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Abstract—Deep learning (DL) models have achieved paradigm-
changing performance in many fields with high dimensional
data, such as images, audio, and text. However, the black-
box nature of deep neural networks is not only a barrier
to adoption in applications such as medical diagnosis, where
interpretability is essential, but it also impedes diagnosis of under
performing models. The task of diagnosing or explaining DL
models requires the computation of additional artifacts, such
as activation values and gradients. These artifacts are large
in volume, and their computation, storage, and querying raise
significant data management challenges.

In this paper, we develop a novel data sampling technique
that produces approximate but accurate results for these model
debugging queries. Our sampling technique utilizes the lower
dimension representation learned by the DL model and focuses on
model decision boundaries for the data in this lower dimensional
space.

I. INTRODUCTION

Deep learning (DL) models have enabled unprecedented
breakthroughs in developing artificial intelligence systems for
analyzing high-dimensional data, such as text, audio, and
images. Building such models is a data intensive task. To
build an effective model, a machine learning (ML) practitioner
needs to proceed in an iterative fashion, building and tuning
dozens of models before selecting one. While naive selection
of the best model could be based on statistical measures such
as, accuracy, F1 score, etc., examining what the model is
learning and why it is making mistakes requires access to
artifacts, such as model activations and gradients. Activation
values, or activations, are learned representations of input data.
Gradients are partial derivatives of the target output (e.g., the
true label of the input data) with respect to the input data. At
a high level, activations and gradients are high dimensional
vectors with sizes that depend on input data dimensionality
and DL model architecture. While activations depict what the
deep learning model sees, gradients depict areas of high model
Sensitivity.

The naive solution of pre-computing and storing all artifacts
required for model diagnosis scales as the product of size of
input data and number of parameters of the deep learning
model. For even small data sets and models this can be up
to three orders of magnitude larger than the input data per
model [5]. This explosion in the volume of data makes it
difficult to efficiently perform diagnosis tasks, often preventing
interactive diagnosis. Thus, with hundreds of gigabytes of
artifacts per model, building, diagnosing, and selecting a DL
model becomes a large-scale data management challenge.
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Previous attempts at solving this problem either pre-
generated all data required to provide interactive query
times [11], [13] or utilized a variety of storage optimization
techniques to manage the storage footprint [15], [20]. Both ap-
proaches require pre-generated artifacts. Several visualization
tools pre-generate some of the aggregates and severely limit
the type of queries that can be posed, while others simply do
the latter. Systems with storage optimizations [20] reduce the
storage required for this data by utilizing techniques such as
de-duplication and quantization, etc.

Here, we explore the idea of utilizing samples to diagnose
DL models. Instead of relying on generating artifacts on the
entire dataset we generate artifacts on a carefully selected
sample. Sampling is a fast and flexible database technique for
approximate query processing, it works well in high dimen-
sions [1], [9] and is a potential candidate for this workload.

A key challenge with answering model debugging queries
over input data samples is that those queries frequently ask for
outlier values such as the top-k maximally activated neurons
for a given layer and output label (see [5] for a more detailed
workload characterization). Common sampling techniques that
rely on uniform random sampling fail to adequately capture
information about such values.

In this paper, we outline an approach to create samples
that addresses the above problem and that can serve to debug
any DL model where a lower dimensional representation of
the input data is learned in a supervised, semi-supervised or
unsupervised manner. We compare our technique to standard
sampling techniques such as uniform, random sampling and
stratified sampling as well as a variety of state-of-the-art
alternatives from the literature.

II. APPROACH

To enable interactive model diagnosis, our approach creates
a sample. We compute the results of a query on this sample
instead of the entire data. In this section, we describe our
approach and present other baseline techniques for selecting
these samples.

The key insight that we utilize to select a data sample and
avoid generating and storing all activation values is that DL
models learn a lower dimension representation of the data, and
a classifier. DL training transforms the input data, creating a
new representation with each layer. Training criteria encourage
training set neighbors, such as data points from the same
class, to have similar representations. Leveraging this lower
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dimensional representation learned by the model has the dual
benefit of reducing the dimensionality of the data and focusing
on the representation learned by the model. Since the objective
of the workload is to diagnose this model, we hypothesize that
leveraging the learned latent space to select a sample will be
key to understanding what the model has learned. For model
diagnosis we view the training, and test data points in the latent
space, i.e., instead of viewing the data in the high dimensional
original format of images, audio or text, we utilize this lower
dimensional representation of the data learned by the model’s
last hidden layer to create samples.

Our goal is to diagnose the model, which implies that a
subset of the queries will focus on what the model got wrong,
as we discuss in more detail in the full version of this paper [5].
In a classification problem with multiple classes, the decision
boundary partitions the underlying vector space into multiple
regions, one for each class. Decision boundaries are where
the output label of a classifier is ambiguous, i.e., where errors
and mis-classifications occur. The diagnosis of a DL model
requires exploration of the decision boundary for a model [8],
[22].

Thus, our approach is based on utilizing the lower dimen-
sional representation and focusing on decision boundaries in
the latent space when selecting the data points to include in
our sample. Different types of queries serve for DL model
diagnosis. One type of debugging query that is especially
difficult to answer from a sample are queries that ask for
the top-k maximally activated neurons or the distribution of
maximally activated neurons. Top-k queries are generally an
important area of database research. The best known general-
purpose algorithm for identifying top-k items is the Threshold
Algorithm [6], which operates on the complete, sorted multi-
dimensional data required to compute the top-k elements.
Approximate algorithms for top-k retrieval require building
probabilistic models to fit the score distribution of the under-
lying data as proposed in [19]. In contrast to these approaches,
we wish to avoid computing and storing activations for the
entire data set in the first place.

A. Baselines

Since our key insight to selecting a sample is to leverage
the lower dimensional representation of the data learned by the
model, the first baseline that we consider is a simple method
for sampling from the latent space. The naive way of selecting
a sample that covers the n-dimensional latent space is to create
a grid in that space and sample from each cell. However, the
latent space is typically high dimensional, e.g., for the MNIST
dataset, the latent space is 84D. Even if we divide each
dimension into two buckets, we get a total of 284 ~ 1.93x10%°
buckets. Instead, we reduce the dimensionality of data (to
5D for evaluation) in the latent space for this analysis before
collecting an equal number of instances at random from each
underlying cell. We call this naive technique simple latent
space sampling.

Another way to lower the dimensions is to utilize the
classification result. Each data point is classified by the model
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as belonging to a class. This result is encapsulated in a
confusion matrix (ak.a. the error matrix), which tabulates
the performance of a classification algorithm. For a binary
classifier, the confusion matrix counts the number of true
positives, false positives, true negatives, and false negatives.
For multiple labels, the confusion matrix generalizes this
concept. Each row of the matrix represents a predicted class,
while each column represents a true class. In this technique,
we sample based on cells in the confusion matrix. We call this
technique stratified by confusion matrix (CM).

In database systems such as BlinkDB [1], strata are defined
over a subset of columns that typically correspond to categor-
ical valued attributes, e.g. city. For DL model diagnosis, the
underlying data can be considered a relation, with each row
representing a data item (e.g., one image) and each column a
value of interest, such as the activation value for a neuron in
the model. Each row can be extended with metadata, such as
the predicted class and the class label. The stratified by CM
sample thus serves as a stratified sample baseline.

In addition, we use two other techniques from the litera-
ture as baselines. First, we use visualization aware sampling
(VAS) for large scale data visualization, such as scatter and
map-plots. VAS is based on the interchange algorithm [16],
which selects tuples that minimize a visualization-inspired
loss function. Visualization-inspired loss is based on three
common visualization goals: regression, density estimation
and clustering. The interchange algorithm creates a sample
that maximixes visual fidelity of the data at arbitrary zoom
levels. Second, we use explicable boundary (EB) trees [21] to
create a single sample from input data. This method constructs
a boundary tree to approximate the complicated deep neural
network models with high fidelity. EB trees provide a single
sample for a dataset and a model which explains the boundary
between each class learned by the DL model.

B. Clustering in Latent Space

An important part of our approach to selecting a sample for
DL model diagnosis is to ensure that model decision bound-
aries are represented in the sample. To determine boundaries in
latent space, we cluster data in latent space and fit a model to
estimate the parameters for each class in that space. We do this
in both supervised and unsupervised manners. When fitting a
supervised model, we use the class labels. In the unsupervised
case, we use parameterized models so we utilize the number
of unique classes present.

In both supervised and unsupervised cases the models fitted
to the latent space provide us with the likelihood that and
object belongs to a class or cluster. For binary classification
to determine whether an object belongs to class A or class B,
let P(Alx;) be the likelihood that a data instance x; belongs
to class A. In this case, the points on the decision boundar§
of class A and class B are those for which the ratio ggg‘li)
is =~ 1. A lower value of likelihood ratio would imply that
P(B|z;) > P(A|z;) in which case x; would be assigned to
cluster or class B. The higher the likelihood that an object

belongs to class A, the higher the ratio g(g}m will be.
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Algorithm 1: Clustering and Sampling

Data: input data in latent space, f,k, j
// k num class labels, f is sample size
Clusters + None
sample < None
Clusters = ClusterAndSortData(data,k)
foreach cluster; in Clusters do
s1 « data.head(f = j)
§2 « data.tail (f = (1 — 7))
sample < sl + s2 4+ sample
end
return sample
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For a multi-class classifier, where a data point x; may

belong to classes C a,b,c,..., this ratio would be,
. PAlz)
Zsz,c,d,... P(Z\x,,‘,)’

P(Alz)

P(=Alz;)

Our sampling technique clusters the data in the latent space,
then sorts data in each cluster or class by the ratio of likelihood
of belonging to that particular class. This sorted list thus
consists of exemplars on the higher end and outliers on the
lower end of the list. We utilize a tuning parameter j to
determine the proportion of exemplars and outliers in our
sample. We select j% from the outliers and 1 — 5% from
the exemplars. Algorithm 1 describes this approach in further
detail.

For the unsupervised technique, we utilize a parameterized
clustering technique, the Gaussian Mixture Model (GMM).
These models offer a probabilistic way to represent normally
distributed sub-populations within an overall population. We
set the number of clusters in GMM to be equal to the
number of unique classes in the dataset. We utilize variational
estimation for the GMM [3], where the effective number of
components can be inferred from the data.

For the supervised technique, we use max-margin classifiers
to classify the data in the latent space. Margin classifiers
are a class of supervised classification algorithms that utilize
distance from the decision boundary to bound the classifier’s
generalization of error. Support vector machine (SVM) [18]
is an example of this category of classifiers, which learns
boundaries based on labels so that the examples of the separate
classes are divided by a clear gap that is as wide as possible.
SVMs utilize kernel functions [12]; these help to projecting
data to a higher dimensional space where points can be linearly
separated. DL models do not have non-linear activation func-
tions after the last hidden layer, so the latent representation
from last the hidden layer should enable discovery of linear
boundaries. Thus, we utilize a linear kernel for SVM [7],
which has the dual advantage of being faster than non-linear
kernels and less prone to over-fitting. Results of the classifier
are turned into a probability distribution over classes by using
Platt scaling [17], [23]. These probabilities are used to sort the
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Fig. 1: Precision for top-10 neurons for MNIST. The X-axis
shows the sample size as a fraction of the entire data set.

data items in each cluster or predicted class and then select a
sample.

III. PRELIMINARY EVALUATION

Here, we empirically evaluate our hypotheses from our
sampling approach, namely sampling evenly from the latent
space is not sufficient; model decision boundaries are the most
important region of this latent space for answering model
diagnosis queries and must be well represented in a reliable
sample. Model diagnosis queries are posed over sets [11]
e.g. top-10 maximally activated neurons for layer x, for all
correctly classified items for class a. Instead of considering
the immense set of subsets possible we limit our evaluation to
all combinations of layers of DL model, number of classes in
the input data and classification (correct or incorrect). Thus,
to measure accuracy of a query for a sample, we first compute
the query results for each of these combinations (layer, class
and classification). Next, we compute a metric comparing
the results from the sample with the results for the same
combination on the entire data set. Finally, we calculate the
over-all query set accuracy for each query set by averaging
the value of the corresponding metric over the combinations.

For the evaluation we compare five baseline techniques with
two sampling techniques described in Section II. We use a
top-k query and to measure how well our sample performs
we use precision as the metric. Precision is the fraction of
top-k results from the sample that belong to the true top-
k result. Precision lies between [0,1]. A precision value of
0 implies that the sample top-k does not contain any of the
full data top-k neurons. We evaluate our sampling technique
on MNIST data set that consists of 28228 pixel gray-scale
images of handwritten numerical digits with a training and
test set of 60K and 10K images, respectively. We train a 6
layer model. In our evaluation we measure precision for top-10
maximally activated neurons for every combination of 6 layers
and ten classes which are correctly and incorrectly classified.
Figure. 1 shows the results. As the figure shows, our sampling
approaches outperform all baselines for all sample sizes.

IV. RELATED WORK

Our work is related to model diagnosis systems and ap-
proximate query processing. Model diagnosis systems either
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pre-generated all data required to provide interactive query
times [11] or utilized a variety of storage optimization tech-
niques to manage the storage footprint [20]. Both approaches
require pre-generated artifacts. These tools would benefit from
our sampling techniques, as sampling would help reduce the
scale of data required to support model diagnosis. Activis
[11], for instance selectively pre-computes values for nodes of
interest to save computation and storage. Sampling techniques
such as ours will enable ML practitioners using tools such
as Activis to avoid making such compromises. Algorithms
for exact top-k queries are defined by the seminal work on
the threshold algorithm (TA) [6], which require access to the
indexed attribute(s) for a data set. Efficient processing of the
top-k queries over samples is a challenging task [10]. Related
work in this category includes top-k processing techniques that
operate on deterministic data but report approximate answers
in favor of performance. Algorithms presented in [19] are an
approximate adaptation of TA where the approximate answers
to the top-k query is associated with probabilistic guarantees.
However, like TA this algorithm requires access to sorted
attributes for the underlying data, which we do not want
to generate and store for DL models. Another approach to
approximate top-k answers is considered in similarity search
for multi-media databases [2]. This method uses a proximity
measure to determine if a data region should be inspected. This
utilizes the underlying data distribution rather than individual
column value and in that sense is closer to our approach (i.e.,
instead of examining the underlying data, we utilize the latent
space to create a sample).

V. CONCLUSION AND FUTURE WORK

Deep learning models have become an indispensable tool
for a wide range of tasks, such as image classification, object
recognition, speech analysis, machine translation, and more.
The task of diagnosis for these purportedly black-box models
requires additional artifacts, such as activations. These addi-
tional artifacts must be generated, stored, and queried for each
DL model being debugged. The addition of these artifacts,
which can be up to three orders of magnitude larger than
the input data size for each model being diagnosed, turns the
process of building, diagnosing, and selecting DL models in
to a large-scale data management challenge. In this work, we
present a novel sample creation technique that reduces the time
and complexity required to accomplish these tasks.

The sampling technique we present in this paper focus on
sampling input data points, e.g. rows from the relation of data
points and activations. The ML literature supports the notion of
reducing the number of neurons for which activations need to
be calculated [13], [14] and queried. We would like to explore
this avenue in future work. The sampling technique described
in this paper works well with supervised learning models, i.e.
DL models built with labeled data. In future work, we would
like to explore our sampling technique and their efficacy for
unsupervised DL models, such as generative models, auto-
regressive models, etc. [4] A large body of scientific data is
unlabeled and requires unsupervised learning techniques, and

extending our sampling technique in this direction could be
beneficial to the scientific community working on newer data
sets.
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