
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Model Learning and Knowledge Sharing for
Cooperative Multiagent Systems in

Stochastic Environment
Wei-Cheng Jiang , Vignesh Narayanan , Member, IEEE, and Jr-Shin Li , Senior Member, IEEE

Abstract—An imposing task for a reinforcement learning agent
in an uncertain environment is to expeditiously learn a policy or
a sequence of actions, with which it can achieve the desired goal.
In this article, we present an incremental model learning scheme
to reconstruct the model of a stochastic environment. In the
proposed learning scheme, we introduce a clustering algorithm
to assimilate the model information and estimate the probability
for each state transition. In addition, utilizing the reconstructed
model, we present an experience replay strategy to create virtual
interactive experiences by incorporating a balance between explo-
ration and exploitation, which greatly accelerates learning and
enables planning. Furthermore, we extend the proposed learn-
ing scheme for a multiagent framework to decrease the effort
required for exploration and to reduce the learning time in a
large environment. In this multiagent framework, we introduce
a knowledge-sharing algorithm to share the reconstructed model
information among the different agents, as needed, and develop a
computationally efficient knowledge fusing mechanism to fuse the
knowledge acquired using the agents’ own experience with the
knowledge received from its teammates. Finally, the simulation
results with comparative analysis are provided to demonstrate
the efficacy of the proposed methods in the complex learning
tasks.

Index Terms—Knowledge sharing, model learning, multiagent
system, reinforcement learning (RL), sample efficiency.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a popular
machine-learning tool employed to tackle complex

decision-making problems in uncertain environments.

Manuscript received July 15, 2019; revised September 30, 2019; accepted
November 26, 2019. The work of W.-C. Jiang was supported in part by
the Ministry of Science and Technology, Taiwan, under Grant MOST 106-
2917-I-564-028 and Grant MOST 108-2218-E-029-006. The work of J.-S.
Li was supported in part by NSF under Award ECCS-1509342 and Award
CMMI-1763070, and in part by the National Institutes of Health under Grant
R01GM131403 and Grant R01CA226937A1. This article was recommended
by Associate Editor H. M. Schwartz. (Corresponding author: Jr-Shin Li.)

W.-C. Jiang is with the Department of Electrical Engineering, Tunghai
University, Taichung 40704, Taiwan, and also with the Department of
Electrical and Systems Engineering, Washington University in St. Louis,
St. Louis, MO 63130 USA.

V. Narayanan and J.-S. Li are with the Department of Electrical and Systems
Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail: jsli@wustl.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2958912

Inspired by naturalistic decision-making processes in bio-
logical systems, the RL methodology enables an agent to
progressively learn a sequence of actions to achieve a desired
objective [1]. The environment, wherein the agent performs
an action, provides a scalar feedback, called the reinforce-
ment/reward signal, and as a consequence of the action, the
agent transits from one state (current state) to a new state.
During this process of interaction with the environment, the
agent explores the environment and accumulates experiences
or knowledge regarding the environment. Using the collected
experiences, over time, the agent learns the best sequence of
action from any situation/state [2], [3] to achieve a desired
objective.
Typically, these experiences are collected when the agent

is exploring the environment, that is, the agent actually takes
actions in an uncertain environment hoping that these actions
do not jeopardize the agent and receives reinforcement signals
and collects experiences. Therefore, the process of collecting
experiences in an uncertain environment is expensive and time
consuming, and it is imperative that the collected experiences
are efficiently utilized [4]–[7]. For example, a rover exploring
an uncertain terrain may crash onto an obstacle or plunge into a
crevasse. In this context, sample efficiency in RL is a challeng-
ing and important issue, that is, extracting the model/policy
information efficiently from the collected experience becomes
an important objective.
The RL approaches are broadly classified as model-free

and model-based learning strategies. In the model-free RL,
the collected experiences are used to learn a policy based on
the expected value of applying an action at each step. These
experiences are discarded once the learning is complete. On
the other hand, the model-based RL approach is introduced
to achieve sample efficiency [8]–[10]. In the model-based RL
approach, the agent strives to reconstruct a virtual model of
the environment which not only includes the reward function
but also the transition function, the function that encodes how
an action from the current state is mapped to the next state.
The Dyna architecture is a well-known model-based RL

approach [11], [12] in which an agent reconstructs a model of
the environment from actual experience (through direct learn-
ing), and after the learning process, when the model is fed
with the current state and an action, it will predict the next
state and the expected reward. This allows for the agent to cre-
ate virtual experiences that can be used to update the policy
and incorporate planning efficiently through indirect learning.

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4432-8801
https://orcid.org/0000-0002-9505-7143
https://orcid.org/0000-0001-6693-3979

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

Indirect learning also enables the agent to plan and achieves
a better balance between exploration and exploitation [13].
Several algorithms that improve/accelerate the learning pro-
cess in the model-based RL framework, have been proposed
in [14]–[16].
An alternate approach to achieve sample efficiency

in the learning process is to employ experience replay
strategy [17]–[20]. In both the Dyna architecture and the
experience replay strategy, all the collected experiences are
stored. However, in some applications, the memory space to
store the experiences may be limited or costly. Therefore, in
the experience replay strategy, a mechanism to omit expe-
riences during the learning process is introduced. Different
algorithms incorporating SARSA, Q-learning, etc., are stud-
ied along with the experience replay strategies to improve the
learning efficiency [21]. The characteristic difference of the
traditional Q-learning or SARSA learning with the experience
replay-based strategies is the additional mechanism which dis-
cards experiences when the memory is full. This mechanism
works either based on time (discarding oldest experience first)
or based on the reward (discarding experiences with least
reward) [20].
It should be noted that the RL algorithms, for example,

Q-learning, propagate the Q-values from the terminal state to
the initial state during the learning process. As a result, expe-
riences collected initially, that are near the initial states, may
be useful, and when some experiences are omitted based on
time or reward, these useful experiences may be discarded.
This renders the learning process inefficient. Similarly, in the
Dyna architecture, the agent, during indirect learning, always
chooses an action from a state that is visited previously to
predict the next state and the corresponding reward. In some
cases, the environment (state space) is too large for an agent
to cover, slowing down this learning process.
Therefore, when a single agent deals with a large environ-

ment, the learning time will increase. In such a case, a suitable
learning scheme, incorporating multiple learning agents that
cooperate and share their experiences collected independently
with the other agents [22]–[25], will accelerate the learning
process. The multiagent learning framework can accommo-
date a variety of decision-making tasks [26], for instance,
tasks where multiple agents cooperate or compete to maximize
a coupled objective (e.g., Half-field offence [27]). However,
in this article, we will adopt the multiagent learning frame-
work to accelerate the learning process by using a team of
RL agents to learn a large environment. Here, each agent will
take actions that are independent of the other agents and share
their knowledge with the other agents when there is a request
for information. Such cooperative knowledge-sharing methods
were reported in [22], [23], and [28]–[32], and the references
therein. For instance, the agents explored the environment
independently to update their Q-functions and then shared
the Q-values with their teammates as needed in the results
presented in [28]–[30]. In these approaches, each agent’s pol-
icy is shared with the others [28]–[32]. Alternatively, in a
model sharing approach, each agent builds its own model of
the environment during the learning period and exchanges its
model information with the other agents [33]–[37].

In the cooperative knowledge-sharing approach, each
agents’ policy/model is shared with the others, and an
important task for an agent is to effectively combine the newly
obtained knowledge from the other agents with the knowledge
gained using its own experience [28]–[32]. This depends on
how the information is stored in each agent. In [32], the het-
erogeneous tree structures were proposed, for each agent, for
state aggregation, where the Q-values were stored in differ-
ent tree nodes. A model-learning scheme using heterogeneous
tree structures along with a request-based knowledge-sharing
framework was proposed by Hwang et al. [37]. In contrast to
the algorithm in [38], where the entire tree structure was shared
with the other agents, in [37], agents only shared their leaf
nodes to the others to reduce the merging cost. However, due
to the heterogeneous tree structure, a resampling method was
introduced to create virtual experiences for tractable fusing of
the knowledge shared between the cooperative agents.
In summary, sample efficiency and reduction in the learn-

ing time in a large, uncertain environment could potentially
be resolved if an algorithm can: 1) efficiently reconstruct a
virtual model that can store more information, especially, in a
stochastic state space; 2) generate useful experiences from the
virtual model for indirect learning, without discarding poten-
tially valuable experiences; and 3) effectively share knowledge
in the multiagent setting and combine the shared knowledge
without increasing the computational burden on each agent.
Therefore, in this article, we propose a multiagent learning

scheme, wherein each agent collects experiences for policy
and model learning in an uncertain, stochastic environment.
To learn the environmental model information from the expe-
rience collected by each agent, we introduce an incremental
model learning algorithm, and to effectively capture the state
transition, we propose a clustering scheme. In the proposed
clustering-based model learning approach, clusters are formed
to store the information regarding the probability for each state
transition. As opposed to the traditional “look-up” table-based
storage of the environmental models or the tree structure, the
clusters offer a concise way to store the model information.
Furthermore, we present an experience replay strategy along

with the Q-learning scheme to achieve sample efficiency, by
incorporating a balance between exploration and exploita-
tion. The experience replay strategy is used to create virtual
experiences corresponding to states which may or may not
be experienced by the agents, for updating the Q-function.
Furthermore, when an agent in a cooperative team lacks suf-
ficient knowledge of a specific state, a request will prompt its
teammates to share their model information. After obtaining
the knowledge, an efficient fusing mechanism (using the clus-
ters and T-statistics) is proposed to help each agent fuse its
own knowledge and the knowledge shared by its teammates.
The efficiency of the proposed algorithms is validated with
three numerical simulations, and the comparison with related
state-of-the-art methods demonstrates the advantages of the
proposed scheme.
The contributions of this article include developing: 1) an

incremental model learning algorithm to establish a virtual
model of a stochastic environment; 2) a clustering scheme
to assimilate the experiences in a virtual model to evaluate

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: MODEL LEARNING AND KNOWLEDGE SHARING FOR COOPERATIVE MULTIAGENT SYSTEMS IN STOCHASTIC ENVIRONMENT 3

the probability of the state transitions; 3) an experience
replay strategy with incremental model learning schemes to
achieve sampling efficiency via multistep Q-learning; and
4) a knowledge fusing scheme for the multiagent framework
to fuse the model knowledge shared by the teammates.
The remainder of this article is organized as follows. In

Section II, a brief background on RL is presented and the
problem considered in this article is detailed. The proposed
incremental model learning method along with the clustering
scheme are presented in Section III. Section IV introduces the
knowledge-sharing algorithm which is employed in tandem
with the incremental model learning method in a multiagent
setting. In Section V, the simulation results for the proposed
method are presented. Finally, in Section VI, we present our
conclusions.

II. BACKGROUND

In this section, we first provide a brief background on the
RL problem and then state the design objectives considered in
this article. The RL problems can be formulated as Markov
decision processes (MDPs) which consist of a state space
Sp, an action space Ap, a state-transition function T, and a
reward function R [1]. During the learning process, an RL
agent perceives the environmental information, denoted as a
state st ∈ Sp and chooses an action at ∈ Ap so that the
agent transits from the current state to the next state st+1
based on T. The action at is, in general, based on a pol-
icy, and in this process, the agent receives an external scalar
reward/reinforcement signal rt+1 ∈ R from the environment.
The tuple (st, at, st+1, rt+1) will be collected as an experi-
ence by the RL agent and the aggregated experiences will be
used to update the policy, which will influence the agent’s
future actions. Specifically, the RL agent uses the experiences
to update the long-term expected reward that is stored as the
value function or the Q-function.
In the RL tasks, the model of the environment can be

deterministic or stochastic [1], [39]. In the deterministic envi-
ronment, the transition function T : Sp×Ap → Sp maps a state
and an action to a new next state in the state space, while in
the stochastic environment, the transition function maps the
state and the action to the next state with a probability for
each state transition defined by a distribution. Therefore, in a
stochastic environment, the RL agent must encode the proba-
bility distribution using the collected experiences in the learnt
model. In this article, we consider an MDP with a continuous
state space Xp ⊆ R

n, a discrete action space Ap, a stochastic
state-transition function Tp, and a reward function Rp. In addi-
tion, we define a map st ← φ(xt), that maps the continuous
states xt to a discrete state st ∈ Sp ⊆ R

n.
Furthermore, learning with multiple RL agents enables solv-

ing complex tasks in a large state space [26] and can include
a wide variety of RL problems (e.g., Nash games). In this arti-
cle, we focus on developing an efficient model learning and
knowledge-sharing mechanism in a large stochastic environ-
ment by using multiple agents. Specifically, we let the agents
learn a model of the environment, and a policy to reach a goal,
while also helping their teammates by sharing their model and
policy when requested.

The objectives considered in this article are: 1) to develop
a model learning scheme with efficient storage structure to
facilitate indirect learning; 2) to design an algorithm for
incorporating indirect learning/planning for the RL agent to
efficiently utilize the virtual model; 3) to design a multiagent
knowledge-sharing framework; and 4) to develop a knowledge
fusing algorithm without imparting computational burden (by
avoiding a resampling scheme) on each agent.

III. MODEL LEARNING FOR EXPERIENCE

REPLAY WITH Q-LEARNING

In this section, an incremental model learning scheme for
experience replay is presented. Since the major focus of this
article is not Q-learning, for completeness, the details of the
policy learning scheme are briefly introduced first.

A. Policy Learning via Direct Learning

At time t, an agent perceives a state xt = [x1, x2, . . . , xn],
where n is the dimension of the state space. The per-
ceived continuous state is encoded to a discretized state
st = [s1, s2, . . . , sn] ∈ Sp using the map φ. An ε-greedy
method is used by the agent to choose an action at ∈ Ap in the
current state st [1]. Following the state transition, the agent will
perceive the next continuous state xt+1, which is encoded to
the next discretized state st+1, and a reward rt+1 is returned
by the environment. In the model-free Q-learning approach,
the agent utilizes the experience (st, at, st+1, rt+1) to update
the Q-values denoted as Q(st, at). The Q-function [40] is
given by

Q(st, at)new = (1 − β)Q(st, at)old

+ β

(
rt+1 + γ max

a′∈Ap

Q
(
st+1, a

′)) (1)

where 0 < β < 1 is the learning rate and 0 < γ < 1 is
the discount factor. If the agent acquires a desirable reward,
the Q-values will be increased for the corresponding state–
action pair, while the Q-values will be decreased, otherwise.
With the Q functions updated iteratively, the Q-values for
all state–action pairs will converge to the optimal Q∗ val-
ues asymptotically with probability one [41], [42]. The update
error is defined as

�Q(st, at) = Q(st, at)new − Q(st, at)old. (2)

In our proposed algorithm, the agent learns the optimal pol-
icy via both the direct learning and indirect learning, where
Q(s, a) stores the Q-values for all the state–action pairs,
�Q(s, a) stores all the updating error, and M(s, a) stores the
state-transition and reward functions. Next, we present our
incremental model learning scheme for encoding the model
information in M(s, a) using the collected experiences.

B. Incremental Model Learning via Direct Learning

In addition to learning the Q-function, the experiences
(xt, at, xt+1, rt+1) are utilized for learning the model of the
environment. First, the model learning scheme is presented
for the deterministic environment and, then, for the stochastic
environment.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

1) Deterministic Environment: For a deterministic environ-
ment, if the agent takes an action a1 from the continuous
state x1, it will transit to the next continuous state x2 with
probability 1.
In this article, we propose a model that is composed of

two functions, a variation transition function Tv : Sp ×Ap →
�Xp ⊆ R

n, which maps a state and an action to a variation of
state (or the first difference), and a reward function Rv : Sp ×
Ap × Sp → R, which maps a state and an action to a scalar
reward. For instance, the Nth state transition due to an action
a results in the variation of the continuous state �xaN and the
reward raN that is computed as

�xaN = xt+1 − xt, raN = rt+1. (3)

The variation of the continuous state and the reward is stored
in a model, in cells, wherein each cell stores the variation of
the continuous state �xa1, the square of the variation of the
continuous state (�xa1)

′, the reward ra1, and the square of the
reward (ra1)

′. If the agent visits a state more than once, say
(N − 1) times, the variations and rewards are averaged and
stored. These quantities are calculated as

�x̄aN = �xa1 + �xa2 + · · · + �xaN−1

N − 1

(
�x̄aN

)′ =
(
�xa1

)2 + (
�xa2

)2 + · · · + (
�xaN−1

)2
N − 1

r̄aN = ra1 + ra2 + · · · + raN−1

N − 1

(
r̄aN

)′ =
(
ra1

)2 + (
ra2

)2 + · · · + (
raN−1

)2
N − 1

(4)

where �x̄aN is the averaged variation of the continuous state,
(�x̄aN)′ is the average of squared variation of the continuous
state, r̄aN is the average of the reward, and (r̄aN)′ is the average
of squared reward.
Hence, at the Nth visit to this state, the new �x̄aN+1 and

(�x̄aN+1)
′ are updated according to

�x̄aN+1 = 1

N

N∑
i=1

�xai = 1

N

(
�xaN +

N−1∑
i=1

�xai

)

= 1

N

(
�xaN + (N − 1)

1

(N − 1)

N−1∑
i=1

�xai

)

= �x̄aN + 1

N

(
�xaN − �x̄aN

)
(5)

(
�x̄aN+1

)′ = (
�x̄aN

)2 + 1

N

((
�xaN

)2 − (
�x̄aN

)2)
. (6)

Since it is infeasible to know a priori if a state will be visited
by the agent more than once, (4) is not implementable and the
incremental update in (6) can be used.
Analogously, r̄aN+1 and the new (r̄aN+1)

′ are updated by

r̄aN+1 = r̄aN + 1

N

(
raN − r̄aN

)
(7)

(
r̄aN+1

)′ = (
r̄aN

)2 + 1

N

((
raN

)2 − (
r̄aN

)2)
. (8)

Algorithm 1 Incremental Model Learning for Deterministic
Environment (ModelLearning)
(1) Calculate the variation of the continuous state and the

reward using equation (3)
(2) s ← φ(xt)
(3) Retrieve �x̄aN , (�x̄aN)′, r̄aN , and (r̄aN)′, from the model

using state- action pair, (s, a)
(4) Use (5)-(8) to calculate the new �x̄aN+1, (�x̄aN+1)

′, r̄aN+1
and (r̄aN+1)

′
(5) Update Tv(�x̄aN+1|s, a) and Rv(s′, s, a) using (9)
(6) Store these two functions in the model,

M(s, a) ← (Tv(�x̄aN+1|s, a),Rv(s′, s, a))

(7) Return M(s, a).

Fig. 1. Diagram representing a three-state Markov process, with the states
labeled x1, x2, and x3 and actions a0 and a1. Each number represents the
probability of the Markov process changing from one state to another state,
with the direction indicated by the arrow.

Therefore, the variation transition function and the reward
function are handled by the proposed model that is defined as

Tv
(
�x̄aN+1|s, a

) = {
�x̄aN+1|s ← φ(xt), a ← at

}
Rv

(
s′, s, a

) = {
r̄an+1|

(
s′, s

) ← φ(xt+1, xt), a ← at
}

(9)

where Tv maps the discretized state s and the action at to an
average variation of the continuous states �x̄aN+1 ∈ �Xp, and
the reward function Rv maps s′ and s, and the action a to
an average reward r̄aN+1 ∈ R. The algorithm of the incremen-
tal model learning method for a deterministic environment is
shown in Algorithm 1.
2) Stochastic Environment: For the case of stochastic envi-

ronment, the probability distribution for the state transitions
needs to be taken into consideration. In the example shown in
Fig. 1, when an agent in the continuous state x1 chooses an
action a1, it would transit to the next continuous state x2 or x3
with probabilities 0.6 and 0.4, respectively. If the agent in the
continuous state x2 takes the action a1, it will have different
transition probabilities for the next continuous states. Since
the probability distribution of the state transitions is unknown,
in the model-based RL, the probability distribution must be
encoded in the environmental model that is being learned by
the agent.
Therefore, for the stochastic environment, the variation tran-

sition function becomes Tp : Sp × Ap → P(�Xp), where
�Xp ⊆ R

n is the variation of the state space and P is the
probability operator and, similarly, the reward function is mod-
ified as Rp : Sp × Ap × Sp → P(Rp), where Rp ⊆ R is the

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: MODEL LEARNING AND KNOWLEDGE SHARING FOR COOPERATIVE MULTIAGENT SYSTEMS IN STOCHASTIC ENVIRONMENT 5

reward value. To evaluate and encode the probability distribu-
tion in the model, we introduce a clustering method in addition
to the incremental model learning scheme proposed for the
deterministic case. The clustering algorithm evaluates the vari-
ation vector of the state, and the reward values for each state
transition and assigns them to different clusters.
Specifically, when an agent obtains an experience (xt, at,

xt+1, rt+1), (3) is used to calculate the normalized varia-
tion of the state to obtain the normalized variation vector
v = (�xaG, raG). The normalization is carried out as follows.
Let di,m and di,M denote the lower and upper bounds of the
ith dimension of the state space, and let Rm and RM denote
the smallest and largest reward. Then, the normalized state
variation (�xaG) and normalized reward (raG) are calculated as

�xaG,i = �xaN,i − di,m

di,M − di,m
, raG = raN − Rm

RM − Rm
(10)

where i = 1, 2, . . . , |�xaN,i| = n, �xaN,i ∈ �xaN and
�xaG,i ∈ �xaG.
When the first normalized variation vector is received, a

new cluster will be established and it will be set as the cen-
ter of the cluster c1 = v, and the information of this cluster
is updated using (5)–(8). When the next normalized variation
vector v′ arrives, the Euclidean distance is used to calculate
the similarity, D(v′, cl), between the new normalized vari-
ation vector v′ and the centers of the existing clusters cl,
l = 1, 2, . . . , |C|, where |C| is the cardinality of the cluster
set, C = {c1, c2, . . . , cl}.
Next, the most similar cluster cl will be chosen and the sim-

ilarity dcl is compared with a threshold Da
th. If the similarity

is smaller than the threshold, the cluster cl is activated and the
information of this cluster is updated by (5)–(8). The number
of times a cluster is activated is represented by Ncl . Therefore,
in each discretized cell of the model, there may exist multiple
clusters, and the probabilities of each cluster in a cell are eval-
uated using the activation number. The probabilities are used
in the experience replay strategy to create a collection of vir-
tual experiences. Therefore, in addition to the M(s, a), in the
stochastic environment, the cluster centers and the activation
number of each cluster are stored in the model.
In Fig. 2, an example cell and the model structure M(s, a)

are shown for an environment with 1-D state and action spaces.
The x, y-axes represent the actions and continuous state, dis-
cretized into cell blocks. Each discrete cell may contain several
clusters, for instance, c1, c2, and c3 are the center of the three
clusters in a cell. In each of these clusters, the activation time
Nc1 of cluster 1 is 8, Nc2 is 8, and Nc3 is 6. The algorithm of the
incremental model learning method for stochastic environment
is shown in Algorithm 2.
Note that the proposed model learning algorithms incor-

porate a discretization step and, then, store state variation,
rewards, and their respective squared values (10). However, in
contrast to the deterministic model, the stochastic model must
encode the transition probabilities associated with each state
transition. In both the cases, a finer discretization can provide
a better approximation of the learned model, it increases the
computations and, thus, introduces a tradeoff between model
accuracy and computational complexity. On the other hand,

Fig. 2. Depiction of information stored in the model learned by an agent.
The model structure M(s, a) corresponds to an environment with 1-D state
and action spaces. The x, y-axes represent the actions and continuous state,
discretized into cell blocks (black square boxes). Each discrete cell may con-
tain several clusters, for instance (the red pop-out) shows the contents of a
cell. This cell contains three clusters wherein c1, c2, and c3 are their centers,
respectively. In this example, the activation time Nc1 for cluster 1 is 8, Nc2
is 8, and Nc3 is 6.

Fig. 3. Example of multistep planning.

the number of clusters in the stochastic environment is not
predetermined, and agents automatically vary the number of
clusters based on the complexity of the environment.
Next, an indirect learning algorithm incorporating experi-

ence replay is proposed to improve the sample-efficiency of
the RL scheme.

C. Experience Replay for Planning (Indirect Learning)

In planning, virtual experiences, created using the model
reconstructed from actual experiences via direct learning, are
employed to update the Q-function (and as a consequence, the
policy). To increase the efficiency of planning, we propose a
multistep planning algorithm as illustrated in Fig. 3.
To generate virtual experiences, first, a continuous state xt

is discretized as st and an action at must be chosen from
the action space. Different from the Dyna architecture, in this
article, the action is chosen from the action space such that

at = arg max
a′∈Ap

(
(1 − λ)e�Q(st,a

′) + (λ)κ
)

(11)

where λ ∈ [0, 1] is a constant and κ is a random number
selected in the interval of [0, 1]. The action selection criterion

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 2 Incremental Model Learning for Stochastic
Environment (ModelLearning)
(1) Calculate the variation of the continuous state and the

reward using equation (3)
(2) A normalized procedure is employed to calculated a

normalized variation vector, v ← (�xaN, raN)

(3) s ← φ(xt)
(4) Retrieve all clusters, C = {c1, c2, ..., cl}, from the cell

of the model, M(s, a) using state-action pair, (s, a), |C|
is the total number of cluster in this cell.

(5) if |C| == 0 then
(6) The first variation vector is set as the center of the first

cluster, i.e., c1 = v, c1 ∈ C
(7) else if |C| > 0 then
(8) dcl ← argmincl∈C D(cl, v)
(9) if dcl > Da

th then
(10) Create a new cluster, cl+1 = v, cl+1 ∈ C
(11) else
(12) Activate the cluster, cl, and retrieve the information from

this cluster, �x̄aNcl
, (�x̄aNcl

)′, (r̄aNcl
) and (r̄aNcl

)′

(13) Calculate the new �x̄aNcl+1
, the new (�x̄aNcl+1

)′, the new

(r̄aNcl+1
) and the new (r̄aNcl+1

)′ using the equations (5)-(8).

(14) Ncl ← Ncl + 1
(15) end if
(16) end if
(17) Update the variation transition function,

Tp(�x̄aNcl+1
|s, a), and the reward function, Rp(s′, s, a)

Tp(�x̄aNcl+1
|s, a) ← �x̄aNcl+1

Rp(s′, s, a) ← r̄aNcl+1

(18) Store these two functions in the model, M(s, a).

M(s, a) ← (Tp(�x̄aNcl+1
|s, a),Rp(s′, s, a))

(19) return M(s, a)

evaluates the actions from the given state based on their updat-
ing error and picks the action with a large error. Alternatively,
when all the actions have minor and comparable updating
errors, an action is randomly picked. The first part of this selec-
tion rule enables exploitation, while the second part is used to
incorporate exploration. If λ is selected close to zero, then the
agent tends to choose an action based on the current Q values
(with less preference to explore) while if λ is selected close
to 1, the agent tends to randomly choose an action (promoting
exploration) (see Fig. 10 in the supplementary material).
After choosing an action, the discretized state st and an

action at are the input to the model. This state–action pair
(st, at) will activate a cell of the model, which may contain
several clusters. Using the activation number of clusters in the
cell, the probability for each cluster is defined as

Pcl

(
st, at

) = Ncl∑|C|
l=1 Ncl

. (12)

The cluster with higher probability, cl, is selected to retrieve
the variation vector and expected reward to form the virtual

Algorithm 3 Experience Replay for Stochastic Environment
(ExperienceReplay)
(1) g ← 0
(2) Choose a simulated continuous state, xt, from the state-

space
(3) while g < K do
(4) st ← φ(xt)
(5) at ← argmaxa′∈Ap((1 − λ)e�Q(st,a

′) + (λ)κ)

(6) (�x̄aNcl
, r̄aNcl

) ← M(st, at)

(7) xt+1 ← xt + �x̄aNcl
(8) st+1 ← φ(xt+1)
(9) Use (1) and (2) to update the Q-value and �Q-value
(10) xt ← xt+1
(11) g ← g + 1
(12) end while

experience. For example, in Fig. 2, the probability of
clusters 1–3 approximates 36.36%, 36.36%, and 27.27%,
respectively.
From the activated cluster cl, the average variation of

the continuous state �x̄aNcl
and the average reward r̄aNcl

are

retrieved, and the next continuous state is calculated as

xt+1 = xt + �x̄aNcl
. (13)

The virtual experience, (xt, at, xt+1, r̄
a
Ncl

), is discretized and

is used to update the policy. The algorithm of experience
replay is listed in Algorithm 3, where K is the number of
the steps in the multistep planning algorithm. The Q-learning
has been proven to converge after the agents have had many
interactions with the environment [41]. As the number of inter-
actions between the agent and the environment increases, it
is observed that the model-learning algorithms learn a reli-
able representation of the environment [12]. However, global
convergence of the learning algorithms requires sufficient
exploration of the environment and finer discretization. In the
proposed indirect learning algorithm, the parameter λ con-
trols the exploration, and it aids in the learning process (see
Fig. 10 in the supplementary material). Furthermore, note that
the number of clusters is not predefined in our algorithm, and
the agent forms clusters online. This online clustering process
influences the learning wherein the number of clusters depends
on the complexity of the environment, and as the complexity
increases, the agents will store the model information using
more clusters automatically.
Note that it is possible for an RL agent to perform indi-

rect learning using a model that may not be fully accurate. In
the proposed algorithm, the model information includes (12),
which indicates that as the number of visits increases, using
the virtual experiences from the cluster with higher number
of visits can be very useful. If the number of visits to a clus-
ter is low, the agent requests information from its teammates
and uses a knowledge-sharing scheme (see Section IV). This
reduces the possibility of an agent trying to improve its Q-table
over an imprecise environment. The agent despite using the
model for indirect learning, continues to refine the model by
using actual experiences via direct learning.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: MODEL LEARNING AND KNOWLEDGE SHARING FOR COOPERATIVE MULTIAGENT SYSTEMS IN STOCHASTIC ENVIRONMENT 7

Fig. 4. Sharing architecture for multiple agents.

Next, the proposed model learning scheme for the RL agent
and the experience replay algorithm are extended to a more
general case involving multiagent system.

IV. KNOWLEDGE SHARING IN MULTIAGENT SYSTEM

A sharing architecture for multiple agents is shown in Fig. 4.
In the multiagent architecture, m homogeneous agents have
their own Q-table for policy learning and their own model for
model learning. The cooperative learning process is separated
into two modes: 1) a learning mode and 2) a sharing mode. In
the learning mode, an agent must collect experiences that are
used for policy learning and model learning. In a learning task,
especially, in a large state space, there may be many areas in
the state space unvisited by any agent.
For example, when an agent obtains a continuous state

xt+1,1 and an action, it tries to use the model to predict the next
continuous state and the reward. However, in some situations,
the cell of the model has insufficient information, namely, it
has not been visited by the agent or the visiting times of the
cell V are lower than a prescribed threshold Vth, where the
visiting time is defined by

V =
|C|∑
l=1

Nl (14)

with |C| being the number of clusters that is stored in the cell
of the model.
If V is lower than Vth, the cell is viewed as one with

insufficient information. In such a case, to compensate for
the insufficient model information, this agent must switch to
the sharing mode and the process of information exchange
between agents is shown in Fig. 5. In this example, first,
agent 2 with insufficient information broadcasts a request
including the continuous state for which the information is
needed. Upon receiving the request, agents 1 and 3 find
the corresponding cell in their models and send the corre-
sponding model information back to agent 2 in the second
step. Agent 2 then fuses its original model information with
the received model information from the other agents. Here,
we introduce a fusing mechanism to achieve this goal. Let
Csh = [c1, c2, . . . , cq] be the clusters received by an agent
from its teammates and let Cor = [c1, c2, . . . , co] be its own

Fig. 5. Illustration of the sharing process.

clusters corresponding to that cell with the respective cardi-
nality denoted as |Csh| and |Cor|. Before the fusing procedure,
the variance of the variation of the continuous states (sas)

2 and
the variance of the reward (sar)

2 for all the clusters in the sets,
|Csh| and |Cor|, are calculated as(

sas
)2 = (

�x̄aN
)′ − (

�x̄aN
)2

,
(
sar

)2 = (
r̄aN

)′ − (
r̄aN

)2
. (15)

Next, to initiate the fusing procedure, T-statistic [43] is used
wherein the similarity between any two clusters is quanti-
fied based on a t-value. For each cluster pair (one from
Cor and the other from Csh), a t-value vector composed of
tv = [t1, t2, . . . , tn], where n is the dimension of the state
space, and tr corresponding to the reward is calculated as

tv =
∣∣�x̄aN,or − �x̄aN,sh

∣∣√√√√((
sas,or

)2
Ni,or

)
+

((
sas,sh

)2
Nl,sh

) (16)

tr =
∣∣r̄aN,or − r̄aN,sh

∣∣√√√√((
sar,or

)2
Ni,or

)
+

((
sar,sh

)2
Nl,sh

) (17)

where Ni and Nl are the activation number of the ith, lth cluster
from Cor and Csh, respectively.

Note that in the proposed algorithm, the agent receives clus-
ters Csh from all its teammates. During the implementation of
this algorithm, the agent, upon requesting information from its
teammates, will receive clusters from all its teammates, which
are stored in a buffer. Then, the agent will retrieve these clus-
ters from the buffer and will update the model in batches.
Also, if the agents do not have sufficient information (deter-
mined based on V and Vth), no new information will be sent
to the agent which initiated a request, and the buffer will be
empty.
If one element of the t-value vector tn and tr are larger than

the threshold tth, then, these two clusters will not be merged
into one cluster. Otherwise, if all the elements of tn and tr

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

are smaller than the threshold, it implies that the two clusters
have similar sample distributions and they can be merged into
one cluster. In such a case, the information of this cluster
is updated. In particular, the average of the variation of the
continuous state and of the reward will be updated as

�x̄aNtotal,or
= Ni,or

Ntotal
× �x̄aN,or + Nl,sh

Ntotal
× �x̄aN,sh

r̄aNtotal,or
= Ni,or

Ntotal
× r̄aN,or + Nl,sh

Ntotal
× r̄aN,sh (18)

and the new average of the squared variation of the continuous
state and the reward will be updated as

(
�x̄aN,or

)′ = Ni,or

Ntotal
× (

�x̄aN,or

)′ + Ni,sh

Ntotal
× (

�x̄aN,sh

)′

(
r̄aN,or

)′ = Ni,or

Ntotal
× (

r̄aN,or

)′ + Nl,sh

Ntotal
× (

r̄aN,sh

)′ (19)

where Ntotal = Ni,or + Nl,sh. We observe that the weights
([Ni,or/Ntotal], [Ni,sh/Ntotal]) in these update rules can be cho-
sen between (0, 1). In our simulations, we update the model
information using the convex combination of the agents own
knowledge and the knowledge shared by the teammates [as
in (18) and (19)]. Thus, by using the clustering approach,
the introduced fusing mechanism circumvents the resam-
pling scheme required in the existing algorithm [37]. This is
achieved because of the cluster-based model learning, which
avoids the heterogeneous tree structures.
Next, simulation analysis for the proposed methods is

presented.

V. SIMULATIONS

In this section, first, a mountain car simulation is used
to compare the learning efficiency for a single agent. The
proposed method is compared with Q-learning [41], backward
Q-learning (BQ-learning) [21], Q-learning with experience
replay based on reward and time [QExp-learning (Time) and
QExp-learning (Reward)] [20], and Dyna-Q learning [12].
Next, we evaluate the framework where multiple agents

learn the state-space model and a policy. To this end, we apply
the proposed knowledge-sharing algorithm to the multiagent
system studied in the goal search problem and in a maze
environment and compare the performance resulting from our
method with other commonly used sharing methods in [33]
and [37]. Here, we do not consider tasks involving co-operative
or competitive games. Therefore, the agents choose their
actions independently. In all these examples, the learning task
is complete when each robot in the team learns to reach the
goal. We do assume that there is no loss due to communication
during knowledge sharing. In Examples 2 and 3, we analyze
the knowledge-sharing algorithm, and we present a compara-
tive analysis between the proposed methods and some existing
methods, in terms of the learning steps. Since each algorithms
use different learning structure to approximate the environ-
ment, the information stored in each algorithm is different,
and the balance between exploration and exploitation by each
agent in the environment is different among the algorithms.
Therefore, the comparison between algorithms in terms of

Fig. 6. Mountain car simulation.

communication instances would not be fair. However, the ter-
mination criterion for each episode is fixed in the comparative
analysis with different methods and, therefore, the convergence
of the algorithms in terms of the episodes implicitly provide
a qualitative comparison on the time for convergence of the
learning algorithms.
To evaluate the statistical significance of the results, we per-

form a Monte-Carlo analysis and record the average number of
steps required for convergence of the algorithm (over multiple
episodes) and its standard deviation. For each example, we
include the average convergence and comparative analysis and
present detailed implementation procedure in the main text,
and the standard deviation of the number of steps required
for convergence over multiple episodes are recorded in the
supplementary material.

A. Mountain Car

In the mountain car simulation (Fig. 6), a car in the valley
has three actions, that is, throttle forward (+1), throttle reverse
(−1), or zero throttle (0). However, these actions cannot output
sufficient power to drive the car to reach the hill. As a result,
the car must learn a policy to save the potential energy by
applying a sequence of actions so that it can be propelled to
reach the goal. The dynamics of the mountain car are

pt+1 = pt + ṗt+1,

ṗt+1 = ṗt + 0.01at + 0.01ωt − 0.0025 cos(3.0 × pt) (20)

where pt ∈ [−1.2, 0.5] is the position of the car, ṗt ∈
[−0.07, 0.07] is the velocity of the car, and ωt is a Gaussian
random noise process [1]. In the process of learning, if the car
reached the goal, an immediate reward of +1.0 was returned
by the environment. Otherwise, the car received a reward
of −1.0. There were 30 trials for the simulation, and each
trail included 200 episodes with 1500 steps per episode. If
the car reached the hill or it cannot reach the hill within 1500
steps, then the episode was terminated, and a new episode was
started. In each episode, the initial position and velocity of the
car were set to −0.5 and 0.0, respectively. The setting of the
parameters are listed in Table I in the supplementary material.
The resolution of the Q-table and the proposed model were
selected as 50 × 40 discretized grids.
The average numbers of the steps for the car to reach the

goal are shown in Fig. 7. The x-axis represents the number
of episodes and the y-axis represents the number of steps. In
this figure, six curves represent the results from Q-learning,
BQ-learning, Q-learning with experience replay based on time
and reward, Dyna-Q, and the proposed methods (Algorithms 2
and 3), respectively. In this comparison shown in Fig. 7, the

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: MODEL LEARNING AND KNOWLEDGE SHARING FOR COOPERATIVE MULTIAGENT SYSTEMS IN STOCHASTIC ENVIRONMENT 9

Fig. 7. Simulation results in mountain car.

Fig. 8. Cooperative goal search.

proposed method reduced the average steps required to reach
the goal to be lower than 300 and accelerated the learning
process in comparison with the existing methods.

B. Cooperative Goal Searching Problem

In this example, three cooperative robots are placed in the
environment as shown in Fig. 8. The size of the environment is
300× 300 and surrounded by walls, with obstacles. The three
robots are placed in different areas labeled as Area 1, Area 2,
and Area 3. Robot 1 (R1), robot 2 (R2), and robot 3 (R3) start
from their respective initial areas R1, R2, and R3 (painted with
green color). The size of these initial areas is 10 × 10 units.
If a robot finishes an episode, it will randomly start from its
initial position (the area marked in green) in the next episode.
The red area is the goal.
In this simulation, robot 2 is the nearest to the goal, and

hence it is easier for it to reach the goal, while robots 1 and 3
need to explore more exhaustively to find a path to avoid the
obstacle and eventually reach the goal. Therefore, in this coop-
erative task, robot 2 obtains useful knowledge easily, and when
the robots 1 and 3 enter R2 (Area 2), the robot 2 can share
its own knowledge to help the other robots.
In this task, all the three robots have the same action space,

{moving up, down, left, and right}. The moving distance for
each action is set as 5 in the presence of the Gaussian noise
with zero mean and standard deviation 0.5. After the robots
take an action, they met with three types of situations: 1) if
a robot hits the wall or the obstacle, it received a reward of

Fig. 9. Simulation results in cooperative searching goal problem. (a) Learning
curves for robot 1. (b) Learning curves for robot 2. (c) Learning curves for
robot 3.

−100.0; 2) if a robot reached the goal, it received a reward of
100.0; and 3) else, it received a reward of −10−6.

In the process of learning, when the number of steps reached
2000 or if the robot touched the goal, an episode was ended.
There were 500 episodes per trial and 40 trials. The param-
eters for the cooperative searching goal problem are listed in
Table II in the supplementary material. The resolution of the
Q-table and the proposed model was selected as 100 × 100
discretized grids. Using the proposed sharing mechanism,
robots 1 and 3 will decrease the required exploration by using
the knowledge gained by robot 2. The proposed method is
compared with some other knowledge-sharing methods. In the
algorithm presented by Tan [33], all the robots shared their
experiences with each other, while in [37], three sharing mech-
anisms based on a tree structure were proposed. Based on the
simulation results, the sharing method, sharing under request
for ranges, increased the learning efficiency considerably in
comparison with the other schemes.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

In Fig. 9, the x-axis is the number of episodes and the y-axis
is the average number of steps. In Fig. 9(a), the proposed
method decreased the average steps required for robot 1 to
reach the goal down to 200 in the 36th episode. The shar-
ing under request decreased the average steps to 200 in the
70th episode. Dyna-Q with sharing experiences decreased the
average steps in 169th episode, and the Dyna-Q without shar-
ing experiences decreased the average steps until the 196th
episode.
Since robot 2 was near the goal, the difference of the

average steps was not noticeable as shown in Fig. 9(b). The
learning curve of robot 3 is shown in Fig. 9(c), where it can
be observed that the proposed method decreased the average
steps for robot 3 to reach the goal to 200 in the 43rd episode.
The sharing under request decreased the average steps down to
200 in the 70th episode while the Dyna-Q with sharing expe-
riences decreased the average steps in the 195th episode, and
the Dyna-Q without sharing experiences in the 197th episode.
According to these simulation results, the Dyna-Q with

sharing experiences reduced the average steps required for
convergence in the initial episodes, but not in the later
episodes, while the sharing under request for ranges decreased
the average steps slower than the Dyna-Q with sharing in
the initial episodes, but as the learning episodes increased,
as a team, the multiagent framework improved the knowl-
edge gathered, and as a consequence, the convergence was
improved in the later episodes. On the other hand, with the
proposed method, the average steps required both in the initial
and the later episodes decreased. The third simulation exam-
ple and additional analyses are presented in the Supplementary
Material.

VI. CONCLUSION

In this article, a model-based RL scheme was proposed
wherein the collected experiences are not only used for pol-
icy learning but also used for model learning to approximate
the environment (deterministic and stochastic). By employ-
ing the learnt model, the agent simulated virtual experiences
for indirect learning and planning. The clustering method
introduced in this article was employed in tandem with the
proposed incremental model learning method to evaluate the
transition probability and encode this in the model. The sim-
ulation results and comparative analysis demonstrated that the
proposed methods require fewer learning steps to reach the
goal and as a consequence improve the sample efficiency.
Moreover, to solve the complex learning tasks in a large

state space, the proposed methods we extended to incorporate
knowledge sharing in a multiagent system. In other words,
the cost of exploration can be reduced by leveraging the
benefits of knowledge sharing and the simulation results indi-
cated that the learning steps are considerably reduced with the
proposed method. Furthermore, due to the clustering method
employed in the model learning, the knowledge fusing pro-
cedure circumvents the computationally intensive resampling
methods.
In this article, we did not consider problems with coopera-

tive/competitive games, where actions of an agent affects other

agents. These problems require learning joint state and joint
action spaces and are practically significant, and the proposed
algorithms can be expanded to incorporate such tasks. The sec-
ond line of inquiry would involve theoretical analysis of the
proposed learning algorithms and, finally, explicitly account-
ing for the communication losses, such as delay, data drop out,
noisy data in the knowledge-sharing scheme, and circumvent-
ing the discretization step would further expand the application
of the proposed algorithms.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[2] K. Iwata, “Extending the peak bandwidth of parameters for softmax
selection in reinforcement learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 8, pp. 1865–1877, Aug. 2017.

[3] X. Xu, Z. Huang, D. Graves, and W. Pedrycz, “A clustering-based graph
Laplacian framework for value function approximation in reinforce-
ment learning,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2613–2625,
Dec. 2014.

[4] M. Leonetti, L. Iocchi, and P. Stone, “A synthesis of automated planning
and reinforcement learning for efficient, robust decision-making,” Artif.
Intell., vol. 241, pp. 103–130, Dec. 2016.

[5] T. Hester and P. Stone, “Generalized model learning for reinforcement
learning in factored domains,” in Proc. 8th Int. Conf. Auton. Agents
Multiagent Syst., vol. 2, 2009, pp. 717–724.

[6] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning for
reinforcement learning on a humanoid robot,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), 2010, pp. 2369–2374.

[7] A. M. Farahmand, A. Shademan, M. Jagersand, and C. Szepesvári,
“Model-based and model-free reinforcement learning for visual
servoing,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2009,
pp. 2917–2924.

[8] T. Hester and P. Stone, “Learning and using models,” in Reinforcement
Learning: State of the Art, M. Wiering and M. van Otterlo, Eds. Berlin,
Germany: Springer-Verlag, 2011.

[9] H. H. Viet, P. H. Kyaw, and T. Chung, “Simulation-based evalu-
ations of reinforcement learning algorithms for autonomous mobile
robot path planning,” in IT Convergence and Services. Amsterdam, The
Netherlands: Springer, 2011, pp. 467–476.

[10] T. Hester and P. Stone, “An empirical comparison of abstraction in mod-
els of Markov decision processes,” in Proc. ICML/UAI/COLT Workshop
Abstraction Reinforcement Learn., 2009, pp. 18–23.

[11] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM SIGART Bull., vol. 2, no. 4, pp. 160–163, 1991.

[12] L. Kuvayev and R. S. Sutton, “Model-based reinforcement learning with
an approximate, learned model,” in Proc. 9th Yale Workshop Adapt.
Learn. Syst., 1996, pp. 1–13.

[13] H. Viet, S. An, and T. Chung, “Extended Dyna-Q algorithm for path
planning of mobile robots,” J. Meas. Sci. Instrum., vol. 2, no. 3,
pp. 283–287, 2011.

[14] H. Shi, S. Yang, K.-S. Hwang, J. Chen, M. Hu, and H. Zhang, “A sample
aggregation approach to experiences replay of Dyna-Q learning,” IEEE
Access, vol. 6, pp. 37173–37184, 2018.

[15] W. Caarls and E. Schuitema, “Parallel online temporal difference learn-
ing for motor control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 7, pp. 1457–1468, Jul. 2016.

[16] R. Kamalapurkar, L. Andrews, P. Walters, and W. E. Dixon, “Model-
based reinforcement learning for infinite-horizon approximate optimal
tracking,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 753–758, Mar. 2017.

[17] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Mach. Learn., vol. 8, nos. 3–4,
pp. 293–321, 1992.

[18] S. Kalyanakrishnan and P. Stone, “Batch reinforcement learning in a
complex domain,” in Proc. ACM 6th Int. Joint Conf. Auton. Agents
Multiagent Syst., 2007, p. 94.

[19] F. Ruelens et al., “Residential demand response of thermostatically con-
trolled loads using batch reinforcement learning,” IEEE Trans. Smart
Grid, vol. 8, no. 5, pp. 2149–2159, Sep. 2017.

[20] M. Pieters and M. A. Wiering, “Q-learning with experience replay in a
dynamic environment,” in Proc. SSCI, 2016, pp. 1–8.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: MODEL LEARNING AND KNOWLEDGE SHARING FOR COOPERATIVE MULTIAGENT SYSTEMS IN STOCHASTIC ENVIRONMENT 11

[21] Y.-H. Wang, T.-H. S. Li, and C.-J. Lin, “Backward Q-learning: The
combination of Sarsa algorithm and Q-learning,” Eng. Appl. Artif. Intell.,
vol. 26, no. 9, pp. 2184–2193, 2013.

[22] Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai, “FMRQ—A multiagent
reinforcement learning algorithm for fully cooperative tasks,” IEEE
Trans. Cybern., vol. 47, no. 6, pp. 1367–1379, Jun. 2017.

[23] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “MOO-MDP: An
object-oriented representation for cooperative multiagent reinforcement
learning,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 567–579, Feb. 2019.

[24] F. L. da Silva, R. Glatt, and A. H. R. Costa, “An advising framework for
multiagent reinforcement learning systems,” in Proc. 31st AAAI Conf.
Artif. Intell., 2017, pp. 4913–4914.

[25] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously learning
and advising in multiagent reinforcement learning,” in Proc. 16th Conf.
Auton. Agents MultiAgent Syst., 2017, pp. 1100–1108.

[26] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[27] P. Stone, R. S. Sutton, and G. Kuhlmann, “Reinforcement learning for
RoboCup soccer keepaway,” Adapt. Behav., vol. 13, no. 3, pp. 165–188,
2005.

[28] M. N. Ahmadabadi, M. Asadpour, and E. Nakano, “Cooperative
Q-learning: The knowledge sharing issue,” Adv. Robot., vol. 15, no. 8,
pp. 815–832, 2001.

[29] M. N. Ahmadabadi and M. Asadpour, “Expertness based cooperative
Q-learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 1,
pp. 66–76, Feb. 2002.

[30] B. N. Araabi, S. Mastoureshgh, and M. N. Ahmadabadi, “A study on
expertise of agents and its effects on cooperative Q-learning,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 2, pp. 398–409,
Apr. 2007.

[31] B. H. Abed-Alguni, “Bat Q-learning algorithm,” Jordan. J. Comput. Inf.
Technol., vol. 3, no. 1, pp. 56–77, 2017.

[32] Y.-J. Chen, K.-S. Hwang, and W.-C. Jiang, “Policy sharing between
multiple mobile robots using decision trees,” Inf. Sci., vol. 234,
pp. 112–120, Jun. 2013.

[33] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[34] K. Ito, A. Gofuku, Y. Imoto, and M. Takeshita, “A study of reinforcement
learning with knowledge sharing for distributed autonomous system,”
in Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom., vol. 3, 2003,
pp. 1120–1125.

[35] K. Ito, Y. Imoto, H. Taguchi, and A. Gofuku, “A study of reinforcement
learning with knowledge sharing-applications to real mobile robots,” in
Proc. IEEE Int. Conf. Robot. Biomimet. (ROBIO), 2004, pp. 175–180.

[36] T. Tateyama, S. Kawata, and T. Shimomura, “Parallel reinforcement
learning systems using exploration agents and Dyna-Q algorithm,” in
Proc. IEEE Annu. Conf. (SICE), 2007, pp. 2774–2778.

[37] K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, “Model learning and knowl-
edge sharing for a multiagent system with Dyna-Q learning,” IEEE
Trans. Cybern., vol. 45, no. 5, pp. 978–990, May 2015.

[38] M. Asadpour, M. N. Ahmadabadi, and R. Siegwart, “Heterogeneous and
hierarchical cooperative learning via combining decision trees,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2006, pp. 2684–2690.

[39] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, Apr. 1996.

[40] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, Dept. Psychol., King’s College, Cambridge, U.K., 1989.

[41] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[42] Q. Wei, F. L. Lewis, Q. Sun, P. Yan, and R. Song, “Discrete-time
deterministic Q-learning: A novel convergence analysis,” IEEE Trans.
Cybern., vol. 47, no. 5, pp. 1224–1237, May 2017.

[43] L. D. Pyeatt and A. E. Howe, “Decision tree function approximation
in reinforcement learning,” in Proc. 3rd Int. Symp. Adapt. Syst. Evol.
Comput. Probab. Graph. Models, vol. 2, 2001, pp. 70–77.

Wei-Cheng Jiang received the B.S. degree in com-
puter science and information engineering and the
M.S. degree in electro-optical and materials science
from National Formosa University, Yunlin, Taiwan,
in 2007 and 2009, respectively, and the Ph.D. degree
in electric engineering from National Chung Cheng
University, Chiayi, Taiwan, in 2013.
He was a Postdoctoral Fellow with the Electrical

Engineering Department, National Sun Yat-sen
University, Kaohsiung, Taiwan. He was a Visiting
Scholar with the Department of Electrical and

Systems Engineering, Washington University in St. Louis, St. Louis, MO,
USA. Since 2019, he has been an Assistant Professor with the Department
of Electrical Engineering, Tunghai University, Taichung, Taiwan. His research
interests include machine learning, multiagent systems, and intelligent control.

Vignesh Narayanan (M’17) received the B.Tech.
degree from SASTRA University, Thanjavur, India,
the M.Tech. degree from the National Institute of
Technology Kurukshetra, Kurukshetra, India, and
the Ph.D. degree from the Missouri University of
Science and Technology, Rolla, MO, USA, in 2017.
He is currently working as a Postdoctoral

Research Associate with Washington University in
St. Louis, St. Louis, MO, USA. His research
interests include control, neural networks, learning,
and adaptation in systems theory.

Jr-Shin Li (M’06–SM’18) received the B.S. and
M.S. degrees from National Taiwan University,
Taipei, Taiwan, and the Ph.D. degree in applied
mathematics from Harvard University, Cambridge,
MA, USA, in 2006.
He is currently a Professor of electrical and

systems engineering with the Joint Appointment
Division of Biology and Biomedical Sciences,
Washington University in St. Louis, St. Louis, MO,
USA. His research interests are control theory, com-
putational mathematics, optimization, learning, and

complex networks. His current work involves developing model-based and
data-driven methods for dynamical systems and control of large-scale complex
systems with applications ranging from neuroscience and biology to quantum
physics.
Prof. Li has been a recipient of the NSF Career Award in 2007 and the

AFOSR Young Investigator Award in 2009.

Authorized licensed use limited to: Vignesh Narayanan. Downloaded on May 11,2020 at 16:23:41 UTC from IEEE Xplore. Restrictions apply.

