
Exact Byzantine Consensus on Undirected Graphs under
Local Broadcast Model ∗

Muhammad Samir Khan

mskhan6@illinois.edu

University of Illinois at

Urbana-Champaign

Syed Shalan Naqvi

naqvi5@illinois.edu

University of Illinois at

Urbana-Champaign

Nitin H. Vaidya

nitin.vaidya@georgetown.edu

Georgetown University

ABSTRACT
This paper considers the Byzantine consensus problem for nodes

with binary inputs. The nodes are interconnected by a network

represented as an undirected graph, and the system is assumed to

be synchronous. Under the classical point-to-point communication

model, it is well-known that the following two conditions are both

necessary and sufficient to achieve Byzantine consensus among n
nodes in the presence of up to f Byzantine faulty nodes: n ≥ 3f + 1
and vertex connectivity at least 2f +1. In the classical point-to-point
communication model, it is possible for a faulty node to equivocate,
i.e., transmit conflicting information to different neighbors. Such

equivocation is possible because messages sent by a node to one of

its neighbors are not overheard by other neighbors.

This paper considers the local broadcast model. In contrast to

the point-to-point communication model, in the local broadcast

model, messages sent by a node are received identically by all of
its neighbors. Thus, under the local broadcast model, attempts by a

node to send conflicting information can be detected by its neigh-

bors. Under this model, we show that the following two conditions

are both necessary and sufficient for Byzantine consensus: vertex

connectivity at least ⌊3f /2⌋ + 1 and minimum node degree at least

2f . Observe that the local broadcast model results in a lower re-

quirement for connectivity and the number of nodes n, as compared

to the point-to-point communication model.

We extend the above results to a hybrid model that allows some of

the Byzantine faulty nodes to equivocate. The hybrid model bridges

the gap between the point-to-point and local broadcast models, and

helps to precisely characterize the trade-off between equivocation

and network requirements.

CCS CONCEPTS
• Theory of computation → Distributed algorithms.

∗
This research is supported in part by the National Science Foundation awards 1409416

and 1733872, and Toyota InfoTechnology Center. Any opinions, findings, and con-

clusions or recommendations expressed here are those of the authors and do not

necessarily reflect the views of the funding agencies or the U.S. government.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331619

KEYWORDS
complexity and impossibility results for distributed computing,

fault-tolerance, reliability, self-organization, self-stabilization

ACM Reference Format:
Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. 2019.

Exact Byzantine Consensus on Undirected Graphs under Local Broadcast
Model . In 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19), July 29-August 2, 2019, Toronto, ON, Canada. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3293611.3331619

1 INTRODUCTION
This paper considers Byzantine consensus for nodes with binary

inputs. The nodes are interconnected by a communication network

represented as an undirected graph, and the system is assumed

to be synchronous. Under the classical point-to-point communica-

tion model, it is well-known [7] that the following two conditions

are both necessary and sufficient to achieve Byzantine consensus

among n nodes in the presence of up to f Byzantine faulty nodes:

n ≥ 3f + 1 and vertex connectivity at least 2f + 1. In the classical

point-to-point communication model, it is possible for a faulty node

to equivocate [4], i.e., transmit conflicting information to different

neighbors. Such equivocation is possible because messages sent by

a node to one of its neighbors are not overheard by other neighbors.

In contrast, in the local broadcast model [3, 15] considered in

this paper, a message sent by any node is received identically by

all of its neighbors in the communication network. Thus, under

the local broadcast model, attempts by a node to equivocate (i.e.,

send conflicting information to its neighbors) can be detected by

its neighbors.

This paper obtains tight necessary and sufficient conditions on

the underlying communication network to be able to achieve Byzan-

tine consensus under the local broadcast model. As summarized in

Section 2, although there has been significant work [1, 3, 5, 6, 9–

12, 15, 16, 19, 23, 25–27, 29, 33] that uses either the local broadcast

model or other models that restrict equivocation, tight necessary

and sufficient conditions for Byzantine consensus under the local

broadcast model have not been obtained previously. In particular,

this paper makes the following contributions, some of which have

been documented elsewhere [13, 14, 21, 22] as well:

1) Necessary and sufficient condition: In Sections 4 and 5, we

establish that, under the local broadcastmodel, to achieve Byzan-

tine consensus, it is necessary and sufficient for the communica-

tion graph to have vertex connectivity at least

⌊
3f /2

⌋
+ 1 and

minimum degree at least 2f . Observe that the local broadcast
model results in a lower connectivity requirement as compared

to the (2f + 1)-connectivity required under the point-to-point

communication model.

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

327

https://doi.org/10.1145/3293611.3331619
https://doi.org/10.1145/3293611.3331619

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya

2) Efficient algorithm: We constructively prove the sufficiency

of the tight condition stated above by presenting an algorithm

that achieves Byzantine consensus. This algorithm, however, is

not efficient. For the case when vertex connectivity is at least

2f , we have a more efficient algorithm. Due to lack of space,

the algorithm is presented in the full version of the paper [13].

In Section 5.3, we present a tool used in the algorithm which

exploits the 2f -connectivity. Note that for f = 1, 2, the tight

condition presented above implies vertex connectivity of 2 and

4, respectively (i.e., connectivity equal to 2f when f = 1, 2).

3) Hybrid model: In Section 6, we extend the above necessary

and sufficient condition to a hybrid model wherein at most t ≤ f
faulty nodes may have the ability to equivocate to their neigh-

bors (i.e., the ability to send messages to each neighbor without

being overheard by the other neighbors), while the remaining

faulty nodes are restricted to local broadcast (i.e., their messages

will be received identically by all the neighbors). The point-to-

point communication model and the local broadcast model are

both obtained as special cases of the hybrid model when t = f
and t = 0, respectively. Thus, the hybrid model provides a bridge

between those two models and helps to precisely characterize

the trade-off between equivocation and network requirements.

2 RELATED WORK
There is a large body of work on Byzantine fault-tolerant algorithms

[2, 7, 17, 20, 24]. Here we focus primarily on related work that

imposes constraints on a faulty node’s ability to equivocate.

Rabin and Ben-Or [26] considered a global broadcast model

and showed that n ≥ 2f + 1 is both sufficient and necessary for

consensus in a synchronous system. The local broadcast model

considered in our work reduces to the global broadcast model when

the network is a complete graph. The necessary and sufficient

conditions obtained in this paper are (not surprisingly) equivalent

to n ≥ 2f + 1 when the network is a complete graph. Clement

et. al. [5] also considered non-equivocation in a complete graph
under asynchronous communication. Our work obtains results for

arbitrary incomplete graphs with synchronous communication.

The goal of a Byzantine broadcast algorithm is to allow a single

source node to deliver its message reliably to all the other nodes.

Prior work has explored such algorithms under the local broadcast

model [3, 15, 16]. However, the results for Byzantine broadcast do
not provide insights into the network requirements for Byzantine

consensus problem considered in this paper.

There has been significant work on other similar models, some-

times called “partial broadcast”. To motivate these models, consider

a network consisting of several Ethernet channels, with a subset of

nodes Si being connected to channel i . Then, transmission by any

node in Si on channel i will be received by all the nodes in channel i .
Each node may be connected to several different such channels. An

Ethernet channel to which h nodes are connected may be viewed

as an h-hyperedge in a communication network represented by a

hypergraph. Fitzi and Maurer [9] considered a network in which

every subset of three nodes form a hyperedge, in addition to ev-

ery subset of two nodes also forming a hyperedge (i.e., a complete

(2,3)-uniform hypergraph). Ravikant et. al. [27] also considered a

(2,3)-uniform hypergraph, but with only a subset of 3-hyperedges

being present. Jaffe et. al. [12] gave asymptotically tight bounds for

the number of 3-hyperedges required in such graphs. Amitanand

et. al. [1] considered a complete network wherein, for each faulty

node k , the remaining nodes are partitioned such that transmission

by the faulty node k to any node is received identically by all the

nodes in its partition. One key difference from our work is that

we consider incomplete networks, whereas [1] assumes that each

node can communicate directly with all the other nodes. Amitanand

et. al. [1] considered an adversary structure that characterizes the

set of nodes that may be simultaneously faulty, instead of using a

threshold on the number of faults. Other work [6, 10, 11, 33] has

explored the trade-off between reliability and privacy on partial

broadcast networks.

Some prior work has explored a restricted class of iterative al-

gorithms that achieve approximate Byzantine consensus under the
local broadcast model [18, 35]. In particular, this class of algorithms

is iterative in nature, with a state variable at each node being up-

dated in each iteration as a linear interpolation of the states of

selected neighbors. Due to the restriction on the algorithm behav-

ior, the network requirements exceed the necessary and sufficient

conditions shown in this paper. Additionally, these restricted algo-

rithm structures yield only approximate consensus in finite time.

Li et. al. [19] extended this line of work to a network consisting

of 3-hyperedges and 2-hyperedges. Vaidya et. al. [28, 31, 32] have

investigated the iterative algorithm structure in the point-to-point

communication model.

3 SYSTEM MODEL AND NOTATION
We consider a synchronous system. The communication network

interconnecting n nodes is represented by an undirected graph

G = (V , E). Every node in the system knows graph G. Each node

u is represented by vertex u ∈ V . We will use the terms node and
vertex interchangeably. Two nodesu andv are neighbors if and only
if uv ∈ E is an edge of G. For a set S ⊆ V , node u is said to be a

neighbor of set S if u < S and there exists v ∈ S such that uv ∈ E.
Each edge uv represents a FIFO link between the two nodes u

and v . When a messagem sent by node u is received by node v ,
node v knows thatm was sent by node u. In Sections 4 and 5, we

assume the local broadcast model wherein a message sent by a node

u is received identically and correctly by each node v such that

uv ∈ E (i.e., by each neighbor of u). A hybrid model is considered

later in Section 6.

A Byzantine faulty node may exhibit arbitrary behavior. We

consider the Byzantine consensus problem assuming that each node

has a binary input. The goal is for each node to output a binary

value, satisfying the following conditions, in the presence of at most

f < n Byzantine faulty nodes.

1) Agreement: All non-faulty nodes must output the same value.

2) Validity: The output of each non-faulty node must be the input

of some non-faulty node.

3) Termination: All non-faulty nodes must decide on their output

in finite time.

Paths in graph G: A path is a sequence of nodes such that any

two adjacent nodes in the sequence are neighbors in the graph.

• For u,v ∈ V , a uv-path Puv is a path between nodes u and v .
u and v are endpoints of path Puv . Any node in path Puv that

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

328

Exact Byzantine Consensus on Undirected Graphs under
Local BroadcastModel PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

is not an endpoint is said to be an internal node of Puv . All uv-
paths have u and v as endpoints, by definition. Two uv-paths are
node-disjoint if they do not have any internal nodes in common.

• For U ⊂ V and a node v < U , a Uv-path is a uv-path for some

node u ∈ U . AllUv-paths havev as one endpoint. TwoUv-paths
are node-disjoint if they do not have any nodes in common except

endpoint v . In particular, although two node-disjointUv-paths
have endpoint v in common, the other endpoints are distinct for

the two paths.

Fault-free paths: A path is said to exclude a set of nodes X ⊆ V
if no internal node of the path belongs to X ; however, its endpoints

may potentially belong to X . A path is said to be fault-free if none
of its internal nodes are faulty. In other words, a path is fault-free if

it excludes the set of faulty nodes. Note that a fault-free path may

have a faulty node as an endpoint.

Degree and Connectivity: The degree of a node u is the number

of u’s neighbors (i.e., the number of edges incident to u). Minimum

degree of G is the minimum over the degree of all the vertices in

G. A graph G is k-connected if n > k and removal of less than k
nodes does not disconnect G. By Menger’s Theorem [34] a graph

G is k-connected if and only if for any two nodes u,v ∈ V there

exist k node disjoint uv-paths. Another standard result [34] for

k-connected graphs is that ifG is k-connected, then for any node v
and a set of at least k nodesU there exist k node-disjointUv-paths.

4 NECESSARY CONDITIONS UNDER
LOCAL BROADCAST

Theorem 4.1 below states the necessary conditions for Byzantine

consensus under the local broadcast model. Section 5 presents a

Byzantine consensus algorithm and constructively proves that the

necessary conditions are also sufficient.

Theorem 4.1. If there exists a Byzantine consensus algorithm un-
der the local broadcast model on graphG tolerating at most f Byzan-
tine faulty nodes, then both the following conditions must be true: (i)G
has minimum degree at least 2f , and (ii)G is (

⌊
3f /2

⌋
+1)-connected.

Appendix A presents a proof of Theorem 4.1. Necessity of con-

ditions (i) and (ii) in the theorem is proved separately in Lemmas

A.1 and A.2, respectively. We use a state machine based approach

[2, 7, 8] to prove Lemmas A.1 and A.2.

It should be easy to see that a complete graph consisting of

2f + 1 nodes satisfies the necessary conditions in Theorem 4.1

for any f . Figure 1 presents other examples of graphs that satisfy

the necessary conditions. Figure 1(a) shows a cycle consisting of 5

nodes. For this graph, the minimum degree is 2, and the graph is

2-connected. Thus, the cycle satisfies the conditions in Theorem 4.1

for f = 1. The graph in Figure 1(b) satisfies the necessary conditions

when f = 2.

Section 5 below proves that the above necessary conditions are

also sufficient. Before proceeding to Section 5, let us consider the

5-node cycle in Figure 1(a) to build some intuition on why these

conditions may be sufficient. Since f = 1, we do not have 2f + 1
node-disjoint paths between every pair of nodes in the cycle in Fig-

ure 1(a). Despite lower connectivity, we can show a useful property.

In particular, suppose that node 1 attempts to send a messageM to

node 4, by transmitting it along two node-disjoint paths 1-2-3-4 and

1

2

3 4

5

(a) f = 1

(b) f = 2

Figure 1: Graphs satisfying conditions in Theorem 4.1

1-5-4, respectively. That is, node 1 will send the message to nodes

2 and 5 (its neighbors) in a single transmission – local broadcast

model allows node 1 to send its message to all its neighbors simulta-

neously. The neighbors 2 and 5 will then forward the message and

subsequently, node 3 will forward the message received from node

2. Due to the local broadcast model, all neighbors of each node will

receive its transmissions. Consider two cases:

• Case (i): The internal nodes (namely, 2, 3 and 5) on the two paths

behave correctly: In this case, node 4 receives identical copies of

the message along the two disjoint paths. Because f = 1, node 4

can be certain that it has correctly received the message that was

transmitted by node 1 (when f = 1, internal nodes on at most

one disjoint path may be faulty).

• Case (ii): Node 3 is faulty, and tampers the message received from

node 2 before forwarding it to node 4: In this case, node 4 will

not receive two identical copies of the message along the two

disjoint paths. Therefore, node 4 cannot determine the message

sent by node 1. However, in this case, node 2 is non-faulty. Node

2 correctly forwards messageM received from node 1 to node 3,

and then observes that node 3 is forwarding a tampered message

to node 4, not the correct message M . Node 2 can observe the

faulty behavior of node 3 due to the local broadcast property

– when node 3 sends the tampered message to node 4, node 2

receives it too, because node 2 is a neighbor of node 3.

Node 2 can now notify node 1 that node 3 is faulty. Of course,

on receiving this notification, node 1 cannot be certain whether

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

329

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya

node 3 is indeed faulty, or node 2 is faulty and it is incorrectly

accusing node 3 of misbehavior. However, node 1 can be certain

that one of nodes 2 and 3 must be faulty. Because f = 1, node 1

can then infer that the path 4-5-1 is fault-free. Thus, anymessages

received by node 1 from node 4 along the path 4-5-1 could not

be tampered by the internal node on this path, namely, node 5.

This allows node 1 to now receive messages transmitted by node

4 reliably.

The example above can be generalized to derive a similar capa-

bility for reliable communication in at least one direction between

each pair of nodes. Although the algorithm presented next does

not seem to explicitly utilize this property, it implicitly relies on

such a behavior.

5 BYZANTINE CONSENSUS ALGORITHM
UNDER LOCAL BROADCAST

Theorem 5.1 below states that the necessary conditions in Theorem

4.1 are also sufficient.

Theorem 5.1. Under the local broadcast model, Byzantine con-
sensus tolerating at most f Byzantine faulty nodes is achievable on
graph G if both the following conditions are true: (i) G has minimum
degree at least 2f , and (ii) G is (

⌊
3f /2

⌋
+ 1)-connected.

We prove correctness of Theorem 5.1 constructively by providing

a Byzantine consensus algorithm (in Section 5.1) and showing its

correctness (in Section 5.2).

5.1 Proposed Algorithm
Assume that graph G satisfies the properties stated in Theorem

5.1. That is, G has minimum degree at least 2f and is (
⌊
3f /2

⌋
+ 1)-

connected. Pseudo-code for the proposed algorithm is presented

below. To understand the description presented next, it will help

the reader to read the corresponding steps in Algorithm 1 below.

Initialization: Each node v ∈ V maintains a local state variable

named γv , which is initialized to equal node v’s binary input.

Phases of the algorithm: Recall that we assume a synchronous sys-

tem. The execution of the algorithm is divided into many phases,
each phase corresponding to a distinct subset of nodes F , such that

F contains at most f nodes. Each iteration of the For loop in Algo-

rithm 1 corresponds to one phase of the algorithm. The set F chosen

in each phase is a candidate for the actual set of faults; however,
set F in only one of the phases will exactly equal the actual set of

faulty nodes in the given execution. This is similar to the Byzantine

consensus algorithm for directed graphs under the point-to-point

communication model by Tseng and Vaidya [30]. However, the rest

of the algorithm proceeds differently since we consider the local

broadcast model.

Step (a): At the beginning of each phase, each node v attempts to

communicate its current value of γv via “flooding”, as described

soon. Any message transmitted during flooding has the form (b,Π),
where b ∈ {0, 1} and Π is a path. Flooding proceeds in synchronous

rounds, with each node possibly forwarding messages received in

the previous round, following the rules presented below. Flood-

ing will end after n rounds, as should be clear from the following

description.

To initiate flooding of its γv value, node v transmits message

(γv ,⊥) to its neighbors, where ⊥ represents an empty path. Each

node in the network similarly initiates flooding of its own γ value

in step (a). If v is faulty and does not initiate flooding, then non-

faulty neighbors of v replace the missing message with the default

message of (1,⊥). Therefore, we can assume that a value is indeed

flooded by each node, even if it is faulty. When node v receives

from a neighbor u a message (b,Π), where b ∈ {0, 1} and Π is a

path, it takes the following steps sequentially. In the following, Π -u
denotes a path obtained by concatenating identifier u to path Π.

(i) If path Π -u does not exist in graph G, then node v discards

the message (b,Π). Recall that each node knows graphG , and
the message (b,Π) was received by node v from node u.

(ii) Else if, in the current phase, node v has previously received

from u another message containing path Π (i.e., a message of

the form (b ′,Π)), then node v discards the message (b,Π).

(iii) Else if path Π already includes node v’s identifier, node v
discards the message (b,Π).

(iv) Else node v is said to have received value b along path Π -u

and nodev forwards message (b,Π -u) to its neighbors. Recall
that v received message (b,Π) from neighbor u.

Rules (i) and (ii) above are designed to prevent a faulty node from

sending spurious messages. Recall that, under the local broadcast

model, all neighbors of any node receive all its transmissions. Thus,

rule (ii) above essentially prevents a faulty node from successfully

delivering mismatching messages to its neighbors (i.e., this prevents

equivocation). Rule (iii) ensures that flooding will terminate after n
rounds.

Rule (ii) above crucially also ensures the following useful prop-

erty due to the local broadcast model: even if node u is Byzantine

faulty, but paths Puv and Puw are fault-free, then nodes v and w
will receive identical value in the message from u forwarded along

paths Puv and Puw , respectively. Recall that a path is fault-free if

none of the internal nodes on the path are faulty.

Step (b): Recall that a path is said to exclude set F if none of its

internal nodes are in F . For each u ∈ V , nodev chooses an arbitrary

uv-path Puv that excludes F . It can be shown (Lemma 5.4) that such

a path always exists under the conditions in Theorem 5.1. For the

purpose of step (b), node v is deemed to have received its own γv
along path Pvv (containing only node v). Node v computes sets Zv
and Nv = V − Zv , as shown in the pseudo-code.

Step (c): This step specifies the rules for updating value γv . γv is

not necessarily updated in each phase.

Output: After all the phases (i.e., all iterations of the For loop) are

completed, the value of γv is chosen as the output of node v .

The proof of correctness of Algorithm 1 is presented in Section

5.2. As we discussed earlier when describing the flooding mecha-

nism, the faulty nodes are effectively limited to delivering a unique

value on all fault-free paths (i.e., paths that do not have faulty nodes

as internal nodes). If this unique value corresponding to a faulty

node is 0, we will say that the faulty node flooded value 0; else we

will say that the node flooded value 1.

Let Z be the set of nodes that flooded 0 in step (a) and let N =
V − Z be the set of the remaining nodes that flooded 1. Recall from

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

330

Exact Byzantine Consensus on Undirected Graphs under
Local BroadcastModel PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

the description of flooding above, that even a faulty node effectively

floods one value, and one value only, in step (a) of each phase. Note

that either Z or N may possibly be empty, but not both. In step

(b), each non-faulty node v obtains its own estimates Zv and Nv
of Z and V , respectively. If the set F in the current phase does not

contain all the faulty nodes, then these estimates can be incorrect.

However, at least in one phase, F will contain all the faulty nodes

and, in that phase, as shown later, it is guaranteed that Z = Zv and

N = Nv . This observation is important for the correctness of the

algorithm, as seen later.

As shown later, step (c) is designed to ensure that the fault-free

nodes will reach consensus in a phase in which F contains all the

faulty nodes. In each phase, step (c) also ensures the invariant that

γv , at any non-faulty node v , at the end of the phase is equal to γu ,
for some non-faulty node u, at the start of that phase.

Algorithm1: Proposed algorithm for Byzantine consensus

under the local broadcast model: Steps performed by node

v are shown here.

Each node v has a binary input value in {0, 1} and

maintains a binary state γv ∈ {0, 1}.

Initialization: γv := input value of node v
For each F ⊆ V such that |F | ≤ f do

Step (a): Flood value γv . (The steps taken to achieve

flooding are described in the text preceding

Algorithm 1 pseudo-code.)

Step (b): For each node u ∈ V , identify a single uv-path
Puv that excludes F . Let,

Zv := {u ∈ V |

v received value 0 from u along Puv in step (a) },

Nv := V − Zv .

Step (c): Define sets Av and Bv as follows.

Case 1: If |Zv ∩ F | ≤
⌊
f /2

⌋
and |Nv | > f , then

Av := Nv and Bv := Zv .

Case 2: If |Zv ∩ F | ≤
⌊
f /2

⌋
and |Nv | ≤ f , then

Av := Zv and Bv := Nv .

Case 3: If |Zv ∩ F | >
⌊
f /2

⌋
and |Zv | > f , then

Av := Zv and Bv := Nv .

Case 4: If |Zv ∩ F | >
⌊
f /2

⌋
and |Zv | ≤ f , then

Av := Nv and Bv := Zv .
If v ∈ Bv and v receives value δ ∈ {0, 1} along

any f + 1 node-disjoint Avv-paths that exclude F
in step (a), then γv := δ .

end
Output γv .

5.2 Proof of Correctness of Algorithm 1
In this section, we assume that graph G satisfies the conditions

stated in Theorem 5.1, even if this is not always stated explicitly

below. Appendix B presents the proofs of the lemmas in this section.

The proof of correctness relies on two key lemmas, Lemma 5.2

and 5.3. We will present additional results and discuss the intuition

behind the proofs of these lemmas subsequently. Formal proofs are

presented in Appendix B. Recall that the algorithm execution is

divided into phases, each phase corresponding to a different choice

of F , where |F | ≤ f . For convenience of presentation, we will refer
to γv as the “state of node v”. Recall that state γv of node v may

possibly be modified in step (c) in each phase.

Lemma 5.2. For a non-faulty node v , its state γv at the end of any
given phase equals the state of some non-faulty node at the start of
that phase.

Lemma 5.3. Consider a phase of Algorithm 1 wherein all the faulty
nodes are contained in set F corresponding to that phase. At the end
of this phase, every pair of non-faulty nodes u,v ∈ V have identical
state, i.e., γu = γv .

As shown next, these two lemmas imply correctness of Algo-

rithm 1, thus proving Theorem 5.1.

Proof of Theorem 5.1: Algorithm 1 terminates in finite time

because the number of phases is finite, and flooding in each phase

completes in finite time. Thus, the algorithm satisfies the termina-
tion condition.

Since there are at most f faulty nodes in any given execution,

there exists at least one phase in which set F will contain all the

faulty nodes. Then, from Lemma 5.3, we have that all non-faulty

nodes have the same state at the end of this phase. Lemma 5.2

implies that the state of the non-faulty nodes will remain unchanged

after any subsequent phases. Therefore, all non-faulty nodes will

have the same state at the end of the algorithm and their output will

be identical. This proves that the algorithm satisfies the agreement
condition.

At the start of phase 1, the state of each non-faulty node equals

its own input. Now, applying Lemma 5.2 inductively implies that

the state of a non-faulty node always equals the input of some non-

faulty node. This, in turn, implies that the algorithm satisfies the

validity condition. Thus, we have proved correctness of Algorithm

1 under the conditions stated in Theorem 5.1. □
The proofs of Lemmas 5.2 and 5.3, stated above, rely on two

other lemmas, presented next. The reader may skip the rest of this

section without a loss of continuity. Lemma 5.4 below implies that

path Puv used in step (b) of the algorithm indeed exists.

Lemma 5.4. For any choice of set F in the algorithm, and any two
nodes u,v ∈ V , there exists a uv-path that excludes F .

Proof: Recall that a path is said to exclude F if none of the internal
nodes in the path belong to F . SinceG is (

⌊
3f /2

⌋
+1)-connected, by

Menger’s Theorem, there are at least

⌊
3f /2

⌋
+1 node-disjoint paths

between any two nodes u,v . For any f ≥ 0, we have

⌊
3f /2

⌋
+ 1 ≥

f +1. Thus, there are at least f +1 node-disjointuv-paths, of which
at least one path must exclude F , since |F | ≤ f . □

The next lemma states that the choice of sets Av and Bv in step

(c) ensures that the node-disjoint paths used in that step indeed

exist.

Lemma 5.5. For any non-faulty node v , and any given phase with
the corresponding set F , in step (c), if v ∈ Bv , then there exist f + 1
node-disjoint Avv-paths that exclude F .

The formal proof of the above lemma is presented in Appendix B.

Observe that there are four distinct cases in step (c) for determining

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

331

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya

sets Av and Bv . The proof of the above claim in cases 1 and 3 in

step (c) follows from (
⌊
3f /2

⌋
+ 1)-connectivity of graph G, while

the proof in cases 2 and 4 follows from the fact that the minimum

degree of G is at least 2f .
In step (c), observe that if node v modifies its state γv , then it

must have received identical value along f + 1 node-disjoint Avv
paths. So, at least one of these path must not only be fault-free,

but also have non-faulty endpoints. The proof of Lemma 5.2 in

Appendix B relies on this observation.

Now consider Lemma 5.3. The correctness of this lemma relies on

the local broadcast property and rule (ii) used in flooding. Suppose

that set F in a certain phase contains all the faulty nodes. Since the

paths used in step (b) of the algorithm exclude set F , these paths
are fault-free (i.e., none of their internal nodes are faulty). Then,

the earlier discussion of flooding implies that any two non-faulty

nodes u,v will obtain Zu = Zv and Nu = Nv in step (b) of this

phase. By a similar argument, all the paths used in step (c) of this

phase are also fault-free, and any two non-faulty nodes will end

step (c) of this phase with an identical state. A complete proof of

Lemma 5.3 is presented in Appendix B.

5.3 An Efficient Algorithm
The number of phases in Algorithm 1 is exponential in f , since
there exists one phase corresponding to each choice of set F such

that |F | ≤ f . When the communication graph G is 2f -connected,
we have developed an efficient algorithm that requires O(n) time.

Although in general 2f -connectivity is a stronger requirement on

graphG as compared to the requirement in Theorem 5.1, observe

that when f = 1, 2 these two requirements are equivalent.

Theorem 5.6. Under the local broadcast model, Byzantine con-
sensus tolerating at most f Byzantine faulty nodes is achievable on
graph G in O(n) synchronous rounds if G is 2f -connected.

We prove Theorem 5.6 constructively by giving an efficient al-

gorithm. Due to lack of space, the efficient algorithm is presented

in the full version of the paper [13]. Using the example in Figure

1(a), we now illustrate a tool used in that algorithm, which exploits

the 2f -connectivity. The graph in Figure 1(a) is 2-connected, i.e.,

2f -connected for f = 1. Similar to our algorithm in the previous

section, suppose that node 1 floods value b, which is propagated

to node 4 along path 1-2-3-4. When node 2 forwards the value

to node 3, all of node 2’s neighbors hear the forwarded message.

Similarly, when node 3 forwards the message to node 4, all of node

3’s neighbors hear the forwarded message.

Suppose now that we ask each node to additionally “report” on

its neighbors by flooding any messages heard/received in the above

propagation from node 1 to node 5. Then the message forwarded

by node 4, as overheard by node 3, will be flooded by node 3. Since

the graphG is 2f -connected, node 4 has at least 2f neighbors, each

of which will take similar steps. Now consider two cases:

• Node 3 is faulty: Since node 3 is faulty, there are at most f − 1

other faulty nodes. In this case, 2f -connectivity implies that there

are at least f + 1 node-disjoint fault-free paths from neighbors

of node 3 to node 1. Thus, node 1 can receive f + 1 identical and
correct reports of all messages transmitted by node 3. Therefore,

node 1 can correctly determine the message forwarded by node

3. In general, each node can correctly learn messages transmitted

by any faulty node, when the connectivity is 2f .

• Node 3 is non-faulty: In this case, it is possible that node 1 does not

receive identical reports about node 3’s messages on f + 1 node-
disjoint paths. This inability to receive f + 1 identical reports,
however, allows node 1 to infer that node 3 must be non-faulty.

In summary, as illustrated above, each node can observe all mes-

sages sent by any faulty node. Also, each node can either observe

all messages sent by another non-faulty node, or learn that it is

non-faulty. In some instances, these observations help non-faulty

nodes identify the faulty nodes accurately. Our algorithm in [13]

relies on this property to improve the time complexity.

6 HYBRID MODEL
In this section we consider a hybrid model. The hybrid model is

designed to help explore the gap between the network requirements

for Byzantine consensus under the point-to-point communication

model and the local broadcast model. Under the hybrid model, up

to f < n nodes may be Byzantine faulty. The faulty nodes are of

two types:

• Equivocating faulty nodes: At most t ≤ f of the faulty nodes

may equivocate, that is, they are not restricted to perform local

broadcast. If u is an equivocating faulty node and has neighbors

v andw , then node u may send messageMv to node v without

nodew receivingMv , and similarly send messageMw to nodew
without node v receivingMw . Thus, equivocating faulty nodes

can behave similar to the faulty nodes under the point-to-point

communication model.

• Non-equivocating faulty nodes: Any faulty node that is not an

equivocating faulty node is said to be a non-equivocating faulty

node. A non-equivocating faulty node conforms to the local

broadcast model. Thus, if node u is a non-equivocating faulty

node, and has neighbors v andw , then any messageM transmit-

ted by node u will be received identically by v andw both.

Observe that when t = 0, the hybrid model reduces to the local

broadcast model, since all the faulty nodes are restricted to perform

local broadcast. On the other hand, when t = f , the hybrid model

reduces to the classical point-to-point communication model be-

cause all the faulty nodes can equivocate. The following theorem

extends results from Sections 4 and 5 to the hybrid model.

Theorem 6.1. Under the hybrid model, Byzantine consensus tol-
erating at most f Byzantine faulty nodes, of which at most t are
equivocating faulty nodes, is achievable on graph G if and only if all
the following conditions are true:

(i) G is (
⌊
3(f − t)/2

⌋
+ 2t + 1)-connected,

(ii) if t = 0, then G has minimum degree at least 2f , and

(iii) if t > 0, then every set of nodes S , such that 0 < |S | ≤ t , has at
least 2f + 1 neighbors.

Observe that when t = 0, condition (ii) lower bounds the number

of neighbor of each vertex. On the other hand, when t > 0, condition

(iii) lower bounds the number of neighbors of each subset of nodes

of size at most t . Recall that neighbors of S are nodes outside of S
that have an edge to some node in S . Theorem 6.1 is proved in the

full version of the paper [13]. Consider three cases:

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

332

Exact Byzantine Consensus on Undirected Graphs under
Local BroadcastModel PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

• When t = 0, as noted earlier, the hybridmodel reduces to the local

broadcast model. In this case, condition (iii) imposes no restric-

tions, and conditions (i) and (ii) reduce to the graph requirements

in Theorems 4.1 and 5.1.

• When t = f , the hybrid model reduces to the point-to-point

communication model. In this case, condition (ii) imposes no

restrictions, condition (i) requires G to be (2f + 1)-connected,

and condition (iii) implies n ≥ 3f + 1.

• When 0 < t < f , the above theorem provides insights into the

trade-off between equivocation and network requirements.

The necessity and sufficiency of the conditions in Theorem 6.1

is proved using similar techniques as the proofs of Theorems 4.1

and 5.1, respectively. The proof of Theorem 6.1 appears in [13]. To

prove sufficiency, Algorithm 1 is modified to obtain an algorithm

for the hybrid model – the modified algorithm is presented in [13].

7 SUMMARY
In this work, we investigated Byzantine Consensus under the local

broadcast model. We showed that (
⌊
3f /2

⌋
+ 1)-connectivity and

minimum degree at least 2f are together necessary and sufficient

conditions to achieve Byzantine consensus in the presence of at

most f Byzantine faults under the local broadcast model. The suf-

ficiency proof is constructive. However, the algorithm presented

requires exponential synchronous rounds. For a stronger network

condition of 2f -connectivity, an efficient algorithm achieves con-

sensus in linear number of rounds. We leave finding an efficient

algorithm for the tight condition for future work.

We also considered a hybrid model where some faulty nodes may

equivocate but other faulty nodes are restricted to local broadcast.

We presented necessary and sufficient conditions for this model,

which provide insights into the trade-off between equivocation and

network requirements.

REFERENCES
[1] S. Amitanand, I. Sanketh, K. Srinathant, V. Vinod, and C. Pandu Rangan. 2003.

Distributed Consensus in the Presence of Sectional Faults. In Proceedings of the
Twenty-second Annual Symposium on Principles of Distributed Computing (PODC
’03). ACM, New York, NY, USA, 202–210. https://doi.org/10.1145/872035.872065

[2] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons, Inc., USA.

[3] Vartika Bhandari and Nitin H. Vaidya. 2005. On Reliable Broadcast in a Radio

Network. In Proceedings of the Twenty-fourth Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC ’05). ACM, New York, NY, USA, 138–147.

https://doi.org/10.1145/1073814.1073841

[4] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested Append-only Memory: Making Adversaries Stick to Their Word. SIGOPS
Oper. Syst. Rev. 41, 6 (Oct. 2007), 189–204. https://doi.org/10.1145/1323293.

1294280

[5] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. 2012.

On the (Limited) Power of Non-equivocation. In Proceedings of the 2012 ACM
Symposium on Principles of Distributed Computing (PODC ’12). ACM, New York,

NY, USA, 301–308. https://doi.org/10.1145/2332432.2332490

[6] Jeffrey Considine, Matthias Fitzi, Matthew Franklin, Leonid A. Levin, Ueli Maurer,

and David Metcalf. 2005. Byzantine Agreement Given Partial Broadcast. Journal
of Cryptology 18, 3 (01 Jul 2005), 191–217. https://doi.org/10.1007/s00145-005-

0308-x

[7] Danny Dolev. 1982. The Byzantine generals strike again. Journal of Algorithms
3, 1 (1982), 14 – 30. https://doi.org/10.1016/0196-6774(82)90004-9

[8] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. 1986. Easy impossibility

proofs for distributed consensus problems. Distributed Computing 1, 1 (01 Mar

1986), 26–39. https://doi.org/10.1007/BF01843568

[9] Mattias Fitzi and Ueli Maurer. 2000. From Partial Consistency to Global Broad-

cast. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of

Computing (STOC ’00). ACM, New York, NY, USA, 494–503. https://doi.org/10.

1145/335305.335363

[10] Matthew Franklin and Rebecca N. Wright. 2000. Secure Communication in

Minimal Connectivity Models. Journal of Cryptology 13, 1 (01 Jan 2000), 9–30.

https://doi.org/10.1007/s001459910002

[11] M. Franklin and M. Yung. 2004. Secure Hypergraphs: Privacy from Partial Broad-

cast. SIAM Journal on Discrete Mathematics 18, 3 (2004), 437–450. https://doi.org/

10.1137/S0895480198335215 arXiv:https://doi.org/10.1137/S0895480198335215

[12] Alexander Jaffe, Thomas Moscibroda, and Siddhartha Sen. 2012. On the Price of

Equivocation in Byzantine Agreement. In Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing (PODC ’12). ACM, New York, NY, USA,

309–318. https://doi.org/10.1145/2332432.2332491

[13] Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. 2019. Exact

Byzantine Consensus on Undirected Graphs under Local Broadcast Model. CoRR
abs/1903.11677 (2019). arXiv:1903.11677 http://arxiv.org/abs/1903.11677

[14] Muhammad Samir Khan and Nitin H. Vaidya. 2019. Byzantine Consensus under

Local Broadcast Model: Tight Sufficient Condition. CoRR abs/1901.03804 (2019).

arXiv:1901.03804 http://arxiv.org/abs/1901.03804

[15] Chiu-Yuen Koo. 2004. Broadcast in Radio Networks Tolerating Byzantine Ad-

versarial Behavior. In Proceedings of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing (PODC ’04). ACM, New York, NY, USA,

275–282. https://doi.org/10.1145/1011767.1011807

[16] Chiu-Yuen Koo, Vartika Bhandari, Jonathan Katz, and Nitin H. Vaidya. 2006.

Reliable Broadcast in Radio Networks: The Bounded Collision Case. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing
(PODC ’06). ACM, New York, NY, USA, 258–264. https://doi.org/10.1145/1146381.

1146420

[17] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382–401.

https://doi.org/10.1145/357172.357176

[18] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram. 2013. Resilient Asymp-

totic Consensus in Robust Networks. IEEE Journal on Selected Areas in Commu-
nications 31, 4 (April 2013), 766–781. https://doi.org/10.1109/JSAC.2013.130413

[19] C. Li, M. Hurfin, Y. Wang, and L. Yu. 2016. Towards a Restrained Use of Non-

Equivocation for Achieving Iterative Approximate Byzantine Consensus. In 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 710–719.
https://doi.org/10.1109/IPDPS.2016.62

[20] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

[21] Syed Shalan Naqvi. 2018. Exact Byzantine consensus under local-broadcast chan-
nels (Advisor: Nitin Vaidya). Master’s thesis. University of Illinois at Urbana-

Champaign.

[22] Syed Shalan Naqvi, Muhammad Samir Khan, and Nitin H. Vaidya. 2018. Exact

Byzantine Consensus Under Local-Broadcast Model. CoRR abs/1811.08535 (2018).

arXiv:1811.08535 http://arxiv.org/abs/1811.08535

[23] Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas. 2017. Reliable

broadcast with respect to topology knowledge. Distributed Computing 30, 2 (01

Apr 2017), 87–102. https://doi.org/10.1007/s00446-016-0279-6

[24] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. J. ACM 27, 2 (April 1980), 228–234. https://doi.org/10.1145/322186.

322188

[25] Andrzej Pelc and David Peleg. 2005. Broadcasting with Locally Bounded Byzan-

tine Faults. Inf. Process. Lett. 93, 3 (Feb. 2005), 109–115. https://doi.org/10.1016/j.

ipl.2004.10.007

[26] T. Rabin and M. Ben-Or. 1989. Verifiable Secret Sharing and Multiparty Protocols

with Honest Majority. In Proceedings of the Twenty-first Annual ACM Symposium
on Theory of Computing (STOC ’89). ACM, New York, NY, USA, 73–85. https:

//doi.org/10.1145/73007.73014

[27] D. V. S. Ravikant, V. Muthuramakrishnan, V. Srikanth, K. Srinathan, and C. Pandu

Rangan. 2004. On Byzantine Agreement over (2,3)-Uniform Hypergraphs. In

Distributed Computing, Rachid Guerraoui (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 450–464.

[28] Lewis Tseng and Nitin Vaidya. 2013. Iterative Approximate Byzantine Consensus

under a Generalized Fault Model. In Distributed Computing and Networking,
Davide Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and

Prasun Sinha (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 72–86.

[29] Lewis Tseng, Nitin Vaidya, and Vartika Bhandari. 2015. Broadcast using certified

propagation algorithm in presence of Byzantine faults. Inform. Process. Lett. 115,
4 (2015), 512 – 514. https://doi.org/10.1016/j.ipl.2014.11.010

[30] Lewis Tseng and Nitin H. Vaidya. 2012. Exact Byzantine Consensus in Directed

Graphs. CoRR abs/1208.5075 (2012). arXiv:1208.5075 http://arxiv.org/abs/1208.

5075

[31] Nitin H. Vaidya. 2014. Iterative Byzantine Vector Consensus in Incomplete

Graphs. In Distributed Computing and Networking, Mainak Chatterjee, Jian-nong

Cao, Kishore Kothapalli, and Sergio Rajsbaum (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 14–28.

[32] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. 2012. Iterative Approximate

Byzantine Consensus in Arbitrary Directed Graphs. In Proceedings of the 2012

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

333

https://doi.org/10.1145/872035.872065
https://doi.org/10.1145/1073814.1073841
https://doi.org/10.1145/1323293.1294280
https://doi.org/10.1145/1323293.1294280
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1007/BF01843568
https://doi.org/10.1145/335305.335363
https://doi.org/10.1145/335305.335363
https://doi.org/10.1007/s001459910002
https://doi.org/10.1137/S0895480198335215
https://doi.org/10.1137/S0895480198335215
http://arxiv.org/abs/https://doi.org/10.1137/S0895480198335215
https://doi.org/10.1145/2332432.2332491
http://arxiv.org/abs/1903.11677
http://arxiv.org/abs/1903.11677
http://arxiv.org/abs/1901.03804
http://arxiv.org/abs/1901.03804
https://doi.org/10.1145/1011767.1011807
https://doi.org/10.1145/1146381.1146420
https://doi.org/10.1145/1146381.1146420
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/JSAC.2013.130413
https://doi.org/10.1109/IPDPS.2016.62
http://arxiv.org/abs/1811.08535
http://arxiv.org/abs/1811.08535
https://doi.org/10.1007/s00446-016-0279-6
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1016/j.ipl.2004.10.007
https://doi.org/10.1016/j.ipl.2004.10.007
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1016/j.ipl.2014.11.010
http://arxiv.org/abs/1208.5075
http://arxiv.org/abs/1208.5075
http://arxiv.org/abs/1208.5075

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya

ACM Symposium on Principles of Distributed Computing (PODC ’12). ACM, New

York, NY, USA, 365–374. https://doi.org/10.1145/2332432.2332505

[33] Yongge Wang and Yvo Desmedt. 2001. Secure Communication in Multicast

Channels: The Answer to Franklin and Wright’s Question. Journal of Cryptology
14, 2 (01 Mar 2001), 121–135. https://doi.org/10.1007/s00145-001-0002-y

[34] Douglas Brent West et al. 2001. Introduction to graph theory. Vol. 2. Prentice hall.
[35] H. Zhang and S. Sundaram. 2012. Robustness of information diffusion algorithms

to locally bounded adversaries. In 2012 American Control Conference (ACC). 5855–
5861. https://doi.org/10.1109/ACC.2012.6315661

A PROOFS OF SECTION 4
In the appendices, with a slight abuse of terminology, we allow

a partition of a set to have empty parts. That is, (Z1, . . . ,Zk) is a

partition of a set Y if

⋃k
i=1 Zi = Y and Zi ∩ Z j = ∅ for all i , j , but

some Zi ’s can be possibly empty.

A Byzantine Consensus algorithm A outlines a procedure Au
for each node u ∈ V that describes state transitions of u. In each

synchronous round, each node optionally sends messages to its

neighbors, receives messages from the neighbors, and then updates

its state. The new state of u depends entirely on u’s previous state
and the messages received by u from its neighbors. The state of u
determines the messages sent by u.

Lemma A.1. If there exists a Byzantine consensus algorithm under
the local broadcast model on a graphG tolerating at most f Byzantine
faulty nodes, then G has minimum degree at least 2f .

Proof: When f = 0, the lemma does not impose any restrictions

onG . So we assume that f > 0. It is easy to show that, when n > 1,

each node must have at least one neighbor to be able to achieve

consensus. So in the rest of the proof we assume that the degree of

each node inG is at least 1. Suppose for the sake of contradiction

that there exists a node z in G of degree less than 2f and there

exists an algorithm A that solves Byzantine consensus under the

local broadcast model on G. Then there exists a partition (F 1, F 2)
of the neighborhood of z such that |F 1 | < f and |F 2 | ≤ f . Let
W = V − (F 1 ∪ F 2 ∪ {z}) be the set of remaining nodes. Note

that some of these sets can be possibly empty. However, since

n > f > 0 and z has degree at least 1, we select these sets so that F 2

is necessarily non-empty. Recall that A outlines a procedure Au
for each node u that describes u’s state transitions in each round.

We first create a network G to model behavior of nodes in G in

three different executions E1, E2, and E3, which we will describe

later. Figure 2 depicts G. The network G has some directed edges,

the behavior of which will be explained later. We denote a directed

edge from u to v as
−→uv . G consists of two copies of each node inW

and a single copy of the remaining nodes. We denote the two sets

of copies ofW asW0 andW1. For each node u ∈W , we denote by

u0 and u1 the two copies of u inW0 andW1 respectively. For each

edge uv ∈ E(G), we create edges in G as follows:

1) If u,v ∈W , then there are two edges u0v0 and u1v1 in G. These

edges are not shown in Figure 2.

2) If u,v ∈ V −W , then there is a single edge uv in G. Some of

these edges are also not shown in Figure 2.

3) If u ∈ F 1 and v ∈W , then there are two edges uv0 and
−−→uv1 in

G. In Figure 2, these edges are illustrated by a single undirected

edge between sets F 1 andW0, and a single directed edge from

F 1 toW1.

4) If u ∈ F 2 and v ∈W , then there are two edges
−−→uv0 and uv1 in

G. In Figure 2, these edges are illustrated by a single directed

z

0

F 1

0

F 2

1

W0

0

W1

1

Figure 2: Network G to model executions E1, E2, and E3. The
edges in G are described in the text. Edges within the sets
are not shown while edges between sets/nodes are depicted
as single edges. The crossed dotted line betweenW0 andW1

emphasizes that there are no edges betweenW0 andW1. The
numbers adjacent to the sets/nodes are the corresponding
inputs in execution E. Table 1 illustrates which nodes in E

model the corresponding nodes in E1, E2, and E3.

(Sets of) nodes in network G

z F 1 F 2 W

Executions on G

E1 z F 1 F 2 W0

E2 z F 1 F 2 W1

E3 z F 1 F 2 W1

Table 1: This table illustrates which nodes in execution E

on network G (Figure 2) model the corresponding nodes in
the three executions E1, E2, and E3 on graph G for proof of
Lemma A.1. The entries in red indicate faulty nodes in E1,
E2, and E3.

edge from F 2 toW0, and a single undirected edge between sets

F 2 andW1.

Note that there are no edges betweenW0 andW1. This is emphasized

in Figure 2 by drawing a cross on a dotted line betweenW0 andW1.

All message transmissions in G are via local broadcast, as fol-

lows. When a nodeu in G transmits a message, the following nodes

receive this message identically: each node with whom u has an

undirected edge and each node to whom there is an edge directed

away from u. Note that a directed edge e = −→uv behaves differently

for u and v . All messages sent by u are received by v . No message

sent by v is received by u. Observe that with this behavior of di-

rected edges, the structure of G ensures the following property.

For each edge uv in the original graph G, each copy of u receives

messages from exactly one copy of v in G. This allows us to create

an algorithm for G corresponding to A as follows. For each node

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

334

https://doi.org/10.1145/2332432.2332505
https://doi.org/10.1007/s00145-001-0002-y
https://doi.org/10.1109/ACC.2012.6315661

Exact Byzantine Consensus on Undirected Graphs under
Local BroadcastModel PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

u ∈ G , if G has one copy of u, then u runs Au . Otherwise there are

two copies u0 and u1 of u. Both u0 and u1 run Au .

Consider an execution E of the above algorithm on G as follows.

Each node inW0 ∪ F 1 ∪ {z} has input 0 and the remaining nodes

have input 1. Observe that it is not guaranteed that nodes in G

will decide on the same value or that the algorithm will terminate.

We will show that the algorithm does indeed terminate but nodes

do not reach agreement in G, which will be useful in deriving the

desired contradiction. We use E to describe three executions E1, E2,
and E3 of A on the original graph G as follows (see also Table 1).

E1: F
2
is the set of faulty nodes. In each round, a faulty node broad-

casts the same messages as the corresponding node in G in

execution E in the same round. All non-faulty nodes have input

0. Note that the behavior of non-faulty nodes in F 1∪{z} andW
is modelled by the corresponding (copies of) nodes in F 1 ∪ {z}
andW0, respectively, in E. SinceA solves Byzantine consensus

on G, nodes inW ∪ F 1 ∪ {z} decide on output 0 (by validity)

in finite time.

E2: F
1
is the set of faulty nodes. In each round, a faulty node broad-

casts the same messages as the corresponding node in G in

execution E in the same round. z has input 0 and all the re-

maining non-faulty nodes have input 1. Note that the behavior

of non-faulty nodes in F 2∪ {z} andW is modelled by the corre-

sponding (copies of) nodes in F 2 ∪ {z} andW1, respectively, in

E. The output of the non-faulty nodes will be described later.

E3: F
1 ∪ {z} is the set of faulty nodes. In each round, a faulty node

broadcasts the same messages as the corresponding node in G

in execution E in the same round. All non-faulty nodes have

input 1. Note that the behavior of non-faulty nodes in F 2 and
W is modelled by the corresponding (copies of) nodes in F 2

andW1, respectively, in E. SinceA solves Byzantine consensus

onG , nodes inW ∪ F 2 decide on output 1 (by validity) in finite

time.

Due to the output of nodes inW ∪ F 1 ∪ {z} in E1, the nodes in
W0 ∪ F 1 ∪ {z} output 0 in E. Similarly, due to the output of nodes

inW ∪ F 2 in E3, the nodes inW1 ∪ F 2 output 1 in E. It follows that

in E2, nodes inW and F 2, as modeled byW1 and F 2 in E, output

1 while z outputs 0. Recall that, by construction, F 2 is non-empty.

This violates agreement, a contradiction. □

Lemma A.2. If there exists a Byzantine consensus algorithm under
the local broadcast model on a graphG tolerating at most f Byzantine
faulty nodes, then G is (

⌊
3f /2

⌋
+ 1)-connected.

Proof: Suppose for the sake of contradiction thatG is not (
⌊
3f /2

⌋
+ 1)-connected and there exists an algorithm A that solves Byzan-

tine consensus under the local broadcast model on G. Then there

exists a vertex cut C of G of size at most

⌊
3f /2

⌋
with a partition

(A,B,C) ofV such that A and B (both non-empty) are disconnected

in G −C (so there is no edge between a node in A and a node in B).
Since |C | ≤

⌊
3f /2

⌋
, there exists a partition (C1,C2,C3) of C such

that |C1 | , |C2 | ≤
⌊
f /2

⌋
and |C3 | ≤

⌈
f /2

⌉
. Recall that A outlines a

procedure Au for each node u that describes u’s state transitions
in each round.

Similar to the proof of Lemma A.1, we first create a network G

to model behavior of nodes in G in three different executions E1,
E2, and E3, which we will describe later. G consists of two copies

A0

0

B0

0

A1

1

B1

1

C1

0

C2

1

C3

1

Figure 3: Network G to model executions E1, E2, and E3.
Edges within the sets are not shown while edges between
sets/nodes are depicted as single edges. The crossed dotted
lines emphasize that there are no edges between the corre-
sponding sets. The numbers adjacent to the sets/nodes are
the corresponding inputs in execution E. To reduce clutter,
edges within C are not shown.

of each node in A and B, and a single copy of the remaining nodes.

Figure 3 depicts G. The edges in G can be deduced from Figure 3

along the lines of the proof of Lemma A.1. However, edges within

C are not shown in Figure 3. They are copied exactly from G . As in
proof of Lemma A.1, the structure of G ensures that, for each edge

uv in the original graph G, each copy of u receives messages from

exactly one copy of v in G. This allows us to create an algorithm

for G corresponding toA as follows. For each node u ∈ G , if G has

one copy of u then u runs Au . Otherwise there are two copies u0
and u1 of u. Both u0 and u1 run Au .

Consider an execution E of the above algorithm on G as follows.

Each node in A0, B0, and C
1
has input 0 and the remaining nodes

have input 1. As in proof of Lemma A.1, we will show that the

algorithm does indeed terminate but nodes do not reach agreement

in G, which will be useful in deriving the desired contradiction.

We use E to describe three executions E1, E2, and E3 of A on the

original graph G as follows.

E1: C
2 ∪C3

is the set of faulty nodes. In each round, a faulty node

in C2 ∪C3
broadcasts the same messages as the corresponding

node in G in execution E in the same round. All non-faulty

nodes have input 0. Note that the behavior of non-faulty nodes

in A, B, and C1
is modelled by the corresponding (copies of)

nodes in A0, B0, and C1
, respectively, in E. Since A solves

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

335

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya

Byzantine consensus on G, nodes in A, B, and C1
decide on

output 0 (by validity) in finite time.

E2: C
1 ∪C3

is the set of faulty nodes. In each round, a faulty node

in C1 ∪C3
broadcasts the same messages as the corresponding

node in G in execution E in the same round. A has input 0 and

all the remaining non-faulty nodes have input 1. Note that the

behavior of non-faulty nodes inA, B, andC2
is modelled by the

corresponding (copies of) nodes in A0, B1, andC
2
, respectively,

in E. The output of the non-faulty nodes will be described later.

E3: C
1 ∪C2

is the set of faulty nodes. In each round, a faulty node

in C1 ∪C2
broadcasts the same messages as the corresponding

node in G in execution E in the same round. All non-faulty

nodes have input 1. Note that the behavior of non-faulty nodes

in A, B, and C3
is modelled by the corresponding (copies of)

nodes in A1, B1, and C3
, respectively, in E. Since A solves

Byzantine consensus on G, nodes in A, B, and C3
decide on

output 1 (by validity) in finite time.

Due to the output of nodes in A, B, and C1
in E1, the nodes in

A0, B0, and C
1
output 0 in E. Similarly, due to the output of nodes

in A, B, and C3
in E3, the nodes in A1, B1, and C

3
output 1 in E. It

follows that in E2, nodes inA, as modeled byA0 in E, output 0while

nodes in B, as modeled by B1, output 1. Recall that, by construction,
both A and B are non-empty. This violates agreement, which is a

contradiction. □

Proof of Theorem 4.1: Directly from Lemmas A.1 and A.2. □

B PROOFS OF SECTION 5
In this section, we assume that the graph G satisfies the conditions

in Theorem 5. The following observation follows from the rules

used for flooding.

Observation B.1. For any phase of Algorithm 1, in step (a) for
any two nodes u,v ∈ V (possibly faulty), if v receives value b along a
fault-freeuv-path thenu broadcast the value b to its neighbors during
flooding.

Recall that, if a faulty node does not initiate flooding, then for

the purpose of the above observation, its behavior is equivalent to

it flooding the value 1. We now give proofs of Lemmas 5.5, 5.2, and

5.3.

Proof of Lemma 5.5: Fix a phase of the algorithm and the corre-

sponding set F . Consider an arbitrary non-faulty node v such that

v ∈ Bv in step (c). There are 4 cases to consider, corresponding to

the 4 cases in step (c).

Case 1: |Zv ∩ F | ≤
⌊
f /2

⌋
and |Nv | > f . Then Av := Nv and

Bv := Zv . Therefore there exist at least f + 1 nodes in Av . Node v
selects f + 1 nodes A′

v from Av by choosing all nodes from Av ∩ F
and the rest arbitrarily fromAv −F . Define B

′
v := Bv ∩(F −v). Now,��B′

v
�� ≤ |Bv ∩ F | = |Zv ∩ F | ≤

⌊
f /2

⌋
by assumption of case 1. Since

G is (
⌊
3f /2

⌋
+1)-connected,G−B′

v is at least (f +1)-connected and
there exist f + 1 node-disjoint A′

vv-paths in G − B′
v . Furthermore,

since all the nodes in Av ∩ F are endpoints in these paths and

F = (Av ∩ F) ∪ (Bv ∩ F), we have that these paths exclude1 F .

1
Recall that a path that excludes X does not have nodes from X as internal nodes;

however, nodes from X may be the endpoints of the path.

Case 2: |Zv ∩ F | ≤
⌊
f /2

⌋
and |Nv | ≤ f . Then Av := Zv and Bv :=

Nv . Note that when f = 0, this case is not possible since v ∈ Bv
and so Bv = Nv must be non-empty. Since the degree of v is at

least 2f and there are at most f nodes in Bv (including v), we have
that v has at least f + 1 neighbors in Av . There are therefore f + 1
node-disjoint Avv-paths that have no internal nodes and hence

exclude F .

Case 3: |Zv ∩ F | >
⌊
f /2

⌋
and |Zv | > f . Then Av := Zv and Bv :=

Nv . We have that

|Nv ∩ F | = |F | − |Zv ∩ F | ≤ f −
⌊
f /2

⌋
− 1 ≤

⌊
f /2

⌋
.

So this case is the same as Case 1 with the roles of Zv and Nv
swapped.

Case 4: |Zv ∩ F | >
⌊
f /2

⌋
and |Zv | ≤ f . Then Av := Nv and Bv :=

Zv . From the analysis in Case 3, we have that |Nv ∩ F | ≤
⌊
f /2

⌋
. So

this case is the same as Case 2 with the roles of Zv and Nv swapped.

In all four cases we have that there do exist f + 1 node-disjoint
Avv-paths that exclude F . □

Proof of Lemma 5.2: Fix a phase of the algorithm and the corre-

sponding set F . For any nodeu, we denote the state at the beginning

of the phase by γ startu and the state at the end of the phase by γ endu .

Consider an arbitrary non-faulty node v , and the setsAv and Bv in

step (c). If γ startv = γ endv , then the claim is trivially true. So suppose

v ∈ Bv and v receives identical value along f + 1 node-disjoint

Avv-paths that exclude F in step (a). Since the number of faulty

nodes is at most f , thus at least one of these paths is both fault-free

and has a non-faulty endpoint (other thanv), sayu. By Observation
B.1, it follows that whatever value is received by v along this path

in step (a) is the value flooded by u. Therefore, γ endv = γ startu , where

u is a non-faulty node, as required. □

Proof of Lemma 5.3: Fix a phase of the algorithm and the cor-

responding set F such that all faulty nodes are contained in F . Let
Z be the set of nodes that flooded 0 in step (a) of the phase and

let N be the set of nodes that flooded 1 in step (a). We first show

that for any non-faulty node v , Zv = Z and Nv = N . Consider

an arbitrary node w ∈ Z (resp. w ∈ N) that flooded 0 (resp. 1) in

step (a) of this phase. Observe that Pwv identified in step (b) of the

phase excludes F and is fault-free. Therefore, by Observation B.1,

v receives 0 (resp. 1) along Pwv and correctly putsw in the set Zv
(resp. Nv), as required.

It follows that for any two non-faulty nodes u and v , we have
that Zu = Zv = Z and Nu = Nv = N . Thus Au = Av and Bu = Bv .
Let A := Au and B := Bu . First note that A is always non-empty as

follows. If B is empty, then A = V is non-empty. If B is non-empty,

then let w ∈ B be a node in B. By Lemma 5.5, there exist f + 1

node-disjoint Aw-paths, which implies that |A| ≥ f + 1. Now all

nodes in A flooded identical value in step (a), say α . If u ∈ A, then
u’s state is α at the beginning of the phase and stays unchanged in

step (c). Therefore, at the end of the phase γu = α . If u ∈ B, then
observe that the f +1 node-disjointAu-paths identified byu in step

(c) are all fault-free. By Observation B.1, it follows that u receives α
identically along these f + 1 paths and so, at the end of the phase,

γu = α . Similarly for v , we have that γv = α , as required. □

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

336

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Notation
	4 Necessary Conditions under Local Broadcast
	5 Byzantine Consensus Algorithm under Local Broadcast
	5.1 Proposed Algorithm
	5.2 Proof of Correctness of Algorithm 1
	5.3 An Efficient Algorithm

	6 Hybrid Model
	7 Summary
	References
	A Proofs of Section 4
	B Proofs of Section 5

