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Abstract—Deep learning (DL) models have achieved paradigm-
changing performance in many fields with high dimensional
data, such as images, audio, and text. However, the black-
box nature of deep neural networks is not only a barrier
to adoption in applications such as medical diagnosis, where
interpretability is essential, but it also impedes diagnosis of under
performing models. The task of diagnosing or explaining DL
models requires the computation of additional artifacts, such
as activation values and gradients. These artifacts are large
in volume, and their computation, storage, and querying raise
significant data management challenges.

In this paper, we develop a novel data sampling technique
that produces approximate but accurate results for these model
debugging queries. Our sampling technique utilizes the lower
dimension representation learned by the DL model and focuses on
model decision boundaries for the data in this lower dimensional
space.

I. INTRODUCTION

Deep learning (DL) models have enabled unprecedented

breakthroughs in developing artificial intelligence systems for

analyzing high-dimensional data, such as text, audio, and

images. Building such models is a data intensive task. To

build an effective model, a machine learning (ML) practitioner

needs to proceed in an iterative fashion, building and tuning

dozens of models before selecting one. While naive selection

of the best model could be based on statistical measures such

as, accuracy, F1 score, etc., examining what the model is

learning and why it is making mistakes requires access to

artifacts, such as model activations and gradients. Activation

values, or activations, are learned representations of input data.

Gradients are partial derivatives of the target output (e.g., the

true label of the input data) with respect to the input data. At

a high level, activations and gradients are high dimensional

vectors with sizes that depend on input data dimensionality

and DL model architecture. While activations depict what the

deep learning model sees, gradients depict areas of high model
sensitivity.

The naive solution of pre-computing and storing all artifacts

required for model diagnosis scales as the product of size of

input data and number of parameters of the deep learning

model. For even small data sets and models this can be up

to three orders of magnitude larger than the input data per

model [5]. This explosion in the volume of data makes it

difficult to efficiently perform diagnosis tasks, often preventing

interactive diagnosis. Thus, with hundreds of gigabytes of

artifacts per model, building, diagnosing, and selecting a DL

model becomes a large-scale data management challenge.

Previous attempts at solving this problem either pre-

generated all data required to provide interactive query

times [11], [13] or utilized a variety of storage optimization

techniques to manage the storage footprint [15], [20]. Both ap-

proaches require pre-generated artifacts. Several visualization

tools pre-generate some of the aggregates and severely limit

the type of queries that can be posed, while others simply do

the latter. Systems with storage optimizations [20] reduce the

storage required for this data by utilizing techniques such as

de-duplication and quantization, etc.

Here, we explore the idea of utilizing samples to diagnose

DL models. Instead of relying on generating artifacts on the

entire dataset we generate artifacts on a carefully selected

sample. Sampling is a fast and flexible database technique for

approximate query processing, it works well in high dimen-

sions [1], [9] and is a potential candidate for this workload.

A key challenge with answering model debugging queries

over input data samples is that those queries frequently ask for

outlier values such as the top-k maximally activated neurons

for a given layer and output label (see [5] for a more detailed

workload characterization). Common sampling techniques that

rely on uniform random sampling fail to adequately capture

information about such values.

In this paper, we outline an approach to create samples

that addresses the above problem and that can serve to debug

any DL model where a lower dimensional representation of

the input data is learned in a supervised, semi-supervised or

unsupervised manner. We compare our technique to standard

sampling techniques such as uniform, random sampling and

stratified sampling as well as a variety of state-of-the-art

alternatives from the literature.

II. APPROACH

To enable interactive model diagnosis, our approach creates

a sample. We compute the results of a query on this sample

instead of the entire data. In this section, we describe our

approach and present other baseline techniques for selecting

these samples.

The key insight that we utilize to select a data sample and

avoid generating and storing all activation values is that DL

models learn a lower dimension representation of the data, and

a classifier. DL training transforms the input data, creating a

new representation with each layer. Training criteria encourage

training set neighbors, such as data points from the same

class, to have similar representations. Leveraging this lower
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dimensional representation learned by the model has the dual

benefit of reducing the dimensionality of the data and focusing

on the representation learned by the model. Since the objective

of the workload is to diagnose this model, we hypothesize that

leveraging the learned latent space to select a sample will be

key to understanding what the model has learned. For model

diagnosis we view the training, and test data points in the latent
space, i.e., instead of viewing the data in the high dimensional

original format of images, audio or text, we utilize this lower

dimensional representation of the data learned by the model’s

last hidden layer to create samples.

Our goal is to diagnose the model, which implies that a

subset of the queries will focus on what the model got wrong,

as we discuss in more detail in the full version of this paper [5].

In a classification problem with multiple classes, the decision

boundary partitions the underlying vector space into multiple

regions, one for each class. Decision boundaries are where

the output label of a classifier is ambiguous, i.e., where errors

and mis-classifications occur. The diagnosis of a DL model

requires exploration of the decision boundary for a model [8],

[22].

Thus, our approach is based on utilizing the lower dimen-

sional representation and focusing on decision boundaries in

the latent space when selecting the data points to include in

our sample. Different types of queries serve for DL model

diagnosis. One type of debugging query that is especially

difficult to answer from a sample are queries that ask for

the top-k maximally activated neurons or the distribution of

maximally activated neurons. Top-k queries are generally an

important area of database research. The best known general-

purpose algorithm for identifying top-k items is the Threshold

Algorithm [6], which operates on the complete, sorted multi-

dimensional data required to compute the top-k elements.

Approximate algorithms for top-k retrieval require building

probabilistic models to fit the score distribution of the under-

lying data as proposed in [19]. In contrast to these approaches,

we wish to avoid computing and storing activations for the

entire data set in the first place.

A. Baselines

Since our key insight to selecting a sample is to leverage

the lower dimensional representation of the data learned by the

model, the first baseline that we consider is a simple method

for sampling from the latent space. The naive way of selecting

a sample that covers the n-dimensional latent space is to create

a grid in that space and sample from each cell. However, the

latent space is typically high dimensional, e.g., for the MNIST

dataset, the latent space is 84D. Even if we divide each

dimension into two buckets, we get a total of 284 ∼ 1.93x1025

buckets. Instead, we reduce the dimensionality of data (to

5D for evaluation) in the latent space for this analysis before

collecting an equal number of instances at random from each

underlying cell. We call this naive technique simple latent
space sampling.

Another way to lower the dimensions is to utilize the

classification result. Each data point is classified by the model

as belonging to a class. This result is encapsulated in a

confusion matrix (a.k.a. the error matrix), which tabulates

the performance of a classification algorithm. For a binary

classifier, the confusion matrix counts the number of true

positives, false positives, true negatives, and false negatives.

For multiple labels, the confusion matrix generalizes this

concept. Each row of the matrix represents a predicted class,

while each column represents a true class. In this technique,

we sample based on cells in the confusion matrix. We call this

technique stratified by confusion matrix (CM).
In database systems such as BlinkDB [1], strata are defined

over a subset of columns that typically correspond to categor-

ical valued attributes, e.g. city. For DL model diagnosis, the

underlying data can be considered a relation, with each row

representing a data item (e.g., one image) and each column a

value of interest, such as the activation value for a neuron in

the model. Each row can be extended with metadata, such as

the predicted class and the class label. The stratified by CM
sample thus serves as a stratified sample baseline.

In addition, we use two other techniques from the litera-

ture as baselines. First, we use visualization aware sampling

(VAS) for large scale data visualization, such as scatter and

map-plots. VAS is based on the interchange algorithm [16],

which selects tuples that minimize a visualization-inspired

loss function. Visualization-inspired loss is based on three

common visualization goals: regression, density estimation

and clustering. The interchange algorithm creates a sample

that maximixes visual fidelity of the data at arbitrary zoom

levels. Second, we use explicable boundary (EB) trees [21] to

create a single sample from input data. This method constructs

a boundary tree to approximate the complicated deep neural

network models with high fidelity. EB trees provide a single

sample for a dataset and a model which explains the boundary

between each class learned by the DL model.

B. Clustering in Latent Space

An important part of our approach to selecting a sample for

DL model diagnosis is to ensure that model decision bound-

aries are represented in the sample. To determine boundaries in

latent space, we cluster data in latent space and fit a model to

estimate the parameters for each class in that space. We do this

in both supervised and unsupervised manners. When fitting a

supervised model, we use the class labels. In the unsupervised

case, we use parameterized models so we utilize the number

of unique classes present.

In both supervised and unsupervised cases the models fitted

to the latent space provide us with the likelihood that and

object belongs to a class or cluster. For binary classification

to determine whether an object belongs to class A or class B,

let P (A|xi) be the likelihood that a data instance xi belongs

to class A. In this case, the points on the decision boundary

of class A and class B are those for which the ratio
P (A|xi)
P (B|xi)

is ≈ 1. A lower value of likelihood ratio would imply that

P (B|xi) > P (A|xi) in which case xi would be assigned to

cluster or class B. The higher the likelihood that an object

belongs to class A, the higher the ratio
P (A|xi)
P (B|xi)

will be.
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Algorithm 1: Clustering and Sampling

Data: input data in latent space, f ,k, j
// k num class labels, f is sample size

1 Clusters ← None
2 sample ← None
3 Clusters = ClusterAndSortData(data,k)

4 foreach clusteri in Clusters do
5 s1 ← data.head(f ∗ j)
6 s2 ← data.tail(f ∗ (1− j))
7 sample ← s1 + s2 + sample
8 end
9 return sample

For a multi-class classifier, where a data point xi may

belong to classes ⊂ a, b, c, . . . , this ratio would be,
P (A|xi)∑

z⊂b,c,d,... P (Z|xi)
, or

P (A|xi)

P (¬A|xi)

Our sampling technique clusters the data in the latent space,

then sorts data in each cluster or class by the ratio of likelihood

of belonging to that particular class. This sorted list thus

consists of exemplars on the higher end and outliers on the

lower end of the list. We utilize a tuning parameter j to

determine the proportion of exemplars and outliers in our

sample. We select j% from the outliers and 1 − j% from

the exemplars. Algorithm 1 describes this approach in further

detail.

For the unsupervised technique, we utilize a parameterized

clustering technique, the Gaussian Mixture Model (GMM).

These models offer a probabilistic way to represent normally

distributed sub-populations within an overall population. We

set the number of clusters in GMM to be equal to the

number of unique classes in the dataset. We utilize variational

estimation for the GMM [3], where the effective number of

components can be inferred from the data.

For the supervised technique, we use max-margin classifiers

to classify the data in the latent space. Margin classifiers

are a class of supervised classification algorithms that utilize

distance from the decision boundary to bound the classifier’s

generalization of error. Support vector machine (SVM) [18]

is an example of this category of classifiers, which learns

boundaries based on labels so that the examples of the separate

classes are divided by a clear gap that is as wide as possible.

SVMs utilize kernel functions [12]; these help to projecting

data to a higher dimensional space where points can be linearly

separated. DL models do not have non-linear activation func-

tions after the last hidden layer, so the latent representation

from last the hidden layer should enable discovery of linear

boundaries. Thus, we utilize a linear kernel for SVM [7],

which has the dual advantage of being faster than non-linear

kernels and less prone to over-fitting. Results of the classifier

are turned into a probability distribution over classes by using

Platt scaling [17], [23]. These probabilities are used to sort the

Fig. 1: Precision for top-10 neurons for MNIST. The X-axis

shows the sample size as a fraction of the entire data set.

data items in each cluster or predicted class and then select a

sample.

III. PRELIMINARY EVALUATION

Here, we empirically evaluate our hypotheses from our

sampling approach, namely sampling evenly from the latent

space is not sufficient; model decision boundaries are the most

important region of this latent space for answering model

diagnosis queries and must be well represented in a reliable

sample. Model diagnosis queries are posed over sets [11]

e.g. top-10 maximally activated neurons for layer x, for all

correctly classified items for class a. Instead of considering

the immense set of subsets possible we limit our evaluation to

all combinations of layers of DL model, number of classes in

the input data and classification (correct or incorrect). Thus,

to measure accuracy of a query for a sample, we first compute

the query results for each of these combinations (layer, class

and classification). Next, we compute a metric comparing

the results from the sample with the results for the same

combination on the entire data set. Finally, we calculate the

over-all query set accuracy for each query set by averaging

the value of the corresponding metric over the combinations.

For the evaluation we compare five baseline techniques with

two sampling techniques described in Section II. We use a

top-k query and to measure how well our sample performs

we use precision as the metric. Precision is the fraction of

top-k results from the sample that belong to the true top-

k result. Precision lies between [0, 1]. A precision value of

0 implies that the sample top-k does not contain any of the

full data top-k neurons. We evaluate our sampling technique

on MNIST data set that consists of 28x28 pixel gray-scale

images of handwritten numerical digits with a training and

test set of 60K and 10K images, respectively. We train a 6

layer model. In our evaluation we measure precision for top-10

maximally activated neurons for every combination of 6 layers

and ten classes which are correctly and incorrectly classified.

Figure. 1 shows the results. As the figure shows, our sampling

approaches outperform all baselines for all sample sizes.

IV. RELATED WORK

Our work is related to model diagnosis systems and ap-

proximate query processing. Model diagnosis systems either
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pre-generated all data required to provide interactive query

times [11] or utilized a variety of storage optimization tech-

niques to manage the storage footprint [20]. Both approaches

require pre-generated artifacts. These tools would benefit from

our sampling techniques, as sampling would help reduce the

scale of data required to support model diagnosis. Activis

[11], for instance selectively pre-computes values for nodes of

interest to save computation and storage. Sampling techniques

such as ours will enable ML practitioners using tools such

as Activis to avoid making such compromises. Algorithms

for exact top-k queries are defined by the seminal work on

the threshold algorithm (TA) [6], which require access to the

indexed attribute(s) for a data set. Efficient processing of the

top-k queries over samples is a challenging task [10]. Related

work in this category includes top-k processing techniques that

operate on deterministic data but report approximate answers

in favor of performance. Algorithms presented in [19] are an

approximate adaptation of TA where the approximate answers

to the top-k query is associated with probabilistic guarantees.

However, like TA this algorithm requires access to sorted

attributes for the underlying data, which we do not want

to generate and store for DL models. Another approach to

approximate top-k answers is considered in similarity search

for multi-media databases [2]. This method uses a proximity

measure to determine if a data region should be inspected. This

utilizes the underlying data distribution rather than individual

column value and in that sense is closer to our approach (i.e.,

instead of examining the underlying data, we utilize the latent

space to create a sample).

V. CONCLUSION AND FUTURE WORK

Deep learning models have become an indispensable tool

for a wide range of tasks, such as image classification, object

recognition, speech analysis, machine translation, and more.

The task of diagnosis for these purportedly black-box models

requires additional artifacts, such as activations. These addi-

tional artifacts must be generated, stored, and queried for each

DL model being debugged. The addition of these artifacts,

which can be up to three orders of magnitude larger than

the input data size for each model being diagnosed, turns the

process of building, diagnosing, and selecting DL models in

to a large-scale data management challenge. In this work, we

present a novel sample creation technique that reduces the time

and complexity required to accomplish these tasks.

The sampling technique we present in this paper focus on

sampling input data points, e.g. rows from the relation of data

points and activations. The ML literature supports the notion of

reducing the number of neurons for which activations need to

be calculated [13], [14] and queried. We would like to explore

this avenue in future work. The sampling technique described

in this paper works well with supervised learning models, i.e.

DL models built with labeled data. In future work, we would

like to explore our sampling technique and their efficacy for

unsupervised DL models, such as generative models, auto-

regressive models, etc. [4] A large body of scientific data is

unlabeled and requires unsupervised learning techniques, and

extending our sampling technique in this direction could be

beneficial to the scientific community working on newer data

sets.
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