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—— Abstract

We consider Byzantine consensus in a synchronous system where nodes are connected by a network

modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily
bi-directional. The directed graph model is motivated by wireless networks wherein asymmetric
communication links can occur. In the classical point-to-point communication model, a message
sent on a communication link is private between the two nodes on the link. This allows a Byzantine
faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers
the local broadcast model of communication, wherein transmission by a node is received identically
by all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate.

Prior work has obtained sufficient and necessary conditions on undirected graphs to be able
to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight
conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the
local broadcast model. The results obtained in the paper provide insights into the trade-off between
directionality of communication links and the ability to achieve consensus.
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1 Introduction

Byzantine consensus [22] is a classical problem in distributed computing. We consider a
synchronous system consisting of n nodes, each with a binary input. The objective is for the
nodes to reach consensus in the presence of up to f Byzantine faulty nodes. The nodes are
connected by a communication network represented by a graph. In the classical point-to-point
communication model, a message sent by a node to one of its neighboring nodes is received
only by that node. This allows a Byzantine faulty node to send inconsistent messages to its
neighbors without the inconsistency being observed by the neighbors. For instance, a faulty
node u may report to neighbor v that its input is 0, whereas report to neighbor w that its
input is 1. Node v will not hear the message sent by node u to node w. This ability of a faulty
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node to send conflicting information on different communication links is called equivocation
[4]. The problem of Byzantine consensus with equivocation in point-to-point networks is
well-studied [2, 7, 17, 20, 22]. In undirected graphs, it is known that n > 3f and connectivity
> 2f 4 1 are necessary and sufficient conditions to achieve Byzantine consensus [7].

This paper considers the local broadcast model of communication [3, 15]. In this model, a
message sent by a node is received identically by all neighbors of that node. This allows the
neighbors of a faulty node to detect its attempts to equivocate, effectively depriving the faulty
node of the ability to send conflicting information to its neighbors. In the example above,
in the local broadcast model, if node u attempts to send different input values to different
neighbors, the neighbors will receive all the messages, and can detect the inconsistency.
Recent work has shown that this ability to detect equivocation reduces network requirements
for Byzantine consensus in undirected graphs. In particular, for the local broadcast model,
recent work [13, 21] has identified that the following two conditions are both necessary and
sufficient for Byzantine consensus in undirected graphs: network connectivity > LS f/ 2J +1
and minimum node degree > 2f.

In this paper, we study Byzantine consensus in directed graphs under the local broadcast
model. The directed graph model is motivated by wireless networks wherein asymmetric links
may occur. Thus, the communication links between neighboring nodes are not necessarily
bi-directional. Under local broadcast, when some node u transmits a message, it is received
identically by all of u’s outgoing neighbors (i.e., by nodes to whom there are outgoing links
from node u). The results obtained in the paper provide insights into the trade-off between
directionality of communication links and the ability to achieve consensus.

This paper makes two main contributions:

1. Necessity: In Section 5, we identify a necessary condition for directed graphs to solve
Byzantine consensus. The proof is via a state machine based approach [2, 7, 8]. However,
the communication by faulty nodes must follow the local broadcast model which restricts
their behavior. The directed nature of the graph also adds to the difficulty. We handle
this complexity via non-trivial arguments to show the desired result.

2. Sufficiency: In Section 6, we constructively show that the necessary condition is also
sufficient by presenting a Byzantine consensus algorithm along with its proof of correctness.
The key challenge for directed graphs is that communication may only exist in one direction
between some pairs of nodes. Hence, it is not straightforward to adapt the prior algorithm
[13] on undirected graphs. More specifically, in undirected graphs, each node has some
path(s) to each of the other nodes.! Prior algorithm by Khan et. al. [13] utilizes this
property to solve Byzantine consensus in undirected graphs under local broadcast. In the
directed case, this property is not guaranteed due to the directionality of communication.
We prove some non-trivial properties (Section 6.2) implied by the tight condition identified
in this paper. This allows us to achieve consensus in a unique “source component” and
then propagate that decision to the rest of the graph.

The rest of the paper is organized as follows. We discuss related work in Section 2.
Section 3 formalizes the setting and introduces notation. Our main result is presented in
Section 4. Necessity of the identified tight condition is shown in Section 5 while sufficiency is
shown in Section 6. We summarize in Section 7.

! In undirected graphs, consensus is not possible if graph is not connected.
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2 Related Work

Byzantine consensus is a well-studied problem [2, 7, 17, 20, 22] with tight conditions known for
complete graphs [22], undirected graphs [7], and directed graphs [26] under the point-to-point
communication model. For brevity, we focus here on related work that restricts equivocation
by faulty nodes.

Rabin and Ben-Or [23] considered complete graphs with global broadcast under synchron-
ous communication, while Clement et. al. [5] looked at non-equivocation in complete graphs
under asynchronous communication. Amitanand et. al. [1] restricted equivocation by faulty
nodes by partitioning, for each faulty node w, the remaining graph such that a message
sent by w to any node is received identically by all nodes in the corresponding partition.
However, the underlying graph in [1] is complete while we consider arbitrary directed graphs.
Several works [9, 12, 24] have used undirected hypergraphs to model partial broadcast for
the Byzantine consensus problem. In this model, a message sent on an hyperedge is re-
ceived identically by all nodes in the hyperedge. The closest work to this paper is by Khan
et. al. [13, 21], who obtained that minimum node degree > 2f and network connectivity
> LB f/ ZJ + 1 are tight conditions for Byzantine consensus in undirected graphs under the
local broadcast model. Here, we consider arbitrary directed graphs under the local broadcast
model.

Restricted equivocation has also been used to study related problems. [6, 11, 10, 29]
looked at reliability and privacy on partial broadcast networks. [3, 15, 16] have investigated
the Byzantine broadcast problem under local broadcast on both undirected and directed
graphs. In Byzantine broadcast, the goal is for a single source to transmit a binary value
reliably throughout the network. We consider the Byzantine consensus problem, where the
goal is for all nodes to agree on a common value.

Another line of work investigates iterative algorithms for approximate Byzantine consensus.
In this problem, each node starts with a real value (or a vector of real values) and maintains a
state variable. The updates are “memory less”, i.e., the update rules allow a state update in
each round to depend only on the current state and the state values received from neighbors.
This problem has been investigated under the classical point-to-point communication model
on directed graphs by Tseng and Vaidya [25] and Vaidya et. al. [27, 28], under partial
broadcast modeled via directed hypergraphs by Li et. al. [19], and under the local broadcast
model on directed graphs by LeBlanc et. al. [18] as well as by Zhang and Sundaram [30]. The
network conditions are different than the ones presented in this paper, since the algorithm
structure is restricted (as summarized above) in these prior works.

3 System Model and Notation

We consider a synchronous system consisting of n nodes. The communication network
connecting the nodes is represented by a directed graph G = (V, E), where |V| = n. Each
of the n nodes is represented by a vertex u € V. We interchangeably use the terms node
and verter. Every node in the graph knows the communication graph G. Each directed edge
(u,v) € E represents a FIFO link from u to v. When a message m sent by node u on edge
(u, ) is received by node v, node v knows that the message m was sent by node u. This
assumption is implicit in the previous related work as well. We assume the local broadcast
model of communication wherein a message sent by any node wu is received identically and
correctly by each node v such that (u,v) € E.

A Byzantine faulty node may exhibit arbitrary behavior; however, its communication is
still governed by the local broadcast model. We consider the Byzantine consensus problem.
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Each node starts with a binary input and must output a binary value. There are at most
f > 0 Byzantine faulty nodes in the system. The output at each node must satisfy the
following conditions.

1. Agreement: All non-faulty nodes must output the same value.
2. Validity: The output of each non-faulty node must be an input of some non-faulty node.
3. Termination: All non-faulty nodes must decide on their output in finite time.

Neighborhood: If (u,v) € E, then u is an in-neighbor of v and v is an out-neighbor of u.

The in-neighborhood of a node v is the set of all in-neighbors of v, i.e., {u | (u,v) € E}.
Similarly, the out-neighborhood of a node v is the set of all out-neighbors of v, i.e.,
{u | (v,u) € E} In graph G, for node sets A and B, we define in-neighborhood of set B
in set A, denoted I'¢(A, B), as the set of in-neighbors of nodes in B that are in set A.
That is, I'¢(A,B) = {u € A| Jv € Bs.t. (u,v) € E(G)}. Note that E(G) denotes the
set of edges in graph G. We will use the above definition for different graphs, hence the
subscript G above is important. We may drop the subscript G when it is clear from the
context.

We will say that A —¢ B if |T'g(A, B)| > f. Here as well, we may drop the subscript G
when it is clear from the context.

Paths in graph G: A path is a sequence of distinct nodes such that if u precedes v in the

sequence, then u is an in-neighbor of v in G (i.e., (u,v) is an edge).
For two nodes u and v, a uv-path P,, is a path from u to v. u is called the source
and v the terminal of P,,. Any other node in the path is called an internal node of
P,,. Two uv-paths are node-disjoint if they do not share a common internal node.
For a set U C V and a node v € U, a Uv-path is a uv-path for some node u € U.
All Uv-paths have v as the terminal. Two Uv-paths are node-disjoint if they do not
have any nodes in common except terminal node v. In particular, two node-disjoint
Uv-paths have different source nodes.
A path is said to exclude a set of nodes X C V if no internal node of the path belongs to
X; however, its source and terminal nodes may potentially belong to X. A path is said
to be fault-free if none of its internal nodes are faulty. In other words, a path is fault-free
if it excludes the set of faulty nodes. Note that a fault-free path may have a faulty node
as either source or terminal.
We use the notation A «)/SG B if, for every node u € B, there exist at least f + 1 node-
disjoint Au-paths in G that exclude X, i.e., there exist f 4 1 node-disjoint Au-paths that
have only u in common and none of them contain any internal node from the set X. We
may omit the subscript G when it is clear from the context.

With a slight abuse of terminology, we allow a partition of a set to have empty parts.

That is, (Z1,...,Zx) is a partition of a set Y if U¥_,Z; = Y and Z; N Zj =0 for all i # j,
but some Z;’s can be possibly empty.

For a set of nodes U C V,

G[U] is the subgraph induced by the nodes in U.

G_y is the graph obtained from G by removing all edges (v,u) such that u € U, i.e.,
by removing all incoming edges to U. Observe that if P is a path in G_y, then P is a
path in G that excludes U and terminates in V' — U. Conversely, if P is a path in G that
excludes U and terminates in V' — U, then P is a path in G_yp.

A directed graph G is strongly connected if for each pair of nodes u, v, there is both a

uv-path and a vu-path in G. A directed graph decomposition of G is a partition of G into
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non-empty parts Hi, ..., H;, where k > 0, and each H; is a maximal strongly connected
subgraph of G — each H; is assumed to be maximal in the sense that adding any nodes to
H; will destroy its strong connectivity. Let H be the graph obtained from the decomposition
by contracting each H; into a node ¢;, so that there is an edge (¢;,¢;) in H if there is an
edge from a node in H; to a node in H; in G. Then, graph H is acyclic. If a node ¢; has no
in-neighbors, then H; is called a source component of the decomposition. Note that, since H
is acyclic, there is always at least one source component of a directed graph decomposition.

4 Main Results

The main result of this paper is a tight network condition for consensus in directed graphs
under the local broadcast model. The following definition presents the condition and the
accompanying theorem states the result.

» Definition 1. A directed graph G satisfies condition SC with parameter F' if for every
partition (A, B) of V, where both A — F and B — F are non-empty, we have that either

ALB-ForBE A—F. We say that G satisfies condition SC, if G satisfies condition
SC with parameter F for every set F' CV of cardinality at most f.

» Theorem 2. Under the local broadcast model, Byzantine consensus tolerating at most f
Byzantine faulty nodes is achievable on a directed graph G if and only if G satisfies condition
SC.

Proof. The proof follows from Theorems 4, 5, and 11 presented later. <

Intuitively, the above condition requires that at least one of the two partitions A and
B should have the ability to “propagate” its state to the other partition reliably. For the
point-to-point communication model, Tseng and Vaidya [26] obtained an analogous network
condition, which is that, for every partition (A, B) of V and a faulty set F', where both A— F
and B — F are non-empty, either A — F’ LEB-FoB-FXLA_F Inthe point-to-point
communication model a faulty node can equivocate. Thus, the condition in [26] does not
allow nodes in set F' to be source nodes,? and requires A — F or B — F to propagate its state
to the non-faulty nodes in the other partition. On the other hand, as discussed earlier, local
broadcast effectively removes a faulty node’s ability to equivocate. Therefore, the condition
in Definition 1 allows a node in set F' to be a source node in the propagation paths, but does
not allow nodes in F' to be internal nodes on such paths.

Even though the conditions for point-to-point communication [26] and local broadcast

seem similar, the algorithm in [26] is not immediately adaptable to the local broadcast model.

One key challenge is that while non-equivocation provided by local broadcast prevents a
faulty node from sending conflicting messages in one round, it does not directly stop a faulty
node from lying inconsistently across rounds, even to the same neighbor. We discuss this at
the end of Section 6.1.

We prove necessity of condition SC via a state machine based approach [2, 7, 8] similar
to the proofs of necessity in [13, 26]. However, care must be taken to ensure that we do not
break the local broadcast property. The formal proof is given in the full version of the paper
[14] — since it is somewhat difficult. In Section 5, we provide an intuitive sketch of the proof.
The sufficiency is proved constructively. In Section 6, we present an algorithm to achieve
consensus when the communication graph satisfies condition SC, accompanied by a proof of
correctness.

2 Recall that, in a uv-path, u is the source node and v is the terminal.
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5 Necessity

In this section, we show that condition SC (Definition 1) is necessary for consensus. We first
present another property, condition NC. This condition is equivalent to condition SC, as
stated in the next theorem, and we will use it to prove necessity in Theorem 5. Recall that
we use A —¢ B to denote |T'¢(A4, B)| > f (subscript G is dropped when clear from context).

» Definition 3. A directed graph G satisfies condition NC with parameter F' if for every
partition (L,C, R) of V, where both L — F and R — F are non-empty, we have that either
RUC -G L—F or LUC —g R—F. We say that G satisfies condition NC, if G satisfies
condition NC with parameter F for every set F' C V' of cardinality at most f.

» Theorem 4. A directed graph G satisfies condition NC if and only if G satisfies condition
SC.

A formal proof of Theorem 4 appears in the full paper [14]. The following theorem states
that condition NC is necessary for consensus. Since condition NC and condition SC are
equivalent, as a corollary we get the necessity part of Theorem 2.

» Theorem 5. If there exists a Byzantine consensus algorithm under the local broadcast
model on a directed graph G tolerating at most f Byzantine faulty nodes, then G satisfies
condition NC.

As mentioned earlier, the formal proof of this theorem is given in the full paper [14].
Here we give a sketch of the proof. Suppose for the sake of contradiction that there exists
an algorithm that solves Byzantine consensus under the local broadcast model on a graph
G which does not satisfy condition NC. Then there exists a set F' of cardinality at most
f and a partition (L,C, R) of G, where both L — F and R — F are non-empty, such that
RUC A L—Fand LUC A R— F. We create three executions F, Fy, and E3 using the
algorithm as follows.

E: T(RUC,L — F), the in-neighborhood of L — F in RU C, is the faulty set. We
partition the faulty set into two parts: the in-neighborhood of L — F in R — F' and C,
I'((R—F)UC, L—F), and the in-neighborhood of L—F in RNF,'(RNF,L—F). Both
these sets have different behavior. In each round, a faulty node in I'((R— F)UC, L — F)
broadcasts the same messages as the corresponding non-faulty node in E3, while a faulty
node in I'(RN F, L — F) broadcasts the same messages as the corresponding non-faulty
node in E5. All non-faulty nodes have input 0. So by validity, all non-faulty nodes
decide on output 0 in finite time.

Ey: T(LUC,R — F), the in-neighborhood of R — F in L U C, is the faulty set. We
partition the faulty set into two parts: the in-neighborhood of R — F in L — F and C,
I'((L—F)UC, R—F), and the in-neighborhood of R— F in LNF, '(LNF, R—F). Both
these sets have different behavior. In each round, a faulty node in I'((L — F)UC, R — F)
broadcasts the same messages as the corresponding non-faulty node in Fs3, while a faulty
node in I'(L N F, R — F) broadcasts the same messages as the corresponding non-faulty
node in E;. All non-faulty nodes have input 1. So by validity, all non-faulty nodes
decide on output 1 in finite time.

E3: FN(LUR) is the faulty set. We partition the faulty set into two parts: F'N L and
F'N R. Both these sets have different behavior. In each round, a faulty node in F N L
broadcasts the same messages as the corresponding non-faulty node in F7, while a faulty
node in F' N R broadcasts the same messages as the corresponding non-faulty node in
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Figure 1 Necessity proof: the simple case when C' = (). The nodes in blue, green, and red depict
the three faulty sets for executions Ei, F2, and F3 respectively.

FE5. All non-faulty nodes in L have input 0 and all non-faulty nodes in RU C' have input
1. The output of the non-faulty nodes in this execution will be described later.

In the full paper [14] we make the above description of the three executions precise. For
the simple case when C = (), Figure 1 depicts the faulty nodes in the three executions.
To see the output of non-faulty nodes in E3, note that non-faulty nodes in L — F receive

the same messages in each round, from their in-neighbors, as the corresponding nodes in Fj.

They also have the same input, 0, so they decide on the same output in both the executions,
i.e., 0. Similarly, the non-faulty nodes in R — F receive the same messages in each round,
from their in-neighbors, as the corresponding nodes in Fs. They also have the same input,
1, so they decide on the same output in both the executions, i.e., 1. Since both L — F' and
R — F are non-empty, this violates agreement, a contradiction.

6 Sufficiency

In this section, we constructively prove the sufficiency portion of Theorem 2. Together with
the necessity result shown in Theorem 5, we have that this result is tight. We present a
Byzantine consensus algorithm in Section 6.1. The algorithm utilizes some non-trivial graph
properties implied by condition SC. We show these in Section 6.2. In Section 6.3, we give a
proof of correctness of the algorithm, assuming that the graph G satisfies condition SC.

6.1 Algorithm

Algorithm 1 presents pseudocode for the proposed algorithm. Each node v € V' maintains a
local state variable named ~,. At the beginning of the algorithm, this is initialized to equal
node v’s binary input. -, is modified during the execution of the algorithm. The output of
each node v is the value of its state variable v, at the end of the algorithm. The algorithm
execution is viewed as being divided into phases, each phase consisting of one iteration of
the for loop in the pseudocode. Each phase has an associated distinct subset F' C V of
cardinality at most f.

The algorithm draws inspiration from the strategy used in the algorithms in [13] and [26].

However, the details are significantly different, which we discuss at the end of this section.
In particular, each phase (i.e., each iteration of the for loop) in the algorithm considers a
candidate faulty set F', and the nodes attempt to reach consensus by the end of that phase
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assuming that F' is indeed the set of all the faulty nodes. Let F* denote the set of nodes
that are actually faulty in a given execution of the algorithm. Then each node updates its
state variable in such a manner so that
(i) when F = F*, the state variable at all non-faulty nodes is identical at the end of this
phase, i.e., all non-faulty nodes reach consensus in this phase (Lemma 12), and
(ii) when F' # F™*, the value of the state variable at a non-faulty node at the end of the
phase equals the state of some non-faulty node at the start of the phase (Lemma 13).
The first objective ensures that the nodes reach agreement. The second inductively implies
that this agreement, once achieved, is not lost, as well as that the nodes decide on an input
of some non-faulty node, i.e., validity. Termination follows from the fact that there are only
a finite number of executions.
We now discuss the steps performed by each node v in a given phase. Some of the steps
of the algorithm are based on those in [13] and are explained here again for completeness.

Graph decomposition: In step (a) of a given phase, each node performs a directed graph
decomposition on G — F'. Recall that we assume that each node knows the topology
of graph G, so each node can perform this step locally. Since G satisfies condition SC
with parameter F, it turns out that G — F has a unique source component S (Lemma 6).
The rest of the steps in the phase are aimed at nodes in S attempting to agree on some
common value, and then propagating that value to the rest of the graph.

Flooding: In Step (b), nodes in S and their in-neighbors in F, T'(F, S), flood the value of

their v state variables. The “flooding” procedure used here is analogous to that in [13]
for undirected graphs. Without much modification, it can be adapted for directed graphs.
This procedure is presented in the full version of the paper [14].
Counsider a node v € SUT(F,S). In the flooding procedure, u attempts to transmit its
state variable to every node v such that there exists a uv-path in G. At the end of the
flooding procedure, for each such node v and a uv-path P,,, v will have received a binary
value b along P,,. If P,, is fault-free, then b = ~,, the state variable of u. However, if
P,, is not fault-free, then an intermediary faulty node may tamper with the messages, so
it is possible that b # ~,.

Consensus in the source component S: Next, using steps (¢) and (d), the nodes in the
unique source component try to reach consensus. Based on the values flooded by each
node, set SUT'(F,S) can be partitioned into nodes that flooded 0, namely set Z, and
nodes that flooded 1, namely set N. In step (c), node v attempts to estimate the sets
Z and N using the values received on paths excluding F, i.e., ignoring paths that have
nodes from F' as intermediaries. When F # F*| faulty nodes may tamper the messages
and v may incorrectly categorize some nodes. However, when F = F*, all non-faulty
nodes correctly determine Z and N.

In particular, in step (c), each node v € S partitions S UT'(F,S) as follows. Recall
that a path is said to exclude set F' if none of its internal nodes are in F. For each
u € SUT(F,S), node v chooses an arbitrary uv-path P,, that excludes F. It can be
shown (Lemma 8) that such a path always exists. For the purpose of step (c), node v is
deemed to have received its own 7, value along path P,, (containing only node v). In
step (c), as shown in the pseudo-code, node v partitions S UT(F,S) into sets Z, and N,,
its estimates of sets Z and N, based on values received along the above paths.

Step (d) specifies the rules for updating ~, value. v, is not necessarily updated in each
phase. If F = F*, then all nodes in S will have the same ~, value after this step (Lemma
12). That is, in the phase in which F' = F* the nodes in S achieve consensus in step (d).
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Algorithm 1 Proposed algorithm for Byzantine consensus under the local broadcast

model in directed graphs: Steps performed by node v are shown here.

Each node v has a binary input value in {0, 1} and maintains a binary state v, € {0, 1}.
Initialization: 7y, := input value of node v.
For each F CV such that|F| < f do

Step (a): Perform directed graph decomposition on G — F'. Let S be the unique source
component (Lemma 6).

Step (b): If v € SUT(F,S), then flood value v, (the steps taken to achieve flooding are
described in the full paper [14]).

Step (c): If v € S, for each node u € SUT'(F, S), identify a single uv-path Py, that
excludes F'. Let,
Zy 1= {u € SUT(F,S) | v received value 0 from u along P, in step (b)} ,
N, :=SUT(F,S) — Z,.

Step (d): If both Z, — F and N, — F are non-empty, then
If Z, % N, — F,
then set A, := Z, and B, := N, — F,
else set A, := N, and B, := 27, — F.
If v € B, and v received value § € {0, 1}, in step (b), identically
along any f + 1 node-disjoint A,v-paths that exclude F', then set
Yo 1= 0.
Step (e): If v € S, then flood value 7, .

Step (f): If v € V — S — F and v received value § € {0, 1}, in step (e), identically along
any f + 1 node-disjoint Sv-paths that exclude F, then set v, := 4.

end

Output ..

Propagating decision to rest of the graph: Since we iterate over all possible faulty sets, in

one phase of the algorithm, F' is correctly chosen to be exactly F*, the set of actual faulty
nodes. In this phase, nodes in S will reach consensus by step (d). In steps (e) and (f),
nodes in S propagate their state to the rest of the graph. In particular, in step (e), nodes
in S flood their ~, value, as in step (b), while step (f) specifies the rules for nodes in
V — S — F to update their v, state variable.

Output: After all the phases (i.e., all iterations of the for loop) are completed, the value of

vy is chosen as the output of node v.

As mentioned earlier, the proposed algorithm uses the same strategy as in [13] and [26]

by iterating over all possible faulty sets. However, the steps performed in each iteration are
significantly different than both.

The algorithm for directed graphs under point-to-point communication in [26] is not
immediately adaptable to the local broadcast setting. One key challenge is that it
requires nodes to send messages in multiple rounds in a single iteration of the main for
loop. While non-equivocation provided by local broadcast prevents a faulty node from
sending conflicting messages in one round, it does not directly stop a faulty node from
lying inconsistently across rounds, even to the same neighbor. In our algorithm, when
F = F*, the faulty nodes are only allowed to flood their states once in the entire iteration,
preventing them from lying inconsistently across rounds in this iteration.
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On the other hand, the algorithm for undirected graphs under local broadcast [13] does
indeed require each faulty node to send a single message for each iteration of the main for
loop. However, in directed graphs, in contrast with the undirected setting, communication
may only exist in one direction between some pairs of nodes. Our algorithm first achieves
consensus in a unique source component and then propagates this to the rest of the graph.
The existence of a unique source component or its ability to propagate its state to the
rest of the graph is not immediately obvious. In the next section, we show that these and
other non-trivial properties are guaranteed by condition SC, which our algorithm utilizes
to solve consensus.

6.2 Graph Properties

Algorithm 1 relies on some non-trivial properties of graphs that satisfy condition SC. In this
section, we prove these properties followed by the proof of correctness of the algorithm in
Section 6.3. We first show that there is indeed a unique source component in the directed
graph decomposition of G — F, performed in step (a) of each phase. Suppose, for the sake of
contradiction, that there are two source components S; and Sy of the decomposition. Note
that, by construction, there are no edges into S; and Ss, except from F. By appropriately
selecting sets A and B, the only paths into A (resp. B) are via F' and so are limited to at
most f, violating condition SC with parameter F', a contradiction.

» Lemma 6. For any choice of set F' in the algorithm the directed graph decomposition of
G — F has a unique source component.

Proof. Fix an arbitrary set F. Suppose for the sake of contradiction that G — F has two
source components S7 and Ss. Let C :=V — 57 — S5 be the rest of the nodes. We create a
partition (A, B) that violates the requirements of condition SC with parameter F' (Definition
1). Let A:= 57 and B := SoUC =V — 5;. First note that both A — F = A = 5; and
B — F D S, are non-empty.

Now, by construction, we have that S; has no incoming edges except from F. Therefore,
F' is a cut set that separates Sy from S, i.e., there are no paths from a node in Sy to a node
in Sy in G — F. By Menger’s Theorem, there are at most |F| < f node-disjoint paths in G
from S; = A to any node in Sy C B — F. Therefore, for any node v € Sy C B — F, there

are at most f node-disjoint Av-paths that exclude F', and so A ;G B — F. Similarly, by
construction, we have that S; has no incoming edges except from F. Therefore, F' is a cut
set that separates S; from Sy UC — F. By Menger’s Theorem, there are at most |F| < f
node-disjoint paths in G from S; U C = B to any node in S; = A — F. Therefore, for any
node v € S; = A — F, there are at most f node-disjoint Bv-paths that exclude F, and so

F
B o A — F. This violates condition SC, a contradiction. <

Next, this unique source component S, along with its in-neighborhood in F', satisfies
condition SC with parameter F. We follow the same approach as in proof of Lemma 6,
assuming for the sake of contradiction that G[S UT(F,S)] does not satisfy condition SC
with parameter F', and showing that this implies that G does not satisfy condition SC with
parameter F'.

» Lemma 7. For any choice of set F' in the algorithm, let S be the unique source component
of G— F. Then G[SUT(F,S)] satisfies condition SC with parameter F.

Proof. Suppose for the sake of contradiction that H := G[S UT(F,S)] does not satisfy
condition SC with parameter F'. So there exists a partition (A, B) of SUT(F,S), such that
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A — F and B — F are non-empty, and A ;ZH B —F and B ;ZH A — F. Let the rest of
the nodes in G be denoted by C :=V — SUT(F,S). Let A’ := AUC. Then (4',B) is a
partition of V', with A’ — F and B — F both non-empty.

We first show that there is no edge from C' to S in G. Observe that C' is disjoint from
SUT(F,S). If anode u € CNF has an edge to a node in S, then u € I'(F, S), a contradiction
since C NT'(F,S) = 0. On the other hand, if u € C'— F has an edge to a node in S, then
the edge exists in G — F', which is a contradiction since S is a source component in G — F.

Now, since A ;Z»H B — F, we have that for some node v € B — F' there are at most f
node-disjoint Av-paths in H_r.?> By Menger’s Theorem, there exists a cut set X ¥ v of
cardinality at most f that separates v from A — X in H_p. Since there is no edge from C
to S in G, we have that X also separates v from (A— X)UC = A" — X in G_p. It follows

F
that there are at most f node-disjoint A’v-paths that exclude F in G, and so A’ /4~ B — F.

Similarly, since B ; g A — F, we have that for some node v € A — F there are at most
f node-disjoint Bv-paths in H_gr. By Menger’s Theorem, there exists a cut set X Z v of
cardinality at most f that separates v from B — X in H_p. Since there is no edge from C' to
S in G, we have that X also separates v from B— X in G_p. Notethatve A—F C A’ —F.
It follows that there are at most f node-disjoint Bv-paths that exclude F in G, and so

F
B o A’ — F. This violates condition SC, a contradiction. |

We now show that the paths identified in steps (c), (d), and (e) of the algorithm do
indeed exist. The existence of paths in step (c) follows by construction of S.

» Lemma 8. For any choice of set F' in the algorithm, let S be the unique source component
of G — F. Then, for any two nodes u € SUT(F,S) and v € S, there exists a uv-path that
excludes F.

Proof. If u € S, then there exists a uv-path in G — F since S is strongly connected in G — F
by construction. If u € T'(F,.S), then there exists a node w € S such that (u,w) is an edge
in G. Also, there exists a wv-path P,, in G — F since S is strongly connected in G — F'. So
u- Py, is a uv-path in G that excludes F. <

The existence of paths in step (d) follows from Lemma 7 and definition of condition SC
(Definition 1).

» Lemma 9. For any non-faulty node v, and any given phase with the corresponding set F,
in step (d), if v € B, then there exist f + 1 node-disjoint A,v-paths that exclude F.

Proof. Fix a phase of the algorithm and the corresponding set F'. Consider an arbitrary non-
faulty node v such that v € B, in step (d). By construction, B, is either N,—F or Z,—F, both

of which are non-empty. In the first case, we have that A, = Z, 5 N,—F = B,. In the second
F

case, we have that Z, ¥ N, — F'. By Lemma 7, we have that G[Z, UN,| = G[SUT(F,S)]

satisfies condition SC with parameter F'. Therefore A, = N, 5 Zy—F = B,. <

3 Recall from Section 3 that G_y is the graph obtained from G by removing all incoming edges to U so
that if P is a path in G_y, then P is a path in G that excludes U and terminates in V — U, and if P is
a path in G that excludes U and terminates in V' — U, then P is a path in G_yp.
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For paths in step (e), note that, by construction of S, the in-neighbors of S are contained
entirely in F. So there can only be at most f paths into S from V — S. Since G satisfies

condition SC with parameter F', we get that S Lv-s-F.

» Lemma 10. For any choice of set F' in the algorithm, let S be the unique source component
of G—F. Then SV —S—F.

Proof. Let A= S and B=FU(V —S5) =V — A. Now, since A = S is the unique source
component of G — F, we have that I'(B, A) C F, i.e., nodes in F are the only ones in B to
have an edge into A. So B can have at most f node-disjoint paths to any node in A. Thus

F
B 4 A — F. Since G satisfies condition SC, we have that S = A EB-F=v_-5- F, as
required. <

6.3 Proof of Correctness

We provide a proof of correctness of Algorithm 1 by proving Theorem 11 below.

» Theorem 11. Under the local broadcast model, Byzantine consensus tolerating at most f
Byzantine faulty nodes is achievable on a directed graph G, if G satisfies condition SC.

Let us assume that G satisfies condition SC. For convenience, we will refer to the state
variable v, as the “state of node v”. We remind the reader that the algorithm proceeds in
phases and each phase has an associated unique set F', with |F| < f. We use F'* to denote
the actual set of faulty nodes in a given execution.

As mentioned earlier, the algorithm attempts to balance two objectives. We formalize
them in the two lemmas below. The proofs of Lemmas 12 and 13 are presented later.

» Lemma 12. Consider the unique phase of Algorithm 1 where the corresponding set F' = F™*.
At the end of this phase, every pair of non-faulty nodes u,v € V has an identical state, i.e.,

Yu = Yo-

» Lemma 13. For a non-faulty node v, its state 7, at the end of any given phase equals the
state of some non-faulty node at the start of that phase.

The correctness of Algorithm 1 follows from these two lemmas, as shown next.

Proof of Theorem 11. To prove the correctness of Algorithm 1, we have to prove the three

properties of Agreement, Validity, and Termination, as specified in Section 3.

Termination: The algorithm satisfies the termination property because there are a finite
number of phases in the algorithm, and each of them completes in finite time.

Agreement: The total number of faulty nodes is bounded by f. Therefore, in any execution,
there exists at least one phase in which the set F' = F*. From Lemma 12, all non-faulty
nodes have the same state at the end of this phase. Lemma 13 implies that the state of
the non-faulty nodes will remain unchanged in the subsequent phases. So all non-faulty
nodes will have identical outputs, satisfying the agreement property.

Validity: The state of each non-faulty node is initialized to its own input at the start of the
algorithm. So the state of each non-faulty node is its own input at the start of the first
phase. By applying Lemma 13 inductively, we have that the state of a non-faulty node
always equals the input of some non-faulty node. This satisfies the validity property.

This completes the proof of correctness of Algorithm 1. <
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The rest of the section focuses on proving Lemmas 12 and 13. We assume that the graph
G satisfies condition SC, even if it is not explicitly stated. We use F* to denote the actual
faulty set. The following observation follows from the rules used for flooding [14].

» Observation 14. For any phase of Algorithm 1, for any two nodes u,v € V (possibly
faulty), if v receives value b along a fault-free uv-path then w broadcast the value b to its
neighbors during flooding.

Fix a phase in the algorithm along with the corresponding set F. For Lemma 12, the
correctness relies on the local broadcast property. Suppose, as stated in the statement of the
lemma, that /' = F* in a given phase. There are two cases to consider for any non-faulty
node v. In the first case v € S. In this case, the paths used by v in step (c) of the phase
exclude F'. So these paths are fault-free (i.e., none of their internal nodes are faulty). Then,
the properties of flooding imply that any two non-faulty nodes u, v will obtain Z,, = Z, and
N, = N, in step (c). By a similar argument, all the paths used in step (d) of this phase are
also fault-free, and any two non-faulty nodes will end step (d) with an identical state. In the
second case v € V — § — F| a repeat of the above argument implies that the paths used in
step (f) are both fault-free and have non-faulty source nodes. Since the source nodes are all
from S, they have an identical state at the end of step (d). So v correctly updates its state
in step (f) to match the identical state in S.

Proof of Lemma 12. Fix a phase of the algorithm and the corresponding set F' such that
F = F*. We first show that all nodes in S have identical state, at the end of the phase, and
then consider nodes in V — S5 — F*.

Let Z be the set of nodes that flooded 0 in step (b) and let N be the set of nodes that
flooded 1 in step (b). Note that Z and N may contain faulty nodes, but due to the broadcast

property, a faulty node is in at most one of these sets. Consider any non-faulty node v € S.

Then Z, = Z and N, = N, as follows. Let w € SUT(F*,S) be an arbitrary node that
flooded 0 (resp. 1) in step (b), i.e., w € Z (resp. w € N). Now the wv-path P, identified
by v in step (b) excludes F* and is fault-free. So, by Observation 14, v receives 0 (resp. 1)
along Py, and correctly sets w € Z, (resp. w € N,).

Therefore, we have that for any two non-faulty nodes u,v € S, Z, = Z, = Z and
N, =N, =N.If Z—F* (resp. N— F*) is empty, then S = N — F* (resp. S =2 —F*). So
all non-faulty nodes in .S have identical state, which is not updated, and the claim is trivially
true. So suppose both Z — F* and N — F* are non-empty. Since Z,, = Z,, and N, = N,,, we

have that A, = A, and B, = B,,. Let A:= A, and B := B,,. By construction A £ B. Now
all nodes in A flooded identical value in step (b), say a. If u € A, then u’s state is v at the
beginning of the phase and stays unchanged in step (d), i.e., 7, = a. If u € B, then the f+1
node-disjoint Au-paths identified by u in step (d) exclude F* and so are all fault-free. By
Observation 14, it follows that u receives « identically along these f + 1 paths and updates
Yo = . Similarly, v, = a.

So we have shown that all non-faulty nodes in S have identical state « at the end of step
(d). Since these nodes do not update their state in the rest of the phase, so we have that all
nodes in S have state « at the end of the phase. Since all nodes in S are non-faulty, we have
that each node in S floods « in step (e). Consider any non-faulty node v € V.— S — F*. The

f + 1 node-disjoint Sv-paths identified by v in step (f) exclude F* and so are all fault-free.

Recall that S contains only nodes in V' — F*, i.e., only non-faulty nodes, so the source nodes
in these f + 1 paths are also non-faulty. By Observation 14, it follows that v receives «
identically along these f 4 1 paths and updates v, = a. So by the end of the phase, all
non-faulty nodes have identical state «, as required. <
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Lemma 13 follows from the following observation. In steps (d) and (f), if a node v updates
its state, then it must have received identical value along f 4+ 1 node-disjoint A,v-paths.
Therefore, at least one of these paths must both be fault-free and have a non-faulty source.

Proof of Lemma 13. Fix a phase of the algorithm and the corresponding set F'. We use
Astart and ve"d to denote the state 7, of node u at the beginning and end of the phase,
respectively. Let v be an arbitrary non-faulty node. If v does not update its state in this
phase, then ye"d = 48ttt and the claim is trivially true. So suppose that v did update its
state in this phase. This implies that v € V — F..

There are now two cases to consider

Case 1: v € S. Tt follows that v updated its state in step (d). Therefore, v € B, and v
received identical values along f + 1 node-disjoint A,v-paths in step (b). Now,
at least one of these paths 1) is fault-free, and 2) has a non-faulty source u. By
Observation 14, we have that the value received by v along this uv-path in step (b)

is the value flooded by u in step (b). So 7" = 48tart where u is a non-faulty node.

Case 2: ve V — 5 — F. It follows that v updated its state in step (f). Therefore, v received
identical values along f + 1 node-disjoint Sv-paths in step (e). Now, at least one of
these paths 1) is fault-free, and 2) has a non-faulty source w € S. By Observation
14, we have that the value received by v along this wv-path in step (e) is the value
flooded by w in step (e). Note that w € S and so the value flooded by w in step (e)
is the state of w at the end of this phase, i.e., w flooded 74 in step (e). There are
further two cases to consider

Case i: w did not update its state in this iteration. Then "4 = Hend = ,start
Recall that w is a non-faulty node.

Case ii: w did update its state in this iteration. Then, from Case 1 above, we

have that there exists a non-faulty node u such that ye"d = Astart o
yend = nend — qstart where v is a non-faulty node.
In all cases, we have that 7224 equals 751 for some non-faulty node wu. <

7 Summary

In this work, we have presented tight conditions for exact binary Byzantine consensus in
directed graphs under the local broadcast model. The sufficiency proof in Section 6 is
constructive. However, the algorithm has exponential round complexity. We leave finding
a more efficient algorithm for future work. The following question is also open: does there
exist an efficient algorithm to check if a given directed graph satisfies condition SC?
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