
Cloud Properties and Correlations with Star Formation in Self-consistent Simulations of
the Multiphase ISM

S. Alwin Mao1 , Eve C. Ostriker1 , and Chang-Goo Kim1,2
1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; alwin@princeton.edu, eco@astro.princeton.edu,

cgkim@astro.princeton.edu
2 Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

Received 2019 November 11; revised 2020 May 22; accepted 2020 May 31; published 2020 July 22

Abstract

We apply gravity- and density-based methods to identify clouds in self-consistent numerical simulations of the
star-forming, multiphase interstellar medium (ISM) and compare their properties and global correlation with the
star formation rate (SFR) over time. The gravity-based method identifies bound objects, which have masses

– ~M M10 103 4 at densities ~ -n 100 cmH
3, and virial parameters αv∼0.5–5. For clouds defined by a density

threshold nH,min, the average virial parameter decreases, and the fraction of material that is genuinely bound
increases, with increasing nH,min. Surprisingly, clouds defined by density thresholds can be unbound even when
αv<2, and high-mass clouds ( – M10 104 6 ) are generally unbound. This suggests that the traditional αv is at best
an approximate measure of boundedness in the ISM. All clouds have internal turbulent motions increasing with
size as ( )s ~ - R1 km s pc1 1 2, similar to observed relations. Bound structures comprise a small fraction of the
total simulation mass and have a star formation efficiency per freefall time eff∼0.4. For –= -n 10 100 cmH,min

3,
eff∼0.03–0.3, increasing with density threshold. A temporal correlation analysis between ( )tSFR and aggregate
mass ( )M n t;H,min at varying nH,min shows that time delays to star formation are ( )~t t ndelay ff H,min . The correlation
between ( )tSFR and ( )M n t;H,min systematically tightens at higher nH,min. Considering moderate-density gas,
selecting against high virial parameter clouds improves correlation with the SFR, consistent with previous work.
Even at high nH,min, the temporal dispersion in ( )e- á ñM tSFR SFRff ff is ∼50%, due to the large-amplitude
variations and inherent stochasticity of the system.

Unified Astronomy Thesaurus concepts: Star formation (1569); Star forming regions (1565); Giant molecular
clouds (653); Interstellar medium (847)

1. Introduction

The interstellar medium (ISM) is hierarchically structured. The
densest entities are individual prestellar cores, which generally are
found within filaments or clumps in giant molecular clouds
(GMCs; André et al. 2014; Dobbs et al. 2014). The GMCs may be
part of molecular/atomic complexes and are typically found
within spiral arms, arm spurs/feathers, or sheared flocculent
features (Elmegreen 1980; la Vigne et al. 2006). At any given
time within a galaxy, a distribution of GMCs with various
properties exists, and each forms stars according to the distribution
of clumps and cores within it. To understand the intermediate
scale between parsecs and kiloparsecs, the properties of GMCs
must be understood, and it is of particular interest to investigate
whether the characteristics of a GMC may be used to predict its
star formation rate (SFR).

There is a long history of characterizing ISM structures in
observations. Molecular lines, dust extinction, and dust emission
maps are used to identify regions with high column density or
number density. These density proxies are a convenient and readily
available way to identify structures and obtain distributions of
cloud sizes and masses. In addition to measuring column densities
from molecular or dust emission, line emission is used to trace
velocities of gas, and from this, the kinetic energy content of the
structures can be estimated. For example, based on CO surveys,
GMCs in the Milky Way (with typical gas surface density

– ~ -M30 100 pc 2) have masses – M10 104 6 , radii between 10
and 50 pc, velocity dispersion between 1 and 7 km s−1, and a line
width–size relationship of ( )s = - R0.9 km s pc1D

1 1 2 (Solomon
et al. 1987; Blitz 1993; Heyer & Dame 2015); the properties of

resolved GMCs in nearby galaxies are similar (Bolatto et al. 2008;
Sun et al. 2018).
By combining an estimate of the mass, size, and velocity

dispersion, an estimate of the virial parameter ∣ ∣a º E E2v k g
(for kinetic energy Ek and gravitational energy Eg) can be
obtained (e.g., Heyer et al. 2009; Roman-Duval et al. 2010;
Kauffmann et al. 2013; Hernandez & Tan 2015; Traficante et al.
2018). Virial parameter estimates from observations typically
adopt ∣ ∣ ( )=E GM R3 5g

2 for the gravitational energy, as would
apply for an isolated, uniform-density sphere, where the effective
radius is empirically computed from the projected area as
R=(A/π)1/2. Although the case of ellipsoidal structures has
been considered (Bertoldi & McKee 1992), more general effects
from nonspherical cloud geometry are not generally taken into
account (even though the filamentary nature of the ISM makes
many clouds quite elongated); nonsphericity tends to reduce
gravitational binding. Internal stratification is sometimes taken
into account by assuming a power-law density profile, which can
increase the estimated ∣ ∣Eg by up to a factor of ∼2 (Hernandez &
Tan 2015).
Based on the simplest spherical estimate, clouds are traditionally

considered “bound” if the estimated virial parameter a ºv
( )s R GM5 2 is less than or equal to 2, where σ is the line-of-

sight velocity dispersion. However, these traditional estimates of
gravitational binding energy are problematic even beyond the
assumptions of homogeneity and spherical geometry because the
“isolated cloud” estimate of ∣ ∣Eg does not take into account
neighboring structures. For a given local gravitational potential
minimum at the center of a cloud, tidal forces set the effective zero
of the gravitational potential not at an infinite distance but along

The Astrophysical Journal, 898:52 (27pp), 2020 July 20 https://doi.org/10.3847/1538-4357/ab989c
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-2491-8700
https://orcid.org/0000-0002-2491-8700
https://orcid.org/0000-0002-2491-8700
https://orcid.org/0000-0002-0509-9113
https://orcid.org/0000-0002-0509-9113
https://orcid.org/0000-0002-0509-9113
https://orcid.org/0000-0003-2896-3725
https://orcid.org/0000-0003-2896-3725
https://orcid.org/0000-0003-2896-3725
mailto:alwin@princeton.edu
mailto:eco@astro.princeton.edu
mailto:cgkim@astro.princeton.edu
http://astrothesaurus.org/uat/1569
http://astrothesaurus.org/uat/1565
http://astrothesaurus.org/uat/653
http://astrothesaurus.org/uat/653
http://astrothesaurus.org/uat/847
https://doi.org/10.3847/1538-4357/ab989c
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab989c&domain=pdf&date_stamp=2020-07-22
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab989c&domain=pdf&date_stamp=2020-07-22


the first potential contour that has a saddle point—equivalent to the
Roche lobe for the case of two spherical bodies. As a result, tidal
forces effectively decrease the gravitational binding energy ∣ ∣Eg of
dense regions in close proximity to other dense regions, which is
common because of the hierarchical structure of ISM density
variations. In addition to tidal forces from nearby gaseous
structures, tidal gravity from star clusters and the large-scale
galactic potential reduce the effective binding of a cloud
(e.g., Ballesteros-Paredes et al. 2009). More generally, tidal forces
can have additional stabilizing effects, including preventing or
limiting fragmentation when collapse does occur such that
fragments are more massive (e.g., Sigalotti & Klapp 2000; Lee
& Hennebelle 2018). Simple virial parameter estimates also
neglect magnetic contributions to support, which can significantly
add to the numerator (Heiles et al. 1993; McKee et al. 1993).
Although simple virial parameter estimates are inexact, they are
often used to assess whether a structure is a likely candidate for
star formation.

Star formation is observed to take place within the densest
structures at the smallest scale within the ISM hierarchy, and it is
important to understand what dynamical processes lead to the
onset of gravitational collapse and what controls the rate of star
formation within a given level of the hierarchy. More generally, it
is of interest to understand how star formation timescales are
related to the properties and corresponding timescales of gaseous
structures. Because star formation involves gravity, the most
commonly invoked reference timescale is the freefall collapse time,
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where ρ is the gas density. Perhaps the simplest way to
characterize the relationship between star formation and gas
properties is via the star formation efficiency per freefall time
(Krumholz & McKee 2005; Krumholz & Tan 2007), defined as

( )


e º
M

M t
, 2ff

ff

*

where tff is the freefall time at the mean density of the gas
contributing toM, and M* is the SFR. Other relevant timescales
include the flow-crossing time across a structure that is
supported by turbulent stresses and the sound-crossing time
for a structure that is supported by thermal pressure. A class of
theoretical models for star formation proposes that in turbulent
clouds, there is a critical density ρcrit above which collapse
occurs within a freefall time, with ρcrit depending on the ratios
of kinetic to gravitational energy (virial parameter), turbulent to
thermal velocity (Mach number), and thermal to magnetic
pressure (plasma beta parameter; Krumholz & McKee 2005;
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011;
Federrath & Klessen 2012; Padoan et al. 2014). The underlying
physical concept behind the idea of a critical density is that the
density must be high enough that thermal pressure and
magnetic stresses cannot support against collapse, and that
the collapse time is shorter than the timescale for shear to tear
apart a structure.

In addition to theoretical models, direct numerical simulations
have been used to characterize the dependence of SFRs on gas
properties. One idealized type of setup employs simulations with
isothermal, self-gravitating gas, in which turbulence is driven in
Fourier space. From a large set of driven-turbulence simulations,

Padoan et al. (2012) suggested that eff depends primarily on the
ratio of flow-crossing dynamical time as

( ) ( )e µ - t texp 1.6 , 3ff ff dyn

where ( )s s= =t R R 3dyn 3D 1D is the flow-crossing time for
system size 2R (=L, the simulation box size for Padoan et al.
2012). For a uniform spherical cloud, the timescale ratio can be
related to the virial parameter by
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thus, these simulations suggest a strong suppression of star
formation at high αv.
Idealized simulations have the advantage of carefully controlled

conditions but the disadvantages that the turbulence is driven in an
artificially prescribed manner to maintain a fixed overall turbulent
amplitude and the processes leading to cloud formation and
destruction are not followed. In reality, GMCs form due to a
combination of large-scale ISM flows (including turbulence, shear,
and epicyclic motion) and gravity (both stellar gravity and self-
gravity) that lead to collection of material from a large volume, as
mediated by thermal and magnetic pressure, and a change from the
atomic to the molecular phase as the gas cools (e.g., McKee &
Ostriker 2007; Dobbs et al. 2014; Chevance et al. 2020).
Turbulence on scales less than the scale height of the warm–
cold ISM likely originates primarily due to the feedback from
young stars (Elmegreen & Scalo 2004; Mac Low & Klessen 2004;
McKee & Ostriker 2007),3 whether inherited from a GMC’s
formation stage or produced internally. Considering that GMCs
live for at most a few turbulent crossing or freefall times
(Kawamura et al. 2009; Kruijssen et al. 2019), it is not clear
that internal GMC conditions can control star formation in a
way that is entirely divorced from their formation and
destruction processes.
In recent years, (magneto)hydrodynamic simulations have

been used to follow the star-forming multiphase ISM in
kiloparsec-size regions at high resolution. In these simulations,
massive self-gravitating clouds naturally condense out of the
diffuse gas, and within these clouds, localized collapse occurs
that represents star cluster formation (Gatto et al. 2017; Iffrig &
Hennebelle 2017; Kim & Ostriker 2017; Colling et al. 2018;
Kannan et al. 2020). In some cases, star-forming and feedback
processes have been followed to even smaller scales via
“zoom” simulations (e.g., Hennebelle 2018; Haid et al. 2019).
By modeling the return of energy (representing radiative
heating and supernova explosions) from star clusters to their
surroundings, a self-consistent, self-regulated state can be
reached in which all thermal phases of the ISM are represented,
and a hierarchy of structures is naturally created. While the
large-scale time-averaged SFR adjusts such that feedback
provides the energy and momentum needed to maintain overall

3 Gravitational instabilities in the combined gas–stellar system (e.g., Jog &
Solomon 1984; Romeo 1992; Rafikov 2001; Kim & Ostriker 2007) can drive
horizontal motions at very large scales, as seen in numerical simulations (e.g.,
Kim & Ostriker 2007; Shetty & Ostriker 2008; Agertz et al. 2009; Dobbs et al.
2011; Hopkins et al. 2012; Agertz & Kravtsov 2015, and citations within), but
these motions generally do not reach supersonic amplitudes unless they are
associated with gravitational collapse. In addition, turbulence at scales less than
the disk scale height can be driven by spiral shocks and the magnetorotational
instability, but numerical simulations show that the corresponding amplitudes
are relatively modest in cold gas (e.g., Wada & Koda 2004; Piontek &
Ostriker 2005, 2007; Kim et al. 2006, 2010; Dobbs & Bonnell 2007; Bonnell
et al. 2013, and citations within).
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equilibrium in the ISM as a whole (Ostriker et al. 2010; Kim
et al. 2011, 2013; Ostriker & Shetty 2011), the collapse to
make individual star clusters depends on local conditions in
overdense clouds. Simulations of this kind present an
opportunity to evaluate the role of gravity in binding ISM
structures that are part of a complex environment and to assess
common practices for estimating gravitational boundedness. In
addition, simulations of this kind afford a realistic setting to test
theoretical ideas regarding the role of gravitational bounded-
ness in controlling SFRs.

In this paper, we use a large-scale ISM simulation produced in
the TIGRESS framework (Kim & Ostriker 2017) to characterize
the properties of dense structures and their relationship to star
formation. Our structural decomposition analysis includes
methods that are similar to typical observational practices, in
which objects are defined based on density or column density.
For sets of objects defined by different density thresholds, we
compute statistics of mass, size, and velocity dispersion, which
allows us to compute “empirical” virial parameters and line
width–size relations. We compute both traditional virial
parameters (only kinetic energy) and virial parameters including
thermal and magnetic energy. In addition, we apply another
method of defining structures based on contours of the
gravitational potential (rather than density contours). In this
method, we identify bound objects as regions where the kinetic,
thermal, and magnetic energy are sufficiently low compared to
the gravitational energy (computed relative to a tidally defined
reference potential contour). The second method of identifying
structures directly takes into account nonspherical geometry,
internal stratification, and tidal forces in quantifying gravitational
energy. By cross-correlating objects defined via density thresh-
olds and genuinely bound objects, we test the validity of the
virial parameter as a measure of gravitational binding. We shall
show that traditional virial parameter estimates can significantly
under- or overstate the true boundedness of ISM structures.

To study the relationship between gas and star formation, we
use correlations between the temporal history of the SFR and the
mass of gas in different categories of objects, including objects
defined both by density thresholds and by being gravitationally
bound. In this way, we are able to measure how eff varies as a
function of density and what eff is for objects that are
gravitationally bound (also allowing for different treatments of
surface terms). We are also able to measure time delays between
the availability of a mass reservoir and the star formation burst
that it produces. We use correlation analysis to quantify the
relative predictive power of different star formation models that
depend on the traditional virial parameter and on our more
sophisticated assessment of gravitational binding.

The plan of this paper is as follows. In Section 2 we describe
our analysis methods, including how we identify bound objects
(Section 2.1), the properties we measure for bound and density-
defined objects (Section 2.2), and how we conduct time series
correlation analyses (Section 2.3); Section 2.4 describes the
TIGRESS simulation that we analyze. Section 3 presents an
overview of ISM structure (Section 3.1) and the results of our
analyses, including statistics of object properties (Section 3.2)
and time series correlation studies (Section 3.3), with a
summary of trends in the values of eff and levels of correlations
for various ways of selecting gas in Section 3.4. In Section 4
we summarize our results and discuss connections with other
current theory and observations.

2. Methods

In this paper, we analyze the properties of dense and bound gas
structures and investigate the relationship between the material in
these structures and the SFR, as applied to the fiducial TIGRESS
model described in Kim & Ostriker (2017), which has parameters
similar to the conditions in the solar neighborhood (see
Section 2.4). The methods we develop, described in some detail
here, are quite general and can be applied to other numerical
simulation data. With some modifications to allow for projected
rather than fully 3D information, our methods can also be applied
to observed data sets.
We begin by describing methods for identifying objects

based on the gravitational potential in comparison to the
kinetic, thermal, and magnetic energy densities (Section 2.1);
additional technical details of the algorithm are described in
Appendix A. We also identify objects based on density
thresholds; properties we quantify for both types of object
include mass, size, velocity dispersion, and virial parameter
(see Section 2.2). We then describe our use of time series to
compare the simulated SFR to the history of mass per freefall
time for different categories of objects (Section 2.3); this
involves fitting for optimal time delay and efficiency and
Bayesian inference to test models for the dependence on virial
parameter. Finally, in Section 2.4 we briefly summarize the
numerical implementation and parameters of the TIGRESS
model to which we have applied our analysis.

2.1. Bound Objects

We identify a hierarchy of structures in ISM simulations
based on contours of the gravitational potential, which defines a
structure tree. The first level of the gravitational tree is
comprised of structures enclosed by isocontours that surround a
single minimum. Branches of the tree merge into a new object
at a higher level when their isocontours are in contact at a local
maximum. This means that objects in the structure tree can be
uniquely identified with critical points in the gravitational
potential. We denote each object defined by a closed potential
contour as a hierarchical binding parent (HBP). Figure 1
provides a schematic illustration of this procedure.
Within each HBP, we denote some subset of the gas as a

hierarchical bound region (HBR). The HBR is the set of cells for
which the total energy (kinetic, thermal, magnetic, gravitational)
of the region is zero. In this calculation, we assign a gravitational
binding energy to each cell based on the difference between its
gravitational potential (Φ) and the isocontour surface of the HBP
(Φ0); i.e., the cell contribution to the gravitational energy of the
HBR is ( )rF - F dx0

3. For the contribution to kinetic energy, the
center-of-mass velocity of the subset of cells is subtracted out first.
Within a given HBP, the most massive bound subset of cells is
taken as the HBR; if no cells are bound, there is no HBR.
In the above definition, we have not considered any effects

from thermal or turbulent stresses on the surface of objects.
Surface stresses could, in principle, act to either compress and
help bind structures (e.g., for a converging flow) or disperse
and unbind structures (e.g., for a shear flow). While the
complex dynamics makes it impossible to decide between these
alternatives in a general sense, we can still investigate the
potential magnitude of the effects that surface stresses may
have. To do this, we begin by averaging the kinetic (k),
thermal (th), and magnetic (B) energy density over the surface
Ω of the HBP (N cells) to compute the mean surface energy

3
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density,
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Here  jk, is the kinetic energy density computed relative to the
center-of-mass velocity of the surface cells.

We then define “HBR+1” and “HBR−1” objects, where the
object HBR±1 is the set of cells satisfying

( ) ( )å å r+ + < F - F 
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i i i
i

i i
HBR 1

k, th, B,
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and now  ik, is the kinetic energy density computed relative to
the center-of-mass velocity of the HBR±1 cells. Clearly, an
HBR+1 object will be more massive than the corresponding
HBR object identified without the surface energy terms,
because the criterion for including cells becomes less restrictive
by adding W on the right-hand side. Similarly, an HBR−1
object will be less massive than the corresponding HBR. We
can think of HBR+1 objects as structures in which surface
stresses are treated as helping to bind material; HBR−1 objects
are those where surface stresses are treated as reducing binding.
Physically, addition of W on the right-hand side in HBR+1 is
equivalent to only considering the excess of k, th, and B over
“ambient” values when computing total energy.4

Subsequently, we will test the correlation of HBR and HBR
±1 objects with respect to the SFR; if surface terms play an
important physical role, we expect this to be reflected in the
relative correlations with SFRs that we measure.
In the hierarchical contour tree, a nested sequence of HBPs is

uniquely defined by critical points in the equipotential; e.g., in
Figure 1, “A” and “B” are nested within “AB.” At each level of
the tree, HBRs can be identified with respect to the
corresponding HBPs. An additional requirement for HBR
(and HBR±1) objects to be considered valid is spatial
compactness. Physically, we impose this requirement because
a “divided” HBR within a single HBP could not be trusted to
form a contiguous object.
The case of a noncontiguous HBR occurs when the center-

of-mass velocity of the HBP is significantly different from that
of its HBP branches, while the surface potential of the HBP is
not significantly higher than that of its branches (this difference
is equivalent to the difference between the HBP surface and the
HBP originating critical point). Then, in this scenario,
considering the HBP as a whole increases the kinetic energy
without sufficiently increasing the depth of the binding
gravitational well, resulting in separate regions that are
unbound relative to each other but may be individually self-
bound. Figure 1 shows examples of noncontiguous (two parts
labeled “ab”) and contiguous (labeled “cd”) HBRs, which
respectively correspond to the merged HBPs labeled “AB”
and “CD.”
We have so far described a process of building a contour tree

of gravitational potential isocontours. Because HBPs and
HBRs are nested, one can consider levels in the hierarchy
separately (in which case, given fluid elements are counted at
each level they appear), or one may apply a merging or pruning
criterion to objects to “flatten” the hierarchy, such that each
fluid element appears in at most a single object.
We are interested in regions self-bound on each scale. To

enforce that every level of the hierarchy is self-bound, we build
the HBR tree from the HBP tree from the bottom up, starting
with leaf HBPs. Here a “leaf” is a structure that contains
exactly one local minimum. The HBR of an HBP is only
computed if all of its branch HBPs were evaluated and host
contiguous HBRs. If an HBR is evaluated and contiguous, it
replaces its branch HBRs, thus becoming a leaf node of the
subset of the full HBR tree.
This method naturally selects the largest-scale candidates for

contiguous collapse, and hence star formation, and is robust to
small-scale fluctuations in the gravitational potential. Leaf
HBPs can be sensitive to such changes in the gravitational
structure, but contiguous HBRs are more robust. For example,
a dispersing or merging object smoothly transitions to or from
being considered as multiple HBRs rather than a single HBR,
because the relevant parameter is the total energy content,
which (roughly) continuously changes.
Even with the above definitions, additional choices can be

made in computing contiguous HBRs. For the rest of this
paper, when we refer to “HBR,” the choices adopted are
building the HBR tree from the bottom up, excluding the star
particle potential, and ignoring surface stresses. We have found
that considering surface stresses can have a large effect, and we
report results separately for objects identified as HBR±1, as
above. Inclusion of surface stresses as HBR+1 can lead to an
order of magnitude more mass being considered “bound.”
However, as we shall show, this does not have a strong effect

Figure 1. Schematic of HBPs (upper case) and associated HBRs (lower case) as
level sets within gravitational wells, plotting gravitational energy against spatial
coordinate. Each HBR is bound relative to its associated HBP. For example, “a”
represents material interior to an isocontour of the gravitational well such that the
HBR has zero total energy, bound relative to the gravitational contour “A.” The
region “a” is therefore an HBR within the HBP “A.” On the left, we show an
example of a region “ab” within HBP “AB,” which is invalid as an HBR because it
consists of two noncontiguous parts. On the right, we show an example of a
contiguous HBR “cd” within HBP “CD,” which is valid. We are generally
interested in only the largest HBRs in any hierarchy, so on the right, we would
remove the objects “c” and “d” from further consideration, since they have been
replaced by “cd.” This schematic also illustrates that each HBP object can be
identified by a critical point of the potential: “A” and “B” are associated with their
respective local minima, and “AB” is associated with the central local maximum.

4 We note that when using the virial theorem (e.g., McKee & Zweibel 1992),
in the case of isotropic magnetic fields and a spherical cloud, the surface terms
would enter in exactly the same way as in the HBR+1 definition. That is, the
mean surface values of kinetic, thermal, and magnetic energy density would be
subtracted from the mean values within the volume.

4
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on the correlation between star formation and “bound” mass
over time.

2.2. Object Definition and Properties

In addition to identifying structures based on potential
contours, there other means of identifying objects, e.g., volume
and surface density thresholds. These are closer to traditional
observational methods using molecular tracers that may have a
characteristic threshold density or dust emission/extinction
maps with a minimum column. Here we shall apply number
density thresholds ( =n 10H,min , 30, and 100 -cm 3) to identify
contiguous regions where the number density >n nH H,min,
referring to these regions as “nH,min objects.”5

We shall analyze HBRs, HBPs, and nH,min objects in similar
ways in terms of both their properties and their relation to star
formation. For each set of object categories in any simulation
snapshot, we use member cells to calculate each object’s mass,
volume, freefall time from its mean (volume-weighted) density,
and mass per freefall time.

For HBRs and nH,min objects, we compute individual virial
parameters αv. We compute the thermal energy density

( )g= -  1th for pressure  using γ=5/3. With momen-
tum density r=p v and center-of-momentum velocity vCOM, the
kinetic energy density is ( )(∣ ∣ )r r= - p v1 2k

2
COM
2 . The

magnetic energy density is ∣ ∣ p= B 8B
2 for magnetic field B.

These are multiplied by the cell volume and summed over cells
for each object to define the total kinetic, thermal, and magnetic
energy Ek, Eth, and EB, respectively. The total kinetic energy of
an object is then ( ) ( )s sº =E M M1 2 3 2k 3D

2 2 for s3D and σ
the 3D and equivalent 1D velocity dispersions, respectively. We
define an effective object radius R from each object’s volume via
V=(4π/3)R3 and then define an estimated gravitational self-
binding energy as

( ) ( )ºE
GM

R

3 5
7g

2

using the total object mass M. We note that this is not the true
gravitational binding energy, but we adopt this definition for
the purpose of comparison with standard practices in the field
that assume isolated objects. With the above definitions, we set

( )a
s

º =
E

E

R

GM
2

5
, 8v

k

g

2

( )a º
+ +E E E

E
2 ; 9v,total

k th B

g

while the former is used most often in the literature under the
assumption that kinetic energy dominates over both thermal
and magnetic, the latter is more general. We also examine the
separate energy components of objects.

For each nH,min object, we find the mass fraction of cells that
are also within HBRs. We refer to this as the “bound fraction.”
This allows us to examine the overlap between a method of
identifying ISM structures (and possible star-forming regions)
that is simple but easily applied and a method that is
sophisticated and physically motivated but less easily applic-
able in observations. The bound fraction is also the probability

of gas being bound given the observation that it is of high
density ( ( ∣ )P bound dense ).

2.3. Time Series Analysis

A question of significant interest is the detailed correlation in
time between the mass in identifiable star-forming structures
and the actual SFR. To investigate this question, we build a set
of time series of the mass per freefall time (M tff) for selected
gas subsets, and for each one, we test the connection to the
time-dependent global SFR in the simulation. Gas subsets
include each object type defined in Sections 2.1 and 2.2; we
build time series by summing M tff over the objects. Gas
subsets are also defined by considering the collective material
above minimum gas surface density thresholds (Σ > 10, 30,
and 

-M100 pc 2) and within logarithmic bins of number
density of half-decade width. For tff in most gas subsets, we use
the volume-weighted average density, either for tff in individual
objects or for the whole subset when individual objects are not
defined. For the case of surface density thresholds, we instead
use a mass-weighted average density in tff , since many low-
density cells (at large z in the simulation) contribute to the
surface density. For gas subsets where individual objects i are
defined, M tff represents a sum over M ti iff, . For the case of
number density bins (for which objects are not defined), the
average density for the whole population is close to the lower-
density limit of the bin on the high-density side of the
distribution.
We compute the SFR at any given time t by taking the total

mass of all star particles whose age t* is less than some
maximum age t ,max* and dividing by that age:

( ) ( )å=
<

t M tSFR . 10
t t

,max

,max
* *

**

This is observationally motivated but also naturally smooths
the SFR time series. This also introduces a delay shift of
t 2,max* in the time series because mass that forms stars at a
given time t produces a response in our computed SFR that is
uniform between t and +t t ,max* , with midpoint +t t 2,max* .
As long as only young stars are considered and t ,max* is small,
these effects are not problematic. We adopt =t 5 Myr,max* for
the results shown in this paper.
We use time series comparisons to compute the star formation

efficiency per freefall time (Equation (2)) for each subset of the
gas. For comparison to ( )tSFR , we use the individual time series
( )( )M t tff from each defined gas subset (e.g., HBRs, HBPs,
nH,min objects, number density bins, and surface density thresh-
old). For each gas subset, we apply simple linear regression to
estimate eff using the model e= M tSFRm ff ff . The error in the
fitted coefficient is denoted Δeff , while we use a normalized
(rather than dimensional) variance in the error of the “data” SFR
compared to the “model” effM/tff ,

( ) ( )eD = - M tSFR SFR , 11i i iff ff

( )s =
-

å D
á ñD á ñ

N

1

1

SFR

SFR
, 12N i

SFR SFR
2

2

2

to quantify the strength of the relationship between SFR and
M t ;ff here angle brackets denote a temporal average. A
smaller sD á ñSFR SFR corresponds to a larger covariance or

5 For this, we use the Python package scipy, specifically the function scipy.
ndimage.label, with a boundary correction for the shearing periodic box.
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correlation coefficient and demonstrates a stronger dependence
of SFR on M tff .

We also experimented with other methods of estimating eff and
quantifying the connection between SFR and M tff , but we
concluded that the above method has the most statistical
simplicity, physical motivation, and consistent results. Other ways
of estimating eff included á ñ á ñM tSFR ff and ( )á ñM tSFR ff .
Other ways of quantifying the connection included the covariance,
the Pearson correlation coefficient, the standard deviation of
[ ( )]M tSFR iff , and the rms of e- M tSFR ff ff .

In practice, we modify the above linear regression to
consider the effect of time delays. First, as already alluded to,
our definition and observable definitions of SFR are already
shifted; since the SFR is based on the mass of stars formed over
the previous =t 5 Myr,max* , SFR(t) is sensitive to conditions
in the gas at a time~ -t t 2,max* . Furthermore, it is reasonable
to expect that a given gaseous object might not be presently
forming stars but rather will form stars after a delay that scales
with the freefall time. More specifically, we might expect that
temporal peaks in the mass of low-density gas would lead to
temporal peaks in the mass of high-density gas after a delay
comparable to the low-density freefall time. Correspondingly,
temporal peaks in the mass of gas at yet higher density might
be expected after a subsequent shorter delay, comparable to the
high-density freefall time.

To allow for temporal delays, we apply the linear regression
to time-shifted sets of SFR and M tff , interpolating when
necessary. For any time series, we identify the delay time tdelay
that minimizes sD á ñSFR SFR , assuming that SFR lags behind
M tff by tdelay. We present results for eff and sD á ñSFR SFR for
this choice of tdelay. This allows for the maximum correlation
between SFR and M tff , under the assumption that M tff
causes future SFR.

2.3.1. Dependence on Virial Parameter

In varying galactic environments, gas at a given density may
be in different dynamical states, in ways that would affect
future star formation. For example, a higher contrast of the
density in a cloud relative to its environment may reflect a more
bound state, and clouds that are more bound might be more
susceptible to forming stars. Following typical practice in the
field, we can characterize the “boundedness” of individual
structures based on their virial parameter.

We test the effect of the virial parameter on susceptibility to
star formation using our time series, comparing the actual

( )tSFR (from star particles) with model predictions:

( ) ( ) ( )å
e a

=t
M

t
SFR . 13m

i

v i i

iobject

ff ,

ff,

Generalizing the treatment of the previous section, in which all
gas in a given gas subset was treated as contributing to star
formation with the same eff , here the star formation model
allows for different efficiencies ( )e av iff , in individual objects.
For each temporal snapshot, the right-hand side sums over all
objects in a given category (either HBRs or nH,min objects) at
that time, and eff(α) is a specified model. For each object, av i, ,
Mi, and t iff, are the virial parameter, mass, and freefall time.

Our simplest model is to take a constant eff , that is,

( ) ( )e a e= , 14vff ff,0

where eff,0 defines the normalization of this model and models
to follow.
Our second model is a generalization of Equation (3), as

proposed by Padoan et al. (2012):

( ) ( ( ) ) ( )e a e b p a= -exp 3 40 . 15v vff ff,0
2 1 2 1 2

Our third model is a simple αv cutoff,

( ) ( ) ( )e a e a a= -H , 16v v vff ff,0 ,cutoff

where H is a step function equal to unity for positive argument
and zero for negative argument. This model includes only
objects with a a<v v,cutoff but weights them equally.
Since we are interested in comparing model ( )tSFRm to

simulation ( )tSFR , we apply Bayes’s theorem,

( ∣ ) ( ∣ ) ( )
( )

( )=P A B
P B A P A

P B
, 17

where A represents the model ( )tSFRm given by Equation (13)
and B represents the simulated ( )tSFR given by Equation (10).
In Appendix B, we describe the Bayesian inference

procedure that we apply. For a given object class and model
( )e avff , we evaluate the likelihood ( ∣ )P B A over the parameter

vector θ that includes time delay tdelay, eff,0, additional model
parameters (β or av,cutoff , as appropriate), and the normalized
variance σ2 between the data and the model. Beyond the single
value of σ, it is also interesting to compare the distributions in
D á ñSFR SFRi for different models and gas subsets. For the
constant eff model of Equation (14), inferring eff (and the other
parameters) is equivalent to the simple linear regression
described above.

2.4. TIGRESS Simulations

Although our methods can be applied more broadly, we
focus our tests on TIGRESS simulations. TIGRESS is a
framework for MHD simulations that self-consistently models
star formation and effects of feedback in the three-phase ISM at
parsec scales. Details of the TIGRESS numerical algorithms
are presented in Kim & Ostriker (2017), along with the results
of the basic properties (and a convergence study) of a model
with parameters representative of the solar neighborhood. We
use two runs of this model in the tests in the present paper, one
with 4 pc resolution and one with 2 pc resolution. Data dumps
from the models that we use have a cadence of 1Myr, with
different minimum and maximum times as indicated in Table 1.
While the surface density declines over time, the typical value
is ~ -M10 pc 2.
The features in TIGRESS include self-gravity, sink particles,

supernova explosions, far-UV (FUV) luminosity from a
population synthesis model, resolved supernova remnant
evolution prior to cooling, FUV-dependent photoelectric

Table 1
Simulation Parameters

Name Resolution tmin tmax ( )S tmin ( )S tmax
(pc) (Myr) (Myr) ( )

-M pc 2 ( )
-M pc 2

MHD-4pc 4 300 700 10 8
MHD-2pc 2 351 421 10 9
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heating, optically thin cooling, and galactic shear. TIGRESS
uses shearing periodic boundaries in the galactic plane and
outflow in the vertical direction. The shearing periodic
boundaries affect the computation of gravitational potential
isocontours. We use an algorithm wherein each cell only needs
to know which cells are its immediate neighbors; so, to correct
for shearing periodic boundaries (or any other boundary), we
simply correct the neighbor list of cells on the boundary. The
shear velocity is included in computing the kinetic energy of
objects, but its effect is small in most clouds.

For the purposes of the current analysis, we note that star
cluster particles (numerical sink particles) are created when
three conditions are met (Gong & Ostriker 2013). The density
in a cell must exceed a threshold set by the Larson–Penston
collapse solution at the grid resolution

( ) ( )r
p

= D º
D

r x
c

G x
2

8.86
, 18s

LP

2

2

where Δx is the resolution and cs is the local sound speed.
While the temperature and therefore sound speed vary slightly
within dense gas (due to variations in the heating rate), typical
values of the density thresholds for star cluster particle creation
are = -n 304 cm 3 for D =x 4 pc and = -n 927 cm 3 for
D =x 2 pc. In addition to exceeding a density threshold, a
cell must be at a local minimum of the gravitational potential,
and the flow must be converging along the three Cartesian
directions. When all conditions are met, a particle is created,
drawing a portion of the mass from a control volume of 33

cells. The density within the control volume is reset based on
extrapolation from surrounding zones, with only the excess
mass above the extrapolation deposited in the sink. We note
that particle creation events are not subject to an efficiency
factor that translates to a probability less than 1 in a given
time step.

2.5. Dendrograms

We can use a dendrogram6 as a graphical representation of
the gravitational potential contour tree. A dendrogram
represents the structure of the gravitational potential and shows
where HBRs are relative to that structure. In constructing the
dendrogram visualization, we space local minima in the
gravitational potential evenly and order them so that two
objects that intersect are nearby. The position of each local
minimum in this ordering is the “tree index.” Then, the
intersections can be represented by nonoverlapping horizontal
lines, and distances in the tree index roughly encode 3D spatial
distances, since intersecting isocontours are obviously in
contact with each other. We start with a list of all isocontours
on top of the tree with no parents. Then, each member of the
list is replaced with itself followed by its immediate children,
the isocontours that merged to form it. This repeats for each
new member of the list and is performed recursively. Then, the
tree is plotted in reverse, since deeper descendents appear later
in the list and need to be plotted first, as the average of their tree
index determines the tree index of their parents. Local minima
are plotted first and given an integer tree index, which evenly
spaces them, as desired.

3. Results

3.1. Structure Geography and Object Dendograms

Sample surface density snapshots from the MHD-2pc model
can be seen in Figure 2. Also shown (left panels) is a
comparison between HBR and HBP objects, projected onto the
horizontal plane. In the right panels, we similarly show
projections of nH,min objects defined by density thresholds

=n 10H,min and 100 cm–3. This comparison highlights the
smoother and more selective nature of energy-identified
objects.
A sample dendogram visualization of the HBP and HBR

objects identified in Figure 2(e) is shown in Figure 3. The
gravitational potential range for each HBR is delimited by red
(bottom of vertical segment) and green (top of vertical segment)
triangles, while the potential isocontour value of the corresp-
onding HBP is the next horizontal black line above. The
dendrogram reveals several qualitative properties. For example,
ISM turbulence is of the order –~ -v 1 10 km s 1, so it is expected
that bound material must be found in wells with depths of

–DF ~ -1 100 km s2 2. At a glance, this is apparent in Figure 3.
Most local minima and most of the regions represented by the tree
do not host bound regions. The differences between the tops of
HBRs and the tops of HBPs roughly represents the total energy
and corresponds to ~ -v 1 km s 1.
Furthermore, we can see that the merging criterion described

in Section 2.1 usually prefers the smallest-scale isocontours at
this resolution, corresponding to (unmerged) HBRs containing
only one local minimum. A merged HBR would appear as a
green upward triangle on a vertical line stemming above a
horizontal line. These do not appear in Figure 3. That is, no
merging occurs to produce HBRs in the particular snapshot
represented by Figure 3, and in general snapshots, merging is
rare. Qualitatively, this is because merging adds very little DF
for each merge, as evidenced by short vertical lines in Figure 3
corresponding to DF ~ -1 km s2 2. At the same time, merging
results in larger-scale objects with much higher velocity
dispersion.
Note that Figures 2(e) and (f) show that the gas is mostly

contained in a single large-scale region, which results in an
overall potential well from the main sheared-spiral feature. This
is represented in Figure 3 by the overall inverted pyramid shape
of the dendogram, while the large isocontour at (−200 pc, 300
pc) in Figure 2(e) corresponds to index 44 in the dendogram.
The densest gas and the bound gas in the hierarchy tend to be
near the bottom of the overall well of the simulation.

3.2. Gas Distribution and Object Properties

3.2.1. Gas Density Distribution

First, we summarize some of the basic properties of the gas in
the simulations. In Figure 4(a), we show the number density
distribution in MHD-2pc and MHD-4pc, averaged over all times.
We show mass fractions of half-decade bins in number density for
MHD-4pc and normalize both the discrete and continuous
distributions so that the area under each is the same. In both
simulations, the mass probability density functions (PDFs) are
centered near –= -n 1 10 cmH

3, with a maximum density of
-10 cm2.5 3 in MHD-4pc and -10 cm3 3 in MHD-2pc. The mass-

weighted mean densities are =n 4.84H and -10.1 cm 3 for MHD-
4pc and MHD-2pc, respectively. The modes of the distributions
are slightly lower, at densities of =n 0.7H and -0.8 cm 3 for

6 See Rosolowsky et al. (2008), Goodman et al. (2009), and Burkhart et al.
(2013) for previous dendrogram analyses.
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MHD-4pc and MHD-2pc, respectively. For each simulation, the
density distribution has a roughly lognormal central component,
with a secondary cold dense component.

In Figure 4(b), we show the mass fractions above number
density thresholds. In MHD-2pc, roughly half of the mass is
denser than = -n 1 cmH

3, roughly a tenth of the mass is denser

Figure 2. Progression of surface density snapshots from the MHD-2pc simulation at 370, 390, and 410 Myr (top to bottom) comparing HBP and HBR objects that are
identified based on energy (left) to objects that are identified based on a minimum density, nH,min (right). Red contours show projections of HBR (left) and

= -n 100 cmH,min
3 objects (right). Black contours show HBP (left) and > -n 10 cmH

3 objects (right).
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than -30 cm 3, and a few percent of the mass is denser than
-100 cm 3. The fractional differences between the MHD-4pc

and MHD-2pc model are modest for lower density thresholds.
These differences are the result of incomplete sampling in time
in simulations with large-amplitude variations in the level of
vertical compression.7 At higher density thresholds, the
fractional differences between the two resolutions is much
higher due to explicit numerical resolution–dependent effects.
In particular, sink particles are introduced when collapse
becomes unresolved on the numerical grid, such that the
Riemann solver would otherwise fail (see Gong & Ostriker
2013, for discussion of specific criteria). The thresholds are
at » -n 300 cm 3 for D =x 4 pc and » -n 900 cm 3 for
D =x 2 pc. When a given cell meets density (and other)

criteria for particle creation, gas in this cell and neighboring
cells is partially removed and added into a sink particle. This
has the effect of reducing the amount of mass in the simulation
at densities above and within a factor of 2 below the imposed
sink particle threshold. Thus, we expect the distribution to be
strongly affected above ~n 150 and -450 cm 3 for D =x 4
and 2 pc, respectively. This is evident at the high end of
Figure 4(b), where there is negligible material in MHD-4pc
above = -n 150 cmH,min

3.

3.2.2. Basic Object Statistics

Next, we examine statistics and properties of different
categories of objects that are defined based on the methods of
Sections 2.1 and 2.2, i.e., HBRs, HBPs, and nH,min objects. We
only consider MHD-2pc so that objects are better resolved.
In Figure 5, we present number- and mass-weighted

distributions of mass, radius, density, and freefall time for

Figure 3. Dendogram representation of the contour tree, showing objects according to their gravitational potential value (Φ, in units of (km s−1)2) and relative position
in the tree. This corresponds to the bottom left panel of Figure 2, from the MHD-2pc simulation at 410 Myr. Downward triangles (red and black) show local minima of
the gravitational potential, with red triangles showing minima hosting HBRs. The bases of upward green triangles show the maximum Φ isocontour of each HBR,
bound relative to a horizontal black line delineating the maximum Φ of its HBP. Regions between critical points are represented as vertical black lines, and critical
points are horizontal black lines where those regions intersect and merge in this tree diagram.

Figure 4. Left: hydrogen number density distributions of MHD-2pc (red) and MHD-4pc (black), taken at late times (t>300 Myr). Half-decade bins are shown for
MHD-4pc, showing the fraction of the total mass in each bin. Right: cumulative distributions of the hydrogen number density, showing the fraction of the total mass in
the simulation above nH,min.

7 With “high” and “low” states of vertical compression, averages from a given
simulation run will be biased above/below the fully sampled mean if the
simulation duration includes more peaks/valleys.
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HBR and HBP objects, as well as nH,min objects defined by
number density thresholds =n 10H,min and -100 cm 3. The
shapes of the distributions, as well as characteristic values, are
different for different objects. In particular, the distributions of
HBRs and HBPs are roughly lognormal, while for the nH,min

objects, number-weighted distributions increase toward low
mass and size (where they are truncated by resolution).

For HBR objects, the typical mass is – M10 103 4 , with very
few above M104 . The HBR objects are mostly dense, with nH
a few -100 cm 3 (implying ~t 3ff Myr). Hence, it is useful to
compare HBRs to nH,min objects with = -n 100 cmH,min

3. The
radii of HBR objects are typically several parsecs, which
demonstrates that at least the most massive are well resolved
with 2pc resolution.

The HBP objects have larger sizes and masses than HBR
objects, with lower characteristic densities (a few tens) and
freefall times of nearly 10Myr. The distribution of HBPs is
much broader than that of HBRs.

There are a large number of nH,min objects at small masses and
radii, since we place no lower cutoff on their size. However, most
of the mass is in objects of large mass and radius. For

= -n 10 cmH,min
3, typical (in a mass-weighted sense) objects

are – M10 105 6 and 100 pc. For = -n 100 cmH,min
3, typical

objects are – M10 104 5 and 10 pc. For reference, we note that
a barely resolved 43 region of cells would have a volume of
( ) =8 pc 512 pc3 3. For number densities of 10, 30, and

-100 cm 3, such a region would have masses of 170, 500, and
M1700 , respectively, assuming μ=1.4.

3.2.3. Virial Parameter and Object Boundedness

Figure 6 shows the distribution of virial parameters and masses
for HBR and nH,min objects via contours and scatter plots. In
structures of moderate overdensity ( = -n 10, 30 cmH,min

3), there
is a general trend for αv and av,total to decrease with increasing
mass; we return to the reason for this below. We find that very
few nH,min objects at the low-mass end ( < M103 ) have overlap
with HBRs, even if their kinetic virial parameter αv<2. Thus,
nH,min objects with negligible (less than 1%) overlap with HBRs
are represented by contours enclosing 20%, 40%, 60%, 80%, and
90% of the objects. For scatter plots of individual nH,min objects,
the color of each point indicates the fraction (�1%) of its mass
that is bound, based on overlap with HBR objects.

Figure 5. Number-weighted (blue; right axis) and mass-weighted (black; left axis) distributions of mass, radius, number density, and freefall time for objects defined
in MHD-2pc. The top two rows show distributions for HBP (Parent) and HBR (Bound) objects, and the bottom two rows show distributions for nH,min objects defined
by density thresholds of =n 10H,min and 100 -cm 3. The radii are computed from the volume as p=R V3 43 .
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The depth of a potential well behaves as r~GM R G R2. At
constant density, only a sufficiently large object will have a
well deep enough to bind material. A rough estimate comparing

>GM R v2 with ( )p r=M R4 3 3 yields a minimum mass
that follows

( )
r

> pM
v

G
. 192

6

4

3
3

For = -v 1 km s 1 and = -n 30 cmH,min
3, this minimum mass is

´ M2 103 . The =n 10H,min and -30 cm 3 objects overlapping
HBRs lie above their respective minimum mass (for
= -v 1 km s 1), whereas the = -n 100 cmH,min

3 objects all lie
above the resolution minimum mass (which is greater than the
well minimum mass).

For objects of mass – ~ M10 103.5 4 , those at the lower range
of av and av,total have the largest fraction of bound gas (i.e., red
points), which is consistent with general expectations. How-
ever, the actual values of αv and av,total in the objects with
>50% HBR overlap cover a wide range from αv∼0.6 to 6,
generally decreasing at higher density. This shows that the
“observed” virial parameter is not a very accurate quantitative
measure of gravitational boundedness.

Furthermore, Figure 6 shows that unlike low-mass
( – ~ M10 103.5 4 ) nH,min objects with αv  2, which are
generally bound, nH,min objects at the high-mass end (>104.5 M )
have very little overlap with HBRs, even at low virial parameter
(αv<2). That is, high-mass objects ( M106 ) can appear bound
based on simple criteria using their mass, size, and velocity

dispersion (Equation (8)), but in reality, this is not consistent with
full gravitational potential structure. This is in part due to tidal
fields preferentially unbinding larger-scale objects and in part due
to substructure. Substructure within an nH,min object manifests
itself as multiple separate HBR objects that comprise a small
fraction of the mass because most of the mass lies in
between HBRs.
In Figure 7, we show the fraction of the mass above number

density thresholds =n 10H,min , 30, and -100 cm 3 that is found in
HBRs. This fraction is only a few percent for =n 10H,min and

-30 cm 3, increasing to 10% for = -n 100 cmH,min
3. The fraction

roughly follows the power lawµnH,min
0.80 . Since the gas in HBRs is

mostly above = -n 100 cmH
3 (see Figure 5), all of these

threshold sets contain nearly the same HBR mass, and the
overlap fraction should nearly follow the reciprocal of the
threshold distribution shown in Figure 4(b). Indeed, the
distribution of mass in Figure 4(b) at these number densities
follows -nH,min

0.87, with a slope close to the negative of the slope in
Figure 7. Although the = -n 100 cmH,min

3 threshold is within an
order of magnitude of the maximum density in the simulation, and
the Larson–Penston density (see Equation (18)) is one of the
criteria for star particle formation, we do not find strong evidence
for a critical density for boundedness within the range =nH

– -10 100 cm 3.
In summary, we find that overdense objects with a  2v are

truly bound only if their masses are low; high-mass objects are
generally unbound even when a simple estimate suggests
otherwise.

Figure 6. Distributions in virial parameters and mass of various defined objects (as labeled above each panel) for MHD-2pc. In the top row (panels (a)–(d)), only
kinetic energy is considered for αv (Equation (8)). In the bottom row (panels (e)–(h)), αv,total considers kinetic, thermal, and magnetic energy (Equation (9)). Dashed
horizontal lines delineate αv=2 or a = 2v,total , corresponding to =E Ek g in the top panels and + + =E E E Ek B th g in the bottom panels. Vertical lines represent the
minimum mass estimate from Equation (19). Contours show the distribution of nH,min objects whose mass has less than 1% overlap with HBRs. Scatter points are
individual nH,min objects whose color reflects their mass fraction overlap with HBRs. Truly bound objects (red points) with order unity overlap with HBRs tend to be
low mass (around M103 ) with virial parameters αv  2. Especially at high masses, many apparently “bound” objects based on αv<2 are not in fact HBR bound
(i.e., they are colored blue–green–yellow). Additionally, many αv>2 and a > 2v,total objects at low and moderate density have significant HBR overlap (red). These
results show that the “observed” virial parameter is not a good indication of true gravitational binding.
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3.2.4. Line Width–Size Relations

In Figure 8, we show the line width–size relationships of
nH,min, HBR, and HBP objects. Here the line width for an
object is defined as E M2 k , where M is the mass and Ek is
the kinetic energy in the object’s center-of-mass frame. The
size is computed from object volume V taking ( )p=V R4 3 3.
Panels (a)–(e) of Figure 8 include both contours of each
distribution and median relationships, with bins for the latter
chosen to each contain 100 objects, except for the final bin.
While there are detailed differences among the median line
width–size relationships for different object categories, panel
(f) shows that the median relationships are in fact quite similar
across all categories.

All panels of Figure 8 include a reference line with slope
s µ R1 2 (dashed line) for comparison; the normalization is set
by the large-scale turbulence in the simulation (a mean velocity
dispersion s = -16 km s3D

1, taken to apply at 2H for a gas
scale height =H 240 pc). The s µ R1 2 scaling is what would
be expected if all of the objects simply sampled from the same
power spectrum of highly compressible ISM turbulence with an
outer scale much larger than typical object sizes. The objects
with the closest line width–size relation to s µ R1 2 are HBPs,
which are defined by isocontours of the gravitational potential.
The moderate-overdensity ( = -n 10, 30 cmH,min

3) objects have
median slopes only slightly steeper than s µ R1 2.

A relation close to s µ R1 2, as seen for the =nH,min
-10, 30 cm 3 objects in Figure 8, would explain the overall

decrease of αv with M in Figure 6. For nH,min objects, M∝R3

and s µ Rp would yield ( ) ( )a µ µ- - - -R Mv
p p2 1 2 1 3. Thus,

any line width–size slope <p 1would yield a decrease in αv at
higher M.

For nH,min objects, in each panel of Figure 8, we also include
the “marginally bound” line corresponding to a spherical object
with density equal to the threshold density and kinetic energy
equal to the potential energy, which has the slope s µ RnH,min

1 2 .

Moving to higher nH,min shifts this “self-gravitating” line
upward, since ( )s r p= G R8 53D

1 2 . For a density threshold
= -n 10, 30 cmH,min

3, most objects lie above the marginally
self-gravitating locus. For the = -n 100 cmH,min

3 threshold, the
median relationship follows the marginally bound relation quite
well. These results are consistent with the results for the
distributions of av shown in Figure 6, which shows that the
typical αv decreases with nH,min. We again emphasize that even
with αv of order unity, 90% of the material in objects above a
density threshold = -n 100 cmH,min

3 is not part of bound
regions.

3.3. Time Series

We now turn to our time series analysis, based on the
methods described in Section 2.3. Briefly, we use simple linear
regression to fit for parameters that relate the time series of the
actual SFR in the simulation to the time series of the mass
available to form stars. In this way, we are able to measure the
efficiency per freefall time, eff , for gas in different categories,
including above density or surface density thresholds, within
density bins, and part of bound structures. In comparing time
series, we measure best-fit time delays between the availability
of gas and star formation. Results of the linear regression
analysis will be summarized in Section 3.4. There, we shall
also summarize results from the application of Bayesian
methods (see Appendix B) to test models with an explicit
dependence of eff on the virial parameter. Since a large number
of snapshots is necessary for this analysis, we primarily use
MHD-4pc, which was run for a longer time; we have also
analyzed MHD-2pc, with both sets of results summarized in
Section 3.4.
In Figure 9, we show how the mass fractions of different

categories of material evolve over time. The top panel shows
the mass fraction in all HBRs and HBPs, where HBRs are
bound objects and HBPs are their parents. We also show HBR
±1 objects and their parent HBR±1 objects; the definitions of
HBR±1 allow for surface terms to help confine or disperse
material (see Section 2.1). Each HBR+1 includes more mass
than the corresponding HBR, while the corresponding HBR−1
includes less mass. The total mass in each category therefore
follows the same ordering. The bottom panel shows the mass
fractions of material in half-decade number density bins. Here
there are clear quasi-periodic oscillations in all bins, which
reflects the natural vertical oscillation frequency in the overall
gravitational potential, ( )w p r~ G42

tot for ρtot, the total
midplane density of stars plus gas. These vertical oscillations
are excited by the feedback from correlated star formation.
Overall, the amplitude of fluctuations increases for categories
with lower mean mass fractions. In addition, upward fluctua-
tions in the mass fraction are successively delayed in time for
gas in high-nH bins relative to gas in low-nH bins; we discuss
this effect further below.
Roughly 10% of the total simulation mass is in low density

bins and HBR+1/HBP+1 objects. The HBR+1 objects
effectively subtract the surface value of kinetic, thermal, and
magnetic energy from each cell in the object, such that low-
density material in the shallower regions of a potential well is
considered bound. The HBR+1 mass is close to the HBP+1
mass because nearly all of the material within an isocontour is
considered bound. A few percent of the total mass is within
HBP−1 and HBP objects, which have relatively similar mass
histories. Typically, only roughly 10−3 of all the material in the

Figure 7. Probability that gas above a given density threshold is in bound
structures (HBRs). For gas above thresholds of nH,min=10, 30, and 100 cm−3

in MHD-2pc, symbols plot the conditional probability ( ∣ )P bound dense ;
numbers give the corresponding mass fraction. The solid line fit has a slope
of 0.8. The probability of gas being bound increases with density, but even at

= -n 100 cmH,min
3, only ∼10% of the mass is bound.
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simulation is in HBR and HBR−1 objects. Relative to HBR
objects, HBR−1 objects have slightly less mass because the
surface energy terms are added to each cell, reducing the
amount of material that is considered bound.

It is interesting to compare the SFR history with the
evolution of M/tff at lower and higher gas surface density Σ, at
lower- and higher-density nH, and for less and more bound
objects. Note that the typical density and freefall time of a
given gas category do not significantly change over time, so
correlating SFR(t) with total mass per freefall time M tff is
similar to correlating SFR(t) with the total mass M(t) in a
defined subset. By comparing the time series in Figure 10, it is
evident that more restrictive definitions have an improved
correlation with SFR. This holds for increasing threshold Σ, nH
threshold, nH bins, and boundedness from HBP to HBR.
Intriguingly, Figures 10(b) and (c) demonstrate that simple
density criteria (high density threshold or bin) yield a better
correlation with SFR than the more complex criteria based on
total energy in the full gravitational potential landscape that go
into the definition of HBR, shown in Figure 10(d). For
example, near t=400Myr, the HBR definition fails to predict
a star formation peak, while there are strong peaks in the

amounts of high-density gas at this time. The visual
impressions of these histories already suggest that gravitational
binding is not a guarantee that star formation will be successful;
we return to this quantitatively below.
As described in Section 2.3, for each category of material,

we apply linear regression to obtain (i) the optimal time delay
to match the shape of its M/tff time series to the SFR times
series and (ii) the corresponding normalization amplitude eff ,
which measures the star formation efficiency per freefall time
for gas in that category. Figure 11 shows the result of applying
this linear regression to categories of gas defined by density
bins. It is clear that gas in higher nH bins correlates more
strongly with the SFR and experiences a smaller time delay
until star formation occurs, compared to gas in lower nH bins.
For the –= -n 10 cmH

0.5 1 3 density bin (panel (c)), there is some
(delayed) temporal correlation with the SFR, but for even lower
density bins (panels (a) and (b)), there is no clear correlation
(and “delayed” curves are not shown). The amount of gas in
low density bins ( –= -n 10 10H

0.5 0.5) comprising the bulk of the
ISM mass (see Figure 4) does vary in time (by several tens of
percent) due to large-scale vertical and horizontal oscillations
that produce ISM compressions and rarefactions. However,

Figure 8. Line width–size (s = E M23D k for object mass M and object kinetic energy in the center-of-mass frame Ek and radius from ( )p=V R4 3 3 for object
volume V ) relationship of various objects (nH,min, HBR, HBP) from MHD-2pc. In panels (a)–(e), the contours show the full distribution, and the blue line shows the
median value of radius bins. The contours contain 20%, 40%, 60%, 80%, and 90% of the objects. For reference, the black dashed line represents s µ R1 2 with
normalization set by the measured 3D velocity dispersion of T<2×104 K gas for R equal to twice the measured scale height in the simulation. In panels (a)–(c), the
black dotted line represents spheres at the threshold density with equal kinetic and potential energy (s µ RnH,min

1 2 ). The solid black line is s µ R1 2 with normalization
similar to that of Milky Way GMCs ( )s = ´ - R3 0.9 km s pc3D

1 1 2 (Heyer & Dame 2015). The median relations of all object types are stacked in the bottom right
panel.
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only variations in the amount of denser, more strongly
compressed gas appear to directly induce star formation.

In Figure 12, we show that the time delay inferred from the
fit is comparable to the freefall time associated with the nH bin
upper edge, [ ( )]p m=t G n3 32ff,min H,max

1 2 , with =nH,max

n100.5 H,min. This is consistent with the idea that a variation in
mass or M/tff at a given density can only lead to a variation in
SFR after the gas is able to dynamically respond; the minimum
response time is the freefall collapse time at that density. This
indeed appears to be the defining timescale, even though the
efficiency of collapse is less than unity.

In Figure 13, we compare histories of star formation with the
time series of e M tff ff , obtaining a best-fit time delay and eff ,
for material defined by surface density thresholds, number
density thresholds, and HBR objects. For surface and number
density, correlation with SFR improves with a higher threshold.
This correlation is visually similar for S > -M30 pc 2,

> -n 10, 30 cmH
3. Although HBR and > -n 100 cmH

3 both
follow SFR quite closely (and, in particular, follow deep dips
much better than predictions based on lower density thresh-
olds), in fact, the mass of HBR gas provides a slightly worse
prediction of SFR than the mass of gas at > -n 100 cmH

3. We
quantify this in the next subsection.

3.4. Star Formation Efficiency

In this section, we present results on our inference for efficiency
per freefall time eff for various subsets of gas, based on application
of the methods of Section 2.3. Having defined various criteria for
selecting different subsets of the gas, we study how measures of eff
depend on those criteria. We also conduct a quantitative
assessment of the relative performance for predicting SFR that is
obtained by applying different criteria. We include results from
both the MHD-4pc time series, which, based on its larger number
of snapshots, is advantageous in terms of sample size, and the
MHD-2pc time series, which allows us to test whether our results
are converged with respect to numerical resolution.
Figure 14 shows the values for eff and sD á ñSFR SFR for several

different categories of objects based on linear regression. The
top two rows show results for gas subsets defined by Σ and nH
thresholds and nH bins, also comparing to HBR results. For
both Σ and nH thresholds (Figures 14(a) and (c)), the total mass
decreases faster than the freefall time as the threshold increases.
As a result, M tff decreases at increasing density, leading to an
increase in eff with threshold level. At the same time,
sD á ñSFR SFR mostly decreases with increasing threshold, imply-
ing better correlation of denser gas with SFR; this is consistent
with the visual impression from previous plots. When we

Figure 9. Time series of mass fractions for various categories of objects and density bins, as labeled, for the MHD-4pc simulation. The HBRs are bound objects, and
the HBPs are their parents; see text in Section 2.1 for an explanation of the treatment of surface terms in HBR±1. The quasi-periodic variations in the nH bin time
series reflect the natural ∼50 Myr vertical oscillation timescale in the galactic potential.
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consider subsets of gas in density bins (Figures 14(b) and (d)),
eff increases and sD á ñSFR SFR decreases at higher densities nH.
However, at < -n 10 cmH

1.5 3, eff is flat at ∼0.06. The value
eff∼0.01 for S > -M10 pc 2 represents the mean efficiency
for the bulk of the material in the simulation.

Interestingly, while the values of eff for high density
thresholds are similar to the value of eff for gas in HBRs (a
few tenths), the value of sD á ñSFR SFR is lower for density
thresholds than for HBR gas. While HBR gas is mostly quite
dense, this says that the additional criterion of requiring that
every parcel of gas is bound within an HBR does not lead to
better agreement in the histories.

Looking at HBP and HBR variants in Figures 14(f) and (h),
higher-mass variants (all HBP and HBR+1) have lower eff
(∼0.1). The HBR has eff≈0.4, and HBR−1 has eff≈0.6; in
both cases, the efficiency is nearly order unity, as might be
expected of truly collapsing objects. The variants of HBR and
HBP have a similar correlation to SFR, but the HBR and HBP

have slightly lower sD á ñSFR SFR . It is interesting that structures
defined by isocontours of gravitational potential alone (HBP)
provide a reasonable correlation to SFR, and that varying
treatment of surface terms has little effect.
We can also consider combined criteria and test the

correlation with SFR. We define the “j” time series, consisting
of material in nH,min objects that also overlaps with HBRs, and
the “v” time series, consisting of material in nH,min objects that
also satisfies αv<2 (kinetic energy only, excluding thermal
and magnetic, in the virial parameter). In Figures 14(e) and (g),
we show results for the j and v series. The v series has similar
results to nH,min objects themselves but with slightly greater eff
and comparable sD á ñSFR SFR . In the v series, the value of eff
doubles for = -n 10 cmH,min

3 objects that also satisfy αv<2
but is only higher by 30% for =n 100 pcH,min objects that
satisfy αv<2 (since this is already true for most high-density
objects). Considering the virial parameter mainly affects lower-
density gas. The j series over material overlapping between

Figure 10. Comparison between SFR (normalized) and mass divided by freefall time M tff (normalized) of various gas populations from t=300 to 700 Myr in
MHD-4pc. The SFR shown is smoothed over 5 Myr (Equation (10)) and normalized to its time-averaged value. The M tff time series are also normalized relative to
their time-averaged values. Individual panels compare (a) surface density thresholds, (b) number density thresholds, (c) number density bins, and (d) HBP and HBR.
In all cases, the higher density threshold or more restrictive energy criterion (HBR) leads to a qualitatively better match between SFR and M tff .
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HBR and nH,min objects is mostly similar to HBR because most
HBR mass also satisfies ~ -n 100 cmH

3. The exception is
= -n 100 cmH,min

3 in MHD-4pc because -100 cm 3 is close to
the maximum density of the simulation.

As a general remark, we note that our evaluations of eff do
not enable us to distinguish between different dynamical
scenarios. For example, if we find a value eff for a given
category of objects, it could mean either that all of the objects

Figure 11. Comparison between SFR (orange) and e M tff ff for half-decade number density bins (blue); all time series are normalized by á ñSFR . For each density bin,
the best-fit eff is obtained via simple linear regression. For higher density bins, a best-fit time delay tdelay is also inferred and used to offset the time series; offset time
series are labeled as “delayed” (green). It is clear that the correlation between SFR and M tff improves and tdelay decreases as density increases.
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have (possibly long) collapse times of ∼tff/eff with no
dispersal or that each object has a (possibly much shorter)
lifetime ~tff , with a probability of collapse eff and probability
of dispersal 1−eff over that lifetime.

Note that although eff for surface and number density
thresholds are resolution-dependent (MHD-4pc and MHD-2pc
points differ), the values of eff for low- and moderate-nH bins
are resolution-independent. With density thresholds for star
particle formation of ∼300 and ~ -900 cm 3, only the very
highest density bin here is directly affected by resolution. In
low- and moderate-nH bins, the small differences between
MHD-4pc and MHD-2pc are due to stochastic variations and a
limited sample. For low values of nH,min (both nH,min objects
and the v series), differences between the two resolutions are
primarily due to the lack of gas in high density bins (well above
nH,min) for lower-resolution simulations. Unlike the high-nH
series, the HBR and HBP series (and their variants) have
essentially the same values of eff at 4 and 2pc resolution,
which is true for the j series.

We do not explicitly show in Figure 14 the values of
sD á ñSFR SFR for MHD-2pc in comparison with MHD-4pc.
Because only 70Myr of snapshots are available from MHD-
2pc, whereas multiple cycles of star formation over 400Myr
are available in MHD-4pc, the difference in sD á ñSFR SFR for two
models primarily reflects the different number of snapshots
available. Therefore, we do not draw any conclusions from the
values of sD á ñSFR SFR for MHD-2pc.

In Figure 15, we illustrate how the correlation between SFR
and M/tff changes for different gas selection criteria in further
detail by providing histograms of the error D á ñSFR SFR
(Equation (11)), where a positive error means that the actual
SFR in the simulation is higher than the model SFR based on
M/tff for a single snapshot. For less restrictive selection criteria,
such as lower nH or Σ, the mean and median in the distributions

shift to the left, indicating that the predicted e M tff ff exceeds the
actual SFR. This is clearly evident in Figure 13; for low density
thresholds, there is little predicted variation in the SFR about the
mean, whereas the true star formation history is mostly below the
mean level, with some sharp peaks. Figure 15 also shows that a
worse correlation at a lower nH or Σ threshold is associated with a
larger number of snapshots whereinD á ñ ~ -SFR SFR 1 to−0.5
andD á ñ >SFR SFR 1. Again, this is evident in the missed “long
valleys” and “sharp peaks” for the prediction based on e M tff ff
in the S > -M10 pc 2, > -n 10 cmH

3 cases in Figure 13.
Since missing sharp peaks occur during periods of high SFR,
considering an alternative version of Equation (12) by weighting
by ( )tSFR i would amplify the improvement of correlation with
increasing density. Figures 15(e) and (f) also quantify the visual
impression from Figure 13 that the restriction that gas be bound
(HBR) does not offer better predictive power for SFR compared
to a simple high density threshold. In particular, the HBR
prediction misses a peak at t∼400Myr, which accounts for the
positive error tail in DSFR compared to > -n 100 cmH

3.
Counterintuitive to the immediate visual impression from

Figure 13, the HBR has larger sD á ñSFR SFR than even the
>n 10H and -30 cm 3 for MHD-4pc, although for MHD-2pc,

the HBR performs better. The primary reason for this is the
overall much larger range of predicted SFR from the HBR;
since this has high peaks that can be slightly offset from the
peaks in the true SFR, this leads to a broader distribution of
errors in Figure 15. A related issue is that HBRs (and HBPs)
have a broad distribution of density and therefore tff , such that a
constant time delay is not well justified. Another reason is that
the HBR can be too selective, where there are snapshots with
high SFR but insufficient corresponding HBR gas mass.

3.4.1. Dependence on Virial Parameter

As discussed in Section 2.3.1 and Appendix B, we can apply
Bayesian inference to our time series to evaluate parameters
and explore the relative goodness of fit for different models that
have been proposed for the dependence of star formation on the
virial parameter. In our tests, we separately examine objects
defined by number density thresholds with =n 10, 30H,min ,
and -100 cm 3, as well as HBR objects.
Figure 16 presents the results of our analyses. From left to

right, the panels show the results for objects defined by
different density thresholds and the HBR criterion. Each row
gives values of parameters obtained for the three models under
consideration: constant eff (blue points; Equation (14),
equivalent to the results presented in Figure 14), an exponential
decrease with av

1 2 (orange points; Equation (15), generalizing
Padoan et al. 2012), and a cutoff in αv (green points;
Equation (16)).
For all models, from lower to higher density thresholds, the

inferred time delay decreases, consistent with Figure 11. At the
same time, the inferred eff,0 increases with nH,min for both the
constant-eff and the virial-cutoff models. The inferred eff,0 does
not monotonically vary with nH,min for the exponential model.
Going from =n 30H,min to -100 cm 3, the rms error sD á ñSFR SFR
decreases for both the exponential and cutoff models, similar to
what was shown previously for the model with no av
dependence. Based on rms error levels for any given gas
selection criterion, for most cases, there is no significant
preference for the αv-dependent models compared to the
αv-independent model. This can be understood considering
the inexact correspondence between apparent αv and true

Figure 12. Delay time tdelay vs. lower-density edge of some of the half-decade
density bins shown in Figure 11. Lines for [ ( )]p m=t G n3 32ff H

1 2 are
computed using the lower and upper number density edge, respectively
resulting in a maximum and minimum freefall time. For denser bins, the delay
time roughly follows the minimum freefall time.
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boundedness and the previously discussed limitations of
boundedness as a detailed predictor of the SFR. The exception
is the lower-density = -n 10 cmH,min

3 object class, in which
both models that account for the virial parameter perform better
than the constant-eff model (see further discussion below).

For the exponential model, the = -n 10 cmH,min
3 case shows

a similar slope, β≈1.6, to that found by Padoan et al. (2012).
In Padoan et al. (2012), the SFR was measured in small-box
simulations of cold gas with turbulence driven to reach
specified levels of ( )p aºt t 3 40 vff dyn

2 1 2 1 2 (integrated over

Figure 13. Comparison of SFR and effM/tff as in Figure 11 for surface density thresholds (Σ=10 and 30 M pc−2), number density thresholds ( =n 10H,min , 30, and
-100 cm 3), and HBR (bound) objects, showing only the delayed time series.
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the whole simulation domain), and a relation between eln ff and
tff/tdyn with slope −β was found. This contrasts with our
method of identifying individual nH,min objects, which have
varying αv, and finding the value of β such that the relation in
Equation (15) best predicts the global SFR. Considering the
broad distribution of αv in the Padoan et al. (2012) simulations,
comparison between their work and our results for nH,min=
10 -cm 3 objects is most meaningful, since av has a large
variation at low nH,min, as shown in Figure 6. At these low
densities, we find that using β close to 1.6 provides the best
match to the SFR. A value of β that is not near zero means that
any contribution of mass from high-αv objects is strongly
suppressed by a factor of ( )ba-exp 0.86 v

1 2 in the prediction for
the SFR. At low densities, high-αv objects correlate poorly with
the SFR, so a better fit (better prediction for SFR) is obtained
by suppressing their contribution (with β∼1.6, rather than a
low β). When we instead select objects that are already quite
overdense compared to the average ( = -n 100 cmH,min

3), the
range of virial parameters is smaller (as seen in Figure 6). Then,

β∼0 is preferred by the fitting procedure. Weighting all
= -n 100 cmH,min

3 material roughly equally provides the best
correlation with SFR. We further note that at high nH,min, the
values we find for eff are quite similar to those from Padoan
et al. (2012) at αv∼1, whereas at low nH,min, our normal-
ization is lower. We believe this is because high-contrast
structures are effectively separated from their environment,
such that their internal conditions determine their destiny
(analogous to idealized simulations), whereas low-contrast
structures remain quite subject to environmental influences.
For a low density threshold = -n 10 cmH,min

3, the αv cutoff
model prefers αv≈2, for similar reasons to the higher
preferred β in the exponential model. However, at

=n 30H,min and -100 cm 3, the inferred cutoff αv values are
larger, demonstrating that the density threshold itself provides a
good correlation with the SFR and that removing high-αv

material is not preferred. The fit for HBR objects also does not
benefit from a virial parameter cutoff, as these objects are
already selected based on an energy criterion.

Figure 14. Inferred eff (panels (a), (b), (e), and (f)) and rms error sD á ñSFR SFR (panels (c), (d), (g), and (h)) based on time series of SFR compared to time series ofM/tff
for selected subsets of the gas, as labeled. Gas selection criteria include density (nH) thresholds and bins, surface density (Σ) thresholds, and bound objects (HBR) and
their parents (HBP). We also show results for the j (overlaps between density and HBR objects) and v (combined density and αv<2 criteria) series; see text for
details. In each panel, results from MHD-4pc are shown with filled symbols, while results from MHD-2pc (eff only) are shown with open symbols. Symbol colors and
shapes distinguish different ways of selecting gas. Error bars are not shown but would lie within the markers, decreasing with the number of time snapshots used.

19

The Astrophysical Journal, 898:52 (27pp), 2020 July 20 Mao, Ostriker, & Kim



4. Conclusion

4.1. Summary

In this work, we have applied structure-finding techniques to
the solar neighborhood TIGRESS model of the star-forming
ISM and characterized the properties of the objects we identify.
In addition, we have investigated families of relationships
between the SFR and material that could be considered
“eligible” for star formation by being part of a subset of the
gas with defined properties. For the latter, we consider both
collections of objects and more general gas subsets.

Our primary comparison of structures is between those
defined based on density or surface density (bins or thresholds)
and those defined based on the gravitational potential (also

considering kinetic, thermal, and magnetic energy). The former
is more analogous to the definitions of ISM structure typically
used in observations (where boundaries are often defined by
observed intensity), whereas the latter more directly connects to
dynamics. The definitions and techniques used to identify
structures are described in Sections 2.1 and 2.2.
For both material defined by density selection criteria and

material defined by energy selection criteria, we compare time
series of M/tff to the SFR history. We use these comparisons to
fit for time delays (tdelay) and efficiencies per freefall time (eff).
In addition, we apply Bayesian inference to compare three
different models for star formation with different dependence
on the virial parameter.
Key results are as follows.

Figure 15. Comparison of the distribution of D á ñSFR SFR (see Equation (11)), the difference between actual and predicted SFR, using different categories of gas,
based on (a)–(b) gas surface density threshold, (c)–(e) number density threshold, and (f) HBR objects, corresponding to the time series shown in Figure 13. The mean
error is shown as a blue vertical line, and quartiles are shown with black lines (median solid, 25 and 75 dashed).
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1. Object properties. We compare basic statistics (mass,
size, density, freefall time) of HBRs (bound objects) and
HBPs (their parents) to statistics of objects defined by
density contours nH,min (Figure 5). Typical masses of

HBRs are ∼103–104 Me, with ~ -n 100 cmH
3. Thus, the

bound objects in our models are all dense. As in observed
galaxies, most of the mass in overdense structures is in
large clouds; typical values are –~R 30 100 pc and

Figure 16. Comparison of inferred model parameters and goodness of fit for three models of the dependence of SFR on αv as described in Section 2.3.1. Results are
shown for a model with no αv dependence (blue points; Equation (14)), a model with an exponential dependence on av

1 2 (orange points; Equation (15)), and a model
with an αv cutoff (green points; Equation (16)). Points and bars represent the mean (Equation (B5)) and standard deviation (from Equation (B6)) of marginalized
distributions for time delay tdelay (in Myr), efficiency eff,0, slope β for the exponential model, and cutoff αv. Standard deviations of normalized SFR errors sD á ñSFR SFR

(inferred σ in Equation (B1)) are shown for all models. Reference values β=1.6 and αv=2 are shown with horizontal dashed lines. Columns left to right use
thresholds =n 10H,min , 30, and -100 cm 3 and energy-based criteria (HBR) to define objects.
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– ~M M10 105 6 for = -n 10 cmH,min
3 and ~R 10 pc

and ~M M104 for = -n 100 cmH,min
3.

2. Virial parameters and boundedness. For all of the
structures we identify, we measure (see Figure 6) the
value of the virial parameter αv most commonly adopted
in observations, which compares kinetic energy with
gravitational energy, assuming an isolated sphere with the
same mass and volume as a cloud to compute Eg. We also
measure a variant av,total that includes thermal and
magnetic energy (Equation (9)). Because magnetic and
kinetic energy are comparable, we find that neglect of
magnetic energy in estimating the virial parameter is not
justified. Interestingly, while HBR objects are defined
based on bound material, they can naively appear
unbound, with a range of values for “observed”
αv∼0.5–5 and –a ~ 2 7v,total . For objects defined based
on density thresholds, we also measure the fraction of gas
in each that is truly bound. Many objects that appear
bound based on αv in fact contain only a small fraction of
bound gas. Even when the “observed” αv<2, moderate-
density massive (M∼104–106 Me) objects are not
bound by gravitational wells (Figures 6(b) and (c)). The
probability of gas being bound increases with nH,min
(Figure 7).

3. Line width–size relations. We find that the median line
width–size relation for low-nH,min objects is fairly close to
the mean s µ R1 2 relation expected for supersonic
turbulent gas with the outer scale exceeding the cloud
scale (Figure 8). The HBPs follow the same s µ R1 2

relation, and in both cases, the normalization is consistent
with the large-scale velocity dispersion and overall scale
height of the ISM in the simulation. At high nH,min, the
median line width follows the αv=2 line width–size
relation ( )s r p» G R8 53D

1 2 for r m= nH,min.
4. Temporal histories. From the time series, we find that, on

average, only a few tenths of a percent of the simulation
mass is in bound structures (HBRs), while ∼10% is at
densities at least an order of magnitude above the median
density ( » -n 1 cmH

3) in the simulation (Figure 9).
Fluctuations in the mass of gas at high densities

> -n 100 cmH
3 exceed an order of magnitude, and the

same is true for the gas mass at high S > -M100 pc 2

(Figure 10). In contrast, the mass of moderate-density gas
fluctuates only over a factor of ∼3 with a timescale
comparable to large-scale galactic vertical and horizontal
oscillation times in the galactic potential. Generally,
upward fluctuations in any mass bin are delayed relative
to those in lower-density mass bins, and star formation
fluctuations are delayed by ( )~t nff H relative to the mass
of gas with density ~nH (Figures 11 and 12).

5. Star formation efficiency per freefall time. By correlating the
time history of M/tff in different gas subsets with the time
history of the SFR, we measure eff . While eff is fairly flat in
density bins at -n 30 cmH

3, it increases to a few tenths
when > -n 100 cmH

3. This is close to the value for bound
objects (eff=0.4 for HBR gas). The degree of correlation
between the detailed temporal history of e M tff ff and SFR
(t) secularly increases with increasing density (Figures 13
and 14). Even though the time series of e M tff ff for HBR
gas mostly tracks SFR(t) quite closely, the rms error
(defining eD = - M tSFR SFR ff ff) is worse than for
moderate-density gas because the large-amplitude variations

in the mass of HBR gas imply that any “miss” is strongly
penalized.

6. Dependence of star formation on virial parameter. In
addition to considering the simplest star formation model
prescription, in which eff is constant for all gas in a given
density bin, we test two models in which eff depends on the
virial parameter αv of defined density structures. For one
model, eff decreases exponentially with increasingav

1 2, and
for the other, eff is zero above some cutoff in αv. We use
Bayesian inference to obtain marginalized model parameters
and rms errors (Figure 16). We find that allowing for a
dependence on αv improves the correlation with SFR for
moderate-density gas ( = -n 10 cmH,min

3) but does not alter
the strength of the correlation for high-density gas
( = -n 30, 100 cmH,min

3) or the energy-selected HBR
objects.

4.2. Discussion

4.2.1. Quantifying the Role of Self-gravity: Are GMCs Bound?

There are a number of reasons why apparent virial
parameters disagree with detailed measurements of bounded-
ness. For example, αv or av,total could underestimate bounded-
ness because a uniform cloud is assumed, but the actual
gravitational potential can more strongly bind material in the
center of an object if it is stratified. Also, our HBR definition
considers gravitational energy relative to a surrounding
potential isocontour, where the potential considers all material
rather than just an isolated structure. Material in and beyond the
HBP surrounding an HBR contributes to defining the bounding
equipotential and determining how deep the potential well is.
Thus, an HBR can be more bound than it would appear from
using just an object’s own mass in αv or av,total (as in, e.g.,
Figure 6(e)) because external mass contributes to defining the
equipotentials and containing the gas in a local region.
At the same time, objects can also be less bound than would

be predicted based on the traditional virial ratio of Equation (8),
because the assumption of an isolated object with vacuum
boundary conditions overestimates ∣ ∣Eg compared to the real
case in which tidal forces limit the region that can be bound to a
given center. Considering the gravitational potential computed
globally, including tidal forces, means that dense objects that
are near other dense objects will be less bound than the naive
estimates used in αv or av,total. This explains why many of the
moderate-nH,min objects with low apparent virial parameters in
Figures 6(b), (c), (f), and (g) mostly consist of unbound gas.
Due to all of these effects, both HBR bound and unbound
objects can appear bound or unbound according to αv and total
αv.
All of the above effects will be an issue for real clouds, as

well as the structures in our simulations. Thus, we caution that
simple estimates of gravitational energy relative to kinetic
energy are generally inadequate for assessing whether observed
GMCs are genuinely bound structures.
To determine whether observed GMCs are genuinely bound,

a similar procedure to what we have applied in this paper
would be required. That is, the first step would be to compute
the gravitational potential from all relevant material. While the
3D structure of clouds is not generally known, previous tests
have shown that projected surface density combined with an
estimated line-of-sight depth is sufficient when clouds mutually
lie in a planar configuration (Gong & Ostriker 2011). Inclusion
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of the gravitational potential from all surrounding material is
particularly important for GMCs that are found in spiral arms,
where the close proximity of clouds leads to significant tidal
effects.

Our finding that the traditional virial parameter (Equation (8)
with Equation (7)) is at best an approximate measure of
boundedness has implications for interpretations of αv in
observations that are otherwise quite puzzling. For example,
Roman-Duval et al. (2010) found that GMCs identified from
13CO Galactic Ring Survey observations have a median
αv∼0.5, with mode ∼0.3. Other studies in a variety of object
types have shown a systematic decrease of αv with mass
(Kauffmann et al. 2013; Traficante et al. 2018), with a
minimum αv well below unity. Because a very low level of
kinetic energy would rapidly lead to collapse, it is difficult to
understand how this situation could arise unless GMCs are
strongly magnetically supported, which empirically does not
seem to be the case (e.g., Crutcher 2012; Thompson et al.
2019). Indeed, in purely hydrodynamic simulations, isolated
clouds that are initiated with αv significantly below 1 go
through a stage of rapid contraction, such that αv≈1 by the
time star formation commences (Raskutti et al. 2016). The low
median αv in the Roman-Duval et al. (2010) GMC observations
could be understood if ∣ ∣Eg has been overestimated by, for
example, neglecting tidal effects.

Observational surveys of nearby galaxies at ∼50–100 pc
resolution find values of the traditional αv∼1.5–3 for gas in
resolved structures (Sun et al. 2018). Taken at face value, this
would suggest that most clouds are bound, which, combined
with the estimated completeness of >50%, would suggest that
most molecular material is in bound clouds. However, in this
case, the low eff∼0.01 observed for molecular gas (Utomo
et al. 2018) would be in significant tension with our finding that
bound objects (HBRs) have eff∼0.4. The driven-turbulence
simulations of Padoan et al. (2012) have similarly found
eff∼0.2–0.5 when αv∼1. A possible resolution is again that
the αv as traditionally defined in observations may overestimate
boundedness by treating each cloud as isolated.

Finally, we note that the decreasing trend of αv at increasing
mass within = -n 10, 30 cmH,min

3 objects seen in Figure 6 is
reminiscent of the same trend in observations, and as
previously pointed out (Kauffmann et al. 2013), this simply
reflects mass–size and line width–size relationships. Like the
nH,min objects we identify, observed clouds typically have a
characteristic density (or column), which, in the case of
observations, is set by the tracer used for measuring line
widths. Except in the densest objects, Figure 8 shows that line
width–size relations may primarily reflect ambient ISM
turbulence (which is driven by supernovae at large scales and
cascades to small scales), and the same may be true for
observed structures.

4.2.2. Star Formation Efficiency: Variations and Correlations

Our results regarding the low value eff∼0.01 of the
efficiency per freefall time at “average” gas conditions is
consistent with previous observational work across a range of
galaxies (e.g., Evans et al. 2009, 2014; Krumholz et al. 2012;
Lee et al. 2016; Ochsendorf et al. 2017; Utomo et al. 2018, and
citations within). Previous numerical simulations of galactic
disks for normal galaxies have found comparable eff ; e.g., in
local disk simulations, Kim et al. (2013) found eff=0.006
(using freefall times at the mean midplane density) for a set of

models covering – S ~ - - - -M10 10 pc MyrSFR
4 2 2 1, and

Braun et al. (2014) and Semenov et al. (2016) found an
average eff∼0.01–0.1 for their global simulations covering
regimes extending to slightly larger ΣSFR. For (unmagnetized)
global simulations of GMCs, eff∼0.03–0.3, decreasing at
higher αv (e.g., Raskutti et al. 2016; Grudić et al. 2019); similar
values and behavior for eff have also been found in zoom
simulations focusing on GMC scales within the larger ISM
(Haid et al. 2019), as well as periodic-box simulations for
GMC conditions (e.g., Federrath & Klessen 2012; Padoan et al.
2012; Federrath 2015).
Some observations have indicated an increase of eff with

density of individual structures within given galaxies (e.g.,
Krumholz & Tan 2007; Vutisalchavakul et al. 2016), consistent
with the trend we have identified. Since star formation is only
occurring in the very densest regions, the variations of eff with
density threshold in a given environment, both in observations
and in our simulations, reflect the relative abundances of gas at
different densities, i.e., the density PDF. Analyses of the
power-law portion of PDFs in Milky Way molecular clouds
(e.g., Schneider et al. 2015a, 2015b) imply a decrease of M/tff
at higher density, which is compatible with the increase of eff
with density that we have found (Figures 14(a) and (b)). The
density PDF in turn reflects a “nested” dynamical evolution;
successively denser structures form in a hierarchical fashion,
with only a fraction of the gas at a given density experiencing
net compression by gravity and thermal, turbulent, and
magnetic pressure to attain a higher density. Our temporal
analysis provides evidence for hierarchical dynamics at work,
in that mass histories at varying density are offset by time
delays that scale with the gravitational freefall time.
Recent observations across varying galactic environments

have suggested that eff is not a function of absolute density but
rather of density contrast relative to ambient levels (e.g.,
García-Burillo et al. 2012; Longmore et al. 2013; Usero et al.
2015; Gallagher et al. 2018; Querejeta et al. 2019), although
this interpretation is complicated by uncertainties in environ-
mental variation of conversion factors for dense gas tracers
(Shimajiri et al. 2017). While our present analysis considers
only a single galactic environment, we will be able to test the
extent to which eff depends on relative versus absolute density
via analysis of additional TIGRESS simulations that have been
completed for inner galaxy and Galactic center environments.
In addition to systematically larger eff at higher density, our

analysis shows systematically better correlations of the
temporal histories of SFR and (time-offset) histories of
e M tff ff at higher density (Figures 11 and 13). This can be
quantified by the systematic decrease in sD á ñSFR SFR for higher-
density gas, as shown in Figure 14. A simulation provides the
benefit of being able to correct for the time delay between the
formation of a given defined structure and the resulting star
formation. Since the SFR is highly variable, this time delay
produces deviations between the simultaneous e M tff ff and
SFR on the order of ( )t d dtSFRdelay . For lower-density gas, in
which ~t tdelay ff is long, time delays inherently make SFRs in
observations appear less correlated with the “simultaneous” gas
mass than they really should be (as in Figure 10). The
combination of the stronger inherent correlation in amplitude
variations and smaller time delays implies that there should be
less scatter in the observed statistical correlations between the
SFR and the mass of high-density tracers in comparison to low-
density tracers (assuming that the measurement of the SFR is
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based on a tracer with a short timescale that does not itself wash
out the signal). While HBRs generally have high density,
adoption of a single time delay for the whole class does not
properly reflect the broad distribution of HBR densities
(Figure 5) and may reduce correlation with SFR.

With a sufficiently large sample of environments such that
galactic conditions can be controlled (e.g., specifying limited
ranges of both total gas and stellar surface density) and all
phases of the star formation cycle are well sampled for given
conditions, increasingly quantitative measures of the relation-
ship between gas and star formation become possible. For
example, full sampling over temporal history can minimize the
effects of time delays when evaluating the overall eff for low-
density gas. In addition, it will be possible to quantify increases
in the correlation of SFR and M/tff with density (we measure
this by a reduction in sD á ñSFR SFR ) while controlling for
environment; steps toward this have already been taken (e.g.,
Gallagher et al. 2018; Jiménez-Donaire et al. 2019). Given
sufficiently high-resolution observations, it may also be
possible to use the analysis of spatial correlations between
high-density tracers and star formation (e.g., as in Kruijssen
et al. 2019) as a proxy to measure temporal correlations
between the SFR and dense gas mass that we have identified
using simulations, thereby characterizing the bursty nature of
the SFR.

Finally, we remark on the relation between our work and
other theoretical/computational studies that address the
relationship between gas and star formation. Many studies
have focused exclusively on the cold and dense ISM, because
this is the material most proximate to star formation. With a
narrower focus, it is also possible to define an idealized system
with a reduced number of parameters; a minimal set of
parameters to describe gas in molecular clouds would include
the turbulent Mach number, the ratio of the mean Alfvén speed
to the sound speed, and the ratio of the Jeans length to cloud
size (or, equivalently, freefall time to turbulent crossing time;
Ostriker et al. 1999). Based on a set of idealized simulations of
this kind, with turbulence driven to maintain a fixed level,
Padoan et al. (2012) proposed that eff exponentially declines
with increasing virial parameter. As noted above, for a
moderate density threshold ( = -n 10 cmH,min

3), our fitted
coefficients are consistent with their results. However, this is
not the case when we consider gas at higher density thresholds.
This may be because of limited resolution at higher density
thresholds in our simulations, or because physical feedback in
our simulations differs from idealized turbulent driving, which
(together with the multiphase nature) means that all scales are
not equivalent.

A class of simple theoretical models for SFRs in turbulent
systems is predicated on the notion that there is a critical
density rcrit, with structures at density above ρcrit collapsing
before they can be torn apart by ambient turbulence (e.g.,
Krumholz & McKee 2005; Hennebelle & Chabrier 2011;
Padoan & Nordlund 2011; Federrath & Klessen 2012). These
theoretical models are intended to represent idealized GMC
conditions, with gas effectively isothermal and turbulence
highly supersonic; they are therefore not immediately applic-
able to the present multiphase ISM simulations. Still, it is
interesting to note that our analysis does not provide evidence
that there is a “point of no return” at any particular density.
Rather, there is an order-of-magnitude variation in the density
of bound clouds (Figure 5(g)), with the probability of gas being

bound and eff increasing with density (Figures 7 and 15 and).
The present analysis does not provide information about
individual cloud lifetimes, however. For both large-scale
multiphase ISM simulations and smaller-scale simulations of
star-forming clouds, numerical measurements of the lifetimes
of individual structures are needed in order to test theoretical
concepts of gravoturbulent fragmentation and assess whether
simulations agree with observational constraints (e.g., Murray
2011; Lee et al. 2016; Grudić et al. 2019). While some
estimates of object lifetimes can be obtained via frame-to-frame
differences in structural decompositions, the most direct way to
follow evolution is via Lagrangian tracer particles. Tracers are
commonly implemented to follow baryon cycles of gravita-
tional collapse and dispersal by feedback in cosmological
simulations of galaxy formation (e.g., Genel et al. 2013;
Cadiou et al. 2019), and for the same reasons, they would be a
valuable tool for future numerical studies of the star-
forming ISM.
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Appendix A
Structure-finding Algorithm

As in the GRID-core finding algorithm (Gong & Ostriker
2011), each local minimum of the gravitational potential is
associated with a structure. The structure is composed of the
material within the largest closed isosurface containing it with a
single local minimum. All such structures at the bottom of the
hierarchy are unique. Material within a structure, if devoid of
positive energy contributions, would collapse toward the local
potential minimum. For some material in the structure closest
to the bounding equipotential, the thermal, kinetic, and
magnetic energy might be large enough that it cannot be
considered bound to the potential minimum.
Given a potential field Φ, the GRID algorithm first identifies

local minima. From each local minimum, the algorithm
marches upward by step size ΔΦ until the contiguous region
contains more than one minimum. The largest contour value
containing only one minimum determines the cells belonging
to the structure associated with that local minimum.
Two limitations of the algorithm are that its speed and

accuracy depend on the resolution ΔΦ. A smaller ΔΦ ensures
that fewer cells are prematurely cut off from the structure being
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built but also increases the number of repeated calculations of
contiguous regions of cells. We address both limitations with
an algorithm that computes structure membership cell by cell. It
is then guaranteed that each cell is only compared with its
neighbors, so the algorithm depends on the number of
neighbors. This algorithm also computes the full contour tree,
which can be processed afterward in various ways, resulting in
merged objects as in our HBRs (Section 2.1) or unmerged
objects as in GRID.

A.1. Algorithm Procedure

1. Every cell in the 3D data set is identified with a unique
positive integer “identity.”

2. The identities corresponding to each cell’s neighbors are
computed and optionally stored. The integer assignment
is chosen so that this computation is simple.

3. The list of cell integers is sorted according to increasing Φ.
4. A list of “labels” corresponding to the integers is

initialized so that all cells are labeled as unprocessed
(−1 can be used).

5. Local minima cells are labeled by their unique integer
(identity), hence becoming members of their own
structures, and cells in a given structure are labeled by
the seed critical point of that structure.

6. Iterating over the list in order of increasing Φ (step 3),
cells are labeled and assigned to structures according to
rules (below) dependent only on the labels of their
neighboring cells, which are easily accessed due to step 2.

A structure is a closed isosurface containing a contiguous set
of cells with lesser Φ, so the structure membership of a given
cell only depends on “lesser neighbor” cells with lesser Φ. Any
lesser neighbor is already labeled due to steps 3 and 6, so at any
given time, the labels of the neighboring cells contain all the
information necessary to determine structure membership. Let
the label set of a cell be the unique set of labels of its
neighboring cells, ignoring the unprocessed label.

A cell whose only lesser neighbors are members of only one
structure (the label set contains exactly one label) is also a
member of that one structure and labeled accordingly. This is
how membership propagates.

A cell with no lesser neighbors (the label set is empty) must be
a local minimum and labeled as such, as its neighbors are all
greater. If the cell is not accepted to be a structure for any reason
(e.g., boundary condition or special-use case), it can instead be
assigned to a user-defined label, which will propagate as above.

A cell whose lesser neighbors are members of multiple
structures (the label set contains multiple elements) would
define an isocontour containing all enclosed structures. This
cell is a new critical point where multiple structures merge.
Hence, a new structure is defined starting from this cell. All
cells enclosed by the new structure should be relabeled to this
cell’s identity.

In practice, it is more efficient to keep track of the merger
tree of the critical points, not changing previously processed
cell labels. The “local label” for a cell corresponds to the
nearest (in the tree) lesser critical point, some of which have
merged to critical points at larger Φ. The label used for
computing label sets is found by looking up the largest critical
point in the merger tree corresponding to the “local label.” The
combination of cell local labels and merger tree contains the
necessary information to quickly access all cells belonging to

any structure in the hierarchy or all structures that a cell
belongs to. This is how structures merge.
In this last case, any structure connected to the cell is

complete, since all cells connected to the structure with Φ<Φi

were previously processed and added to the structure. No other
cells can be added to the structure without defining a greater
isocontour containing multiple structures, which would exactly
be the new structure defined from the critical point. This shows
that our structures are complete and contain all viable cells, in a
way that is agnostic of choice of ΔΦ.
The computation ends when all cells are explored or all

structures are deactivated (for example, due to a boundary
condition, or if merging structures is not allowed). It is possible
for all structures to be deactivated before all cells are explored,
which further increases the efficiency of the algorithm, because
many cells can be left uncomputed. A check to ensure active
structures continue to exist can follow every structure
deactivation to minimize the number of checks.

A.2. Strengths

The algorithm is efficient. For n cells, the algorithm requires
( ) n nlog operations to sort. For k neighbors, ( ) kn operations

are needed to compute the neighbors. Strictly fewer than n
operations are required to assign a label to each cell, because
the algorithm terminates when no active structures remain. A
small amount of memory is used to keep track of the critical
point merger tree: at most ( ) n . For memory, there can be at
most n labels, kn neighbors (each neighbor has a 1D index),
and n values of Φ. Since each cell is only accessed one time
during iteration, it is difficult to imagine a drastically different
scaling for the operation. A Python implementation of this
algorithm can process roughly 8 million cells in a minute on a
modern CPU (2563 box in 2 minutes).
In its current form, the user chooses no parameters. The

algorithm works as a black box, converting a 2D or 3D field
into a list of structures, their members, and their merger tree.
The algorithm can be generally used with various cell

geometries, as long as each cell knows its neighbors.

A.3. Extensions

The algorithm is also relatively easy to understand, requiring
very little background, and hence is easy to extend and adopt.
This is because it only aims to do a very simple task. We
describe a few relevant extensions.
The simplest extension is to apply the algorithm to the

negative of a field to locate isocontours around maxima. This
could be useful for intensity maps or density fields.
To analyze grids with adaptive mesh refinement, computing

the neighbors of each cell is required to use the algorithm, but
otherwise, it can be directly used without subsampling or
interpolation.
Another example is a box with sheared-periodic boundary

conditions, where the neighbors of boundary cells must be
computed based upon the shear of the box.
This should also be applicable to unstructured moving

meshes. The algorithm only needs to know which data points
are neighbors.
A minimum structure size can be defined, and when two

active structures meet, an active structure that is too small is
subsumed by the larger structure. This is useful if the data have
high-frequency noise.
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Appendix B
Bayesian Model Fitting

For the likelihood ( ∣ )P B A , we assume

( ∣ ) ( )
( ( ) )


ps

= -
s

D á ñ

P B A e
1

2
, B1

i
2

tiSFR SFR 2

2 2

taking the product over discrete time samples ti, where

( ) ( ) ( ) ( )D = - -t t t tSFR SFR SFR . B2m delay

We select subsets of {ti} for each delay time tdelay so that the
likelihood ( ∣ )P B A is always computed using the same number
of samples/snapshots regardless of tdelay. We normalize by the
time-averaged global SFR á ñSFR so that σ is dimensionless.

For a given object class and model eff(αv), we evaluate the
likelihood ( ∣ )P B A over the parameter vector θ that includes
time delay tdelay, eff,0, additional model parameters (β or
av,cutoff , as appropriate), and σ. Since A represents SFRm and
depends only on the parameter vector θ, the posterior in
Equation (17) is

( ∣ ) ( ∣ ) ( )
( )

( )q
q q

=P
P P

P
SFR

SFR

SFR
. B3

Note that ( ) ( )q q= P Pi i , the product of priors, which we
briefly describe. We use uniform linear priors for time delay
tdelay and slope β (allowing negative values) and uniform
logarithmic priors for eff,0, σ, and av,cutoff . Using uniform linear
priors instead of logarithmic does not substantially change our
results.

Since ( )P SFR does not vary with θ, we estimate the
marginalized distribution for parameter x by integrating over
other parameters { ∣ }qQ = Î ¹y y x ,

( ∣ )
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( )ò

ò
ò
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thus inferring mean values of each parameter

ˆ ( ∣ ) ( )ò=x xP x dxSFR B5

and variance from

( ) ˆ ˆ ( )= -x x xVar . B62 2

From the definition of σ in Equation (B1), the inferred value
of σ is equivalent to sD á ñSFR SFR and is a measure of the
goodness of fit of each model to the data for the inferred
parameter values.
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