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Abstract:  Musculoskeletal disorders (MSDs) represent one of the leading cause of injuries from modern 
industries. Previous research has identified a causal relation between MSDs and awkward working postures. 
Therefore, a robust tool for estimating and monitoring workers’ working posture is crucial to MSDs 
prevention.  The Rapid Upper Limb Assessment (RULA) is one of the most adopted observational methods 
for assessing working posture and the associated MSDs risks in industrial practice. The manual application 
of RULA, however, can be time consuming. This research proposed a deep learning-based method for real-
time estimating RULA from 2-D articulated pose using deep neural network. The method was trained and 
evaluated by 3-D pose data from Human 3.6, an open 3-D pose dataset, and achieved overall Marginal 
Average Error (MAE) of 0.15 in terms of RULA grand score (or 3.33% in terms of percentage error).  All 
the data and code can be found at the first author’s GitHub (https://github.com/LLDavid/RULA_machine). 

INTRODUCTION 

Musculoskeletal disorders (MSDs) are inflammatory and 
degenerative conditions that affect the muscles, tendons, 
ligaments, and peripheral nerves (Mark Middlesworth, 2014). 
Previous research has shown that work-related MSD represents 
one of the leading cause of injuries from modern industries (Ng, 
Hayes, & Polster, 2016), and accounts for almost 400,000 
injuries per year, causing a direct cost of $20 billion (Matt 
Middlesworth, 2015). Previous studies have identified a 
relationship between MSDs and musculoskeletal 
biomechanical load, which can be estimated through time series 
of working postures and force exerted on the body (Roman-Liu, 
2014). The biomechanical load varies upon different working 
postures. Therefore, a robust tool for estimating and monitoring 
workers’ posture is crucial to the prevention of MSDs. 

Workers’ posture can be roughly estimated through 
observational methods. Among these observational method, the 
Rapid Upper Limb Assessment  (RULA) is one of the most 
popular one in industrial practice due to its simplicity and 
effectiveness (Roman-Liu, 2014). These methods basically 
exploit the joints angle of the worker through observing the 
worker’s posture.  A final score is then calculated through given 
formulas, which will be used for evaluating the potential risks 
of a task. 

However, RULA, as well as other observational methods, 
suffers from two major weaknesses. First, experienced raters 
are needed for the evaluation, which can be less cost-effective. 
Second, the final score is subject to inconsistency brought by 
the subjectivity of the raters. To tackle these limitations, some 
studies adopted wearable sensors, such as inertial measurement 
unit (IMU) and electromyography (EMG) sensors (Yan, Li, Li, 
& Zhang, 2017), to facilitate real-time data collection. 
However, sensors are intrusive to natural body motion, and is 
not feasible for large-scale monitoring purpose (Manghisi et al., 
2017).  

The recent advancement in computer vision provides a 
great opportunity to address these weaknesses. For example, a 
single RGB-D camera (e.g. Microsoft Kinect) can be used to 

estimate human 3-D pose. (Adams et al., 2015; Diego-Mas & 
Alcaide-Marzal, 2014; Manghisi et al., 2017; Plantard, Shum, 
Le Pierres, & Multon, 2017). The 3-D pose estimated from the 
depth and color map has good accuracy and can be used to 
calculate RULA. The depth range of the RGB-D camera, 
however, is typically limited. Therefore, an approach that is 
only based on color image would be preferred. To estimate 
human pose in 3-D from color image, most of methods adopted 
a two-step predicting paradigm (Martinez, Hossain, Romero, & 
Little, 2017; Pavlakos, Zhou, Derpanis, & Daniilidis, 2017; 
Tome, Russell, & Agapito, 2017). First, a deep neural network 
was designed and trained to estimate the 2-D pose. Second, 
using a regression network to estimate 3-D pose from the 
detected 2-D pose (black arrows in figure 1). While this type of 
pipeline achieved good accuracy in predicting 3-D pose, a very 
intuitive question would be: Can RULA score be estimated 
directly from 2-D poses if the 3-D pose information is encoded 
in the 2-D pose? Our work in this paper will be the first to 
answer this question.  

Figure 1. Two methods for estimating RULA from 2-D 
pose. Our work covers the red arrows. (Subjects photos 
are extracted from Human 3.6). 
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The contribution of this paper can be summarized as two 
aspects (red arrows in figure 1). First, to eliminate the 
inconsistency and subjectivity brought by human raters, a new 
procedure was defined for calculating RULA from 3-D pose 
which contains 17 joints. Second, a new neural network was 
proposed that can successfully estimate RULA from 2-D 
annotated poses in real-time. Human 3.6 (Ionescu, Li, & 
Sminchisescu, 2011; Ionescu, Papava, Olaru, & Sminchisescu, 
2014), one of the largest public human 3-D pose dataset, was 
used for the training and testing, which contains 527,599 poses 
in total. The RULA scores calculated from the 3-D poses 
measured by a synchronized motion tracking system were used 
as the ground truth for both the training and testing step.  

 
METHOD 

 
The pipeline of estimating RULA from monocular image 

is summarized in figure 1. Our work is represented by the two 
red arrows in figure 1. In this section, the procedure of 
calculating RULA from 17 joints, and the structure of the neural 
network are introduced in details. 

 
Calculate RULA from 3-D pose 

 
The articulated pose is the most widely-adopted 

representation of human postures. This is because the degree of 
freedom (DoF) of human body are mainly brought by joints. 
The articulated pose captures the spatial locations of the joints, 
and it does not contain redundant texture and background 
information. In this study, seventeen joints locations are used 
for the representation, including head, nose, thorax, right/left 
(L/R) shoulder, (L/R) elbow, (L/R) wrist, spine, hip, (L/R) hip, 
(L/R) knee, and (L/R) ankle. In the raw data from human 3.6, 
thirty-two joints are included, and fifteen of them are placed as 
actuators (with zero DoF), so only the rest seventeen joints data 
was used in this study. The naming for different joints are 
according to its actual position. 

Note that the term ‘joint’ do not precisely refers to the 
actual anatomical joints, but the region on human body where 

the markers of motion tracking system are typically attached 
(Figure 2).  

To calculate RULA from the 3-D pose, two important 
planes need to be defined first, i.e. the coronal plane and the 
sagittal plane of body, denoted by their surface normal, 𝑷𝟏 and 
𝑷𝟐 (bold letters represent vectors), respectively (see figure 2). 
The limb vectors will be represented by the difference of 
vectors of the joints: 

𝒗𝐦−𝐧 = 𝒋𝐧 − 𝒋𝐦                                     (1) 
Where 𝒗𝐦−𝐧 represents the vector pointing from joint m to 

joint n; 𝒋𝐧 is given by the 3-D coordinate of the joint.  
The projected vector is calculated as: 

𝒗𝐦−𝐧
𝑷𝒊 = 𝒗𝐦−𝐧 − 𝒗𝐦−𝐧 ⋅

𝑷𝒊

||𝑷𝒊||
𝟐𝑷𝒊                    (2) 

Where 𝒗𝐦−𝐧
𝑷𝒊  is the projection of 𝒗𝐦−𝐧  on plane 𝑷𝒊 

(illustrated in figure 3). 
In the following context, details will be given regarding 

how joints angle are calculated from the pose. Note that for 
asymmetrical lifting, two RULA score may be calculated. Here 
we take the right-side body as example, and the left-side can be 
calculated in a mirrored way. 

Upper Arm flexion/extension. Upper arm and the reference 
vector are projected onto 𝑷𝟐, and the angle θ1 is given by the 
angle of the projected vectors: 

𝜃1 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟏𝟐−𝟎𝟗
𝑷𝟐 ⋅𝒗𝟏𝟐−𝟏𝟑

𝑷𝟐

|𝒗𝟏𝟐−𝟎𝟗
𝑷𝟐 ||𝒗𝟏𝟐−𝟏𝟑

𝑷𝟐 |
)⁡                        (3) 

Note that the projected vectors do not consider the 
direction of the original vectors, so the anterior normal vector 
of the coronal plane,  𝒍𝒂 is used to identify the direction. 

Upper Arm adduction/abduction. The adduction and 
abduction angle θ2  is calculated on the upper body coronal 
plane: 

𝜃2 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟏𝟐−𝟎𝟓
𝑷𝟏 ⋅𝒗𝟏𝟐−𝟏𝟑

𝑷𝟏

|𝒗𝟏𝟐−𝟎𝟓
𝑷𝟏 ||𝑣12−13

𝑃1 |
)                          (4) 

Raised Shoulder. Angle  θ3 is calculated through: 
𝜃3 = 𝑎𝑐𝑜𝑠⁡(

𝒗𝟎𝟗−𝟎𝟏⋅𝒗𝟎𝟗−𝟏𝟐

|𝒗𝟎𝟗−𝟎𝟏||𝒗𝟎𝟗−𝟏𝟐|
)                          (5) 

If θ3 > 90°, the shoulder is raised. 
Leaning. The leaning angle of upper body is represented by 

θ4: 
𝜃4 = 𝑎𝑐𝑜𝑠⁡(

𝒗𝟎𝟏−𝟎𝟗⋅𝒏𝒛

|𝒗𝟎𝟏−𝟎𝟗|
)                                   (6) 

𝒏𝒛 = [0, 0, 1]𝑇                                              (7) 
Where 𝒏𝒛 is the unit vector along the global z-axis. 
 Lower Arm flexion/extension. The angle θ5 is calculated 

from projected middle line of upper body and the lower arm on 
𝑷𝟐: 

𝜃5 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟗−𝟎𝟏
𝑷𝟐 ⋅𝒗𝟏𝟑−𝟏𝟒

𝑷𝟐

|𝒗𝟎𝟗−𝟎𝟏
𝑷𝟐 ||𝒗𝟏𝟑−𝟏𝟒

𝑷𝟐 |
)                           (8) 

Lower arm across the middle line. θ6 is calculated as: 

𝜃6 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟗−𝟏𝟒
𝑷𝟏 ⋅𝒗𝟎𝟗−𝟏𝟐

𝑷𝟏

|𝒗𝟎𝟗−𝟏𝟒
𝑷𝟏 ||𝒗𝟎𝟗−𝟏𝟐

𝑷𝟏 |
)                           (9) 

If θ3 > 90°, the lower arm crosses the midline. 
Neck extension/flexion. The angle θ7 is calculated by two 

projected vectors on 𝑷𝟐: 

𝜃7 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟗−𝟎𝟏
𝑷𝟐 ⋅𝒗𝟎𝟗−𝟏𝟏

𝑷𝟐

|𝒗𝟎𝟗−𝟎𝟏
𝑷𝟐 ||𝒗𝟎𝟗−𝟏𝟏

𝑷𝟐 |
)                         (10) 

Figure 2. Joints Indexing. 0l-hip, 02/05-right/left hip, 
04/07-right/left ankle, 03/06-right/left knee, 08-spine, 09-
thorax, 10-nose, 11-head, 12/15-left/right shoulder, 
13/16-right/left elbow, 14/17-left/right wrist 
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Neck side-bending. θ8  will be represented by the 
angle between midline of upper body and midline of the 
head: 

𝜃8 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟗−𝟎𝟏
𝑷𝟏 ⋅𝒗𝟎𝟗−𝟏𝟏

𝑷𝟏

|𝒗𝟎𝟗−𝟎𝟏
𝑷𝟏 ||𝒗𝟎𝟗−𝟏𝟏

𝑷𝟏 |
)                          (11) 

Upper body flexion/extension (trunk posture). The flexion 
or extension angle θ9 is calculated by midline of upper body 
and 𝑛𝑧, which equals to θ4. 

Trunk twisted. The normal vector of  𝑷𝟏, pointing to the 
anterior direction is used as reference, so the twisting angle θ10 
is calculated as: 

𝜃10 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟏−𝟎𝟓⋅𝒍𝒂

|𝒗𝟎𝟏−𝟎𝟓|
)                                    (12) 

Trunk side bending.  The bending angle θ11 is calculated 
as: 

𝜃11 = 𝑎𝑐𝑜𝑠⁡(
𝒗𝟎𝟏−𝟎𝟗
𝑷𝟏 ⋅𝒗𝟎𝟏−𝟎𝟓

𝑷𝟏

|𝒗𝟎𝟏−𝟎𝟗
𝑷𝟏 ||𝒗𝟎𝟏−𝟎𝟓

𝑷𝟏 |
)                           (13) 

If θ11 < 90°, the trunk is side-bended. 
Trunk side bending. The difference of the distance of two 

ankle joints’ positions along global z-axis, dz , is used to 
identify whether one foot is off the ground. If dz < 5⁡𝑐𝑚, it is 
assumed  two legs are well supported. 

External load/force. It is assumed that external load is at 
the lowest level (< 4.4 lbs, intermittent), denoted by elf, because 
according the experimental protocol, the subjects in Human 3.6 
were carrying nothing. 

Wrist bending. The pose does not contain data of the distal 
end of the hand, so the wrist parameter is assumed to be wb, 
corresponding to the third column in Table A from the RULA 
sheet. 

The final left/right-side RULA grand score can be 
estimated from all the variables/parameters mentioned above 
and the RULA sheet. If regarded as a function, it can be written 
as: 

𝑔𝑠𝑐𝑜𝑟𝑒𝐿 = 𝑓(𝜃1∼11
𝐿 , 𝑑𝑧 , 𝑒𝑙𝑓 , 𝑤𝑏)                    (14) 

 
𝑔𝑠𝑐𝑜𝑟𝑒𝑅 = 𝑓(𝜃1∼11

𝑅 , 𝑑𝑧 , 𝑒𝑙𝑓 , 𝑤𝑏)                    (15) 
Where 𝜃1∼11𝐿  and 𝜃1∼11𝑅  represent angles calculated from 

left and right side of body respectively. 

In practice, we are more concerned with the worst case 
between the left and right side. Thus, the larger grand score will 
be chosen as the final estimation for the whole body: 

𝑔𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑥 ⁡(𝑔𝑠𝑐𝑜𝑟𝑒𝐿 , 𝑔𝑠𝑐𝑜𝑟𝑒𝑅)           (16) 
        Where 𝑔𝑠𝑐𝑜𝑟𝑒 is the final grand score for the whole 
body. 

 
Estimating RULA through deep neural network 

 
After all the 3-D poses are projected onto a 2-D plane, a 

deep neural network takes them as input to predict the RULA 
score, (i.e. 𝑔𝑠𝑐𝑜𝑟𝑒 ). The projected 2-D pose (2 × 17)  was 
flatten into a 1-D vector with dimension 1 × 34 and fed into a 
deep neural network. The output of network is a 1 × 7 one-hot 
vector, corresponding to 7 level of grand score. 

The design of the network was inspired by a previous study 
(Martinez et al., 2017), in which a baseline for estimating 3-D 
pose from 2-D pose is proposed. The structure comprises of two 
residual block, where each block consists of two dense layers. 
In our design, three dense layer blocks were stacked in sequence 
and it was found to be the optimal design regarding the number 
of layers for prediction (figure 4). For each layer, batch 
normalization (Ioffe & Szegedy, 2015) , rectified linear units 
(Nair, Conference, & 2010, 2010) and dropout (Srivastava, 
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) were 
included. 

During training, batch stochastic gradient descent was used 
for optimizing network parameters, and batch size was set as 
2000. Adam Grad was adopted as the optimizer. Learning rate 
was set to 1 × 10−4. The neural network was trained on two 
titan Vs, and the model of the CPU is Xeon(R) CPU E5-1650 
v4 @ 3.60GHz. The training process takes less than one minute. 

 
 RESULT 

 
There are 527,599 samples in total from Human 3.6, of 

which 80% were randomly chosen and used for networks 
training, and 20% were used for testing. The validation step 
took 20% of the training set for tuning the hyper-parameters.  

Figure 5 presents the distribution of calculated grand score. 
Since the maximum of the left and right side was chosen, the 
calculating procedure tends to overestimate the grand score, so 
more samples are seen between level 5-7, while no sample is in 
level 1. Therefore, we excluded level 1 from the prediction. 

 
 
 
 

Figure 3. Project a limb vector on the upper body sagittal 
plane (right side) 

Figure 4. The structure of neural network 
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RULA 2 3 4 5 6 7 Total 
2 0 0 4 1 2 0 7 
3 0 967 206 99 877 11 2160 
4 0 167 1307 140 1441 55 3110 
5 0 134 180 1855 2183 96 4448 
6 0 204 643 472 75431 1261 78011 
7 0 6 25 49 3125 14579 17784 

Total 0 1478 2365 2616 83059 16002 105520 
  

The common metrics discussed above may overlook the 
absolute prediction bias, because the RULA score is ordered. 
Figure 4 plots the Marginal Absolute Error (MAE) for each 
score. It shows that the algorithm demonstrates almost zero 
MAE for high-risk postures (6-7), and low MAE for moderate-
risk postures (3-5). Additionally, the algorithm tends to 
overestimate the risk level (average bias greater than zero). The 
MAE for all the predictions is 0.15, with 0.12 standard 
deviation, and the mean error rate is 3.33%. During testing, the 
whole framework can run at 53 frames per second (fps). 

RULA Precision Recall F1 score 
2 0 0 0 
3 0.6543 0.4477 0.5316 
4 0.5526 0.4203 0.4774 
5 0.7091 0.4170 0.5252 
6 0.9082 0.9669 0.9366 
7 0.9111 0.819 0.8630 

Inter-class average 0.6225 0.5119 0.5556 
Weighted average 0.8845 0.8921 0.8850 

 
DISCUSSION 

 
The proposed method demonstrates satisfying sensitivity in 

detecting potentially risky postures, and it can be further 
extended to other observational methods, such as Rapid Entire 
Body Assessment (REBA). More generally speaking, any 
application that takes the monocular images or 2-D poses as 

input and predicts discrete output can be formulated into a 
similar form and use the framework illustrated in Figure 1. 
However, a few limitations need to be addressed. First, the 
method shows less robustness for postures with lower RULA 
score. This is because unbalanced dataset was used for training. 
The number of samples for different class falls into three order 
of magnitude, and the predicting performance drops 
significantly with the decreased number of samples. Another 
reason is due to the overestimation during calculation of RULA 
score from 3-D pose. The 3-D pose does not consider the 
volume of limbs. Because the markers are attached to the lateral 
side of the limbs for visibility, calculated joints angle will be 
overestimated. 

Second, there remains the lack of training data in the 
context of occupational tasks. The adopted dataset, Human 3.6, 
contains a large amount of 3-D poses, but only covers activities 
during daily life. The scenarios where RULA is adopted are 
mainly from industries, so that more working postures are 
needed. Additionally, the deep neural network is data-driven, 
which means its performance highly depends on the 
generalization of the training dataset. Poses collected in the 
field would substantially contribute to network training. In 
addition, an evaluation against working postures collected in 
the field could provide a full picture of the validity of the 
proposed automated RULA method.  

To tackle these limitations, future studies should focus on 
the following three aspects. First, more working postures need 
to be collected. Common working postures, including 
lifting/putting down boxes, walking while carrying objects, 
bending, and reaching for objects in sitting/standing posture, 
should be included in the training set. Second, data 
augmentation can be adopted to balance the training set and 
improve overall predicting capability. To do so, one can use 
Generative Adversarial Network (GAN) (Goodfellow, Pouget-
abadie, Mirza, Xu, & Warde-farley, 2014). When the collected 
data is not enough, GAN can generate artificial 2-D pose and 3-
D pose according to a specific style using style transfer (Gatys, 
Ecker, & Bethge, 2016), so that more samples can be generated 
from a smaller amount of data, and the number of each class 
can be controlled. Third, more advanced structure could be 
further explored. In this study a three-layer vanilla deep neural 
network was used. If the networks go deeper, vanishing 
gradients might occur during back-propagation, and a residual 
block may need to be added (He, Zhang, Shaoqing, & Sun, 
2016).  

Table 2. Precision, recall and F1-score of the algorithm  

Table 1. Confusion Matrix. Rows represent the actual 
class and columns represent the predicted class. The 
diagonal entries show the number of samples correctly 
classified. 
 
 

Figure 5. Distribution of left/right side and the maximum 
RULA grand score 

Figure 6.  Boxplot of MAE for each grand score 
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Conclusion 
 

This study proposed a new procedure for calculating 
RULA from 3-D pose and a novel framework for estimating 
RULA from 2-D articulated pose. The proposed neural network 
demonstrates satisfying accuracy in estimating RULA score, 
and efficiency for real-time use. Future work will focus on 
collecting more work-related postures, and exploit more 
advanced deep neural network to further enhance the robustness 
of the framework. 
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