Learning to Control Neurons using Aggregated Measurements

Yao-Chi Yu!, Vignesh Narayananl, ShiNung Chinglv2 and Jr-Shin Li!2

Abstract— Controlling a population of neurons with one or a
few control signals is challenging due to the severely underac-
tuated nature of the control system and the inherent nonlinear
dynamics of the neurons that are typically unknown. Control
strategies that incorporate deep neural networks and machine
learning techniques directly use data to learn a sequence of
control actions for targeted manipulation of a population of
neurons. However, these learning strategies inherently assume
that perfect feedback data from each neuron at every sampling
instant are available, and do not scale gracefully as the number
of neurons in the population increases. As a result, the learning
models need to be retrained whenever such a change occurs. In
this work, we propose a learning strategy to design a control
sequence by using population-level aggregated measurements
and incorporate reinforcement learning techniques to find a
(bounded, piecewise constant) control policy that fulfills the
given control task. We demonstrate the feasibility of the
proposed approach using numerical experiments on a finite
population of nonlinear dynamical systems and canonical phase
models that are widely used in neuroscience.

I. INTRODUCTION

Neurons in the brain form complex networks of inter-
connected dynamical systems and communicate with each
other using action potentials or spikes [1]. These spikes
are also used to represent information regarding an external
stimulus (e.g., sensory inputs) from the physical world. The
mechanism through which the neurons convert an external
stimulus into a coded internal representation in the form
of spike trains is not yet fully understood. On the other
hand, due to the rapid development in neuro-stimulation
technologies, it is now possible to both finely manipulate
neurons with external stimuli and also to record the activity
of a population of neurons [2]. With these developments, it
is now feasible to carefully design experiments for precisely
manipulating the neural activity, which can potentially shed
some light on the neural coding mechanism [3].

Precise manipulation of the spiking activity in a population
of neurons requires strategies that allow for an efficient
and systematic synthesis of the stimulation signals. In this
context, interpretable modeling of the dynamic behavior of a
neural population and tractable design of control inputs using
the neural measurements/recordings are critical. To this end,
several system theoretic approaches to control neural systems
at different spatio-temporal scales are available (e.g., [3]).

*This work was supported in part by the NSF awards, ECCS-1509342,
CMMI-1933976, and CMMI-1763070, and the NIH grant IROIGM131403.

1y.-C. Yu, V. Narayanan, S. Ching, and J.-S. Li are with the Depart-
ment of Electrical and Systems Engineering, Washington University in St.
Louis, St. Louis, MO, 63130, USA. y.yu, vignesh.narayanan, shinung,
jsli@wustl.edu;

2S. Ching and J.-S. Li are with the Division of Biology and Biomedical
Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.

For instance, to induce synchronization/desynchronization
of spiking activity in a population of neurons, ensemble
control was proposed [4]. Similarly, optimal controllers were
designed to elicit a given spike sequence or a spike pattern
in a network of neurons [3], [5], [6]. Alternatively, model-
free strategies to learn control signals directly from data
to manipulate the neural dynamics were reported [7]-[9].
These learning strategies make use of tools such as deep
neural networks and deep reinforcement learning to learn a
representation of the input-output behavior of a network of
neurons, and to design control signals in a fully data-driven
setting.

However, several challenges persist in the context of con-
trolling a population of neurons. These include: (i) the need
for perfect feedback data from each neuron at every sampling
instant; (ii) noisy recording and missing measurement data
during the process of signal recording [10]; (iii) the unknown
nonlinearities in the neural dynamics. In this context, the
inability to track the spiking activity of each neuron simul-
taneously remains a fundamental challenge and prohibits the
use of traditional feedback or reward to design closed-loop
controls for precisely manipulating a neural population.

To mitigate this challenge, in this work, we propose
an aggregated Q-learning approach in which we design
the instantaneous reward and the control objectives using
the population-level aggregated measurements or snapshots.
In particular, we define an output sequence that can be
computed using the aggregated measurements and learn a
control policy by using the time-series data of this output
sequence. Different from the existing approaches [7]-[9], the
proposed learning framework does not require measurements
from each neuron in the population at every sampling instant.
We demonstrate the feasibility of the proposed approach
using numerical examples using phase-models.

The remainder of this paper is organized as follows.
In Section II, we introduce the control problem, motivate
the idea of aggregated measurements, and provide a brief
background on Q-learning. In Section III, we present the
details of the proposed method along with two cases of
numerical simulations to illustrate the feasibility of the
proposed learning scheme.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we will begin by formally introducing the
class of systems that is considered in this paper and introduce
the notion of aggregated measurements. We will then provide
a brief background on the learning problem addressed in this

paper.

Individual neurons in a population modulate their spiking
activity and collectively perform complex tasks such as
encoding and decoding. A population of such neurons can be
modeled as a parameterized family of dynamical systems or
an ensemble system, where the differences in the individual
neurons that may arise due to variations in their channel
conductances or membrane-capacitance, etc., are captured by
a dispersion parameter. In this work, we will consider a class
of input-affine nonlinear ensemble system governed by the
dynamics

Ex(hﬁ):f(ﬁ,x(uﬁ))+g([3,x(t,ﬁ))u(t)7 (D

where B € K C R is the dispersion parameter, x(z,.) € R"
denotes the states of the ensemble system, u(z) € R™ is
the parameter independent control, the functions f and g
are smooth nonlinear maps representing the drift dynamics
and the control-coefficient, respectively, and K is a compact
set [4]. The majority of the existing biophysical models
of a neuron or the phase-models, e.g., the Hodgkin-Huxley
model [1], [11], belong to the class of input-affine nonlinear
systems, and a population of neurons with their dynamics
described using such models can be represented as in (1).

A. Aggregated Measurements

Typically, neural recordings obtained through an extra-
cellular electrode will contain spiking activity from a large
number of neurons (see Fig. 1). If the recorded signals from
multiple neurons do not overlap temporally or if the overlap
is minimal, spikes recorded at the same electrode can be
sorted and assigned to individual neurons [2]. However, in
many cases, it may not always be possible to sort these
spikes recorded at an electrode and assign them to individual
neurons. As a result, the traditional approaches that use
feedback data from each subsystem in the population to
design closed-loop controls are not feasible. In this context,
it is of practical significance to directly use the measure-
ments at the population-level without having to resolve the
measured signals to individual neurons in the population for
control synthesis. In this paper, we use these population-level
aggregated measurements, and propose a learning strategy to
design control signals for manipulating the neural population.

Consider the system in (1), let the sequence {tg,f;,...} Ct
with 79 > 0 denote the sampling instants when the measure-
ments are recorded. Formally, we call Y (z;) as an aggregated
measurement at the sampling instant ¢; for i € N, where Y is
defined as a set given by

Y (1) = {x(t;, B) | B € Ki}, 2

with Y(;) € R?, p; = |K;| (cardinality of the set K;) and
K; C K. We emphasize that the measurements (see Fig. 1)
at each sampling time (i) may not have the same number of
recorded data (i.e., K; changes with the sampling time #;);
(ii) cannot be associated uniquely to a specific neuron in the
population; and (iii) do not account for all the neurons at
each of the sampling time (i.e., K; is a proper subset of K).

Before describing the learning problem investigated in this
work, in the following, we briefly review the traditional

10 20 30 40

()

Fig. 1. Aggregated measurements: Spiking activity of 500 neurons
over a period of 50ms. Each red dot denotes an action-potential
or a spike. At each sampling instants, an aggregated measurement
consists of snapshots of the spiking activity of the neural population.

reinforcement learning (RL) framework. Most commonly, the
RL algorithms are viewed in terms of discrete-time problems,
and so we will present a discrete-time description of the
learning problem. In the following, for ease of exposition,
the parameter f3 is suppressed in the notations, i.e., x(¢,3)
is denoted as x(t).

B. Model-free learning

In a reinforcement learning (RL) framework [12]-[14], the
agent (or the controller) learns a sequence of actions (or
control inputs) that optimizes a given performance measure.
In the ideal case, when the controller has access to perfect
measurements, i.e., when all the states are measured at
each sampling instants (K; = K for each i = 0,1,... and
Y(t;) = x(t;)), the RL agent tries to find a control policy
that optimizes a given performance measure. For instance, at
the " sampling instant #;, the RL agent perceives the system
state, x(#;) € R" and chooses a control action u(t;) € U, where
U is a set of admissible control inputs. Due to this control
action, the system state transits to the next state x(f;11) as
determined by the dynamics of the system (1), and this
transition yields a reward (or the one-step cost) r(#;) (in
general, it is a function of the system states, control or time).
The performance measure is defined using this instantaneous
reward as

Vala(s)) = ¥ 7)), ®

where Vy denotes the cost-to-go from state x(t;), and it
describes the sum of discounted future costs from the current
step ¢, to the future (infinite time-horizon) and 0 <y < 1 is
the discount factor that quantifies the importance of the cost
at the future states. Here Vi (x(r)) is called value function
associated with the control policy @ and r(x(f;),u(t;)) is
the one-step cost induced by the control u(f;) resulting in
the transition from x(#;) to x(fiy1). The policy @ defines
the rule based on which the control action is selected, i.e.,
u(t) = m(x(¢),Vy). For example, the cost for a standard linear
quadratic regulator (LQR) is of the form r(x(z),u(t)) =

xT (t)Lx(t) + u” (t)Ru(t), where the matrices L and R are
positive-definite. Thus the goal of the RL agent is to learn a
control sequence that optimizes the cost-to-go as in (3).

One of the popular RL algorithms is the model-free Q-
learning approach [15], where the learning agent utilizes the
data (x(;),u(t;),x(tix1),r(t;)) at each i, to iteratively update
a Q-function, denoted as Q(x,u), which is a scalar function,
ie., Q:R*"xU — R, based on the update rule

Ok1 (x(13), u(ti)) = O (x(ti), u(ti))+
o [r{t) + ymax Qu(x(ti1),) — Qulx(0), (@) |, (4)

where k=0, 1,..., is the iteration index and 0 < a < 1 is the
learning rate. With (4), the Q-value for each state-action pair
will converge to the optimal Q* values asymptotically as the
iterations k — oo under certain conditions, where Q" satisfies
the Bellman optimality equation, and it corresponds to the
optimal value function (V) associated with the optimal
policy (7*) [15], [16].

Note that the Q- learning framework directly uses the data
to learn a control policy that achieves a desired objective.
However, unlike the ideal case, in practice, we have access
only to the population-level aggregated measurements as
defined in (2). This introduces a bottleneck when using such
algorithms to learn control sequences for a population of
systems as in (1). To mitigate this challenge and to systemat-
ically design control signals without the accurate knowledge
of the system dynamics or perfect feedback information, in
this work, we propose an aggregated measurement-based Q-
learning algorithm or the aggregated Q-learning that makes
use of the population-level feedback instead of the perfect
feedback from each neuron in the population. In particular,
in the context of steering the system (1) using (2), we assume
that the aggregated measurements are available as feedback
at the (discrete) sampling instants defined in (2) and propose
a learning scheme, which is detailed in the next section.

III. PROPOSED STRATEGY AND MAIN RESULTS

In this section, we present our aggregated Q-learning
scheme for learning a control sequence to steer the ensemble
system given in (1) from an initial state to a desired final state
by using the aggregated measurements (2). In particular, we
introduce an output sequence that can be computed using
the aggregated measurements and use this output sequence
to design the reward function in our Q-learning framework.

A. Outputs induced by aggregated measurements
In our application, we only have access to the aggregated
measurements (2). Therefore, we define an auxiliary output
sequence p;(t) for i=1,...,M and M € N such that for
i=1,2, y; is defined as
1 |K;| |Ki

| LI PRPSe
|Ki‘j;x(t,ﬁj), Mo(t) = \KAEI((t,Bj) — (1)),
()

where (; € R", u = (uy,...,y)" and the exponent is taken
component-wise. Similarly, for any i € {1,.... M}, L; is

p(t) =

defined as a monomial of degree i. With the outputs u;
defined as in (5), instead of steering the system (1) using
(2), we reformulate this problem in terms of these outputs
and define the learning objective in terms of the output
sequence. To formalize this, we introduce a transformation
T:R"xK — (W, .., Uy) , where the states of the ensembles
are mapped to an output sequence. These outputs mapped
from the states of (1) can be viewed as central moments of a
distribution and the outputs computed using the aggregated
measurements as in (5) can be viewed as sample moments.
For instance, to steer the ensemble system (1) to a neighbor-
hood of a given final state (xy), first, the states are mapped to
the output space, so that we have = T(xs) = (Uif, tor)
for M = 2. Then the control objective is defined in terms of
the desired output sequence such that: (i) |[.Ll =M (tl-)| <ec,
and (ii) ’[.sz — IJZ(ti)| < d, where ¢ and d quantify the error
tolerance allowed in terms of the auxiliary output.

To check the feasibility of the proposed approach, we
present some preliminary results using two numerical ex-
amples in the next section. As a starting point, in these
experiments, we discretized the entire output space and the
action space, resulting in a finite Markov decision process.
A Q-table is set up for each example and updated according
to Algorithm 1. The parameter € is the decay rate for
exploration in each step [12], and the learning is episodic
with the maximum number of episodes denoted as E. In
each episode, the system is initialized with the given initial
condition and the learning is performed for a fixed number
of steps S depending on the final time 7. In the proposed
learning framework, we update the control inputs at the
sample-instants #; and hold this control input until the next
sampling instant using a zero-order hold-like mechanism,
resulting in a piecewise constant control. The (Q-table is
updated based on the collected reward after each episode.

Algorithm 1 Aggregated Q-Learning
Inmput: u(n), 7, ur, U, K, a, v, E, S, c, €.
Output: Q(u,u) (Q-table)
Initialization : Q(U,u), for all g, u e U
for episode =1 to E do
2. for step=1to S do
u(t) < € — greedy: Choose an action u that gives
the maximum Q(u(#;),u) value with probability €

4: Apply u(t) and acquire the next measurement
Y(tiv1)
Compute: (1(t;+1) from Y (7;41) and receive reward
r(tit1)

6: Update Q-value:

O(u(t:),u(t;)) = Q(u(t:), u(t;)) + ofr(t:;)
Hymax Q(p(ti+1),u) — Q(p (), u(ti)]
if |[p(%) — prll < c then

8: break
end if
10: end for
end for

12: return Q(U,u)

TABLE I
PARAMETERS USED IN EXAMPLE 1 AND EXAMPLE 2.

Ex.1 Ex.2

Learning rate (o) 0.99 0.99
Discount factor () 0.9 0.9

Symbols

Maximum number of episode (E) 5000 1000

Maximum step in each episode (S) 1000 400

Range of perturbation constant () [0.95,1.05] -
Epsilon(e) 0.999999 0.99999

B. Numerical Examples

In this section, we evaluate the performance of the pro-
posed learning scheme using two numerical experiments. In
both of the examples, the control sequence learned using
the aggregated Q-learning algorithm successfully steered the
corresponding ensemble systems as in (1) from a given initial
state to the desired state.

Example 1: Consider a nonlinear ensemble system of the
form (1) with the states g = (x,y, 6) and the system dynamics

q(t,B) = Blg1(q(t, B))u(r) +g2(q(t, B))v(®)], (6)
where gi(g) = [cos6 sin6 O]T and g2(¢)=[0 0 I]T.
The state space of the system is given by R? x S! [17] and
the two control inputs u, v are influencing the dynamics
of this system to generate forward/backward displacement
and angular shift, respectively. The admissible controls are
defined as u € {+1,0,—1} and v € {+n/2,0,—7/2}. We
consider five systems with parameters defined as in Table
I. The control objective is to steer the entire ensemble from
the initial state ¢(0,) = (—2,—2,0) to the neighborhood of
the target state gy = (3,2,0) simultaneously using the same
control input.

In this example, we defined the output sequences for
states x and y with M = 2 as in (5), and another se-
quence with M = 1 for the state 6. In other words,
w(t) = (i (), 1 (0,10 (1), 15(1), 15 (1)) € B> and iy =
(3,2,0,0,0)'. The output space was fully discretized into
21 x 21 x 11 x 11 x 11 grids, wherein each discretization
dimension corresponds to the entries of the p(r) vector. In
an episode, if the agents reached the goal or spent more than
1000 steps without reaching the goal, the episode was termi-
nated and a new episode was initiated. During the process of
learning, if all the systems in the population reached the goal
with tolerance ¢ = 0.01 and d = 0.01, an immediate reward of
+100 was returned. Otherwise, a reward of —||(u(¢) — tis)|?
was returned, where (i (7) and ;s denotes output at time 7 and
the desired outputs, respectively. A uniform sampling time
of 0.5s was selected. The parameters used in the learning
procedure are listed in Table 1. The resulting snapshots of the
trajectories of the system (6) and the corresponding control
sequence are presented in Fig. 2. The performance of the
learning algorithm using both the episodic reward and the
averaged rewards are presented in Fig. 3.

Example 2: The design of electrical or magnetic stimu-
lations to simultaneously generate neural spikes is of great
interest in experimental neuroscience. This can potentially

4 @ 4
a b
3 3 (b)
2 2
1 1
>0 >0
1 1
2 ® 2
-3 -3
-4 -4
4 3 2 4 0 1 2 3 4 -4 3 2 -1 0 1 2 3 4
X X
4 4
c (d)
3 © 3
2 2
1 1
> 0 >0
1 -1
2 2
-3 3
-4 4
4 -3 2 A 1 2 3 4 4 3 2 4 0 1 2 3 4
X X
1
1
= 0 z 0
5 10 = 5 10
1
,1 -
time [s] time [s]
Fig. 2. Example 1: The trajectory snapshots of the controlled ensemble

system. The blue dots in the figure represent each individual agent, while
the red dot represent the averaged x,y-coordinate of the five agents. Each
plot from (a) to (d) represents a snapshot at t =0,5,8 and 13, respectively.
In figure (d), all five agents are within the neighborhood of the target
state (3,2)'. The piecewise constant control sequences learned using the
aggregated Q-learning are shown in (e) and (f). The control v(¢) changes
the orientation of each system in the population, while the control u(r)
corresponds to a unit displacement in the forward/backward direction.

x10*
° 0 T
©
=
&
o °f)
el
o
R2}
g-10f 1
4
o 0 x10 T T —
g (_‘/M\/—_“—\—\/
o -2 1
o
(0]
g4/ 1
2
g 6 L L L L 1
0 1000 2000 3000 4000 5000

Episode Index

Fig. 3. Example 1: Performance of the learning algorithm represented using
the episodic reward and the average reward computed over the number of
episodes.

be used to design external stimulation for precise manipu-
lation of the spikes to gain insights into the neural coding
mechanism or to relieve an epileptic symptom in patients
[18]. In practice, limitations on the amplitude of the control
signal need to be taken into consideration to avoid generating

harmful stimulations [19]. Therefore, the task of inducing
simultaneous neural spikes with a bounded control sequence
is of great importance. We begin our example of neurocontrol
by examining a two-neuron system case. In particular, we
consider the phase-model of a neural oscillator with the
phase dynamics given by 6(¢) = £(0) + Z(8)u(t). In this
dynamics, 0 is the phase of an uncoupled neural oscillators
and u(r) represents external current stimulus [11], [20]. The
functions f(0) and Z(6) represent the baseline dynamics
and phase response curve (PRC) of the neuron, respectively.
By designing a suitable control sequence u(7), the spike time
can be advanced or delayed in a desirable manner.

In particular, we consider the phases of two neural oscil-
lators 6 = (6;, 6,)" with sinusoidal PRCs and constant drift,
ie., f(0)=(w;,w) and Z(6) = (z1sin 6,22 sin 6)’, where
o; and @, are the natural frequencies of the two neurons,
and z; and zp are model-dependent constants. Our objective
is to steer the ensemble from the initial state 6(0) to 6y.
In this example, we aim to learn the control sequence that
drives the system from 6(0) = (0,0)" to the target phase
6y = (3mw/2,3m/2)'. The parameters used in this example
were) = 1, =2, and z; = 7z = 1. The trajectory and
control sequence are shown in Fig. 4. The time discretization
in this example was set as A t = 0.05 and we limit the time
window for the phases to reach 37/2 at T = 20s. During the
learning process, a reward of 100 was given when the target
phase was reached; a new episode was initiated once the
target state is reached or the number of steps in the episode
reached an upper bound as in Example 1. The learning
parameters used in this Example are listed in Table I and
the resulting phase and control trajectories are displayed in
Fig. 4.

6F 7
neuron 1

neuron 2
4t il

\
0 2 4 6 8 10 12 14 16
time [s]

Fig. 4. Example 2: The trajectories and piecewise constant control sequence
that drives the two neurons from (0,0)" to (37/2,37/2). (Top) Phase
trajectories wrapped to [0,27] for the two neurons. (Bottom) The control
sequence learned using aggregated Q-Learning. The available control inputs
are {+1,—1}.

C. Discussions: Defining Learning Objectives

Note that the finite output sequence defined in (5) can be
generalized using the notion of central moments to define an
infinite sequence that describe a measure. In particular, in
this context, the states are to be viewed as random variables

and the definition in (5) describe the sample moments with
respect to the Dirac (or the occupation) measure. This leads
to a moment-based control framework for ensemble control
systems. Though there have been some results on controlling
moments of homogeneous population of dynamical systems
[21]-[24], the proposed approach, when generalized, will
lead to a fully data-driven moment-based control framework
for inhomogeneous ensembles.

In this work, we consider cases where all agents are
steered to a common target. In this case, designing the
reward function based on the first- and second- order outputs
(M = 2) is straightforward. However, when the objective is
to form a specific spike pattern, the reward function needs
to be designed carefully. An intuitive example is making the
spike interval of a two-neuron system to be half of the spike
period, or equivalently, steering the neural system to a target
state x; = (7,27)" within time 7. Under such condition, the
reward should be defined using iy of the target state, which
is given by py = (1, 2) = (37/2,4.9348).

D. Performance consideration and Sequence control

It is worth mentioning that the performance of the con-
trolled system using the proposed output sequence is in-
sensitive to the size of the network. Here, we provide an
illustrative example using a population of neurons described
using the phase-models as in Example 2.

To illustrate this idea, using the proposed output se-
quence, we defined a control policy u(r) = —£(u3(r) +
U5 (¢)) to induce simultaneous spikes in an ensem-
ble of neurons, where x > 0, N is the number of
neurons considered, and the subscript integer repre-
sents the order of the output sequence. We use the
distribution of system-specific parameters z; € [1.0,1.2]
and @; € [1,1.5]. More specifically, for a 100-neuron
system, (@p,@,...,m0) = (1,1.0051,1.0101,...,1.5),
(z1,22,---,2100) = (1,1.002,1.004,...,1.2).

In the following analyses, we look at how the spike time
deviates under two circumstances: (i) when the size of the
population changes, and (ii) when the size of the set K; of
aggregated measurements as defined in (2) is varied for each
sampling instant. For case (i) with 100 neurons, the phase
trajectories (wrapped to 27) and the corresponding control
input are recorded in Fig. 5. In Fig. 6 (a), a single control
law is used to simultaneously steer the phases of 10-100
neurons to induce simultaneous spiking. We can observe that
standard deviation of the spike times remain less than 0.05
over different population size for the same control. Also note
that the dimensions of ¢ is not dependent on the number of
neurons.

In the second case, we check the control performance of
the proposed aggregated measurement-based control policy
when the set of measured neurons is limited. By evolving the
entire 100-neuron ensemble with only a limited number (10
to 100) of tractable neurons, we were able to simultaneously
induce spiking with a satisfactory standard deviation, as
shown in Fig. 6 (b). Note that in both the cases, the control
input recorded in Fig. 5 appears to be a resetting control,

and finding a bounded control input as in Examples 1 and 2
that achieves the control objective is desired.

use population-level aggregated measurements to design pa-
rameter independent feedback control for an inhomogeneous
ensemble system with application to neural oscillators.

0 © \\ T T T T T T T

control input

.50 E s s s B

0 10 20 30 40 50
time [s]

Fig. 5. (a) The phase trajectories of a 100-neuron system without
applying a control. (b) The phase trajectories of a 100-neuron system that
simultaneously spikes under a given control sequence. (c) The control input
designed using the outputs L, ti4 that is applied to the entire population to
generate simultaneous spiking.

o

=

3
[
e

Standard Deviation
o o
o o
N S
[
L

—6— Standard Deviation
= = =0.05 criterion

I
10 20 30 40 50 60 70 80 90 100
Number of Neurons

S 0.06

0.04 - T

0.02 - T

Standard Deviation

I I I
10 20 30 40 50 60 70 80 920 100
Number of Tractable Neurons

Fig. 6. (a) Standard deviation in the spike time vs the number of neurons
in the ensemble. (b) Standard deviation in the spike time vs the number of
tractable neurons in the ensemble. Standard deviation in both cases is less
than 0.05, as the missing information is compensated by the outputs, which
is representative of the entire population.

IV. CONCLUSIONS

In this paper, an aggregated Q-Learning scheme is pro-
posed to learn a control sequence for steering a population of
dynamical systems. By introducing the notion of aggregated
measurements, we first define an output sequence that is
representative of the entire population. We then directly learn
a control sequence to manipulate the outputs of the ensemble
from an initial state to the desired target state. The proposed
algorithm circumvents the requirement to derive an analytic
solution to obtain a control input but learns the control
sequence directly from the aggregated measurement data. We
demonstrated the feasibility of the proposed method using
two examples. Using numerical analysis, we demonstrated
that the proposed approach is scalable, efficient, and can

[1]
[2]
[3]

[4]

[5]

[6]

[7

—

[8]

[91

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

(24]

REFERENCES

P. Dayan and L. F. Abbott, Theoretical neuroscience.
MA: MIT Press, 2001, vol. 806.

G. Hong and C. M. Lieber, “Novel electrode technologies for neural
recordings,” Nature Reviews Neuroscience, p. 1, 2019.

J. T. Ritt and S. Ching, “Neurocontrol: Methods, models and tech-
nologies for manipulating dynamics in the brain,” in American Control
Conference (ACC), 2015. IEEE, 2015, pp. 3765-3780.

J.-S. Li, 1. Dasanayake, and J. Ruths, “Control and synchronization of
neuron ensembles,” IEEE Transactions on Automatic Control, vol. 58,
no. 8, pp. 1919-1930, 2013.

A. Nandi, H. Schittler, J. T. Ritt, and S. Ching, “Fundamental limits
of forced asynchronous spiking with integrate and fire dynamics,” The
Journal of Mathematical Neuroscience, vol. 7, no. 1, p. 11, 2017.

Y. Ahmadian, A. M. Packer, R. Yuste, and L. Paninski, “Designing
optimal stimuli to control neuronal spike timing,” Journal of Neuro-
physiology, vol. 106, no. 2, p. 1038, 2011.

B. Mitchell and L. Petzold, “Control of neural systems at multiple
scales using model-free, deep reinforcement learning,” Scientific Re-
ports, vol. 8, no. 1, p. 10721, 2018.

S. Liu, N. M. Sock, and S. Ching, “Learning-based approaches
for controlling neural spiking,” in 2018 Annual American Control
Conference (ACC). 1EEE, 2018, pp. 2827-2832.

V. Narayanan, J. T. Ritt, J. Li, and S. Ching, “A learning framework
for controlling spiking neural networks,” in 2019 American Control
Conference (ACC), July 2019, pp. 211-216.

A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, “Noise in the nervous
system,” Nature Reviews Neuroscience, vol. 9, pp. 292-303, 2008.
E. M. Izhikevich, Dynamical systems in neuroscience. ~MIT press,
2007.

R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduc-
tion. MIT press, 1998.

K. A. Morgansen and R. W. Brockett, “Optimal regulation and
reinforcement learning for the nonholonomic integrator,” in 2000
American Control Conference (ACC). IEEE, 2000, pp. 462—466.
W. Jiang, V. Narayanan, and J. Li, “Model learning and knowledge
sharing for cooperative multiagent systems in stochastic environment,”
IEEE Transactions on Cybernetics, pp. 1-11, 2020.

C.J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning,
1992, pp. 279-292.

F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and
Systems Magazine, vol. 9, no. 3, 2009.

A. Becker and T. Bretl, “Approximate steering of a unicycle under
bounded model perturbation using ensemble control,” IEEE Transac-
tions on Robotics, vol. 28, no. 3, pp. 580-591, 2012.

W. Truccolo, J. A. Donoghue, L. R. Hochberg, E. N. Eskandar,
J. R. Madsen, W. S. Anderson, E. N. Brown, E. Halgren, and S. S.
Cash, “Single-neuron dynamics in human focal epilepsy,” Nature
Neuroscience, vol. 14, pp. 635-641, 2011.

J. K. Krauss, J. Yianni, T. J. Loher, and T. Z. Aziz, “Deep brain
stimulation for dystonia,” Journal of Clinical Neurophysiology, vol. 21,
no. 1, pp. 18-30, 2004.

E. Brown, J. Moehlis, and P. Holmes, “On the phase reduction and
response dynamics of neural oscillator populations,” Neural Compu-
tation, vol. 16, no. 4, pp. 673-715, 2004.

R. Brockett, “Notes on the control of the liouville equation,” in Control
of partial differential equations. Springer, 2012, pp. 101-129.

G. Dirr, U. Helmke, and M. Schonlein, “Controlling mean and variance
in ensembles of linear systems,” IFAC-PapersOnLine, vol. 49, no. 18,
pp- 1018-1023, 2016.

S. Zeng and F. Allgéwer, “On the moment dynamics of discrete
measures,” in 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016, pp. 4901-4906.

S. Zeng, H. Ishii, and F. Allgéwer, “On the state estimation problem
for discrete ensembles from discrete-time output snapshots,” in 2015
American Control Conference (ACC), July 2015, pp. 4844-4849.

Cambridge,

