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Abstract— In this paper, we investigate an iterative method
for computing optimal controls for general affine nonlinear
quadratic tracking problems. The control law is computed
iteratively by solving a sequence of linear quadratic tracking
problems and, in particular, it consists of solving a set of cou-
pled differential equations derived from the Hamilton-Jacobi-
Bellman equation. The convergence of the iterative scheme is
shown by constructing a contraction mapping and using the
fixed-point theorem. The versatility and effectiveness of the
proposed method is demonstrated in numerical simulations of
three structurally different nonlinear systems.

I. INTRODUCTION

Optimal control of nonlinear systems is a challenging
problem that has been widely investigated. While some
optimal control problems, in particular for linear systems,
can be solved analytically [1], this is often not feasible for
many nonlinear systems. As a result, many researchers have
dedicated a considerable amount of effort in investigating
effective numerical control algorithms [2]–[5].

The finite and infinite horizon optimal control problems for
bilinear systems were examined in [2], where the feedback
control law was obtained by solving the Hamilton-Jacobi
equation and, more importantly, the bilinear control problem
was solved by constructing a sequence of linear problems.
On the other hand, [3] proposed an iterative procedure for
solving an unconstrained finite-horizon bilinear quadratic
control problem, and the convergence of the procedure
was shown by using the fixed-point theorem. Later, [4]
formulated an iterative method for the fixed-endpoint optimal
control problem for bilinear systems. A transformation of
coordinates was exploited to transform the bilinear system
problem into an equivalent time-varying linear system that
could be solved iteratively using the sweep method.

More recently, an interesting computational method for
synthesizing optimal control for nonholonomic dynamical
systems was proposed in [5]. This method solves the problem
in two main steps, first a feasible control is found by
solving an unconstrained quadratic programming problem,
while the second step consists of iteratively computing
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the optimal control input by solving a linear constrained
quadratic programme. Many other computational methods
have been proposed for nonlinear dynamical systems, which
can be categorized as direct or indirect methods [6]. For
direct methods, for instance, dynamic programming [7], [8]
and pseudo-spectral methods have been widely applied to
optimal control problems with final constraints, including
optimal control of quantum ensembles [9], [10], and neuron
ensembles [11]. Unfortunately, these methods can hardly
overcome the curse of dimensionality because a suitable
discretization grid is required, which increases the size
of the optimization problem to solve, hence making these
approaches less practical for large control problems. In
addition, the convergence speed of the solver can greatly
degrade with the size of the control problem.

In this paper, we propose an iterative scheme for solving
optimal tracking problem for affine nonlinear system, that
is an extension of the method presented in [12] which
only considered the case of bilinear systems. One of the
main advantage of our scheme is the ability to tune the
control matrices to not only achieve the desired performance,
but also to improve the convergence rate. The remainder
of the paper is organized as follows. In Section II, we
formulate the optimal tracking control problem for control-
affine nonlinear systems, and then derive the control law by
solving the Hamilton-Jacobi-Bellman (HJB) equation. The
iterative algorithm together with the proof of convergence are
presented in Section III, with more detailed derivations given
in the Appendix. Various numerical examples of nonlinear
systems are presented in Section IV that demonstrate the
effectiveness of the proposed method. Finally, the conclusion
is given in Section V.

II. OPTIMAL TRACKING CONTROL

A. Problem Formulation
Consider the optimal tracking control problem of the

control-affine nonlinear system of the form

ẋ(t) = f(x) +
m∑
i=1

bi(x)ui(t), y(t) = l(x), (1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr. We start
our analysis by considering a class of nonlinear systems that
have a drift term of the form, f(x) = A(x)x + f̄(x), and
a linear output function, y = Cx. Furthermore, the matrices
A(x), B(x), C and the vector f̄(x) are of appropriate di-
mensions, and for convenience we denote

∑m
i=1 bi(x)ui(t) =

B(x)u(t). In Section IV, we provide three interesting exam-
ples where each illustrates a different structure of the drift



term, f(x). For simplicity, in the following we will denote
A(x) and f̄(x) as A and f̄ , respectively.

Let z(t) ∈ Rr denote the reference trajectory. We wish to
design a control input u(t) such that the output y(t) of the
nonlinear system (1) tracks the reference trajectory as close
as possible, while minimizing the performance index

J(u) = 1
2e
′(T )Fe(T )

+ 1
2

∫ T

0

e′(t)Q(t)e(t) + u′(t)R(t)u(t)dt,
(2)

where e(t) = z(t)− y(t) is the error, and F � 0, Q(t) � 0
are r × r positive semi-definite matrices and R(t) � 0 is
m ×m positive definite ∀t ∈ [0, T ]. Here, we assume that
the entries of A, f̄ , C, Q and R are continuous functions
over [0, T ], and B(x(t)) is Lipschitz continuous in x(t). In
addition, the nonlinear system in (1) is assumed controllable
and observable.

B. Optimal Solution from the HJB Equation

Assume that V (t, x) is the value function associated with
the optimal control problem (2), and denote U(t,x) ⊆ Rm as
the set of all admissible controls for the problem with the
pair (t, x), then we have

V (t, x) = inf
u∈U(t,x)

J(u).

Furthermore, suppose that V is differentiable with respect to
(t, x), then the sufficient condition of optimality is given by
the HJB equation [13] as

Vt + min
u∈U
{Vx(Ax+ f̄ +B(x)u) + 1

2e
′Qe+ 1

2u
′Ru} ≡ 0,

(3)

where Vt, Vx are the partial derivatives ∂V
∂t and ∂V

∂x , re-
spectively. The necessary condition of optimality admits the
optimal control as

u(t) = −R−1B(x)′V ′x. (4)

Substituting e(t) and (4) into (3) yields

Vt + 1
2 (VxAx+ x′A′V ′x) + Vxf̄ − 1

2VxE(x)V ′x

+ 1
2z
′Qz + 1

2x
′Dx− 1

2 (x′Wz + z′W ′x) ≡ 0,
(5)

where, for simplicity, we let E(x) = B(x)R−1(t)B′(x),
D(t) = C ′Q(t)C and W (t) = C ′Q(t). A candidate solution
to (5) is of the following form

V (t, x∗) = 1
2x
∗′P (t)x∗ − x∗′g(t) + h(t), (6)

where x∗ denotes the optimal state trajectory under the
optimal control, and P (t) ∈ Rn×n, g(t) ∈ Rn and h(t) ∈ R.
Then, the partial derivatives of (6) are obtained as

V ′x = P (t)x∗ − g(t),

Vt = 1
2x
∗′Ṗ (t)x∗ − x∗′ġ(t) + ḣ(t).

(7)

Taking (7) into (5) yields
1
2x
∗′(Ṗ + PA+A′P − P ′EP +D)x∗ + ḣ+ 1

2z
′Qz

x∗′(−ġ −A′g + P ′Eg −Wz + P f̄)− 1
2g
′Eg − g′f̄ ≡ 0,

which should be satisfied for all x∗(t), z(t), and ∀t ∈ [0, T ].
Then, one can obtain the following state-dependent equations
which characterize the optimal solution of the tracking
problem (2)

Ṗ (t) = −P (t)A−A′P (t) + P (t)E(x)P (t)−D(t),

ġ(t) = −(A′ − P (t)E(x))g(t) + P (t)f̄ −W (t)z,

ḣ(t) = g′(t)f̄ + 1
2g
′(t)E(x)g(t)− 1

2z
′Q(t)z,

(8)

where the boundary conditions are P (T ) = C ′(T )FC(T ),
g(T ) = C ′(T )Fz(T ) and h(T ) = 1

2z
′(T )Fz(T ), which

are derived by setting V (T, x(T )) = 1
2e
′(T )Fe(T ). Con-

sequently, combining (4) and (6), we obtain the optimal
feedback control law

u∗(t) = −R−1B′(x∗)[P (t)x∗(t)− g(t)], (9)

with x∗ given by

x∗(t) = [A∗ − E(x∗)P (t)]x∗(t) + f̄∗ + E(x∗)g(t), (10)

where A∗, f̄∗ denote A(x∗) and f̄(x∗), respectively. Then
the optimal cost for the problem is J∗ = J(u∗) =
1
2x
∗′(0)P (0)x∗(0)− x∗′(0)g(0) + h(0).
Note that the derived result is consistent with the one

presented in previous work [12], when f(x) in (1) is linear,
i.e., f(x) = A(t)x. In this case, the ODEs in (8) are
equivalent to the ones presented in [12].

III. AN ITERATIVE ALGORITHM AND ITS CONVERGENCE
PROPERTIES

In this section, we present an algorithm for solving the
optimal tracking control problem of interest and provide the
proof of convergence. The main idea is to solve (8) in an
iterative manner.

A. The Iterative Algorithm
Starting with an initial trajectory xk = x0(t) at the kth

iteration with a desired trajectory z(t), the algorithm evolves
by solving the following updating iteration equations,

Ṗk+1(t) =− P ′k+1Ak −A′kPk+1 + P ′k+1EkPk+1 −D,
ġk+1(t) =− [A′k − Pk+1Ek]gk+1 + Pk+1f̄k −Wz(t),

ḣk+1(t) = g′k+1f̄k + 1
2g
′
k+1Ekgk+1 − 1

2z
′(t)Qz(t), (11)

uk+1(t) =−R−1B′k[Pk+1(t)xk+1(t)− gk+1(t)],

ẋk+1(t) =Akxk+1(t) + f̄k +Bkuk+1(t),

with the boundary conditions Pk+1(T ) = P (T ), gk+1(T ) =
g(T ) and hk+1(T ) = h(T ), where Ak = A(xk), f̄k =
f̄(xk), Bk = B(xk) and Ek = E(xk). This procedure is
summarized in Algorithm 1.

B. Convergence Analysis
In this section, we use contraction mapping and the fixed-

point theorem to show the convergence of the proposed
iterative method. To facilitate the proof, the following Banach
spaces are introduced,

B1 := C([0, tf ];Rn),B2 := C([0, tf ];Rn×n),

B3 := C([0, tf ];Rn),



Algorithm 1 Iterative Method
Input: Reference trajectory z(t), parameters Q,R, F
Output: optimal solution u∗(t), x∗(t)

Initialization : initial state trajectory x0(t), k = 1
while ‖xk − xk−1‖ > ε do

compute Pk+1(t), gk+1(t) by (11);
calculate xk+1(t), uk+1(t);
k = k + 1;

end while
return x∗, u∗, P ∗, g∗, h∗

with the norms defined as

‖f‖α := sup
t∈[0,tf ]

‖f(t)‖ exp(−αt), f ∈ B1,

‖P‖α := sup
t∈[0,tf ]

‖P (t)‖ exp(−α(tf − t)), P ∈ B2,

‖g‖α := sup
t∈[0,tf ]

‖g(t)‖ exp(−α(tf − t)), g ∈ B3,

where ‖ · ‖ denoting the Frobenius norm, i.e., ‖f‖ =
(
∑
i f

2
i )

1
2 , ‖P‖ = (

∑
ij P

2
ij)

1
2 and ‖g‖ = (

∑
i g

2
i )

1
2 , and

the parameter α serves as an additional degree of freedom to
control the rate of convergence [3], whose utility is explained
in [14]. We introduce the operators T1 : B1×B2×B3 → B1,
T2 : B1 × B2 × B3 → B2, T3 : B1 × B2 × B3 → B3 to
characterize the dynamics of x, P and g, as described in (8)
and (10),

d

dt
T1[x, P, g] = [A− E(x)T2(x, P, g)]T1(x, P, g)

+ E(x)T3(x, P, g) + f̄ ,

d

dt
T2[x, P, g] = −T2(x, P, g)A−A′T2(x, P, g)

+ T2(x, P, g)E(x)T2(x, P, g)−D,
d

dt
T3[x, P, g] = −[A′ − T2[x, P, g]E(x)]T3[x, P, g]

+ T2[x, P, g]f̄ −Wz,

(12)

with the constraints given as T1[x, P, g](0) = x0,
T2[x, P, g](T ) = P (T ) and T3[x, P, g](T ) = g(T ).

Theorem 1: Consider the tracking problem defined in (2),
and the mappings T1, T2, and T3 defined in (12), then
Algorithm 1 evolving according to

xk+1(t) = T1[xk, Pk, gk],

Pk+1(t) = T2[xk, Pk, gk],

gk+1(t) = T3[xk, Pk, gk],

(13)

is convergent if R is chosen sufficiently large.
Proof: Here, we only provide an outline of the main

steps of the proof. Interested readers can refer to [3] for more
details on how to use contraction mapping and the fixed-point
theorem to prove convergence. To show the convergence, the
norm of the difference between consecutive iterations needs
to be calculated and shown to be bounded. This requires that

the following terms be bounded (see Appendix for details),

‖Bk −Bk−1‖ ≤ L‖ξk−1‖,
‖Ek − Ek−1‖ ≤ γ1‖ξk−1‖, (14)
‖EkPk+1 − Ek−1Pk‖ ≤ γ2‖Pk+1 − Pk‖+ γ3‖ξk−1‖,

where ξk−1 = xk − xk−1. The first line is a consequence
of the Lipschitz continuity condition imposed on B(x), and
the parameters γ1 = L(‖R−1B′k‖ + ‖R−1B′k−1‖), γ2 =
‖Ek‖, and γ3 = γ1‖Pk‖ are time-varying. Furthermore, we
assume that in a compact interval [0, T ], A(x) and f̄(x) are
continuous and bounded functions, hence we have

‖Ak −Ak−1‖ ≤ L1‖xk − xk−1‖,
‖f̄k − f̄k−1‖ ≤ L2‖xk − xk−1‖.

(15)

Finally, after combining (14) and (15) into (13), one obtains
the following result‖T1[xk, Pk, gk]− T1[xk−1, Pk−1, gk−1]‖α
‖T2[xk, Pk, gk]− T2[xk−1, Pk−1, gk−1]‖α
‖T3[xk, Pk, gk]− T3[xk−1, Pk−1, gk−1]‖α

 ≤M‖ξk−1‖α.
More details are given in the Appendix. The components of
M are proportional to R−1, as a result, R can be chosen
large enough such that the map T1 is contractive. Then, the
fixed-point theorem guarantees the iterative trajectories xk
converge to the unique fixed point solution x∗.

It should be noted that Theorem 1 requires the bounded-
ness of terms Pk, gk, hk, this will be proved in the following
subsection.

C. Existence and Optimality of Convergent Solutions

The iterative algorithm will find a converging solution
under the assumption that the solution to the coupled set of
ordinary differential equations (8) exists and is bounded. In
fact, we will show that once the existence and boundedness
of Pk has been established, gk and hk will follow as bounded.

Theorem 2: If there exists a solution V (t, x) of class C2

of the HJB equation, which satisfies the following conditions

V (T, x) = φ(T, x), Luu(t, x, u) =
∂2L

∂u2
� 0, ∀t, x, u,

where L = e′(t)Q(t)e(t) + u′(t)R(t)u(t) is the Lagrangian
of the performance index, then V is the optimal performance
index for the optimal tracking problem, and the correspond-
ing optimal law is given by (9) [15].

Theorem 3: Consider the value function defined in (6) for
the optimal tracking problem presented in (2), and assume
that the problem is well-defined. If

(i) R(t) � 0, ∀t ∈ [0, T ],
(ii) D(t) � 0, ∀t ∈ [0, T ],

(iii) F � 0,
then V (t, x) is well-defined and satisfies the HJB equation.
Furthermore, if V ∈ C2(R × Rn), then V is the optimal
performance index.

Proof: By the existence theorem in [15], the conditions
(i)-(iii) (also called Kalman conditions) ensures that for a
nonnegative definite Pk(T ) at T , the riccati equation in (11)



has a unique solution denoted as Pk(t) = Π(t;Pk(T ), T ),
for all t ∈ (τ, T ]. It should be noted that if the phenomenon
of finite escape time occurs, T can always be chosen small
enough to guarantee the existence of the solution. Moreover,
at each iteration k + 1, we are solving the optimal control
problem

min
u

Jk+1(u) = 1
2e
′
k+1(T )Fek+1(T )

+ 1
2

∫ T

0

e′k+1Qek+1 + u′Rudt,
(16)

subject to the following state-dependent linear system

ẋk+1 = Akxk+1 + f̄k +Bku,

with the value function of the following form

Vk+1 =
1

2
x′k+1Pk+1xk+1 − x′k+1gk+1 + hk+1,

where Pk+1, gk+1 and hk+1 satisfy (11). By applying the
same technique as the proof in [15], one can show that the
following inequality holds for t ∈ (τ, T ] and all k ≥ 0,

Vk+1(t) ≤ 1
2 [e′k+1(T )Fek+1(T ) +

∫ T

t

e′k+1(s)Qek+1(s)ds],

where we assume u ≡ 0 in the cost function, Jk+1, on the
right hand side (RHS) of (16). Therefore, one can conclude
that Pk+1 is bounded in the interval (τ, T ], thus exists for
all t ≤ T . Therefore, Pk+1 is bounded on the compact
time interval [0, T ] for all the iterations. Hence, gk+1(t)
and hk+1(t) also exist, and they are unique and bounded.
Consequently, Vk+1 exists, which solves the HJB equation
in each iteration.

By the proof of convergence from Section III-B, one can
conclude that V (t, x) = limk→∞ Vk(t, x) exists and satisfies
the HJB equation. Furthermore, if V is twice continuously
differentiable, we have Luu = R(t) � 0, then according to
Theorem 2, V (t, x) is the optimal performance index for the
tracking problem.

IV. NUMERICAL EXAMPLES

In this section, we present three examples of control-
affine nonlinear systems, with each one of them representing
a specific class of systems. In particular, the third one
represents systems with nonlinear output functions.

Example 1: Consider the dynamics of a nonholomonic
integrator (system without drift term) described byẋ1ẋ2

ẋ3

 =

 1 0
0 1
−x2 x1

(u1
u2

)
,

where the output is given by y = Cx (C = I , an
n × n identity matrix). This system, also referred to as
the Brockett integrator [5], is partially controllable and
it can be shown that starting from the origin, there ex-
ists a control, u∗(t) = (u1, u2)′, that can drive the sys-
tem to the endpoint (0, 0, a)′ in time T . Furthermore,
by Potryangin’s maximum principle one can analytically
derive the optimal control law of the form u∗(t) =

(u1(0) cos(2πt/T )− u2(0) sin(2πt/T ), u1(0) sin(2πt/T ) +
u2(0) cos(2πt/T )), with u21(0) + u22(0) = 2aπ/T 2.

To test the performance of our control algorithm, the
reference trajectory was generated by applying u∗(t) to steer
the system from the origin to (0, 0, 2)′. Then, we used
our iterative algorithm to compute a tracking control, u(t),
that closely tracks the reference while minimizing the cost
functional (2). We achieved excellent tracking as shown in
Fig. 1(c), with a control cost

∫ T
0
u2(t)dt = 3.057 that is

lower than the energy expended by u∗, which is π.
Note that the system in Example 1 has no drift, hence

Ak = 0 and f̄k = 0. We observe that introducing a stable
matrix Ak = −I and f̄k = xk (that cancel each other),
improves the convergence rate as shown in Fig. 1(b), in
which we refer to this approach as method 1 while method
2 corresponds to the case Ak = 0 and f̄k = 0, respectively.

(c)

Fig. 1. Brockett integrator system. (a) shows that the convergence of the
control in 6 iterations. (b) compares the convergence behavior of method
1 and 2. (c) shows the initial trajectory x0(t), the reference z(t) and the
optimal trajectories x∗(t), respectively. The design parameters are Q =
100I3, F = 200I3 and R = 9.5I2 (with In an n× n identity matrix).

Example 2: The model of a continuous stirred-tank chem-
ical reactor is described by

ẋ1 = −(x1 + 0.25)(2 + u) + (x2 + 0.5)e
25x1
x1+2 ,

ẋ2 = 0.5− x2 − (x2 + 0.5)e
25x1
x1+2 ,

(17)

where x1 and x2 represent the deviation from the steady
state temperature and concentration, respectively, and are
controlled by the flow of a coolant denoted as u [16]. The
goal is to keep the deviation as small as possible without
much control effort. For the nonlinear system in (17), in order
to apply the algorithm proposed in this paper, the A matrix
and f̄ vector describing the drift term are written as A(x) =(
−2 e

25x1
x1+2

0 −e
25x1
x1+2 − 1

)
, f̄(x) =

(
−0.5 + 0.5e

25x1
x1+2

0.5− 0.5e
25x1
x1+2

)
, and

B(x) = (−x1 − 0.25, 0)′.
The simulation of the optimal tracking performance is

shown in Fig. 2. The benchmark solution obtained with the
algorithm in [16] is presented in Fig. 2(a) and Fig. 2(b)
in yellow. From Fig. 2, we observe that one can obtain a



satisfying result after 5 iterations with a control that forces
the states to be (−0.0010,−0.0325)′, which is much closer
to the steady value as compared to the benchmark result
(0.0392,−0.0773)′. The optimal control obtained by our
algorithm achieved high accuracy, while expending slightly
more energy (0.2535) than the control in [16] (0.2346).

Fig. 2. Chemical reactor control. (a) shows the optimal control uopt and
the convergent control obtained by the algorithm in [16]. (b) compares our
optimal trajectories (x1, x2) to that of [16] (dashed yellow line). (c) shows
convergence behavior. (d) cost index J and value function V . Jlk and Vlk

denote the cost index and value function of the linear system, respectively,
and Jnk the cost index for the original nonlinear system controlled by the
computed solution. The design parameters are Q = 123I2, R = 0.25, F =
0.

The preceding examples demonstrate the applicability of the
proposed algorithm to nonlinear systems with linear output
functions. However, for the general nonlinear system with the
output given as yi = li(x), it is sometimes desirable to design
output feedback that also considers the nonlinearity, this is,
for example, the case of the Pendubot [17], [18]. It appears
that many approaches have been proposed for controlling
the Pendubot [18], however, no approaches considered the
output regulator problem before the work presented in [17].

In the following example, we present how one can apply
our proposed algorithm to synthesize the optimal control for
a general nonlinear system.

Example 3: We consider a phase model of the form

θ̇(t) = ω +B(θ)u(t), y = l(θ),

where, we take l(θ) = sin(θ) and B(θ) = 1− cos(θ), which
is the phase response curve of a SNIPER neuron.

The main steps for solving the optimal tracking control
problem associated with this dynamical system remain the
same as presented in Section III, however, the value function
takes a slightly different form

V (t, θ) = 1
2 l(θ)P (t)l(θ)− l(θ)g(t) + h(t).

The necessary equations for computing the optimal control
are given below

Ṗ (t) = P 2 cos2(θ)E(θ)−Q,
ġ(t) = PE(θ) cos2(θ)g + P cos(θ)ω −Qz,
ḣ(t) = cos(θ)gω − 1

2zQz + 1
2 cos2(θ)E(θ)g2,

(18)

where E(θ) = B(θ)R−1B(θ) and the boundary conditions
are P (T ) = F , g(T ) = Fz(T ) and h(T ) = 1

2z(T )Fz(T ),
respectively. Accordingly, the optimal control law and state
is u∗(t) = −R−1B′(θ∗)(cos(θ∗) sin(θ∗)P (t)−cos(θ∗)g(t)),
θ̇∗(t) = ω − E(θ∗)(cos(θ∗) sin(θ∗)P (t) − cos(θ∗)g(t)).
Consequently, the algorithm is also changed according to
(18). The result is shown in Fig. 3 where the tracking target
is set as z = sin(2.1t), for a phase model with a natural
frequency of ω = 2.

This example demonstrates the applicability of the pro-
posed algorithm to a general nonlinear system. However,
note that in this case the candidate value function, V (t, θ),
directly involves the output function, l(θ), instead of the state
variable as it was in the case for nonlinear systems with linear
output functions. As a result, the equations for computing
the optimal control are not exactly the same as before.
Nonetheless, one of the main advantages of our method is
that, once the iteration equations have been derived, applying
our algorithm is straightforward and the convergence is fast.

(a)

(b) (c)

Fig. 3. Control of a dynamical system with a nonlinear output function. (a)
shows the reference trajectory (orange) and the controlled optimal trajectory
(blue). The optimal control is shown in (b) and convergence behavior in (c).
The design parameters are R = 10, Q = 1 and F = 10 with y∗(0) = 0.3
and z(0) = 0.

V. CONCLUSION

This paper presents an iterative algorithm for solving
optimal tracking control problems of control-affine nonlinear
systems, and in particular, the case of a system with a non-
linear output function is explored. It is shown that, regardless
of the structure of the system, the iterative procedure remains
the same. However, the set of coupled differential equations
(derived from the HJB equation) solved at each iteration
changes according to the type of system as demonstrated
in Section IV. Furthermore, we analyse the convergence of
the iterative scheme by using contraction mapping and fixed-
point theorem, and provide the conditions under which the
convergent solution is the optimal one. The simplicity and
easy of implementation of the proposed algorithm allows it
to be used in a wide range of applications as illustrated by
numerical examples, that also demonstrate its effectiveness.

APPENDIX

In this section, we show how the components of the matrix
M that appears in the proof of convergence in Section III-



B are obtained. By the variation of constants formula, the
solution to xk+1(t) in (11) is given as

xk+1(t) = Φk+1(t, 0)x0

+

∫ t

0

Φk+1(t, σ)(Ek(σ)gk+1(σ) + f̄(σ))dσ,

where Φk+1(t, t0) is the transition matrix of the homoge-
neous system ẋk+1 = [Ak−EkPk+1]xk+1. Now, we proceed
to derive the dynamic of the difference xk+1(t) − xk(t),
denoted as ξk(t)

d

dt
ξk = [Ak − EkPk+1]ξk + [Ek−1Pk − EkPk+1]xk

+ Ek−1(gk+1 − gk) + [Ek − Ek−1]gk+1

+ (Ak −Ak−1)xk + f̄k − f̄k−1,

since ξk(0) = 0, the above immediately admits the integral
form

ξk(t) =

∫ t

0

Φk+1(t, σ){[Ek−1Pk − EkPk+1]xk

+ Ek−1(gk+1 − gk) + [Ek − Ek−1]gk+1

+ (Ak −Ak−1)xk + f̄k − f̄k−1}(σ)dσ.

Thus, it follows that

‖ξk(t)‖ ≤
∫ t

0

‖Φk+1(t, σ)‖{‖Ek−1‖‖gk+1 − gk‖

+ (γ3‖xk‖+ γ1‖gk+1‖+ L1‖xk‖+ L2)‖xk − xk−1‖
+ γ2‖xk‖‖Pk+1 − Pk‖}(σ)dσ,

where the terms ‖EkPk+1 − Ek−1Pk‖, ‖Ek − Ek−1‖, and
‖Ak −Ak−1‖, ‖f̄k − f̄k−1‖ are replaced by their respective
upper bounds in (14) and (15), respectively. Similarly, with
Pk+1(T ) = Pk(T ), and gk+1(T ) = gk(T ), we derive the
following

(Pk+1 − Pk)(t) =

∫ t

T

Φ′k+1(σ, t)[Pk(Ek − Ek−1)Pk+1

− Pk(Ak −Ak−1)− (Ak −Ak−1)′Pk]Φk+1(σ, t)dσ

(gk+1 − gk)(t) =

∫ t

T

Φ′k+1(t, σ){[EkPk+1 − Ek−1Pk

− (Ak −Ak−1)]gk + Pk+1f̄k − Pkf̄k−1}(σ)dσ.

After some algebraic manipulation and combining the results
into (13), we can derive the inequalities,

‖T2[xk, Pk, gk]− T2[xk−1, Pk−1, gk−1]‖α
≤ δ1‖xk − xk−1‖α,
‖T3[xk, Pk, gk]− T3[xk−1, Pk−1, gk−1]‖α
≤ δ2‖xk − xk−1‖α + δ3‖Pk+1 − Pk‖α,
‖T1[xk, Pk, gk]− T1[xk−1, Pk−1, gk−1]‖α
≤ δ4‖xk − xk−1‖α + δ5‖Pk+1 − Pk‖α + δ6‖gk+1 − gk‖α,

where δ are defined as

δ1 ∝ sup ‖Φk+1(σ, T )‖2(γ1‖Pk‖‖Pk+1‖+ L1‖Pk‖
+ L2‖Pk‖)

δ2 ∝ sup ‖Φk+1(σ, T )‖[(γ3 + L1)‖gk‖+ L2‖Pk‖]
δ3 ∝ sup ‖Φk+1(σ, T )‖(‖γ2‖gk + ‖f̄k‖)
δ4 ∝ sup ‖Φk+1(t, σ)‖(γ3‖xk‖+ γ1‖gk+1‖+ L1‖xk‖

+ L2)

δ5 ∝ sup γ2‖Φk+1(t, σ)‖‖xk‖
δ6 ∝ sup ‖Φk+1(t, σ)‖‖Ek−1‖

and the components of the matrix M are accordingly defined
as M1 = δ4+δ1δ5+δ6(δ2+δ1δ3),M2 = δ1,M3 = δ2+δ1δ3.
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Français du Pétrole, vol. 65, no. 1, pp. 91–102, 2010.

[9] J. Ruths and J.-S. Li, “A multidimensional pseudospectral method
for optimal control of quantum ensembles,” The Journal of chemical
physics, vol. 134, no. 4, p. 044128, 2011.

[10] J.-S. Li, J. Ruths, T.-Y. Yu, H. Arthanari, and G. Wagner, “Optimal
pulse design in quantum control: A unified computational method,”
Proceedings of the National Academy of Sciences, vol. 108, no. 5, pp.
1879–1884, 2011.

[11] J.-S. Li, I. Dasanayake, and J. Ruths, “Control and synchronization of
neuron ensembles,” IEEE Transactions on automatic control, vol. 58,
no. 8, pp. 1919–1930, 2013.

[12] W. Bomela and J.-S. Li, “An iterative method for computing optimal
controls for bilinear quadratic tracking problems,” in 2016 American
Control Conference (ACC). IEEE, 2016, pp. 2912–2917.

[13] H. Schättler and U. Ledzewicz, Geometric optimal control: theory,
methods and examples. Springer Science & Business Media, 2012,
vol. 38.

[14] L. Collatz, Differential Equations: An Introduction With Applications.
John Wiley & Sons Inc, 1986.

[15] R. E. Kalman et al., “Contributions to the theory of optimal control,”
Bol. soc. mat. mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[16] M. Filo and B. Bamieh, “Function space approach for gradient descent
in optimal control,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 3447–3453.

[17] T.-J. Tarn, P. Sanposh, D. Cheng, and M. Zhang, “Output regulation for
nonlinear systems: some recent theoretical and experimental results,”
IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp.
605–610, 2005.

[18] M. Zhang and T.-J. Tarn, “Hybrid control of the pendubot,”
IEEE/ASME transactions on mechatronics, vol. 7, no. 1, pp. 79–86,
2002.


