma 7. The sum of the weights >, w; > nlogn.

n o n S .
Proof. From Lemma we know that > " w; = > ,"  log T =pi It is easy
to see that the function f(z) = log2 is convex, since f”(z) = % > 0. By

Jensen’s inequality, we have

- S S
log m————5 > nlog =x = nlogn. (8)
; |lp* — pil? >i |lp* = pill*/m
This completes the proof. O

Before introducing the algorithm, we first find a proper value for ¢ in Lemmalf]
For this purpose, we consider the second event in Lemma[6] If this event hap-

pens, we know that there exists one point, say p;, with weight less than logc,

and all other weights are at least log —%. This implies that

c—1"

llp* —pl>>=S; and |jp*—pil]><(1—-)S Vi#l (9)
C C

10
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This means that p; is farther away from p* than all other points, and the smaller
¢, the larger difference is. To differentiate p; from other p;s, we consider the
ratio of the largest over the second largest distances from other points

to p; (see Figure [2| ' which is smaller than

Wir-pfi-i-b w

due to triangle inequality and the fact that when x > y > 0, the function
+

f(z,y) = 755 is decreasing on z and increasing on y. Similarly, the ratio for

any other p; for i # [ is bigger than

(\E_\/1_i)/(2\/1—i). (11)

To make larger than , we need to have

¢ < 10 — 4v/5 ~ 1.056, (12)

and = ~ 1.618 if ¢ = 10 — 41/5. Consequently, we have the following

lemma.
.
° op*  ___—--TTET b
.’_:’. d
e
Di

Figure 2: p; and p; are connected by dashed lines to their respective farthest and second

farthest points; the blue point is p*.

Lemma 8. It is possible to find the point p; with the smallest weight in O(nd)
time, if the second event in Lemmala happens with 1 < ¢ < 10 — 41/5.

Proof. To prove this lemma, we can arbitrarily pick one point from the input
and compute the ratio of the largest over the second largest distances from other
points to it. From the above analysis, we know that if the ratio is smaller than
1.618, this point is p;; otherwise the farthest point to it is p;. Obviously, the

total time of the above procedure is linear, i.e., O(nd). O

11
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Algorithm 1 Linear time algorithm for case 2

Input: P = {p;,|1<i<n}cCR?

1. Compute the (unit weighted) mean of P , and denote it as pj.

2. Arbitrarily pick one point from P and compute the ratio of the largest
and second largest distances from other points to it,
(a) remove the selected point from P if the ratio is smaller than 1.618;
(b) or remove the farthest point to it otherwise.
3. Compute the mean of the remaining points, and denote it as p3.
4. Take the one from {pj,p5} with a smaller objective value as the truth

vector.

Now we are ready to present our algorithm (see Algorithm .

Theorem 4. Algorithm |1| yields a (2log %/log ¢)-approzimation for case 2,
where ¢ = 1.056 and the time complezity is O(nd). In short, the approzimation

ratio is O(log ) if A is a polynomial of n, or O(log %) otherwise.

Proof. To prove this theorem, we consider the two events in Lemmalfseparately.
If the first event happens, we have w,; > log ¢ for any 4. Since pj is the mean

of P, we have

n n
Dol —pillP <l il (13)
i=1 i=1

Consequently, if we fix the weights and move p* to pj (note that we can use

Lemma [I| to update the weights and further reduce the objective value), the

12
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objective value of will be

gwiﬂpi—pmz < QIOngeAngT—piHQ
o
< 2105;—2210gc b — 2
- (ZIOgne/logC);win* —pil® (14)

based on Lemma&@ which implies that p} is a (21og % / log ¢)-approximation.

Now we consider the second event. Let p; denote the point removed in step
2(a) or 2(b). From the proof of Lemma [§] we know that p; has the smallest
weight. Let p* be the weighted mean of P\ {p;}. Suppose that the total weight
of P\ {pi} is Y ], w;, then from Lemma (7| and the fact that w; <loge < 1,

we have a > "Tlloli g;l. As a consequence, by Lemmawe have
Hﬁ*_p*||2< 1 271“}1”]9 _p”2 (15)
nlogn —1 S w;
Then applying Lemma [2| in Section we get
nlogn "
2 * 2
Zwlllp —nllP < T > willp* = pil*. (16)

=1
indicates that p* can replace p* without causing much increase on the

objective value. If we continue to move p* to p3, the objective value becomes

n
> willps = pill* = willps — pil|” + willps — pil . (17)
; il

For the first term in the right hand side of (|L7] m by a similar calculation to ,

we know that >, wil[ps — pil[* < (2log 22 2 /log 255) Y2, willp* fpi||2. For
the second term in the right hand side of (|1 . by an estimation similar to ,

we have Hp2 ?H < \/7 +4/1 \[ 2) & 1.618. (Note that both

p5 and p* are a convex combination of P\ p;). Puttmg and (17) together,

13
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we know that p3 is a solution with approximation ratio

nlogn nA c nA
_— 2log — /log ——,1.618} < 2log — /1 . 1
nlogn—lxmax{ 0g — /ogc_l, 618} < 2log ; /logc (18)
Finally, it is easy to know that the time complexity is O(nd). O

4. A (1 4 ¢)-Approximation for Case 2

In this section, we present a (14 €)-approximation for case 2. In Theorem
we consider only two groups of the points, i.e., the point with the smallest
weight and all others. In this section we show that by further partitioning the

input points into more groups, it is possible to obtain a much better solution.

Definition 3 (Log-Partition). In case 2, let p; and py be the points with the
smallest and the second smallest weights, respectively. Then the log-partition is
to divide the points in {p; | 1 <i < n} into k = [log;, 4 %?A/G)W + 1 (where

B is a small positive number that will be determined later) groups as follows:
e G ={p}
o Gi={pi | 1+ 82wy <w;i < (1+B)twp} for j > 2.

Note that we cannot explicitly obtain the log-partition since we do not know
the weights in advance. We can only assume that such a partition exists, which
will be useful in the following analysis.

From Lemmas 5[ and |§| and the fact that log(1 4 8) ~ 8 when S is a small

positive number, we can easily have the following lemma.
Lemma 9. In the log-partition, k = O(% log log %)

In each G;, their weight difference is no more than a factor of (1 + f);
as a consequence, their weighted mean and weighted standard deviation are
very close to their mean and standard deviation respectively. In the remaining

parts, we denote the mean and weighted mean of each G; by m; and m;, the

standard deviation \/ ﬁ Zpiegj llpi — 1m,||? and weighted standard deviation

1 N .
\/m > pieg, Willpi — my[[* by 6; and §;, respectively.

14
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Lemma 10. For each G; in the log-partition, ||ih; —m;|| < Bv/1+ Bd;, and

6 €[

1
VTR

3]‘,\/1 +ﬁ(§]

Proof. We first prove ||m; — ;|| < B8y/1+ Bd;. Without loss of generality, we

can assume that 7; is the origin, i.e., Zpiegj p; = 0, which does not change

the distance between m; and ;. For simplicity, we denote a = (1 + 8)I~2wy.

Then all the points in G; have weights between « and (1 + ).

Firstly, m; = O

pP;
m; = 0. Thus we have

[l

In addition, we have

2
5j

Combining and , we have ||m;

1

eg; Wi

— 1 ;
Do pieg; Wibi = SR > pieg, (Wi — a)p; since

1

3l E (wi_a)piHQ
)2

(Zpiegi wi) Pi€G;

p7€Q7

IN

i —a)’|pill®

(Zplegj
)2‘gj| Z BOZ ||le2

Pi€G;

> el

Di€G;

(|g \

|gg| (19)

1 2
= wi|pi — my|
ZPiEgj 2 Z

¢ Pi€G;

v

_ 1 Z ol|pi — m4||2
3
ijegjw. !

¢ pi€G;

1
= allp; —1i][?
ZpiEgj 2 Z

' pi€g;

1
== o|pi|?
EPiGQj w; Z

¢ Pi€G;

2

Y

Y

2

— || = [lmy]| < Bv1+ B0; (note

that /; is already translated to the origin).

15
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Next, we show the relationship between 0; and Sj. From , we directly

have that 5]2 > 52. Further, we have

1+,3 J
5 = ﬁ > willpi —my|?
Pi€Y9; T peg;
1 ~
S ST > willps — i
Pi€Y; Wi Pi€G;
1
= 5 wi||pi|[?
Z‘megj Wi PiEZgJ'
< g X O el
I pieg;
1+B
= S pll? = (14 8)6? (21)
pi€G;
Thus, we have §; € [711+W‘§J'7 m(m B

Using Lemma [10] we can obtain a (1 4 €)-approximation algorithm for case

2. Below is the sketch of our idea.

Synopsis. The essential task of truth discovery is to find the weighted mean
without knowing the weights in advance. Using log-partition, we can first divide
the input points implicitly into k groups, and Lemma enables us to ignore
the weights inside each group. Then by applying random sampling techniques,
we can estimate the weighed mean of each group, and find the weighted mean of
the whole input using simplex lemma. We elaborate our ideas in the following

subsections.

4.1. Modified Simplex Lemma

In [26], Ding and Xu introduced a simplex lemma for solving a large class of
constrained clustering problems in high dimensional space. In this subsection,
we show that despite developed for a different purpose, the simplex lemma is

still applicable to our truth discovery problem.

Lemma 11 (Simplex Lemma [26]). Given an unknown weighted point-set Q C

R, which is implicitly divided into k mutually exclusive groups {Q; | 1 < j < k},

16
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Figure 3: An illustration for Lemma with k = 4; each o; has a bounded distance to g,
the corresponding exact weighted mean of Q;, and the distance between 7 and m(Q) is also

bounded.

and k points {o; | 1 < j < k} satisfying the condition that for each j, the
distance between o; and the weighted mean of the unknown Q); is no more than
a fized value L > 0, it is possible to construct a grid of size (8k/€)* inside the
simplex determined by {o; | 1 < j < k} such that at least one grid point T

satisfies the following inequality

I =m(Q)Il < Ved(Q) + (1 +€)L, (22)

where m(Q) and §(Q) are the weighted mean and weighted standard deviation
of Q, respectively.

Simplex lemma shows that it is possible to find an approximate weighted
mean of an unknown point-set. The only known information is the approximate
weighted mean of each unknown subset. L is a slack parameter to control the
error bound in (22). See Figure [8| Also, a nice feature of the simplex lemma
is that it needs to consider only a low dimensional subspace determined by the
simplex (k < d), and thus can be applied to problems in high dimensional space.

It is easy to see that the simplex lemma is immediately applicable to the truth
discovery problem for finding the weighted mean, if we are able to obtain the
weighted mean (or only the mean due to Lemma of each G;. The difficulty
is that since some G; could be quite small in its cardinality, it is extremely

challenging to estimate the mean by using random sampling techniques. The
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following modified simplex lemma shows that it is actually possible to ignore

such small-size groups.

Lemma 12 (Modified Simplex Lemma). Let Q, Qj, €, 6, and k be defined

as in Lemma and T' = {j | lfu(%f)) > 1}, where w(-) is the total weight of

a point-set. Then it is possible to construct a grid of size (8k/e)k inside the

simplex determined by {o; | j € T'} such that at least one grid point T satisfies

the following

€

I = m(@Il <2,/

E6(@) +(1+e€L. (23)

Proof. Let Qr = Ujer@;. Then by Lemma we immediately have the follow-

ing inequality.

[IT = m(Qr)|l < Ved(Qr) + (1 +€)L, (24)

where @ is simply replaced by Qr. Now, we consider the differences between

m(Q), §(Q) and m(Qr), §(Qr), respectively. Similar to in Theorem [4] for

proving the distance between p* and p*, based on Lemma |3| we have

o _ wQ\Qr) € 2
lm(Qr) —m(Q)[* < W(S (@) < - 65 (@), (25)

where the last inequality comes from the facts that w(Q\ Qr) < k x fw(Q) and

w(Qr) > (1 —€)w(Q). Furthermore, since w(Q)d%(Q) > w(Qr)d%(Qr), we have

w(Q)
w(Qr)

Plugging and into , we have

2(Q) < ——8*(Q). (26)

2
6°(Qr) < <7<

lr—m@ll < lIr = m(@0)ll + (@) — m(@)]
< VE@) + (4L [T 0@)
< Vi@ + (14 9L+ T6(Q)
_ 2\/:5(62) + (14 o)L (27)
This completes the proof. ]
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4.2. The Algorithm Using Modified Simplex Lemma

The following two lemmas are commonly used random sampling techniques
in Euclidean space. Lemma shows that in order to estimate the mean of
a point-set, one just needs to take the mean of a randomly selected sample.
Lemma [14] further shows how to sample points in order to ensure that there are

enough number of points in the sample from a hidden subset.

Lemma 13 ([28]). Let T be a set of n points in R space, T be a randomly
selected subset of size t from T, and m(T), m(T") be the mean points of T and
T' respectively. With probability 1 — n, ||m(T) — m(T")|]? < %52(T), where
(T =L rlls—m(T)||? and 0 <y < 1.

n

Lemma 14 ([26]). Let Q be a set of elements, and T be a subset of Q with

log £
% = «a for some o € (0,1). If randomly select 1otg(017g+na) = O(% log %) elements
from Q, then with probability at least 1 — n, the sample contains t or more

elements from T forO<n <1 andt € Z™.

By Lemma we know that only those groups with large enough weight
need to be considered. The following lemma further shows that each of such
groups contains a significant fraction of the input points. This means that we

can directly apply Lemmas [13| and [14] to estimate their means.

Lemma 15. In the log-partition for case 2, if a group G; has a total weight

no less than £ 37" | wy, it contains at least %n points, i.e., |G;|/|P| >

elogn

2klog(nA/e) *

Proof. Let |G;| and w(G;) denote the number of points and the total weight in

G;, respectively. From previous discussion (¢.e., Lemmas and, we know that
nA -
w(G;) < 2log ~=|G; ;w > nlogn. (28)

With the assumption w(G;) > € Y1, w;, we have |G;| > (£ 31, w;)/(2log 22)

elogn
2 2k log(nA/e)n' 0
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Algorithm 2 (1 + ¢)-algorithm for case 2

. 3]
Input: P = {p;,|1<i<n} CRY and @ = suiemare) ogmars
1. Randomly take a sample N from the input with size 0%2 log 1252.

2. Enumerate all the subsets having 4k/3% points from N, compute their
means, and put them into a set U.

3. For any k’-tuple from U, where k' is enumerated from {1,2,--- k},
apply Lemma [12] to build a grid inside the simplex determined by the
k'-tuple.

4. Try all the grid points, and output the one with the smallest objective
value of in Definition

Now we are ready to present our refined algorithm for truth discovery.
Firstly, we use Lemmas [14] and [15] to sample an enough number of points from
each group with large enough weight. Then, we apply Lemma [I3] to obtain
their approximate means. Finally, we use the modified simplex lemma (i.e.,
Lemma to obtain the desired (1 + €)-approximation. See Algorithm [2| Be-

low, we analyze the correctness of the algorithm. For convenience, we denote the

weighted standard deviation induced by p*, i.e., \/ﬁ S willpt — pil %,
by §(P).

A key step for analyzing the correctness of the algorithm is to determine the
value of § for log-partition. When applying the modified simplex lemma, we
have to keep the value of L to be roughly O(1/€d(P)), such that the obtained
grid point 7 can result in a (1 + O(1)e)-approximation solution by Lemma
Note that the value of L depends on two parts, the distance between m; and
m; (Lemma , and the error for estimating the position of /m; (Lemma ,
respectively. For simplicity, we only consider the first part temporarily, and
actually the following analysis will show that the first part dominates the value

of L. First, when j € I' (see Lemmal|l2)), we have the upper bound of ||m; —h;]|,
k
B\/1+ B6; < 2B5; < 25\/;5(13) (29)
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by Lemma Meanwhile, we know that k = O(%log log %) by Lemma @

Thus, we need to set

€2

= ——F 30
log log % (30)
to guarantee that L = O(y/ed(P)). And as a consequence,
1 A
k = — (loglog n—)Q. (31)
€ €

Also, together with Lemmaimplies that |G,|/|P| > T log(ni}i)g)g‘log(w/e)
for each j € I'. By simple calculations and Lemmas |14} we know that with prob-
ability (1 — 4%)* >1—1/4 = 3/4 the sample N contains at least 4k/3% points
from each of such group G;. From Lemma we know that with probability
(1- ﬁ)k > 3/4, for each of such G; the mean of the corresponding 4k /3% points
has a distance no more than 89; < 81+ 36; = O(y/e5(P)) to its mean (the
inequality comes from Lemma . In total, L is bounded by O(y/€d(P)), and
we have a (1 + O(1)e)-approximation (by Lemma [2)).

As for the running time, we note that k = % (loglog %)2. In Step 2 of
Algorithm [2| we enumerate all the subsets having 4k /3% points from N and put
their means into the set U, and thus |U| = O(\N|4k/ﬁ2); in Step 3, we enumerate
all the k’-tuples from U for k' = {1,2,---,k}, and apply Lemma [12] to build
a grid inside the simplex determined by each of the k’-tuples. So there are
O((|N\4k/52)k) simplexes in total, and the grid size of each simplex is (8k/¢)*

(from Lemm . Consequently, the total number of grid points is
O((INJ™/7")*(8k/e)¥) = 201K tostosna)), (32)

Since 6%(log lognA)” < olognA for any small positive o if € is fixed and nA is
large enough, the time complexity is O(271°¢"2nd) = O((nA)nd).

Through the above analysis, we have the following theorem.

Theorem 5. With probability 9/16, Algorithm@ outputs a (14e€)-approximation
for case 2, and the time complezity is O((nA)°nd), where o could be any small

positive number. In short, the time complexity is O(n'T7d) if A is a polynomial

of n, or O(A%nd) otherwise.
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5. Improving the Time Complexity

A common strategy adopted by the (1 + ¢)-approximation algorithms in
Section [2] and [ for the two cases is to first identify a set of candidates for
the truth vector, then compute the objective value for each candidate, and
finally output the candidate with the smallest objective value. Since computing
the objective value for each candidate costs O(nd) time, the total time is thus
O(z x nd), where z is the number of candidates (i.e., z = n for case 1 and
z = (nA)? for case 2). In this section, we show that when the spread ratio A is
not too large, the amortized time complexity for computing all the objective
values of the candidates can be reduced to sub-linear, and consequently the
overall time complexity is nearly linear.

Recall that Theorem|[I] tells us that the objective value is equal to the entropy
based geometric variance S x H induced by p*. In order to reduce the time
complexity for computing the objective value, below we show how to efficiently

compute S and H, respectively.

Lemma 16. The value of S for all the z candidates can be computed in a total of

O((n+ z)d) time, i.e., O(% +d) amortized time complezity for each candidate.

Proof. Let 7 (P) be the (unit weighted) mean of the point-set P, i.e., m(P) =
L3 pi- Then in O(nd) time, we can compute the value of =" |lm(P)—
pi|[?. For each candidate p*, we know that its total variance S = Y7, [[p* —
pil |2 = nllp* —m(P)||2+S (by Lemmain Section. Clearly, the variance of
p* can be computed in O(d) time by using the value of S. This implies that the
total time for computing the value of S for all z candidates is O(nd + zd). O

From Lemma [I6] we know that it is possible to compute the total variance
S in an amortized sub-linear time. Below we discuss how to efficiently compute

the entropy H. The following lemma comes from [29] for entropy estimation.

Lemma 17 ([29]). Let F = {f; | 1 < i < n} be a discrete probabilistic distri-

bution with the entropy H = Y7, — filog fi, and two parameters €, € (0,1).
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There exists an algorithm outputting a value H € [(1 — €)H, (1 + €)H] with
probability 1 — §, which makes at most O(=5 lognlog(})) queries on F.

To estimate H, the algorithm presented in [29] does not read all the values in

F. Instead, it takes only a subset of O(=4 lognlog(})) samples (i.e., queries)
from F. From the above lemma, we know that if H is small, the number
of needed queries could be quite large, and consequently the time complexity
could be high. To avoid this issue, we show in the following lemma that H
can actually be lower bounded in our problem if A is not too large. Also note
that in our problem each query costs only O(d) time, since it can be computed
by equation f; = M, where S is the total variance already obtained in

Lemma

Lemma 18. If A = O(y/n) (= O(v/n x poly(logn))), H >

1
= poly(logn) -
2
For simplicity, we let I? = ||p* — p;|[>. Then H = Y"1, %log l% Since
) ;
we only need to care about the ratio %, without loss of generality we can
assume that min;<; ||p; —p;||?> = 1 and max;<; ||p; — p;||* = A% Before proving

Lemma [I8] we first have the following lemma.

Lemma 19. Except for the smallest value in {I? | 1 < i < n}, all other values

are between i and A%. Furthermore, S > %AQ.

Proof. Firstly, if there exist iy # i such that both I3 and 7 are smaller than

1/4, then from triangle inequality we know that

[1piy — pio |l < lpiy — || + llpiy, — 27| < 1, (33)

which contradicts our assumption that min;<; ||p; — p;||> = 1. Secondly, from
the construction of the set of candidates for p* in both cases (see Sections
and , we know that p* is always inside the convex hull of P. Thus, we have
max{l? | 1 <i < n} < A? due to triangle inequality as well.

Assume that ||p;, — pi,|| = max;<;||p; — pj|| = A. Again, from triangle
inequality we know that either ||p;, — p*|| or ||pi, — p*|| is at least A/2. Thus

we can easily know that S > A2 O
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Figure 4: The curve of g(z) with S = 10.
Proof. (of Lemma Let h = min{S, A%}, and g(z) = Zlog 2 for any = €

[1/4, h], which is concave (as g"(z) = —g~ < 0). Considering two values 1/4 <

Tqe < xp < h, we know that

9(wa) + g(p) > g(wa — 1) + g2 + 1), (34)

where n = min{xz, —1/4,h—x} (see Figure{d)), and the sum of 2, —n and x,+n
is always x, + zp. This suggests that to find a lower bound of H for a fixed S,
we can first identify two values 1/4 < [? <2 < h, and then decrease I? and
increase [7, in the same speed until either [ = 1/4 or I7 = h. After repeating
the above operation at most n — 1 times, we have at most one I? € (1/4,h),
one smaller than 1/4 (recall Lemma [19), and all the others are either 1/4 or h.
Suppose that ¢ of them have a value of 1/4 and n — 2 — ¢ of them have a value
of hin {I? |1 <i < n}, where 0 <t <n — 2. Then we have:

t (n—2—t)h. S
> — -~ 7 —
H > 4Slog(4S)+ S logh, (35)

(t+1)%+(n—2—t)h§5 < (t+1)%+(n—1—t)h. (36)

If S < 2A2 we know that at most two items equal to h (i.e., n —2 —t < 2).
Consequently, we know that the right hand side of is at least é log(45) >
2 1log(4S5). Also notice that S € (A%/4,2A%] in this case (where S > A?/4
comes from Lemma . Thus, we have

n

n—4
SAZ log A2 (37)

To bound the right hand side of the above inequality, we can actually assume

4
H> log(48) >
T 0g(4S) >

that A% > 2. Otherwise, from Lemma and some simple calculations, we
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know that H = ", glog l% = O(logn). Thus, becomes

i

4 1
log2 >

n
H> -
- ~ poly(logn)’

(38)

and the lemma is true.
Now, we consider the case of S > 2A?, which immediately implies that
h = A2. Note that t € [0,n — 2]. From (35 and , we have

t 4(n —2 —t)A? S

B =z G ramoionar Ut i Tam — a8 Az

> t N 4(n —2 —t)A?

= Ut D) HAn—1-0AZ Tt +1) +4(n—1—t)A2

B t+4(n—2—1t)A2? loe2

T Gt +4m—1-0A2 B

B t+4(n —2 —t)A? log 2

bt 4(n -2 —t)A2 41+ 4A2 &

n—2

) log 2

> ——log2> ———. 39
S 24 1+4A2 87 poly(logn) (39)

The second inequality follows from S > 2AZ2.
This completes the proof of Lemma O

From previous discussion, we know that the time complexity can be improved

to nearly linear if A = O(y/n). We can take the union of the candidates in both

case 1 and case 2 (i.e., minj<;<, ||[p* — pi|| < A&{i or miny<;<, ||p* — pil| >

4ifﬁ)’ and denote it as Z, where |Z| = n + (nA)? = O(n) since A = O(y/n).

Note that in case 2, the candidates are obtained by using random sampling

which takes sub-linear time (see Section . Consequently, finding such a set
Z needs only O(|Z|d) = O(nd) time. By Lemmas , and we have the
following theorem (when applying Lemma we should replace the parameter
0 by O(%) since we have to guarantee the success for all the O(n) candidates;

the number of queries increases only by a factor of logn).

Theorem 6. Given an instance P of the truth discovery problem with A =
O(\/ﬁ) and two parameters €,6 € (0,1), there exists an algorithm yielding a
(1+ €)-approzimation with success probability (1 —8). The time complewity is

O(nd), where the hiding constant in the big-O notation depends on € and §.
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In some real world applications, the dimensionality d (which is the maximum
size of the data from each source) could be much larger than n. For this case, we

can first apply the well known JL-Lemma [30] to reduce the dimensionality from

d to O(*8™) and then apply our algorithm. Note that this can only slightly

€

increase the objective value, since p* is the weighted mean and consequently we

have

n

n 1 n
willpi — p*l]? = = wiw;l|pi — pjll?, (40)
; STy 2 2 i j

i=1 j=1
where JL-Lemma based dimension reduction approximately preserves the pair-
wise distances (see Section in Appendix for the details). As for the running
time, we know that a straightforward approach is just multiplying the data

lo.

gn .
)% which

matrix A € R¥” with the random projection matrix R € RO(
costs O(ndlogn/e?) time in total. We can also let R be a rescaled random sign

matrix [3I] and use the technique in [32] to further reduce the time complexity

to O(nd—2&m).

e2logd

Corollary 1. When d = Q(n¢) for some constant ¢ > 0, the time complexity in
Theorem@ can be further improved to O(ndeé‘){% + n x poly(logn)) = O(nd),

where the hiding constant depends on c, € and d.

Remark 1. Following our work published in [1], Huang, together with the two
authors of this paper, developed a new algorithm [33] which removes the depen-
dence of A in the time complexity, but has a worse running time than the ones
in Theorem [¢] and Corollary [1 Their result is based on a novel range cover

technique, which is interesting in its own right.
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6. Appendix

6.1. Proof of Lemma|g

We use < z,y > to denote the inner product of 2 and y in R?. The left hand

side of the equation is

n
> willg — gl
=1

> willa = m(@) +m(@) - ail

= Y willlg=m(@Q)I* +2 < g —m(Q),m(Q) — g; > +|Im(Q) — ail|*)
i=1

n

= Zwillq —m(@Q)IIP +2 <q—-m(Q), ) wi(m(@Q) —a) >

i=1

n
+ Z wi]|m(Q) — ail |
i=1
= Wlg —m(@)> + ) willm(@Q) - all,
i=1
where the final equality follows from the fact that Y7, w;(m(Q) — ¢;) = 0.

6.2. Proof of Lemma|3

Let Q2 = @\ @1, and m(Q3) be its weighted mean point. By Lemma we

have the following two equalities.
Y wille —m@)IIP = Y willei = m(Q)[I* +aW x [[m(@Q1) = m(Q)II%, (41)
i €Q1 G E€EQL
and
Y willas —m@)IIP = Y wille = m(Qa)l]* + (1= )W x [[m(Q2) = m(Q)[]*. (42)
4 €Q2 ;i €Q2
Let L = |Im(Q1) — m(Q2)||. By the definition of weighted mean point, we have

m(Q) = %sz(h

3 €Q
1
= W( Z wig; + Z w;g;)
q; €Q1 GEQ2

1
= g @Wm(@Q1) + (1= a)Wm(Q2)). (43)
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Thus the three points {m(Q),m(Q1),m(Q2)} are collinear, while ||m(Q1) —
m(Q)|] = (1 — &)L and ||m(Q2) — m(Q)|| = aL. Meanwhile, by the definition
es of 0, we have

= (Y wlls-m@IF+ Y wla-m@IP. ()

¢ €Q1 ;i €Q2

Combining and , we have

i %(GW < [[m(Q1) = m(@QI* + (1 — )W x [|m(Q2) — m(Q)I|*)

= a((l-a)L)*+ (1 —a)(aL)?

= a(l —a)L? (45)

Thus, we have L < %, which means that ||m(Q1) —m(Q)|| = (1 —a)L <

11—«
loag,

6.3. Proof of Theorem[3

n

660 Let Opt = Y7, w;||[p* —ps||* be the optimal objective value. Then we know

that at least one point, say p;, has its squared distance to p* no bigger than the

average, i.e., |[p* — pi||> < Z;thi. By applying Lemma we have

S willp —pil? = O wi)llpe—p*II* + > willp* — pil|* < 20pt. (46)
i=1

i=1 i=1
Once p* is replaced by p;, we can further update the weights according to
Lemmal(l} and the objective value will not increase. Note that the contribution
ss Of p; to the objective value will become 0 since lim,_q a:log% =0.
Thus, p; is a 2-approximation. Furthermore, finding such a p; needs to try
n times with each time costing O(nd) time, which means that the total time

complexity is O(n?d).

6.4. Quality Preserving After Applying JL-Lemma
670 We first prove the formula . Let W =37 | w;. From Lemma we have

n n
> wjllps — pyl1> = Wlipi — p*II> +>_ wsllp; — p*[I*- (47)
j=1

j=1
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Consequently, we get

n n
> > wiwllps — il

i=1 j=1

n n
> wi Yy wyllps — pyl?
i=1 j=1
n n
= > wi(Wllps = p[I> +>_ wjllp; — 711
i=1 j=1

n n
= WY willp 12+ WS wyllpy - I

i=1 j=1
n
= 2W Y willpi - p7|I, (48)
i=1
which implies formula . Suppose that p* is a (1 4 €)-approximation in the
O(l‘l#)—dimensional subspace after the random projection, and the correspond-

ing weights are {wq, -+ ,w,}. Also let the projection of each p; be p;. From

we have

QZFIWEZ w;llpi — byl

n n
<(1+¢) 22 Zzwzwg\lpl p]|| (49)
i=1 W

i=1 j=1
If we apply JL-Lemma on both sides of , we have

221 = Zzwzwjnpz pill?

11_]1

< (11-1;66) 221 ~ Zzwzwjnpz il (50)

lel

Let ¢ = Z" T >or , wip;. Then we know that it is a (1;156)2 ~ (1 + 3e)-

approximation in the original R? space.
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