Copyright 2019 by Human Factors and Ergonomics Society. DOI 10.1177/1071181319631174

‘l) Check for updates

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 1090

A deep learning-based RULA method for working posture
assessment

Li Li', XuXu!*
Edward P. Fitts Department of Industrial & Systems Engineering North Carolina State University,
Raleigh, NC 27695, USA

Abstract: Musculoskeletal disorders (MSDs) represent one of the leading cause of injuries from modern
industries. Previous research has identified a causal relation between MSDs and awkward working postures.
Therefore, a robust tool for estimating and monitoring workers’ working posture is crucial to MSDs
prevention. The Rapid Upper Limb Assessment (RULA) is one of the most adopted observational methods
for assessing working posture and the associated MSDs risks in industrial practice. The manual application
of RULA, however, can be time consuming. This research proposed a deep learning-based method for real-
time estimating RULA from 2-D articulated pose using deep neural network. The method was trained and
evaluated by 3-D pose data from Human 3.6, an open 3-D pose dataset, and achieved overall Marginal
Average Error (MAE) of 0.15 in terms of RULA grand score (or 3.33% in terms of percentage error). All
the data and code can be found at the first author’s GitHub (https://github.com/LLDavid/RULA_machine).

INTRODUCTION

Musculoskeletal disorders (MSDs) are inflammatory and
degenerative conditions that affect the muscles, tendons,
ligaments, and peripheral nerves (Mark Middlesworth, 2014).
Previous research has shown that work-related MSD represents
one of the leading cause of injuries from modern industries (Ng,
Hayes, & Polster, 2016), and accounts for almost 400,000
injuries per year, causing a direct cost of $20 billion (Matt
Middlesworth, 2015). Previous studies have identified a
relationship  between = MSDs  and  musculoskeletal
biomechanical load, which can be estimated through time series
of working postures and force exerted on the body (Roman-Liu,
2014). The biomechanical load varies upon different working
postures. Therefore, a robust tool for estimating and monitoring
workers’ posture is crucial to the prevention of MSDs.

Workers’ posture can be roughly estimated through
observational methods. Among these observational method, the
Rapid Upper Limb Assessment (RULA) is one of the most
popular one in industrial practice due to its simplicity and
effectiveness (Roman-Liu, 2014). These methods basically
exploit the joints angle of the worker through observing the
worker’s posture. A final score is then calculated through given
formulas, which will be used for evaluating the potential risks
of a task.

However, RULA, as well as other observational methods,
suffers from two major weaknesses. First, experienced raters
are needed for the evaluation, which can be less cost-effective.
Second, the final score is subject to inconsistency brought by
the subjectivity of the raters. To tackle these limitations, some
studies adopted wearable sensors, such as inertial measurement
unit (IMU) and electromyography (EMG) sensors (Yan, Li, Li,
& Zhang, 2017), to facilitate real-time data collection.
However, sensors are intrusive to natural body motion, and is
not feasible for large-scale monitoring purpose (Manghisi et al.,
2017).

The recent advancement in computer vision provides a
great opportunity to address these weaknesses. For example, a
single RGB-D camera (e.g. Microsoft Kinect) can be used to

estimate human 3-D pose. (Adams et al., 2015; Diego-Mas &
Alcaide-Marzal, 2014; Manghisi et al., 2017; Plantard, Shum,
Le Pierres, & Multon, 2017). The 3-D pose estimated from the
depth and color map has good accuracy and can be used to
calculate RULA. The depth range of the RGB-D camera,
however, is typically limited. Therefore, an approach that is
only based on color image would be preferred. To estimate
human pose in 3-D from color image, most of methods adopted
a two-step predicting paradigm (Martinez, Hossain, Romero, &
Little, 2017; Pavlakos, Zhou, Derpanis, & Daniilidis, 2017;
Tome, Russell, & Agapito, 2017). First, a deep neural network
was designed and trained to estimate the 2-D pose. Second,
using a regression network to estimate 3-D pose from the
detected 2-D pose (black arrows in figure 1). While this type of
pipeline achieved good accuracy in predicting 3-D pose, a very
intuitive question would be: Can RULA score be estimated
directly from 2-D poses if the 3-D pose information is encoded
in the 2-D pose? Our work in this paper will be the first to
answer this question.
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Figure 1. Two methods for estimating RULA from 2-D
pose. Our work covers the red arrows. (Subjects photos
are extracted from Human 3.6).
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The contribution of this paper can be summarized as two
aspects (red arrows in figure 1). First, to eliminate the
inconsistency and subjectivity brought by human raters, a new
procedure was defined for calculating RULA from 3-D pose
which contains 17 joints. Second, a new neural network was
proposed that can successfully estimate RULA from 2-D
annotated poses in real-time. Human 3.6 (Ionescu, Li, &
Sminchisescu, 2011; Ionescu, Papava, Olaru, & Sminchisescu,
2014), one of the largest public human 3-D pose dataset, was
used for the training and testing, which contains 527,599 poses
in total. The RULA scores calculated from the 3-D poses
measured by a synchronized motion tracking system were used
as the ground truth for both the training and testing step.

METHOD

The pipeline of estimating RULA from monocular image
is summarized in figure 1. Our work is represented by the two
red arrows in figure 1. In this section, the procedure of
calculating RULA from 17 joints, and the structure of the neural
network are introduced in details.

Calculate RULA from 3-D pose

The articulated pose is the most widely-adopted
representation of human postures. This is because the degree of
freedom (DoF) of human body are mainly brought by joints.
The articulated pose captures the spatial locations of the joints,
and it does not contain redundant texture and background
information. In this study, seventeen joints locations are used
for the representation, including head, nose, thorax, right/left
(L/R) shoulder, (L/R) elbow, (L/R) wrist, spine, hip, (L/R) hip,
(L/R) knee, and (L/R) ankle. In the raw data from human 3.6,
thirty-two joints are included, and fifteen of them are placed as
actuators (with zero DoF), so only the rest seventeen joints data
was used in this study. The naming for different joints are
according to its actual position.

Figure 2. Joints Indexing. OlI-hip, 02/05-right/left hip,
04/07-right/left ankle, 03/06-right/left knee, 08-spine, 09-
thorax, 10-nose, 11-head, 12/15-left/right shoulder,
13/16-right/left elbow, 14/17-left/right wrist

Note that the term ‘joint’ do not precisely refers to the
actual anatomical joints, but the region on human body where

the markers of motion tracking system are typically attached
(Figure 2).

To calculate RULA from the 3-D pose, two important
planes need to be defined first, i.e. the coronal plane and the
sagittal plane of body, denoted by their surface normal, P4 and
P, (bold letters represent vectors), respectively (see figure 2).
The limb vectors will be represented by the difference of
vectors of the joints:

Vim-n = Jn ~Jm (1)

Where v,_, represents the vector pointing from joint m to
joint n; j, is given by the 3-D coordinate of the joint.

The projected vector is calculated as:

v}n:l—n =Vm-n ~ Vm-n" “:ﬁpi (2)

Where ‘Uﬁ:_n is the projection of vy, _, on plane P;
(illustrated in figure 3).

In the following context, details will be given regarding
how joints angle are calculated from the pose. Note that for
asymmetrical lifting, two RULA score may be calculated. Here
we take the right-side body as example, and the left-side can be
calculated in a mirrored way.

Upper Arm flexion/extension. Upper arm and the reference
vector are projected onto P, and the angle 6, is given by the
angle of the projected vectors:

Pz IIPZ
9, = acos(w) 3)
|”12 09””12 13

Note that the projected vectors do not consider the
direction of the original vectors, so the anterior normal vector
of the coronal plane, 1, is used to identify the direction.

Upper Arm adduction/abduction. The adduction and
abduction angle 6, is calculated on the upper body coronal
plane:

1:21 05 ";,21 13
0, = acos(—’) 4
|"12 05 |”1z 13

Raised Shoulder. Angle 85 is calculated through:

Y09-01'YV09-
0, = acos( 09-01-V09-12 (5)
[v09-01lv09-12|

If 65 > 90°, the shoulder is raised.
Leaning. The leaning angle of upper body is represented by

0,:
0, = acos(Z1=2"z) (©6)
[vo1-09l
=1[0,0,1]7 7

Where n, is the unit vector along the global z-axis.

Lower Arm flexion/extension. The angle 05 is calculated
from projected middle line of upper body and the lower arm on
P,:

L2 P
95 — acos( Y09-01"V13- 14) (8)
|”09 01”"13 14
Lower arm across the middle line. 84 is calculated as:
Pq Pq
0, = acos(— 09 14%09-12 ) 9)
| V09-14 |”09 12
If 65 > 90°, the lower arm crosses the midline.
Neck extension/flexion. The angle 6 is calculated by two

projected vectors on Py:
»F2
0, = acos(— Y09-01 ”09 11 (10)
|”09 01”"09 11
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Neck side-bending. 05 will be represented by the
angle between midline of upper body and midline of the
head:

”opé—m'”gt}—n ) (11

Og = acos(|v,,1 ||,,P1

09-01/|Y09-11

Upper body flexion/extension (trunk posture). The flexion
or extension angle 0 is calculated by midline of upper body
and n,, which equals to 0.

Trunk twisted. The normal vector of P4, pointing to the
anterior direction is used as reference, so the twisting angle 6,4
is calculated as:

010 = acos(w (12)
[vo1-0sl

Trunk side bending. The bending angle 0., is calculated
as:

”51%—09'”:);111—05 ) (13)
|’701—09||’701—05

If 811 < 90°, the trunk is side-bended.

Trunk side bending. The difference of the distance of two
ankle joints’ positions along global z-axis, d,, is used to
identify whether one foot is off the ground. If d, < 5 cm, it is
assumed two legs are well supported.

External load/force. It is assumed that external load is at
the lowest level (< 4.4 Ibs, intermittent), denoted by e)¢, because
according the experimental protocol, the subjects in Human 3.6

were carrying nothing.

0,1 = acos(

Figure 3. Project a limb vector on the upper body sagittal
plane (right side)

Wrist bending. The pose does not contain data of the distal
end of the hand, so the wrist parameter is assumed to be wy,
corresponding to the third column in Table A from the RULA
sheet.

The final left/right-side RULA grand score can be
estimated from all the variables/parameters mentioned above
and the RULA sheet. If regarded as a function, it can be written
as:

gscore, = f (60111, d;, €17, Wp) (14)

gscoreg = f(0{.11,d,, €1, Wp) s)
Where 6%, and 6F_,; represent angles calculated from
left and right side of body respectively.

In practice, we are more concerned with the worst case
between the left and right side. Thus, the larger grand score will
be chosen as the final estimation for the whole body:

gscore = max (gscore,, gscoreg) (16)

Where gscore is the final grand score for the whole

body.

Estimating RULA through deep neural network

After all the 3-D poses are projected onto a 2-D plane, a
deep neural network takes them as input to predict the RULA
score, (i.e. gscore). The projected 2-D pose (2 X 17) was
flatten into a 1-D vector with dimension 1 X 34 and fed into a
deep neural network. The output of network is a 1 X 7 one-hot
vector, corresponding to 7 level of grand score.

—

X3

Batch norm

Grand score

Dense
1024

Dropout 0.1

Detected 2-D Pose
Figure 4. The structure of neural network

The design of the network was inspired by a previous study
(Martinez et al., 2017), in which a baseline for estimating 3-D
pose from 2-D pose is proposed. The structure comprises of two
residual block, where each block consists of two dense layers.
In our design, three dense layer blocks were stacked in sequence
and it was found to be the optimal design regarding the number
of layers for prediction (figure 4). For each layer, batch
normalization (Ioffe & Szegedy, 2015) , rectified linear units
(Nair, Conference, & 2010, 2010) and dropout (Srivastava,
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) were
included.

During training, batch stochastic gradient descent was used
for optimizing network parameters, and batch size was set as
2000. Adam Grad was adopted as the optimizer. Learning rate
was set to 1 X 10™*. The neural network was trained on two
titan Vs, and the model of the CPU is Xeon(R) CPU E5-1650
v4 @ 3.60GHz. The training process takes less than one minute.

RESULT

There are 527,599 samples in total from Human 3.6, of
which 80% were randomly chosen and used for networks
training, and 20% were used for testing. The validation step
took 20% of the training set for tuning the hyper-parameters.

Figure 5 presents the distribution of calculated grand score.
Since the maximum of the left and right side was chosen, the
calculating procedure tends to overestimate the grand score, so
more samples are seen between level 5-7, while no sample is in
level 1. Therefore, we excluded level 1 from the prediction.
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Table 1. Confusion Matrix. Rows represent the actual
class and columns represent the predicted class. The
diagonal entries show the number of samples correctly
classified.

RULA | 2 3 4 5 6 7 Total
2 0 0 4 1 2 0 7
3 0 967 206 99 877 11 2160
4 0 167 1307 140 1441 55 3110
5 0 134 180 1855 2183 96 4448
6 0 204 643 472 75431 1261 78011
7 0 6 25 49 3125 14579 | 17784
Total | 0 1478 2365 2616 83059 16002 | 105520
i& 10° 5 <10° 4 210°
3
1 1 1
0.5 05+ 0.5
2 4 - 6 8 2 4 - 5 8 2 4 . 6

Figure 5. Distribution of left/right side and the maximum
RULA grand score

The common metrics discussed above may overlook the
absolute prediction bias, because the RULA score is ordered.
Figure 4 plots the Marginal Absolute Error (MAE) for each
score. It shows that the algorithm demonstrates almost zero
MAE for high-risk postures (6-7), and low MAE for moderate-
risk postures (3-5). Additionally, the algorithm tends to
overestimate the risk level (average bias greater than zero). The
MAE for all the predictions is 0.15, with 0.12 standard
deviation, and the mean error rate is 3.33%. During testing, the
whole framework can run at 53 frames per second (fps).

Table 2. Precision, recall and F1-score of the algorithm

RULA Precision Recall F1 score

2 0 0 0

3 0.6543 0.4477 0.5316

4 0.5526 0.4203 0.4774

5 0.7091 0.4170 0.5252

6 0.9082 0.9669 0.9366

7 0.9111 0.819 0.8630
Inter-class average 0.6225 0.5119 0.5556
Weighted average 0.8845 0.8921 0.8850

DISCUSSION

The proposed method demonstrates satisfying sensitivity in
detecting potentially risky postures, and it can be further
extended to other observational methods, such as Rapid Entire
Body Assessment (REBA). More generally speaking, any
application that takes the monocular images or 2-D poses as

input and predicts discrete output can be formulated into a
similar form and use the framework illustrated in Figure 1.
However, a few limitations need to be addressed. First, the
method shows less robustness for postures with lower RULA
score. This is because unbalanced dataset was used for training.
The number of samples for different class falls into three order
of magnitude, and the predicting performance drops
significantly with the decreased number of samples. Another
reason is due to the overestimation during calculation of RULA
score from 3-D pose. The 3-D pose does not consider the
volume of limbs. Because the markers are attached to the lateral
side of the limbs for visibility, calculated joints angle will be
overestimated.

Second, there remains the lack of training data in the
context of occupational tasks. The adopted dataset, Human 3.6,
contains a large amount of 3-D poses, but only covers activities
during daily life. The scenarios where RULA is adopted are
mainly from industries, so that more working postures are
needed. Additionally, the deep neural network is data-driven,
which means its performance highly depends on the
generalization of the training dataset. Poses collected in the
field would substantially contribute to network training. In
addition, an evaluation against working postures collected in
the field could provide a full picture of the validity of the
proposed automated RULA method.
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Figure 6. Boxplot of MAE for each grand score

To tackle these limitations, future studies should focus on
the following three aspects. First, more working postures need
to be collected. Common working postures, including
lifting/putting down boxes, walking while carrying objects,
bending, and reaching for objects in sitting/standing posture,
should be included in the training set. Second, data
augmentation can be adopted to balance the training set and
improve overall predicting capability. To do so, one can use
Generative Adversarial Network (GAN) (Goodfellow, Pouget-
abadie, Mirza, Xu, & Warde-farley, 2014). When the collected
data is not enough, GAN can generate artificial 2-D pose and 3-
D pose according to a specific style using style transfer (Gatys,
Ecker, & Bethge, 2016), so that more samples can be generated
from a smaller amount of data, and the number of each class
can be controlled. Third, more advanced structure could be
further explored. In this study a three-layer vanilla deep neural
network was used. If the networks go deeper, vanishing
gradients might occur during back-propagation, and a residual
block may need to be added (He, Zhang, Shaoqing, & Sun,
2016).
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Conclusion

This study proposed a new procedure for calculating
RULA from 3-D pose and a novel framework for estimating
RULA from 2-D articulated pose. The proposed neural network
demonstrates satisfying accuracy in estimating RULA score,
and efficiency for real-time use. Future work will focus on
collecting more work-related postures, and exploit more
advanced deep neural network to further enhance the robustness
of the framework.
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