

Improved production of ^{76}Br , ^{77}Br and $^{80\text{m}}\text{Br}$ via CoSe cyclotron targets and vertical dry distillation

Paul A Ellison^{1*}, Aeli P Olson¹, Todd E Barnhart¹, Sabrina LV Hoffman¹, Sean W Reilly², Mehran Makvandi², Jennifer L Bartels³, Dhanabalan Murali¹, Onofre T DeJesus¹, Suzanne E Lapi³, Bryan Bednarz^{1,4}, Robert J Nickles¹, Robert H Mach², and Jonathan W Engle^{1,5}

¹*Department of Medical Physics, ⁴Department of Engineering Physics, and ⁵Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA*

²*Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA*

³*Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA*

*Corresponding and first author information

Paul Ellison

B1152 WIMR

1111 Highland Ave

Madison, WI 53705

Telephone: (608)-262-4396

Fax: (608)-262-2413

paellison@wisc.edu

Words: 4,035

Figures: 4

Tables: 2

Abbreviated title: Improved cyclotron production of $^{76,77,80\text{m}}\text{Br}$

Abstract

Introduction: The radioisotopes of bromine are uniquely suitable radiolabels for small molecule theranostic radiopharmaceuticals but are of limited availability due to production challenges. Significantly improved methods were developed for the production and radiochemical isolation of clinical quality ^{76}Br , ^{77}Br , and $^{80\text{m}}\text{Br}$. The radiochemical quality of the radiobromine produced using these methods was tested through the synthesis of a novel ^{77}Br -labeled inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1), a DNA damage response protein. **Methods:** ^{76}Br , ^{77}Br , and $^{80\text{m}}\text{Br}$ were produced in high radionuclidian purity via the proton irradiation of novel isotopically-enriched Co ^{76}Se , Co ^{77}Se , and Co ^{80}Se intermetallic targets, respectively. Radiobromine was isolated through thermal chromatographic distillation in a vertical furnace assembly. The ^{77}Br -labeled PARP inhibitor was synthesized via copper-mediated aryl boronic ester radiobromination. **Results:** Cyclotron production yields were $103 \pm 10 \text{ MBq} \cdot \mu\text{A}^{-1} \cdot \text{h}^{-1}$ for ^{76}Br , $88 \pm 10 \text{ MBq} \cdot \mu\text{A}^{-1} \cdot \text{h}^{-1}$ for $^{80\text{m}}\text{Br}$ at 16 MeV and $17 \pm 1 \text{ MBq} \cdot \mu\text{A}^{-1} \cdot \text{h}^{-1}$ for ^{77}Br at 13 MeV. Radiobromide isolation yields were $76 \pm 11\%$ in a small volume of aqueous solution. The synthesized ^{77}Br -labeled PARP-1 inhibitor had a measured apparent molar activity up to 700 GBq/ μmol at end of synthesis. **Conclusions:** A novel selenium alloy target enabled clinical-scale production of ^{76}Br , ^{77}Br , and $^{80\text{m}}\text{Br}$ with high apparent molar activities, which was used to for the production of a new ^{77}Br -labeled inhibitor of PARP-1. **Advances in Knowledge:** New methods for the cyclotron production and isolation of radiobromine improved the production capacity of ^{77}Br by a factor of three and ^{76}Br by a factor of six compared with previous methods. **Implications for Patient Care:** Preclinical translational research of ^{77}Br -based Auger electron radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale ^{77}Br , which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as the novel intermetallic Co ^{77}Se .

Key Words: bromine-77, bromine-76, bromine-80m, Auger radionuclide therapy, positron emission tomography, PARP-1 inhibitor

INTRODUCTION

The radioisotopes of bromine with medical relevance include the diagnostic positron-emitter ^{76}Br ($t_{1/2} = 16.2$ h) and therapeutic Auger-emitters ^{77}Br ($t_{1/2} = 57.0$ h) and $^{80\text{m}}\text{Br}$ ($t_{1/2} = 4.42$ h). Radiobromine is organochemically versatile, participating in labeling reactions including oxidative electrophilic radiobrominations using alkyl tin precursors [1] and nucleophilic aromatic radiobrominations using diaryliodonium salt [2] and aryl boron [3] precursors. Many radiobrominated compounds have been investigated, including thymidine analogues bromodeoxyuridine ($[^{77}\text{Br}]\text{BrUDR}$) [4] and fluoro-bromo-arabanofurosy-uracil ($[^{76}\text{Br}]\text{FBAU}$) [5], steroid receptor ligand methoxybromoestradiol ($[^{77}\text{Br}]\text{MBE}$) [6], peptides [7] and proteins [8]. Additionally, radiobromine has an advantage over the radioisotopes of iodine in that the C–Br bond is more stable than C–I bond resulting in less dehalogenation of radiolabeled compounds *in vivo*. Rather than accumulate in the thyroid like iodide, radiobromide ions liberated due to *in vivo* dehalogenation remain distributed primarily in the blood pool, with an excretion rate of ~ 10 days in humans [9], resulting in a more diffuse dosimetric burden. These properties make bromine radioisotopes uniquely suited for incorporation into small molecule theranostic agents.

Small biomedical cyclotrons produce the medical radioisotopes of bromine via the $^{77}\text{Se}(\text{p},\text{n})^{77}\text{Br}$, $^{76}\text{Se}(\text{p},\text{n})^{76}\text{Br}$, and $^{80}\text{Se}(\text{p},\text{n})^{80\text{m}}\text{Br}$ nuclear reactions. However, selenium's low electrical and thermal conductivity, boiling point, and high vapor pressure significantly limit its tolerance to irradiation, even with modest proton intensities. The cyclotron irradiation of binary intermetallic compounds of transition metals and selenium was pioneered in Groningen [10] using Cu_2Se . The use of Cu_2Se was later adapted for use with isotopically enriched $\text{Cu}_2^{76}\text{Se}$ [11,12] and $\text{Cu}_2^{77}\text{Se}$ [12] for the production of radionuclidically pure ^{76}Br and ^{77}Br , respectively. More recently, investigations of the intermetallic compounds NiSe [13,14] and ZnSe [15] are reported, but only with selenium of natural isotopic composition. Despite this progress, ^{76}Br production capacity remains limited to ~ 2 GBq and ^{77}Br to ~ 0.7 GBq per three hour irradiation, dramatically less than the amounts needed for clinical studies. This low $^{76,77}\text{Br}$ yield is primarily due to the thermal limitations of the selenium target resulting in a maximum proton irradiation intensity of 15 – 20 μA [11,12], a fraction of modern medical cyclotrons' >100 μA capabilities. Cu_2Se and NiSe cyclotron

targets are also problematic because of co-production of large quantities of gamma-emitting ^{63}Zn ($t_{1/2} = 38.1$ m) and ^{60}Cu ($t_{1/2} = 23.7$ m), respectively. The proton activation of naturally monoisotopic cobalt is dosimetrically advantageous, producing small amounts of low radiation dose-emitting ^{59}Ni ($t_{1/2} = 76,000$ y) and $^{58\text{g}}\text{Co}$ ($t_{1/2} = 70.9$ d). This work aims to mitigate the thermal and dosimetric limitations of radiobromine production targets through the use of a previously unexplored intermetallic, cobalt selenide (CoSe).

Selenium intermetallics release radiobromine when heated, enabling radiobromine recovery via thermal chromatographic distillation and avoiding time consuming target dissolution and recycling of costly enriched materials. So-called “dry distillation” isolates ^{124}I [16,17] and ^{211}At [18-21] from tellurium and bismuth targets, respectively, with horizontal distillation assemblies that cool slowly after distillation. A compact, easily-assembled vertical distillation assembly that cools rapidly, such as that used for isolating $^{94\text{m}}\text{Tc}$ [22], is reported here for the isolation of $^{77/76/80\text{m}}\text{Br}$.

Radiolabeled inhibitors of the DNA damage response protein, poly ADP ribose polymerase 1 (PARP-1) have been evaluated for non-invasive quantification of PARP-1 expression for patient stratification and treatment response monitoring of PARP inhibitor chemotherapy [23,24]. Additionally, the pharmacological mechanism of action brings PARP inhibitors in close proximity to cancer cell DNA [25], enabling targeted Auger-electron radiotherapy. Recent radiochemistry reports of ^{77}Br -labeled PARP inhibitors [2,3] demonstrate the field is moving in this direction. The radiochemical quality of the radiobromine produced in this work was evaluated by copper-mediated aryl boronic ester bromination, synthesizing a novel ^{77}Br -labeled derivative of the PARP-1 inhibitor, rucaparib.

MATERIALS AND METHODS

Materials

Cobalt powder (Alfa Aesar, 1.6 μm , 99.8%), natural enrichment selenium powder (Acros Organics, 200 mesh, 99.5%), and >99.6% isotopically enriched ^{76}Se , ^{77}Se , and ^{80}Se powders (Isotopix USA) of isotopic

abundance summarized in Table S1 were used for the synthesis of intermetallic CoSe. 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-8,9-dihydro-2,7,9a-triazabenzocd]azulen-6(7H)-one (pre-KX1-Bpin) and 1-(4-iodophenyl)-8,9-dihydro-2,7,9a-triazabenzocd]azulen-6(7H)-one (KX-1) were synthesized as previously described [26]. Copper catalyst (tetrakis(pyridine)copper (II) triflate; Cu(py)₄(OTf)₂) and ligand (3,4,7,8-tetramethyl-1,10-phenanthroline; Lig) were obtained from Sigma Aldrich. Sep-Pak QMA Plus Light (Waters, QMA light) cartridges were prepared with 10 mL of 1 M KHCO₃ or 0.5 M Na₂SO₄ and 10 mL water, and Sep-Pak C18 Plus light (Waters, C18 light) cartridges were prepared with 5 mL ethanol and 10 mL water prior to use. All other chemicals were purchased from Sigma Aldrich and used as received.

Production of CoSe cyclotron targets

Cobalt selenide was formed from equal parts elemental cobalt and selenium by heating to 1200 °C in an evacuated quartz ampule. CoSe cyclotron targets were formed by hot pressing CoSe at ~1100 °C into a pocketed (ϕ = 9.5 mm, 1 mm deep) niobium disc (ϕ = 19 mm, 2 mm thick) using the vertical furnace assembly shown in Figure 1. Detailed descriptions of these metallurgical processes are given in the supplementary material. A prepared CoSe cyclotron target was analyzed by X-ray diffraction using a Bruker D8 Discovery X-ray Diffractometer with a Cu K α X-ray source (1.54 Å, 2 mm cone diameter) and a Vantec-500 detector at 0.6 sample rotations per minute.

Cyclotron production of radiobromine

CoSe with ^{nat}Se, ⁸⁰Se, ⁷⁶Se, or ⁷⁷Se constituents on niobium backings was irradiated with 5 – 40 μ A of 11 – 16 MeV protons on the University of Wisconsin GE PETtrace cyclotron. A water jet cooled the back of the niobium disc using an ARTMS QIS solid target system (Vancouver, Canada). Radiobromine production yields and radionuclidic purities were measured at four proton energies by employing a water-cooled degrader foil positioned 3.6 cm away from the face of the CoSe target. Molybdenum and tungsten foils (Alfa Aesar) degraded the 16 MeV primary beam to 13, 12, or 11 MeV proton energy with a 0.10 mm W

foil, a 0.20 mm Mo foil, or a 0.25 mm Mo foil, respectively, based on calculations performed with SRIM-2013.00 [27]. High purity germanium (HPGe) spectrometry quantified radioactivity in mixed radionuclide sources and dose calibrator measurements (Capintec CRC 15R, setting #690÷2 for ^{76}Br , #121 for ^{77}Br , and #170 for $^{80\text{m}}\text{Br}$) quantified activity in fractions following radiochemical separation.

Radiochemical isolation of radiobromine

Radiobromine thermal chromatographic distillation from irradiated CoSe targets occurred in the same furnace assembly shown in Figure 1, as detailed in the supplementary material. Briefly, the irradiated CoSe was sealed in the assembly and lowered into a tube furnace preheated to 1050 °C. Multiple collimated radiation detectors monitored the progress of the distillation. Following 5 – 15 minutes of heating, the tube was removed from the furnace and quenched in water. After cooling and venting, warm water rinsed the outlet gas flow path into the H_2O trap. The water was passed through a prepared QMA light cartridge, trapping the radiobromide, followed by its elution with 700 μL of 20 mM K_2SO_4 or 0.1 M NH_4OH in 1:1::MeCN: H_2O . HPGe spectrometry and dose calibrator measurements assessed the radiochemical yield of the distillation process.

Radiosynthesis of ^{77}Br -labeled PARP inhibitor

The copper-mediated aryl boronic ester bromination reaction shown in Figure 2 evaluated the radiochemical quality of the $[^{77}\text{Br}]$ bromide by using 1 μmol pre-KX1-Bpin with varying solvent volume and composition, K_2SO_4 concentration, and temperature. Reactions were purified by diluting in 15 mL water, loading on a prepared C18 light cartridge, rinsing with 10 mL water, and eluting crude product in 700 μL ethanol. Following a 1:1 dilution with water, preparative HPLC purified the product (Kinetix XB-C18, 5 μm , 100 Å, 10x250 mm, 4 mL/min 40:60 :: MeCN:0.1 M ammonium formate, pH 4.5). A final C18 light cartridge purification formulated the product in a small volume ethanol solution. Dose calibrator measurements of purified fractions determined the radiochemical conversion. Preparative HPLC injections of

100 – 500 pmol of stable, iodinated KX1 estimated the ^{77}Br -labeled PARP inhibitor (^{77}Br -PARPi) mass versus 254 nm absorbance calibration curve.

RESULTS

Production of CoSe cyclotron targets

Elemental cobalt and selenium powder readily fused into solid pieces (270 ± 20 mg) in 1 hour at 1200°C inside a vacuum ampule. Typical mass losses to the ampule walls were $6 \pm 4\%$ ($n=10$). CoSe cyclotron targets contained 180 – 220 mg of CoSe in a 9.5 mm diameter pocket and exhibit the X-ray diffraction pattern shown in Figure S2.

Cyclotron production of radiobromine

Water-cooled CoSe cyclotron targets withstood proton irradiation at all investigated proton energies (11 – 16 MeV) and intensities (5 – 40 μA). The radiobromine production rate was consistent between 10 and 40 μA (Figure S3), indicating that CoSe targets retain radiobromine up to at least 640 W of power deposition (at 40 μA). Radiobromine yields [28] from CoSe targets are shown in Table 1 and Figure 3 with end of bombardment (EoB) radionuclidic purities in Table 2. ^{58}Co was co-produced at $140 \pm 50 \text{ kBq}\cdot\mu\text{A}^{-1}\cdot\text{h}^{-1}$ at 16 MeV ($n=4$) and $20 \pm 10 \text{ kBq}\cdot\mu\text{A}^{-1}\cdot\text{h}^{-1}$ at 13 MeV ($n=3$).

Radiochemical isolation of radiobromine

Thermochromatographic distillation of radiobromine readily occurred within 5 – 10 minutes in a 1050°C furnace. Typical traces from detectors collimated on the CoSe (Fig. 1, left) and H_2O trap (Fig. 1, right) are shown in Figure 4 with detailed explanation in the supplementary material. $96 \pm 4\%$ ($n=8$) of the QMA-loaded $^{76/77/80\text{m}}\text{Br}$ was recovered in the $\text{K}_2\text{SO}_4/\text{NH}_4\text{OH}$ eluant. Optimized yields of the combined dry distillation and radiobromide recovery process were $76 \pm 11\%$ ($n=6$). The CoSe cyclotron targets lost $0.9 \pm 0.5\%$ ($n=20$) of their mass with each irradiation/distillation cycle.

Radiosynthesis of ^{77}Br -PARPi

The [⁷⁷Br]bromide QMA eluant was either used directly for radiolabeling or after drying under argon flow at 120 °C. Radiochemical conversions from 4.7 – 95% were observed for the reaction conditions, as summarized in Table S3, with conditions of reactions {1-4,6-12} adapted from Reilly *et al.* [26] and reaction {5} from Zhou *et al.* [3]. A single radiolabeled peak was eluted from preparative HPLC (see Figure S4), confirmed to be the desired ⁷⁷Br-PARPi through co-injection with stable iodinated analogue compound (KX1). Based on HPLC absorbance measurements of KX1, the synthesized ⁷⁷Br-PARPi had an estimated molar activity of up to 700 GBq/μmol (19 Ci/μmol) at the time of analysis.

DISCUSSION

The Co-Se binary phase diagram shows that there exists an intermetallic species with stoichiometric flexibility near Co_{0.88}Se with a melting point of 1078 °C [30]. Described high temperature CoSe preparation methods successfully form this compound (Figure S2) [31] and are significantly faster than multi-step, low temperature (125 – 530 °C) Cu₂Se sintering methods [11]. Final CoSe cyclotron targets were energetically “thick” to effectively maximize the production yield of (*p*,*n*) nuclear reactions from 13, 12, and 11 MeV protons, but “thin” to 16 MeV protons.

The CoSe targets tolerated higher cyclotron beam intensity ($\geq 40 \mu\text{A}$) than Cu₂Se targets (15 – 20 μA) [11,12]. Hot pressing wets the niobium backing with the molten CoSe intermetallic, establishing excellent thermal contact with the water-cooled backing allowing for effective removal of the deposited proton beam power. Radiobromine from CoSe is radionuclidically pure (see Table 2) and yields are 1.3 – 2 times greater than those from other selenium alloys [12,13] (see Table 1 and Figure 3). The ⁷⁷Se(*p*,*2n*)⁷⁶Br threshold limits the radionuclidic purity of ⁷⁷Br above 13.3 MeV. Measured ⁷⁷Br yields from Co⁷⁷Se targets were compared with theoretical yields calculated from measured cross sections [32] and found to be 38% of theoretical at 12 MeV, 43% of theoretical at 13 MeV and 70% of theoretical at 16 MeV. This disagreement was shown (see supplementary material, table S2) to result from a mismatch in proton beam spot and target diameters [33]. The degrader foil increases beam spread and therefore lowers radiobromine yield.

The optimized dry distillation process yielded ~75% recovery of cyclotron produced radiobromine and CoSe targets were exceptionally reusable, with ~1% of CoSe mass lost with each production. This is likely due to the metallurgical properties of the CoSe intermetallic, the short time the targets are heated during distillation, and the rapid quenching that prevents hot CoSe from partitioning into less resilient cobalt- and selenium-containing species during cooling.

Large reaction volume and water content negatively affected radiochemical reactivity the copper-mediated aryl boronic ester bromination. Utilization of hot (80°C) dimethylsulfoxide (DMSO) as reaction solvent in {5} improved radiochemical conversion compared with the similar conditions of {2}. The presence of the K₂SO₄ impeded the reaction, likely by coordinating and deactivating the tetrakis(pyridine)copper (II) triflate catalyst. Copper sulfate is a poor catalyst in copper-mediated [¹⁸F]fluorination of boronic acids [34]. Potassium sulfate was included in these reactions as it is an effective, non-basic QMA release agent for [⁷⁷Br]bromide. Bromination reactions using [⁷⁷Br]bromide released from QMA cartridges in 0.1 M NH₄OH improved radiochemical conversion, as seen in reactions {6-12}. Optimal radiochemical labeling conditions resulted from reacting dried ⁷⁷Br in 0.1 M NH₄OH eluant with 1 µmol pre-KX1-Bpin, 0.5 µmol Cu(py)₄(OTf)₂, and 0.5 µmol Lig in 70 µL MeOH at room temperature for 1 hour. The measured molar activity of the radiolabeled compound was exceptionally high, amounting to ~35% of the theoretical maximum ⁷⁷Br molar activity of 2000 GBq/µmol (55 Ci/µmol).

CONCLUSION

This work presents new methods for cyclotron production and radiochemical isolation of theranostic radionuclides of bromine, including ⁷⁷Br, ⁷⁶Br, and ^{80m}Br. Novel accelerator targets of the intermetallic compound CoSe tolerate higher intensity proton irradiations and produce ⁷⁷Br at three times the rate of previously reported methods. Radiobromine is isolated using a vertical dry distillation assembly that offers several key advantages over horizontal assemblies, including better hot cell compatibility, more rapid heating, and quench cooling of CoSe targets during fabrication and distillation. CoSe targets are resilient to the irradiation/distillation process and individual targets have been reused in 20+ radiobromine

productions. Produced [⁷⁷Br]bromide is radiochemically reactive and has been used to synthesize ^{76/77}Br-based theranostic radiopharmaceuticals with high apparent molar activities.

Acknowledgements

This work was supported by United States Department of Energy Office of Science grants DE-SC0017919 and DE-SC0017912. The authors gratefully acknowledge use of facilities and instrumentation at the UW-Madison Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu) partially supported by the NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415).

Disclosure

No potential conflicts of interest relevant to this article exist.

References

1. Zhou D, Zhou H, Jenks CC, Lewis JS, Katzenellenbogen JA, Welch MJ. Bromination from the Macroscopic Level to the Tracer Radiochemical Level: ⁷⁶Br Radiolabeling of Aromatic Compounds via Electrophilic Substitution. *Bioconjug Chem* 2009; 20:808–816.
2. Zhou D, Kim SH, Chu W, Voller T, Katzenellenbogen JA. Evaluation of aromatic radiobromination by nucleophilic substitution using diaryliodonium salt precursors. *J Label Compd Radiopharm* 2017; 60:450–456.
3. Zhou D, Chu W, Voller T, Katzenellenbogen JA. Copper-mediated nucleophilic radiobromination of aryl boron precursors: Convenient preparation of a radiobrominated PARP-1 inhibitor. *Tetrahedron Lett* 2018; 59:1963–1967.
4. Kassis AI, Adelstein JS. Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells. *Rad Res* 1982; 90(2):362–373.
5. Kao C-HK, Waki A, Sassaman MB, Jagoda EM, Szajek LP, Ravasi L, *et al.* Evaluation of [⁷⁶Br]FBAU 3',5'-dibenzoate as a lipophilic prodrug for brain imaging. *Nucl Med Biol* 2002; 29:527–535.

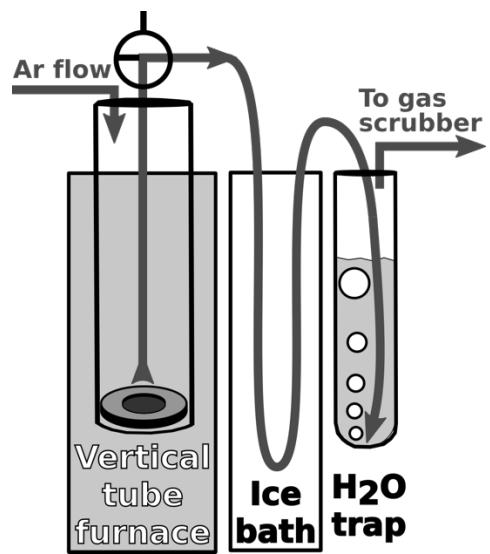
6. Katzenellenbogen JA, McElvany KD, Senderoff SG, Carlson KE, Landvatter SW, Welch MJ. 16α -[^{77}Br]Bromo-11 β -methoxyestradiol-17 β : A Gamma-Emitting Estrogen Imaging Agent with High Uptake and Retention by Target Organs. *J Nucl Med* 1982; 23(5):411–419.
7. Lang L, Li W, Jia H-M, Jia H-M, Fang, D-C, Zhang S, *et al.* New Methods for Labeling RGD Peptides with Bromine-76. *Theranostics* 2011; 1:341–353.
8. Mume E, Orlova A, Malmström P-U, Lundqvist H, Sjöberg S, Tolmachev V, Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using *N*-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. *Nucl Med Biol* 2005; 32:613–622.
9. Rowland DJ, McCarthy TJ, and Welch MJ. Radiobromine for imaging and therapy. In: Welch MJ and Redvanly CS, editors. *Handbook of Radiopharmaceuticals*. New York, NY: John Wiley & Sons Ltd.; 2003, p. 441–465.
10. Vaalburg W, Paans AMJ, Terpstra JW, Wiegman T, Dekens K, Rijkskamp A, *et al.* Fast Recovery by Dry Distillation of ^{75}Br Induced in Reusable Metal Selenide Targets via the $^{76}\text{Se}(\text{p},2\text{n})^{75}\text{Br}$ Reaction. *Int J Appl Radiat Isot* 1985; 36(12): 961–964.
11. Tolmachev V, Loeqvist A, Einarsson L, Schultz J and Lundqvist H. Production of ^{76}Br by a Low-energy Cyclotron. *Appl Radiat Isot* 1998; 49(12):1537–1540.
12. Tang L. Radionuclide production and yields at Washington University School of Medicine. *Q J Nucl Med Mol Imaging* 2008; 52:121–133.
13. Breunig K, Spahn I, Spellerberg S, Coenen HH. Production of no-carrier-added radiobromine: new nickel selenide target and optimized separation by dry distillation. *Radiochim Acta*. 2015; 103:397–402.
14. Ellison PA, Graves SA, Murali D, DeJesus OT, Barnhart TE, Thomadsen BR, *et al.* Radiobromine Production, Isolation and Radiosynthesis for the Development of a Novel Prostate Cancer Radiotherapeutic Agent. *AIP Conf Proc* 2017; 1845:020007.

15. Hassan HE, El-Azony KM, Azzam A, Qaim SM. Investigation of selenium compounds as targets for $^{76,77}\text{Br}$ production using protons of energies up to 34 MeV. *Radiochim Acta*. 2017; 105(10):841–850.
16. Qaim SM, Hohn A, Bastian Th, El-Azoney KM, Blessing G, Spellerberg S, *et al.* Some optimisation studies relevant to the production of high-purity ^{124}I and $^{120\text{g}}\text{I}$ at a small-sized cyclotron. *Appl Radiat Isot* 2003; 58(1):69–78.
17. Nye JA, Avila-Rodriguez MA, Nickles RJ. A new binary compound for the production of ^{124}I via the $^{124}\text{Te}(\text{p},\text{n})^{124}\text{I}$ reaction. *Appl Radiat Isot*. 2007; 65(4):407–412.
18. Aneheim E, Albertsson P, Bäck T, Jensen H, Palm S, Lindegren S. Automated astatination of biomolecules – a stepping stone towards multicenter clinical trials. *Sci Rep*. 2015; 5:12025.
19. Zalutsky MR, Zhao X-G, Alston KL, Bigner D. High-Level Production of α -Particle-Emitting ^{211}At and Preparation of ^{211}At -Labeled Antibodies for Clinical Use. *J Nucl Med* 2001; 42:1508–1515.
20. Wilbur DS, Vessella RL, Stray JE, Goffe DK, Blouke KA, Atcher RW. Preparation and evaluation of para-[^{211}At]astatobenzoyl labeled anti-renal cell carcinoma antibody A6H F(ab')2. In vivo distribution comparison with para-[^{125}I]iodobenzoyl labeled A6H F(ab')2. *Nucl Med Biol*. 1993; 20:917–927.
21. Freifelder R, Kachur A, LeGeyt BC, Schmitz A, Toto LC. Production of ^{211}At using the JSW BC3015 at the University of Pennsylvania. *AIP Conf Proc*. 2012; 1509:129–134.
22. Christian BT, Nickles RJ, Stone CK, Mulnix TL, Clark J. Improving the Radionuclidic Purity of Tc-94m for PET Imaging. *Appl Radiat Isot* 1995; 46(2):69–73.
23. Carney B, Kossatz S, Reiner T. Molecular Imaging of PARP. *J Nucl Med* 2017; 58:1025–1030.
24. Knight JC, Koustoulidou S, Cornelissen B. Imaging the DNA damage response with PET and SPECT. *Eur. J Nucl Med Mol Imaging* 2017; 44:1065–1078.
25. Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanism of action. *Sci Trans Med*. 2016; 8:362spi17.
26. Reilly SW, Makvandi M, Xu K, Mach RH. Rapid Cu-Catalyzed [^{211}At]Astatination and [^{125}I]Iodination of Boronic Esters at Room Temperature. *Org Lett* 2018; 20:1752–1755.

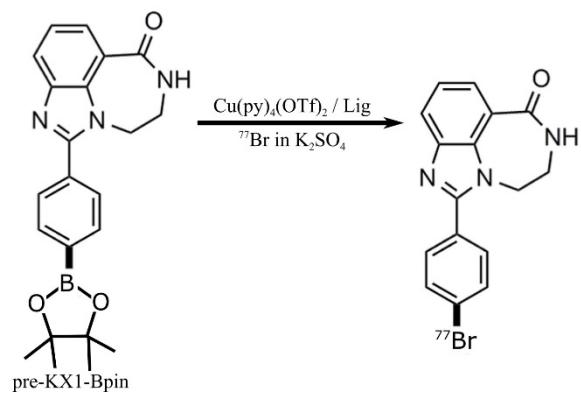
27. Ziegler JF, Ziegler MD, Biersack JP. SRIM - The stopping and range of ions in matter. *Nucl Inst Meth Phys Res B*, 2010; 268(11-12):1818–1823.

28. Otuka N, Takács S. Definitions of radioisotope thick target yields. *Radiochim. Acta*, 2015; 103(1):1–6.

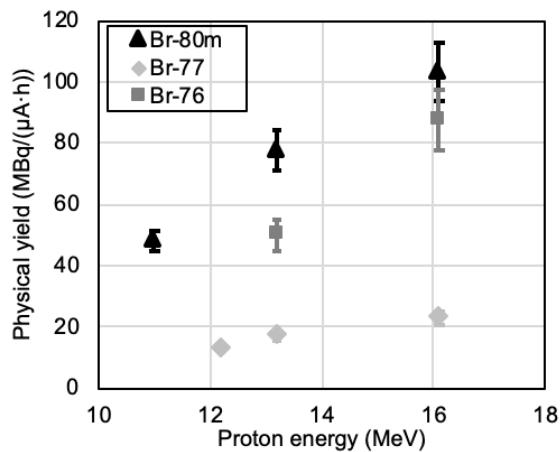
29. Aničin IV, Yap CT. New approach to detection limit determination in spectroscopy. *Nucl Inst Meth Phys Res A*. 1987; 259:525–528.


30. Okamoto H. Co-Se (Cobalt-Selenium). In: Massalski TB, editor, *Binary Alloy Phase Diagrams* vol. 2, Second Edition, Materials Park, OH: ASM International; 1990, p. 1235–1237.

31. Zhan JH, Yang XG, Li SD, Xie Y, Yu WC, Qian YTJ. Synthesis of Nanocrystalline Cobalt Selenide in Nonaqueous Solvent. *Solid State Chem* 2000; 152:537–539.


32. Hassan HE, Qaim SM, Shubin Yu, Azzam A, Morsy M, Coenen HH. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, ^{76}Se and ^{77}Se with particular reference to the production of the medically interesting radionuclides ^{76}Br and ^{77}Br . *Appl Radiat Isot* 2004; 60:899–909.

33. Hermanne A, Ignatyuk AV, Capote R, Carlson BV, Engle JW, Kellett MA, *et al.* Reference Cross Sections for Charged-particle Monitor Reactions. *Nucl Data Sheets* 2018; 148:338–382.


34. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, *et al.* Synthesis of $[^{18}\text{F}]$ Arenes via the Copper-Mediated $[^{18}\text{F}]$ Fluorination of Boronic Acids. *Org Lett*. 2015; 17:5780–5783.

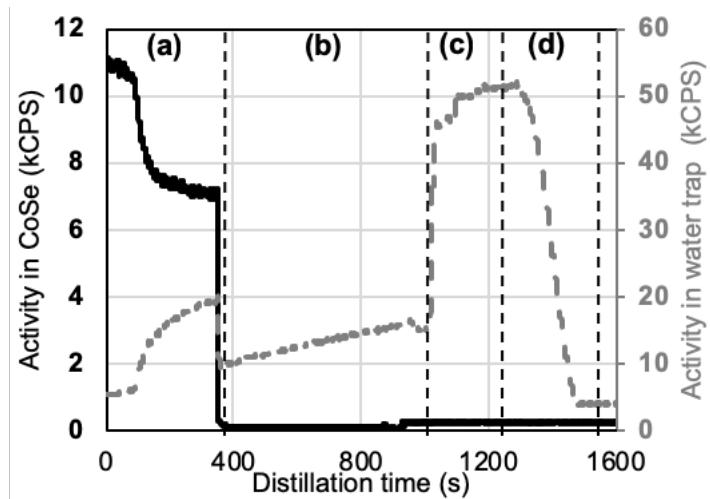

Figure 1. Radiobromine furnace assembly with CoSe heated inside quartz tube (left).

Figure 2. Radiosynthesis of ^{77}Br -labeled PARP-1 inhibitor.

Figure 3. Production yield of ^{80m}Br , ^{77}Br , and ^{76}Br from irradiation of Co^{80}Se , Co^{77}Se , and Co^{76}Se , respectively. Error bars represent standard deviations of measurements from multiple irradiations (see Table 1 for details).

Figure 4. Typical radioactivity profiles in kilocounts per second (kCPS) in the radiobromine distillation assembly. The detector collimated on CoSe (Fig. 1, left) is shown in solid black on the left axis while the detector collimated on the H₂O trap (Fig. 1, right) is shown in dashed grey on right axis. Region (a) spans the duration of heating, region (b) spans the quench/cooling period, region (c) spans the H₂O rinse of outlet quartz and PTFE lines, and region (d) spans the QMA cartridge loading.

E_p (MeV)	Target	n	Physical yield (MBq· μ A ⁻¹ ·h ⁻¹)			
			⁸² Br	^{80m} Br	⁷⁶ Br	⁷⁷ Br
16	Co ^{nat} Se	4	2.0 ± 0.3	62 ± 7	9.9 ± 0.9	2.8 ± 0.4
	Co ⁸⁰ Se	12	0.0011 ± 0.0001	103 ± 10	0.0072 ± 0.0005	0.006 ± 0.005
	Co ⁷⁷ Se	1	<0.07	n/a	12 ± ~1	23 ± ~2
	Co ⁷⁶ Se	2	<0.06	n/a	88 ± 10	0.05 ± ~0.005
13	Co ⁸⁰ Se	2	0.0015 ± 0.0002	77 ± 7	0.0040 ± 0.0005	<0.002
	Co ⁷⁷ Se	3	<0.02	<0.3	0.07 ± 0.01	17 ± 1
	Co ⁷⁶ Se	1	<0.004	n/a	50 ± ~5	0.1 ± ~0.01
12	Co ⁷⁷ Se	2	<0.002	<0.5	0.048 ± 0.001	13.1 ± 0.5
11	Co ⁸⁰ Se	8	0.0015 ± 0.0003	48 ± 3	0.0010 ± 0.0001	<0.002

Table 1. Production yield of ⁸²Br, ^{80m}Br, ⁷⁶Br, and ⁷⁷Br from various isotopic compositions of CoSe targets

at four proton energies (E_p). Reported uncertainties represent standard deviations of multiple irradiations or are estimated when n=1. Limits of detection calculated from HPGe spectra [29] are reported. In some cases (denoted as n/a), HPGe measurements were too late to quantify short-lived ^{80m}Br.

E_p (MeV)	Target	EoB radionuclidic purity
16	Co ⁸⁰ Se	99.99% ^{80m} Br
	Co ⁷⁷ Se	63% ⁷⁷ Br
	Co ⁷⁶ Se	99.9% ⁷⁶ Br
13	Co ⁸⁰ Se	99.99% ^{80m} Br
	Co ⁷⁷ Se	99.6% ⁷⁷ Br
	Co ⁷⁶ Se	99.8% ⁷⁶ Br
12	Co ⁷⁷ Se	99.6% ⁷⁷ Br
11	Co ⁸⁰ Se	99.99% ^{80m} Br

Table 2. End of bombardment (EoB) radionuclidic purity of ^{80m}Br, ⁷⁷Br, and ⁷⁶Br produced at various proton energies (E_p).