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a b s t r a c t 

The phase-field crystal model in an amplitude equation approximation is shown to pro- 

vide an accurate description of the deformation field in defected crystalline structures, as 

well as of dislocation motion. We analyze in detail stress regularization at a dislocation 

core given by the model, and show how the Burgers vector density can be directly com- 

puted from the topological singularities of the phase-field amplitudes. Distortions arising 

from these amplitudes are then supplemented with non-singular displacements to enforce 

mechanical equilibrium. This allows for a consistent separation of plastic and elastic time 

scales in this framework. A finite element method is introduced to solve the combined 

amplitude and elasticity equations, which is applied to a few prototypical configurations 

in two spatial dimensions for a crystal of triangular lattice symmetry: i) the stress field in- 

duced by an edge dislocation with an analysis of how the amplitude equation regularizes 

stresses near the dislocation core, ii) the motion of a dislocation dipole as a result of its 

internal interaction, and iii) the shrinkage of a rotated grain. We compare our results with 

those given by other extensions of classical elasticity theory, such as strain-gradient elas- 

ticity and methods based on the smoothing of Burgers vector densities near defect cores. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

The distribution of dislocations and grain boundaries and their motion play an important role in materials physics as they 

determine many material properties and response, especially in polycrystalline and heteroepitaxial systems. A great deal of 

research has been devoted to the study of such systems to better understand the interplay between the many disparate 

length scales involved ( Rollett et al., 2015; Sethna et al., 2017 ). Microscopic theories, such as Density Functional Theory and 

Molecular Dynamics, provide detailed descriptions at the microscopic scale, but are unfortunately restricted to relatively 

small length and time scales. Coarse-grained methods have also been introduced, such as Discrete Dislocation Dynamics 

(DDD) ( Devincre et al., 1992; Kubin and Canova, 1992 ), which evolve dislocation lines through Peach-Koehler type forces. 
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These methods can examine mechanical properties on large length and time scales while treating dislocations explicitly. 

However, they rely on the phenomenology involved in dislocation line mobilities and their reconnections. Phase-field (PF) 

models also belong to the class of coarse-grained approaches. They are based on the description of distinct phases via 

continuous order parameters, and the implicit description of interfaces between them. Early work on the application of PF 

models to the description of extended defects and, in turn, to their motion, focused on describing elementary defects as an 

eigenstrain, which is then mapped onto a set of phase fields ( Bulatov and Cai, 2006; Koslowski et al., 2002; Rodney et al., 

2003; Wang et al., 2001; Wang and Li, 2010 ). As discussed extensively in Wang and Li (2010) , a fundamental advantage of 

this methodology is that physical parameters describing dislocation energies are subsumed in the energy model, and hence 

do not need separate specification (e.g, generalized stacking fault energies). The evolution of the phase fields is purely 

dissipative, and is driven by minimization of a phenomenological energy of the Ginzburg-Landau type. However, a few 

quantities that remain central to the analysis of defect motion still require a priori specification, such as active slip systems 

and defect mobilities. As we will argue below, the phase field crystal (PFC) model overcomes these limitations. 

The PFC model ( Elder and Grant, 2004; Elder et al., 2002; Emmerich et al., 2012 ) is based on the definition of a contin- 

uous order parameter or field ψ that is related to the atomic number density. A free energy functional is introduced that is 

minimized by a periodic field with the desired lattice symmetry. The temporal evolution of ψ is assumed to be governed by 

conserved and dissipative dynamics, hence changing on effectively diffusive time scales. The formulation is akin to Classical 

Density Functional Theory, and it has been justified to some extent on those grounds as well ( Archer et al., 2019; Elder et al., 

2007; van Teeffelen et al., 2009 ). Therefore this modeling is intermediate between fully atomistic and classical continuum 

theories. Diffusive time scales and atomistic length scales allow for describing grain boundaries in detail, their motion, and 

the response of complex polycrystalline configurations, as these phenomena are well described by energy relaxation alone, 

without requiring the calculation of any stress fields in the grains ( Backofen et al., 2014; Clayton and Knap, 2016; Hirvonen 

et al., 2016; Köhler et al., 2016; Li et al., 2018; Mianroodi and Svendsen, 2015; Wu and Voorhees, 2009 ). By focusing on the 

complex slowly-varying amplitudes of ψ , a spatial coarse-grained version of the PFC model has been introduced ( Athreya 

et al., 2006; Goldenfeld et al., 20 05; 20 06; Yeon et al., 2010 ). This amplitude expansion (APFC) approach provides an ap- 

proximate description of the atomic length scale ( Elder et al., 2010; Heinonen et al., 2014; Salvalaglio et al., 2019; Spatschek 

and Karma, 2010 ). Due to its coarse grained nature and the use of adaptive numerical methods, computational costs can 

be drastically reduced and systems that are orders of magnitude larger than those accessible with PFC models can be de- 

scribed with APFC models ( Praetorius et al., 2019 ). A different methodology but analogous in many respects is the Field 

Theory of Dislocation motion ( Acharya, 2001; Zhang et al., 2018; 2015 ), and its more recent nanoscale implementation in 

the Generalized Disclination Theory ( Zhang and Acharya, 2018 ). 

At variance with models explicitly tracking defects and grain boundaries, the (A)PFC model starts from the specification 

of the governing free energy from which lattice symmetry, possible defects, and their combination rules, follow. Despite 

these advantages, a long-standing difficulty associated with the (A)PFC model is that the evolution of the field is diffusive, 

hence elastic response in the time scale appropriate for plastic motion is incomplete. The first attempt to overcome this 

problem was the development of the so-called modified PFC (MPFC) model given in Stefanovic et al. (2006) , in which a 

higher-order time derivative was introduced into the equation of motion. While this approach does lead to faster elastic 

relaxation, it gives incorrect behavior in the large wavelength limit, as pointed out in Majaniemi and Grant (2007) and 

Heinonen et al. (2016) . More recently, a complete transport theory has been developed in which the order parameter that 

enters the PFC model is included as a constitutive component within the more general laws of balance of mass and mo- 

mentum ( Heinonen et al., 2016 ). While these models do introduce a “fast” time scale on the order of the speed of sound, 

they can become computationally expensive when the time scale of mechanical relaxation is orders of magnitude faster 

than the time scales for mass diffusion and plastic distortion. An alternative and computationally convenient method seeks 

to enforce elastic equilibrium through an interpolation scheme in the PFC model designed to achieve fast mechanical relax- 

ation ( Zhou et al., 2019b ). The method, however, is limited to uniaxial external deformation. Yet another approach in the 

APFC model ( Heinonen et al., 2014 ) recognizes that the phases of the complex amplitudes contain information about the 

elastic distortion and that instantaneous mechanical equilibrium can be achieved by relaxing these fields at a faster rate. 

Similar to other approaches, this limits the computational efficiency of the method and lacks transparency. A more recent 

approach that retains the atomic density as constitutively governing plastic slip but adds the elastic distortion caused by 

lattice incompatibility was described in Skaugen et al., 2018a; 2018b . This latter approach is also computationally efficient, 

and provides for the connection between the phase field and elasticity theory in the presence of dislocations. We will ex- 

tend this latter approach to the APFC model in order to provide a computational approach that is suitable for larger systems 

and spatial scales. 

In this work, we thus present a coarse-grained description of deformations in crystals and plasticity based on the APFC 

model, intermediate between atomistic and continuum length scales. Section 2 summarizes the equations governing the 

evolution of the PFC model and the associated description based on the slowly varying complex amplitudes, i.e., on the 

APFC model. While the expansion in a slowly varying amplitude assumes prior knowledge of the lattice symmetry, the 

latter simply follows from the minimization of the free energy functional defining the system of interest. This description 

is advantageous from a computational point of view as it does not need to resolve the variation of the order parameter 

at the scale of the underlying lattice parameter as in the PFC model. It is limited, however, to small distortions away from 

a reference lattice, not an uncommon restriction in this class of studies, as it focuses on length scales larger than the 

atomic spacing. Section 3 addresses how, in the APFC model, stress fields in the presence of defects are calculated, and how 
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mechanical equilibrium is enforced on the time scale of defect motion. A finite element implementation of the combined 

system of equations is provided in Section 4 , followed by our numerical results in Section 5 . We begin by studying the 

stress field created by an isolated, stationary dislocation in a two-dimensional, large crystal ( Section 5.1 ). The computed 

stress agrees with classical elasticity far from the defect core, and also with results provided by either first strain gradient 

elasticity ( Lazar and Maugin, 2005 ), or Burgers vector smoothing methods ( Cai et al., 2006 ) near the core. Sections 5.2 and 

5.3 present our results on dislocation dipoles and their motion under each other’s influence. Section 5.4 addresses the study 

of grain shrinkage along with the analysis of defect distribution achieved within the presented framework. 

2. Amplitude Phase-Field Crystal (APFC) model 

The PFC model describes a crystal lattice by means of a continuous, periodic field ψ , the dimensionless atomic probability 

density difference ( Elder and Grant, 2004; Elder et al., 2002; Emmerich et al., 2012 ). A phenomenological free energy is 

introduced as 

F ψ = 

∫ 

�

[

�B 0 
2 

ψ 
2 + 

B x 0 
2 

ψ (1 + ∇ 
2 ) 2 ψ −

t 

3 
ψ 

3 + 
v 

4 
ψ 

4 

]

dr , (1) 

which describes a first order transition between a disordered/liquid phase, where ψ is uniform, and an ordered/crystalline 

phase, where ψ is periodic in the domain �. �B 0 , B 
x 
0 , v and t are parameters determining which phase minimizes the free 

energy F ψ ( Elder et al., 2007 ). In the standard approach, the evolution towards equilibrium for out-of-equilibrium configu- 

rations is described by the gradient flow ensuring conservation of ψ 

∂ψ 

∂t 
= M∇ 

2 
δF ψ 

δψ 
, (2) 

where M is a mobility. In the crystalline state, ψ can be generally approximated as a sum of plane waves, i.e., 

ψ = ψ 0 + 

∑ 

q 

A q e 
i q ·r = ψ 0 + 

N 
∑ 

j 

A j e 
i q j ·r + c . c . , (3) 

where ψ 0 is the average density, set to zero in the following, A j are the (complex) fields corresponding to the amplitudes 

of each plane wave and { q j } is the set of N reciprocal lattice vectors representing a specific crystal symmetry. 

In the so-called amplitude expansion of the PFC model (APFC) ( Athreya et al., 2006; Goldenfeld et al., 20 05; 20 06 ), the 

crystal structure is described directly by means of A j . They account for distortions and rotations of the crystal structure with 

respect to a reference state accounted for by a proper set of q j vectors. Under the assumption of slowly varying amplitudes, 

the free energy of the system expressed in terms of A j reads 

F A = 

∫ 

�

[ 
�B 0 
2 

� + 
3 v 

4 
�2 + 

N 
∑ 

j=1 

(

B x 0 |G j A j | 2 −
3 v 

2 
| A j | 4 

)

+ f s ({ A j } , { A ∗j } ) 
] 

dr , (4) 

where G j = ∇ 2 + 2 i q j · ∇ and � = 2 
∑ N 

j=1 | A j | 2 . The term f s ({ A j } , { A ∗j } ) corresponds to a complex polynomial of A j and A 
∗
j 

and is determined by the crystalline symmetry of the reference lattice ( Elder et al., 2010; Salvalaglio et al., 2017 ). Ampli- 

tude functions allow for a full description of elastic deformation within the PFC framework, and the associated energy in 

Eq. (4) contains the elastic energy associated with deformations ( Elder et al., 2010; Heinonen et al., 2014 ). The evolution 

equation of the A j ’s can be derived from Eq. (2) , and reads 

∂A j 
∂t 

= −| q j | 2 
δF A 
δA ∗

j 

, (5) 

with time rescaled by M . In this work we focus on two-dimensional crystals with triangular symmetry ( N = 3 ) described by 

q 1 = k 0 
(

−
√ 
3 / 2 , −1 / 2 

)

, q 2 = k 0 (0 , 1) , q 3 = k 0 
(√ 

3 / 2 , −1 / 2 
)

, (6) 

with k 0 = 1 , while f s ({ A j } , { A ∗j } ) = −2 t(A 1 A 2 A 3 + A ∗1 A 
∗
2 A 

∗
3 ) . 

3. APFC dynamics and mechanical equilibrium 

Following ( Skaugen et al., 2018a; 2018b ), we aim at computing the density field ψ so that it remains in elastic equi- 

librium at all times in the presence of mobile dislocations. Besides solving Eq. (2) this requires computing an additional 

smooth distortion u δ to fulfill mechanical equilibrium, i.e., ∇ · σ = 0 with σ the total stress field. In the PFC approach, ψ( r , 

t ) is then replaced by ψ (r − u δ, t) ( Skaugen et al., 2018b ). In the APFC approach we only have access to the amplitudes by 

solving Eq. (5) from which ψ can be reconstructed. For small displacement u δ we can write 
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ψ 
′ (r − u 

δ, t) 
u δ→ 0 = ψ (r , t) − [ ∇ψ (r , t)] T · u 

δ + E(|| u 
δ|| 2 ) 

= 

∑ 

q 

{

A q (r , t) − [ ∇A q (r , t)] 
T · u 

δ − i q · u 
δA q (r , t) 

}

e i q ·r + E(|| u 
δ|| 2 ) 

= 

∑ 

q 

A ′ q (r , u 
δ, t) e i q ·r + E(|| u 

δ|| 2 ) , (7) 

with 

A ′ q (r , u 
δ, t) = (1 − i q · u 

δ ) A q (r , t) − [ ∇A q (r , t)] 
T · u 

δ, (8) 

which are the amplitudes modified by the deformation u δ and need to be computed. Under the assumption of slowly varying 

amplitudes, as required by the APFC approach, this quantity is simply given by ( Spatschek and Karma, 2010 ) 

A ′ q (r , u 
δ, t) = A q (r , t) e 

−i q ·u δ , (9) 

as 

A q (r , t) e 
−i q ·u δ = A q (r , t)[ cos (q · u 

δ ) − i sin (q · u 
δ )] 

u δ→ 0 
≈ (1 − i q · u 

δ ) A q (r , t) , (10) 

where the last expression corresponds to Eq. (8) for negligible gradients of amplitudes. In the following we will use Eq. (9) . 

A comparison with approximations in Eqs. (8) and (10) will be given in Section 5.4 . 

As shown in Skaugen et al. (2018b) , u δ can be determined through a Helmholtz decomposition into curl- and divergence- 

free parts 1 , 

u δi = ∂ i ϕ + ǫi j ∂ j α, (11) 

with ϕ and α to be determined. ϕ can be computed from a smooth strain ε δ
i j as 

∇ 
2 ϕ = Tr ( ε 

δ ) . (12) 

The same holds for α and read 

∇ 
4 α = −2 ǫi j ∂ ik ε 

δ
jk . (13) 

The strain field ε δ
i j is compatible, and the corresponding stress can be computed from the difference between the total stress, 

σ , and a stress computed from the amplitude functions, σψ 
i j 

, as ( Skaugen et al., 2018a ) 

σ δ
i j = σi j − σψ 

i j 
= ǫik ǫ jl ∂ kl χ − σψ 

i j 
, (14) 

where χ is the Airy stress function. Exploiting the formulation reported in Skaugen et al. (2018a) , the stress σψ 
i j 

can be 

obtained by 

σψ 
i j 

= 〈 σi j 〉 = 〈 (∂ i L ψ ) ∂ j ψ − L ψ ∂ i j ψ 〉 , (15) 

where L ≡ 1 + ∇ 2 and 〈 ���〉 the average over the unit cell, here necessary to compute σψ 
i j 

in terms of A j . Using Eq. (3) and 

by integrating over the unit cell we obtain 

σψ 
i j 

= 

∑ 

q 

{

[(∂ i + iq i )(∇ 
2 + 2 i q · ∇) A q ][(∂ j − iq j ) A −q ] − [(∇ 

2 + 2 i q · ∇) A q ][(∂ i − iq i )(∂ j − iq j ) A −q ] 
}

. (16) 

In Eq. (14) χ is given by 

(1 − κ ) ∇ 
4 χ = 2 μǫi j ∂ i B j (r ) = 

(

ǫik ǫ jl ∂ i j σ
ψ 
kl 

− κ∇ 
2 σψ 

kk 

)

, (17) 

with B ( r ) the Burgers vector density, and κ = λ/ (2(λ + μ)) , with λ and μ the two Lamé coefficients. Once σ δ
i j is computed, 

the smooth strain to be used in Eqs. (12) and (13) is obtained by 

ε δi j = 
1 

2 μ

(

σ δ
i j − νδi j Tr ( σ

δ ) 
)

, (18) 

and, in turn, the smooth deformation u δ is determined from Eqs. (11)–(13) . Once u δ is known, Eq. (9) can be used to update 

the amplitudes. 

We note that, in our formulation, although the stress σ ij is required to satisfy mechanical equilibrium at each time step, 

the configuration of the system changes as dislocations move in time. Dislocation motion and net plastic flow follow from 

the dissipative evolution of the phase field. The separation of time scales between dissipative plastic motion and elastic 

relaxation is a basic assumption in most modeling approaches, such as, for instance, discrete dislocation dynamics ( Devincre 

et al., 1992; Kubin and Canova, 1992 ). The strain rate dependence of plastic deformation can then be still maintained in the 

modeling with instantaneous elastic equilibrium, as demonstrated in e.g., recent PFC study of mechanical deformation of 

graphene grain boundaries ( Zhou et al., 2019a ). 

1 We use the notation convention on implicit summations over repeated indices. 
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4. Finite element implementation 

The implementation of the system of partial differential equations (PDEs) reported in Section 3 builds on the discretiza- 

tion of the standard APFC model described in Praetorius et al., 2019; Salvalaglio et al., 2017 and extends it to maintain 

mechanical equilibrium. It is based on the adaptive FEM toolbox AMDiS ( Vey and Voigt, 2007; Witkowski et al., 2015 ). The 

governing equations are solved as systems of second-order PDEs with semi-implicit integration schemes. For the sake of 

clarity, these integration schemes are reported in the following in matrix form L · x = R , with x the vector of unknowns. We 

define an auxiliary complex field B j = (∇ 2 + 2 i q n · ∇) A j = G j A j and explicitly consider the real and imaginary part of A j and 

B j such as A j = A R , j + iA I , j and B j = B R , j + iB I , j . The following system of equations is then used for numerically integrating 

the evolution Eq. (5) for the amplitude A j 

L = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

−∇ 2 P 1 0 

−P −∇ 2 0 1 

G 1 ({ A (n ) i 
} ) 0 K∇ 2 −KP 

0 G 2 ({ A (n ) i 
} ) KP K∇ 2 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

x = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

A (n +1) 
R , j 

A (n +1) 
I , j 

B (n +1) 
R , j 

B (n +1) 
I , j 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

R = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

0 

0 

H 1 ({ A (n ) i 
} ) 

H 2 ({ A (n ) i 
} ) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(19) 

where n is the time step index, τ n > 0 is the time step size at step n , P = 2 q j · ∇, K = | q j | 2 B x 0 , and 

G 1 ({ A i } ) = 
1 

τn 
+ | q j | 2 �B + 3 v | q j | 2 

(

� + A 2 R , j − A 2 I , j 
)

, 

G 2 ({ A i } ) = 
1 

τn 
+ | q j | 2 �B + 3 v | q j | 2 

(

� + A 2 I , j − A 2 R , j 
)

, 

H 1 ({ A i } ) = 

[ 
1 

τn 
+ 6 | q j | 2 v A 2 R , j 

] 

A R , j − | q j | 2 Re 
(

δ f tri 

δA ∗
j 

)

, 

H 2 ({ A i } ) = 

[ 
1 

τn 
+ 6 | q j | 2 v A 2 I , j 

] 

A I , j − | q j | 2 Im 

(

δ f tri 

δA ∗
j 

)

. (20) 

{ A i } refers to the entire set of amplitudes A i with i = 1 , ..., N as they enter � and f tri . Exploiting the definition of B j reported 

above, the components of the stress σψ can be written as 

σψ 
lm 

= 
{

[(∂ l + iq l ) B j ][(∂ m − iq m ) A 
∗
j ] − B j [(∂ l − iq l )(∂ m − iq m ) A 

∗
j ] + c . c . 

}

= 2 
[

∂ l B R , j ∂ m A R , j + ∂ l B I , j ∂ m A I , j + 2 q j 
l 
B R , j ∂ m A I , j − 2 q j 

l 
B I , j ∂ m A R , j − q j m A I , j ∂ l B R , j + q j m A R , j ∂ l B I , j 

+ 2 q j 
l 
q j m A R , j B R , j + 2 q j 

l 
q j m A I , j B I , j − B R , j ∂ lm A R , j − B I , j ∂ lm A I , j + q j m B R , j ∂ l A I , j − q j m B I , j ∂ l A R , j 

]

(21) 

where the real and imaginary parts of A j and B j have been considered. Note that Eq. (21) contains the variables numerically 

computed by the system in Eq. (19) , along with their first and second derivatives. Therefore, the stress can be determined 

directly from the results of the evolution equations at every time step, without explicitly computing the third-order Eq. (16) . 

The semi-implicit integration scheme used to solve the fourth-order PDE in Eq. (17) for χ reads 

L = 

[∇ 2 −1 

0 (1 − κ ) ∇ 2 

]

, x = 

[ 

χ

η

] 

, R = 

[ 
0 

Q − κ∇ 2 σψ 
ii 

] 

, (22) 

where 

Q = ǫik ǫ jl ∂ i j σ
ψ 
kl 

2 D = ∂ xx σ
ψ 
yy + ∂ yy σ

ψ 
xx − ∂ xy σ

ψ 
yx − ∂ yx σ

ψ 
xy , (23) 

and η an auxiliary variable such as η = ∇ 2 χ . The FEM calculation for χ is also exploited to compute the second derivatives 

of this field to be used in Eq. (14) (additional auxiliary variables ξ ij such as ξi j = ∂ i j χ may be added to the system Eq. (23) ). 

In turn, ε δ
i j can be computed straightforwardly from Eq. (18) . ϕ and α can then be determined from ε δ

i j . The semi-implicit 

integration scheme used to solve the fourth-order PDE in Eq. (13) yielding α reads 

L = 

[∇ 2 −1 

0 ∇ 2 

]

, x = 

[ 

α

ζ

] 

, R = 

[ 

0 

S 

] 

, (24) 

where 

S = −2 ǫi j ∂ ik ε 
δ
jk 

2 D = −2 ∂ xx ε 
δ
yx − 2 ∂ xy ε 

δ
yy + 2 ∂ yx ε 

δ
xx + 2 ∂ yy ε 

δ
xy , (25) 

and ζ an auxiliary variable such as ζ = ∇ 2 α. The Poisson equation for ϕ is straightforwardly implemented as a single 

second-order Eq. (12) . With values of α and ϕ, u δ can then be computed from Eq. (11) and the amplitudes updated as 
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reported in Section 3 , namely by Eq. (9) . Vanishing potentials at the boundaries are ensured by Dirichlet boundary con- 

ditions, while both periodic boundary conditions and no-flux Neumann boundary conditions can be used for amplitudes 

equations as the systems considered here have constant values for A j at the boundaries. In the FEM framework, quadratic 

basis function are used to allow for explicit evaluation of first- and second-order derivatives when needed. Numerical so- 

lutions reported below are performed with time steps in the range of τn = 0 . 1 , . . . , 1 , by using spatial mesh adaptivity (see 

Praetorius et al. (2019) ; Salvalaglio et al. (2017) for more information). 

More general boundary conditions can be implemented in this APFC approach. Traction boundary conditions have been 

introduced earlier in the PFC model for the study of mechanical deformation through an extra free energy penalty term pro- 

portional to (ψ − ψ trac ) 
2 , where ψ trac is the fixed PFC density imposed on several atomic layers at the boundaries ( Adland 

et al., 2013; Berry et al., 2006; Stefanovic et al., 2009 ). This extra term can be used to, e.g., apply a constant shear ( Adland 

et al., 2013; Berry et al., 2006 ) or uniaxial tensile load ( Stefanovic et al., 2009 ). It would be straightforward to adopt a 

similar procedure on the APFC by imposing an energy penalty in terms of complex amplitudes. On the other hand, general 

scenarios of traction boundary conditions are straightforward to implement in this approach as we work directly with the 

stress field. Specific values of tractions T = σ · ˆ n (where ˆ n is the boundary surface normal) can be imposed as boundary 

conditions on the Airy stress function χ governed by Eq. (17) , given that T i = σi j ̂  n j = (ǫik ǫ jl ∂ kl χ ) ̂  n j . 

5. Numerical results 

5.1. Single Dislocation in a finite crystal 

We first consider a configuration that includes a single dislocation. The amplitudes are initialized by considering the 

displacement field given by an edge dislocation with Burgers vector parallel to the x -direction, i.e., b = (b x , 0) with b x = a = 

4 π/ 
√ 
3 and a the lattice spacing. Amplitudes are set by ( Salvalaglio et al., 2017; Spatschek and Karma, 2010 ) 

A j = φ exp 
(

i q j · u 
)

, (26) 

where φ is the real value of amplitudes for a relaxed and unrotated crystal that can be determined through free energy 

minimization by assuming constant and real amplitudes ( Elder et al., 2010; Salvalaglio et al., 2017 ), and u the displacement 

field. The components of u for an edge dislocation are given by ( Anderson et al., 2017 ) 

u x = 
b 

2 π

[ 

arctan 
(

y 

x 

)

+ 
xy 

2(1 − ν)(x 2 + y 2 ) 

] 

, 

u y = −
b 

2 π

[

(1 − 2 ν) 

4(1 − ν) 
log 

(

x 2 + y 2 
)

+ 
x 2 − y 2 

4(1 − ν)(x 2 + y 2 ) 

]

, (27) 

with ν the Poisson’s ratio. Since the displacement field components in Eq. (27) are singular at the origin, corresponding to 

the nominal position of the dislocation core ( Anderson et al., 2017 ), a local smoothing of the initial condition is introduced. 

The elastic energy of a single dislocation in bulk, namely in an ideally infinite crystal, is not finite in two dimensions. 

Therefore, we embed the amplitudes obtained by Eqs. (26) and (27) in a circular grain with radius R surrounded by a 

disordered (liquid) phase. In practice, for r = 

√ 

x 2 + y 2 > R both the real and the imaginary parts of the amplitudes are set 

to zero. The parameters of the (A)PFC free energy are set as B x = 0 . 98 , v = 1 / 3 , t = 1 / 2 and, to allow for the coexistence of 

the solid and liquid phases, �B 0 � 8 t 2 /(135 v ). Having a single dislocation in the system shifts the free energy of the solid 

to a slightly higher value; thus �B 0 should be slightly smaller than that of the ideal, dislocation-free case. Still, we have 

verified that a negligible growth velocity of the grain is observed for �B 0 = 0 . 042 over the timescale of interest (i.e., during 

the relaxation of the system). 

The results obtained at t = 100 are shown in Fig. 1 (a)–(d): A 2 (both real and imaginary parts), � (see Eq. (4) ), ψ( x ), 

and σ xy for R = 60 a . Fig. 1 (e) shows the distribution of σψ 
xy , from Eq. (16) , and σ xy from Eq. (14) along the horizontal line 

through the dislocation core. Here we set R = 300 a to avoid significant influence of the solid-liquid interface, and of the 

finite size of the crystal on the elastic field of the dislocation. Since the configuration shown is in equilibrium, σψ 
xy and σ xy 

should be identical. Indeed, the relaxation of the initial state recovers the equilibrium elastic field without the amplitude 

correction. A very small shift of the stress field is obtained at large distance, which can be ascribed to the presence of the 

solid-liquid interface. In terms of dislocation self-energy, computed as ∫ σd : ε d d x with σd and ε d the stress and strain in the 
system with a single dislocation, a difference of ~ 1.5% is found when adding σδ to σψ . It is worth mentioning that the 

presence of free surfaces, or in general interfaces in inhomogeneous media, affects some features of the elastic field far from 

the core ( Anderson et al., 2017; Head, 1953; Marzegalli et al., 2013 ). However, a close comparison to this case is beyond the 

scope of the present investigation. 

The stress field given by the APFC model is non-singular at the dislocation core. Our results for the regularized stress 

field ( Fig. 1 (e)) agree with the non-singular theory of Cai et al. (2006) , where the components of the stress field are argued 

to be given by, 
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Fig. 1. Computation for a configuration with one edge dislocation in a finite crystal, with b = (a, 0) . (a) Real (right) and imaginary (left) parts of the 

amplitude A 2 . (b) � = 2 
∑ N 

j | A j | 2 . (c) Reconstructed ψ( x ) from Eq. (3) , with an inset showing a magnification of the small region around the defect. (d) 

σ xy . Panels (a)–(d) are obtained with R = 60 a . (e) Comparison between σ xy , σ
ψ 
xy , σ

NS 
xy and σ GE 

xy along the horizontal line crossing the defect core, for 

R = 300 a . 

Fig. 2. Analysis of the spreading of b . ∇ × B ( r ) is used to illustrate the spreading of the Burgers vector density given by the phase field stress fields, 

including results of (a) from APFC simulation of a single dislocation, namely the right-hand side of Eq. (17) , and (b) from Eq. (29) with c = 2 b x . A circle 

with radius c is superposed at the origin of plots in panels (a) and (b). (c) Comparison along the vertical line crossing the dislocation core in panels (a) 

and (b). All the quantities are normalized with respect of the (symmetric) maxima and minima. 

σ NS 
xx = −

μb x 

2 π (1 − ν) 

y (3 c 2 + 3 x 2 + y 2 ) 

(c 2 + x 2 + y 2 ) 2 

σ NS 
yy = −

μb x 

2 π (1 − ν) 

y (c 2 − x 2 + y 2 ) 

(c 2 + x 2 + y 2 ) 2 

σ NS 
xy = 

μb x 

2 π (1 − ν) 

x (3 c 2 + x 2 − y 2 ) 

(c 2 + x 2 + y 2 ) 2 
(28) 

with μ the shear modulus and c a regularization parameter related to the dimension of the dislocation core. Good numerical 

agreement with our results is found by setting c = 2 b x . Therefore, the APFC model naturally includes a regularization of 

the elastic fields at the dislocation core, which deviates from the singular behavior expected from continuum mechanics 

( Anderson et al., 2017 ), but without requiring any additional parameters. Eq. (17) shows how this is accomplished: the 

right-hand side of this equation corresponds to [ ∇ × B ( r )] z (with z labelling the axis perpendicular to the considered 2D 

system); that is, for the dislocation considered here ∇ × (B x (r ) , 0) = −∂ B x (r ) /∂ y ˆ z . This quantity, for the system of Fig. 1 , 

is shown in Fig. 2 (a). −∂ B x (r ) /∂ y is smooth over a finite size region near the core, indicating the effective spreading of the 

Burgers vector (instead of the isolated singularity B (r ) = b δ(r − r 0 ) , as expected by continuum mechanics). The spreading 
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of the Burgers vector over a small region around the core is the basic assumption of Cai et al. (2006) . The procedure allows 

regularised continuous fields at the dislocation core, while still matching the prediction of standard continuum mechanics 

away from the core (see Eq. (28) ). 

More specifically, the non singular theory illustrated in Cai et al., 2006 introduces a spreading function s ( r ) given by, 

s (r ) = 
15 

8 πc 3 (r 2 /c 2 + 1) 7 / 2 
. (29) 

The convolution of this function with non-singular stress-field components leads to Eq. (28) . Therefore, we can assume a 

spreading of the Burgers vector density such as B NS (r ) = (B NS x (r ) , 0) with B NS x (r ) = b x s (r ) for an edge dislocation having 

b = (b x , 0) . Therefore, ∇ × B NS x (r ) = −b x ̂  z ∂ s (r ) /∂ y . It is worth mentioning that in Cai et al. (2006) , the starting point is to 

assume a regularization of the Burgers vector density by a function ˜ s (r ) , whose convolution with itself gives Eq. (29) . The 

latter enters the deformation fields and allows the removal of the singularity at the core given that 
∫ 
r(x − x ′ ) s ( x ′ ) d 3 x ′ = r c 

with r c = 

√ 

x 2 + y 2 + z 2 + c 2 . The distribution of ∇ × B NS x (r ) is shown in Fig. 2 (b) for c = 2 b x . A circle with radius 2 b x is 

superposed on both the maps in Fig. 2 (a) and (b). In addition, a comparison of the two distributions along the vertical line 

crossing the defect is shown in Fig. 2 (c). The agreement between them indicates that the assumption of isotropic spreading 

given in Cai et al. (2006) does capture the main features of the regularization at the core given by the APFC model. However, 

it should be noted that the APFC description naturally incorporates the lattice symmetry and as such will always include 

any anisotropies in this (or any other) quantity. 

Another regularization scheme similar to that discussed above has been introduced by assuming a smooth Burgers vector 

distribution ( Lothe, 1992 ), or by elasticity theories including first strain-gradient energy terms ( Mindlin and Eshel, 1968; 

Mindlin, 1964 ). In the so-called Helmoltz type gradient elasticity, for an edge dislocation with Burgers vector oriented along 

the x -axis (i.e., b = (b x , 0) ), the elastic field in an isotropic medium is given by ( Lazar, 2017; Lazar and Maugin, 2005 ) 

σ GE 
xx = −

μb x 

2 π (1 − ν) 

y 

r 4 

[

(y 2 + 3 x 2 ) + 
4 ℓ 2 

r 2 
(y 2 − 3 x 2 ) − 2 y 2 

r 

ℓ 
K 1 (r/ℓ ) − 2(y 2 − 3 x 2 ) K 2 (r/ℓ ) 

]

, 

σ GE 
yy = −

μb x 

2 π (1 − ν) 

y 

r 4 

[

(y 2 − x 2 ) −
4 ℓ 2 

r 2 
(y 2 − 3 x 2 ) − 2 x 2 

r 

ℓ 
K 1 (r/ℓ ) + 2(y 2 − 3 x 2 ) K 2 (r/ℓ ) 

]

, 

σ GE 
xy = 

μb x 

2 π (1 − ν) 

x 

r 4 

[

(x 2 − y 2 ) −
4 ℓ 2 

r 2 
(x 2 − 3 y 2 ) − 2 y 2 

r 

ℓ 
K 1 (r/ℓ ) + 2(x 2 − 3 y 2 ) K 2 (r/ℓ ) 

]

, (30) 

with K n ( r / ℓ ) the modified Bessel function of the second type, and ℓ a characteristic internal length parameter of the ma- 

terial. This parameter is usually proportional to the lattice spacing, as has been obtained empirically by comparison with 

atomistic calculation (see, e.g., ( Po et al., 2014 )). The elastic field obtained in this approach is also shown in Fig. 1 for 

ℓ = b x . With this choice of ℓ , σGE 
xy ≈ σNS 

xy within the core region. In turn, both agree with σ xy obtained from the APFC 

model. Within first-gradient elasticity, the spreading of the Burgers vector is given by a function that is singular at 

the core, K 0 (r/ℓ ) ≈ −{ log [ r/ (2 ℓ )] + γ } 
{

1 + r 2 / (4 ℓ 2 ) 
}

− r 2 / (4 ℓ 2 ) + O(r 4 ) with γ = 0 . 57721 ... the Euler-Mascheroni constant 

( Lazar, 2017 ). Therefore an analysis analogous to that of Fig. 2 is not possible. Closer comparisons with this theory will be 

the subject of future research. 

These comparisons shed light on the regularization of stress fields in the (A)PFC framework. Other than the agreement 

described above, we note that small deviations and asymmetries are observed, in particular concerning the highest stress 

values obtained in the system (see the curves in Fig. 1 (e)). This is, however, expected as nonlinearities are contained in PFC 

amplitudes ( Hüter et al., 2016 ) which generally capture features on atomic length scales. They would become relevant for 

large stresses/strains. It is worth mentioning that regularization of the elastic field at the core of a dislocation is natural from 

an atomistic point of view, as the distribution is expected to be non-singular with vanishing deformation field at the core 

(see, e.g., Bonilla et al., 2015 ) which intrinsically has a finite size. This was also the main argument that led to the renowned 

Peirels-Nabarro model ( Nabarro, 1947; Peierls, 1940 ), although in this case the resulting elastic fields are discontinuous at 

the core, even if they do not diverge ( Lazar, 2017 ). Therefore they deviate from the continuous description given by the APFC 

model. 

5.2. Dislocation dipole 

In this section a dislocation dipole is considered. The amplitudes are initialized by considering the displacement field of 

two edge dislocations with Burgers vector b x = ±a aligned along the x direction. Eqs. (26) and (27) are straightforwardly 

used by considering u (x − x 0 , y − y 0 ) , i.e. shifting the x and y axis to account for the initial position of each dislocation 

p = (x 0 .y 0 ) . We focus here in particular on two defects having positions p 1 , 2 = (0 , ±L ) with L ~ 10 a . Parameters of the 

(A)PFC free energy are set as those in Section 5.1 . A square computational domain with size 200 a is used, embedding a 

grain as in the previous section with radius 140 a . 

The results obtained at t = 100 are shown in Fig. 3 (a)–(d) which illustrate A 2 , �, ψ( x ), and σ yy . The stress fields σψ and 

σ , along with the predictions from non-singular continuum elasticity theories as described in Section 5.1 are presented in 

Fig. 3 (e). First, note that the stress σψ and the total stress σ differ from each other, even after a relaxation time from the ini- 

tial condition which was long enough to obtain a substantial agreement for the case of an isolated dislocation ( Section 5.1 ). 
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Fig. 3. Simulation of an edge-dislocation dipole with b 1 , 2 = (±a, 0) and positions p 1 , 2 = (0 , ±10 a ) . (a) Amplitude A 2 illustrated by its real (top) and imagi- 

nary (bottom) parts. (b) � = 2 
∑ N 

j | A j | 2 . (c) Reconstructed ψ( x ) from Eq. (3) , with an inset showing a magnification of the small region around the defect. 

(d) σ yy . (e) Comparison between σ yy , σ
ψ 
yy , σ

NS 
yy , and σ

GE 
yy along a vertical line crossing the defects. 

These APFC results are obtained with parameters corresponding to coexistence of the liquid and solid phases, for which we 

expect a good description of the elastic relaxation in the standard (A)PFC model, different from deep quenches conditions. 

The system at t = 100 is, however, out of equilibrium as the defects will move and finally annihilate. Therefore, as discussed 

in Skaugen et al. (2018b) , the correction discussed in Section 3 is needed to maintain mechanical equilibrium. Note that in 

Fig. 3 (e) the stress fields obtained from continuum elasticity theories, namely Eqs. (28)–(30) , have been properly shifted to 

account for the dislocations forming the dislocation dipole, and are expected to match the PFC elastic field far away from the 

core (e.g., when | y | > 20 a ). Closer to the defects some deviations from continuum elasticity are observed. Such deviations 

are shown in the regimes of large deformation near dislocation cores (even in the single-dislocation case of Fig. 1 ). They are 

more evident in between the individual defects, where the contributions of the two dislocations accumulate. This effect may 

be ascribed to nonlinearities of elasticity as they are naturally contained in APFC amplitudes and play an important role at 

high strains ( Hüter et al., 2016 ). In general, they become relevant when the distortion of the lattice parameter a compared 

to the lattice parameter of the reference crystal, a bulk , is a / a bulk < 0.95 or a / a bulk < 1.05. Here, strains larger than 5% are 

observed in the region | y | < 20 a . 

5.3. Motion of a dislocation dipole 

The configuration of Section 5.2 also allows us to investigate the evolution that satisfies the constrain of mechanical 

equilibrium of elastic distortions as discussed in Section 3 . We consider here a dislocation dipole with dislocations anni- 

hilating by pure glide or climb. We choose as initial conditions two dislocations at p 1 , 2 = (±L, 0) (configuration G, glide), 

and p 1 , 2 = (0 , ±L ) (configuration C, climb), with L ~ 15 a . The latter system corresponds to the one analyzed in Section 5.2 , 

shown in Fig. 3 (a)–(d), while the former consists of the same defects but aligned along the y direction. 

Our results are presented in Fig. 4 . Panels Fig. 4 (a) and (d) show the stress tensor components σ xx and σ xy . Fig. 4 (b) and 

(e) show the position over time of the upper defect for configuration C ( y d ), and of the defect on the right for configuration 

G ( x d ), respectively. Panels (c) and (f) show the velocity for the two configurations. Model parameters are the same as in 

Sections 5.1 and 5.2 , corresponding to solid/liquid coexistence. As a first observation, a faster dynamics is obtained when 

enforcing mechanical equilibrium in PFC, in agreement with Skaugen et al., 2018a; 2018b . From a macroscopic point of 

view, the motion of a dislocation can be described in terms of the Peach-Koehler force ( Anderson et al., 2017 ), that is, 

f = ( σ · b ) × ξ with ξ the unit vector oriented along the dislocation line, b the Burgers vector of the dislocation, and σ
the external elastic field (for a recent review see Lubarda, 2019 ). For the configurations considered here, the force acting 

on a dislocation is f G = σxy b and f C = σxx b, with σ ij the stress field generated by the other dislocation. Within the (A)PFC 

framework, the velocity of the dislocations due to the action of the Peach-Kohler force is given by ( Skaugen et al., 2018a ) 

v 
PK 
i = 

1 

4 πφ2 
ǫi j σ jk b k . (31) 

This velocity is shown in Fig. 4 (b) and (d) for configurations C and G, respectively, using equations given in Section 5.1 to 

compute σ ij . Notice that it is in good agreement with v G x = v C y = b 2 / (2 π2 d) ( Skaugen et al., 2018a ) (they match for ν = 1 / 4 ). 
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Fig. 4. Defect annihilation. For configuration C: (a) σ xx , (b) position ( y d / a ) over time over time, and (c) velocity. For configuration G: (d) σ xy , (e) position 

( x d / a ) over time, and (f) velocity. In this and other figures, OD, ME and PK refer to overdamped dynamics (the original APFC model), mechanical equilibrium 

(the present work) and the Peach-Kohler result ( Eq. (31) ), respectively. 

Note that the purely diffusive dynamics of the APFC model significantly underestimates the magnitude of the velocities. By 

constraining the stress field so that the evolving configuration remains in mechanical equilibrium, the computed velocity 

agrees well with the prediction based on the Peach-Kohler force. 

We mention that, from a microscopic point of view, the evolution of configurations C and G are expected to be signif- 

icantly different. Glide is the movement of dislocations along their slip planes, whereas climb is the motion perpendicular 

to the slip plane. Both are activated processes over different types of barriers. In the former, a layer of atoms slips over 

the Peierls-Nabarro barrier, whereas the latter requires the absorption (or emission) of vacancies ( Anderson et al., 2017 ). 

The first effect can be captured in the standard PFC model ( Boyer, 2002; Skaugen et al., 2018a ) which includes atomic 

scale microscopic features that are not present in the APFC model ( Huang, 2013 ). Still, at variance with continuum models 

based solely on mechanics, temperature is included in the APFC approach in a phenomenological fashion as it enters the 

energy of the ordered and disordered phases. This can be seen, for instance, when changing values of �B 0 . We recall that 

�B 0 = 8 t 2 / (135 v ) allows for the coexistence of solid and liquid phases, �B 0 � 8 t 2 /(135 v ) favors the liquid or solid phase, 

while �B 0 ≪ 8 t 2 /(135 v ) corresponds to a deep-quench condition. We have verified that increasing �B 0 (up to the solid–

liquid coexistence condition) speeds up defect motion thus capturing, at least qualitatively, the expected change in defect 

mobility, although no barriers are explicitly included in the APFC model. 

5.4. Grain shrinkage 

We consider here a 2D system with a rotated grain embedded in a crystalline matrix of triangular symmetry. The grain 

boundary consists of a series of dislocations that move together. Amplitudes are initialized as ( Salvalaglio et al., 2017 ) 

A j = φ j exp 
(

iδq j (θ ) · x 
)

, (32) 

with 

δq j (θ ) = 
[

q x j ( cos θ − 1) − q y 
j 
sin θ

]

ˆ x + 
[

q x j sin θ + q y 
j 
( cos θ − 1) 

]

ˆ y . (33) 

θ = 0 at a distance R 0 from the center of the rotated inclusion/grain, which is tilted by an angle θ with respect to the 

surrounding matrix. The spatial distributions of A 2 , �, ψ( x ), and σψ 
xx , corresponding to θ = 5 ◦ and R 0 = 25 π , are shown in 

Fig. 5 . The parameters of the APFC model are set to be the same as those in the previous sections. The circular grain con- 

sidered here shrinks over time, which is qualitatively well described by the APFC model ( Heinonen et al., 2016; Salvalaglio 

et al., 2018; 2019 ). Results of the normalized area R 2 (t) /R 2 
ini 

of the shrinking grain with and without the correction described 

in Section 3 are shown in Fig. 6 . 
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Fig. 5. Defects at a circular low-angle grain boundary between a rotated inclusion and an unrotated crystal matrix of triangular symmetry. (a) Amplitude 

A 2 illustrated by its real (left) and imaginary (right) parts. (b) � = 2 
∑ N 

j | A j | 2 . (c) Reconstructed ψ( x ) from Eq. (3) , with yellow isolines of � highlighting 

the defects. (d) σ xx . 

Fig. 6. Time evolution of the normalized area of rotated grain, for the overdamped dynamics (OD) and with the correction to amplitudes for mechanical 

equilibrium (ME) as in Eqs. (8)–(10) . 

For this configuration, the three expressions of the amplitudes corrected by u δ , namely Eqs. (8)–(10) reported in 

Section 3 , are used. In all the cases considered, R 2 ( t ) decreases linearly with time. A significantly faster decrease is ob- 

served when mechanical equilibrium is imposed, as has also been observed for the evolution of dislocation dipoles in 

Section 5.3 and, for this configuration in particular, in Heinonen et al. (2016) . In agreement with our results, the work 

reported in Heinonen et al. (2016) , in the limit of fast relaxation of elastic excitations, also shows that grain-shrinking 

dynamics is an order of magnitude faster when accounting for instantaneous mechanical equilibrium. The substantial agree- 

ment between three different approaches for correcting the amplitudes (i.e., Eqs. (8)–(10) ) supports the assumption of small 

deformations and slowly varying amplitudes. 

The analysis of Section 5.1 concerning how lattice distortion follows from the Burgers vector density B ( r ), can be readily 

applied to this configuration to gain insights about the crystal defects in the rotated inclusion and, more in general, in 

systems with many defects. The spatial distribution [ ∇ × B ( r )] z , computed as the right-hand side of Eq. (17) for a rotated 

inclusion with θ = 10 ◦ and R ~ 20 a , is shown in Fig. 7 (a). We obtain a localized distribution centered at defects, as in 

Fig. 2 (a). By looking at the arrangement of positive and negative lobes of the distribution, six different orientations are 

obtained, which correspond to multiples of 30 ◦, consistent with the lattice vectors of the triangular lattice. Indeed, this 

quantity fully describes the distribution of b in 2D. Following the arguments of Section 5.1 , we can identify the orientation 

of the Burgers vector as being perpendicular to the line connecting the local minimum and maximum of [ ∇ × B ( r )] z at 

defect cores. This is illustrated in Fig. 7 (b). The extension of the local non-zero distributions of [ ∇ × B ( r )] z at defects, 
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Fig. 7. Analysis of the lattice deformation for a rotated inclusion with θ = 10 ◦ and R ~ 20 a . (a) [ ∇ × B ( r )] z . (b) Detail inside the dashed box of (a), showing 

the identification of the directions perpendicular (red, dashed arrow) and parallel (blue, solid arrow) to the Burgers vector b . (c) Schematics reporting the 

scheme of panel (b), where the grey circles (with radius ~ 2 a ) correspond to the positions of individual defects. 

as well as its maximum and minimum, are then connected to the Burgers vector. Here they are all equivalent as they 

should yield | b | = a for symmetry reasons. Fig. 7 (c) gives a schematic illustration of defects with the orientations obtained. 

Note that the distribution of defects is symmetric, and the sum of all the b ’s is zero. It is worth mentioning that for this 

dynamical system, at variance with Section 5.1 , the number of defects and the orientation of individual defects are not 

known a priori. Therefore, this analysis can be used to extract information on the nature of the defects and their evolution 

towards equilibrium, which is fully contained in the APFC model. 

6. Conclusions 

We have presented a coarse-grained model of lattice distortion and plastic motion as described by the phase-field crystal 

model in its amplitude expansion formulation. For a system in equilibrium, we have studied the stress field induced by an 

isolated dislocation, including the regularized stress near the dislocation core. Although the APFC approach cannot provide a 

detailed description of dislocation cores from an atomistic point of view due to its underlying assumptions ( Goldenfeld et al., 

20 05; 20 06; Yeon et al., 2010 ), we have shown that the resulting deformation fields near the core are smooth, and are gen- 

erally in agreement with other theories based on continuum elasticity ( Cai et al., 2006; Lazar and Maugin, 2005 ). Concerning 

plastic flow, the APFC model has been extended to account for fast elastic relaxation by not only determining the incom- 

patible stress from the phase field, but also introducing a compatible distortion to satisfy elastic equilibrium at all times 

( Skaugen et al., 2018b ). The modified model not only agrees well with predictions from continuum elasticity, but it can also 

include lattice symmetry, naturally account for the formation and motion of topological defects, and computationally, access 

large system sizes and long time scales ( Praetorius et al., 2019; Salvalaglio et al., 2019 ). Despite the coarse-grained nature of 

the model, it can provide information about individual defects and defect distributions directly from APFC model variables. 

In particular, we have shown how to compute the Burgers vector density and its motion from the model amplitudes. 

Future work will be devoted to deepen the connections with theories based on continuum mechanics, to extend the 

results to other lattice symmetries, and to the investigation of three-dimensional systems. The possibility to account for 

changes in the local average density of the crystal (which is assumed to be constant here) will also be explored. It will 

allow the extension to the study of binary systems ( Elder et al., 2010 ), and to include a better description of elastic constants 

( Ainsworth and Mao, 2019; Wang et al., 2018 ). 
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