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Mechanistic Modeling of Biochemical Systems

without A Priori Parameter Values
Using the Design Space Toolbox v.3.0

Miguel A. Valderrama-Gémez,! Jason G. Lomnitz,” Rick A. Fasani,® and Michael A. Savageau'4>*

SUMMARY

Mechanistic models of biochemical systems provide a rigorous description of bio-
logical phenomena. They are indispensable for making predictions and eluci-
dating biological design principles. To date, mathematical analysis and character-
ization of these models encounter a bottleneck consisting of large numbers of
unknown parameter values. Here, we introduce the Design Space Toolbox
v.3.0 (DST3), a software implementation of the Design Space formalism enabling
mechanistic modeling without requiring previous knowledge of parameter
values. This is achieved by using a phenotype-centric modeling approach, in which
the system is first decomposed into a series of biochemical phenotypes. Param-
eter values realizing phenotypes of interest are subsequently predicted. DST3
represents the most generally applicable implementation of the Design Space
formalism and offers unique advantages over earlier versions. By expanding
the Design Space formalism and streamlining its distribution, DST3 represents
a valuable tool for elucidating biological design principles and designing novel
synthetic circuits.

INTRODUCTION

Mechanistic modeling is the current gold standard for quantitative characterization and understanding of
complex biological phenomena. However, mathematical analysis of rigorous mechanistic models is not yet
the method of choice to address biological questions owing to a persistent gap in knowledge of the
involved parameter values. Within this context, modeling without a priori values for the parameters is a
radical claim. To see how radical, it helps to contrast the fundamentally new phenotype-centric approach
implemented here with the conventional simulation-centric approach based on sampling and simulation
(Lomnitz and Savageau, 2016a; Valderrama-Gomez et al., 2018). Both approaches start with a typical
qualitative hypothesis or model consisting of (1) the number of molecular elements, (2) their interactions
with one another (connections), (3) the signs of their interactions (+/—), and (4) the stoichiometry of the in-
teractions (number of molecules involved). Such a model would have numerous mechanistic parameters
(rate constants, binding constants, equilibrium constants) whose values are unknown and difficult to
determine.

In the conventional strategy, one samples parameter values, which can be done by randomly drawing
values from a uniform distribution within a pre-defined range (Lee et al., 2014), simulates the non-linear dif-
ferential equations, and compares the results with the corresponding experimentally observed quantitative
phenotypes of the system. This is repeated numerous times to select the values that tend to improve the fit
between the simulated results and the experimental data (some examples of this methodology include the
work by Forger and Peskin (2003), which implemented a coordinate search algorithm to find optimal
parameter values; the work by Zhou et al. (2005), which manually tuned parameter values; and the work
by Mirsky et al. (2009), which used an evolutionary strategy to find a set of parameters that most closely
matched experimental data). The result might be a good fit, one that is marginally acceptable, or no fit
at all.

In contrast to this conventional approach, the phenotype-centric approach provides a fundamental
advance that is entirely different. It starts with the same qualitative model as the conventional approach.
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However, well-stablished powerful linear analysis methods (Strang, 2005) are used (Savageau, 1969,
1971a, 1971b) to identify and enumerate the entire repertoire of biochemical phenotypes for the model
(Savageau et al., 2009). In this first step there is already the ability to discriminate among models/hypoth-
esis; if the experimentally observed phenotype is not present in the repertoire, then the model can be
eliminated (Lomnitz and Savageau, 2016b). On the other hand, if the phenotype of interest is present
in the repertoire, then the same, powerful, well-stablished linear analytic methods can be used to predict
a full set of parameter values that will realize that phenotype (Fasani and Savageau, 2010; Lomnitz and
Savageau, 2016a; Valderrama-Gdémez et al., 2018).

Here, we introduce the Design Space Toolbox v.3.0 (DST3) to expand the capabilities of the Design Space
formalism (Savageau et al., 2009). This new version builds on previous iterations of the software (DST1:
Fasani and Savageau, 2010, implemented the general data structures; DST2: Lomnitz and Savageau, 2016a,
added parallelization routines and a graphical user interface) to allow the automatic identification and mathe-
matical characterization of additional biochemical phenotypes arising from critically important under-deter-
mined cases.

These special phenotypes emerge from cycles, metabolic imbalances, and conservation constraints
present in many biochemical systems. Examples of such systems include but are not limited to
metabolic networks containing multiple reversible reactions (Schuster et al, 2000), a common
motif leading to cycles; signaling cascades of chemical species with different regulatory states
(e.g., achieved by different conformational or phosphorylation states) that are linked by conservation
relationships (Haraldsdéttir and Fleming, 2016; Klipp and Liebermeister, 2006); and saturable
processes, for which a pathway pool is imbalanced with respect its influx and efflux, thus
generating a steady accumulation or depletion of material within the system (Levy, 1999; Dahl et al.,
2013).

Besides the expanded computational engine of DST3, its C-library that is now able to handle these biolog-
ically important singularities automatically when they appear individually and simultaneously, the new
version of the Design Space Toolbox (DST3) has further unique features that distinguish it from previous
versions. First, the portability and installation of DST3 (Figure S1) is greatly improved and simplified by us-
ing Docker (Boettiger, 2015). Second, DST3 offers an improved and more stable IPython-based user inter-
face for users with limited programming experience (refer to Figures S2 and S5-S11). Third, calculating the
product of the global tolerances (Coelho et al., 2009) for all parameters in log-coordinates, a proxy for a
phenotype’s volume in parameter space and for its associated global robustness (Valderrama-Gémez
et al., 2018) is now automated within DST3. Fourth, solvers for systems of both ordinary differential
(ODE) and differential algebraic (DAE) equations (Petzold, 1983; Andersson et al., 2015) were incorporated,
thus allowing a fully integrated dynamic characterization of the Full System. The analysis of the Full System
by these completely different methodologies provides an independent means of confirming the results ob-
tained by the Design Space methodology.

The Results section is divided into three sub-sections. The first sub-section reviews briefly key concepts of
the Design Space formalism (see Savageau et al., 2009 and Fasani and Savageau, 2010 for a more detailed
theoretical treatment) needed to understand the advances described in this work. In the second sub-sec-
tion, we build on these concepts to develop general mathematical strategies aimed at resolving matrix sin-
gularities arising from system topologies containing cycles, moiety conservations, and metabolic imbal-
ances. In the third sub-section, we illustrate the capabilities of DST3 by analyzing a case study, the
protocatechuate metabolic system of Acinetobacter (Dal et al., 2005; Trautwein and Gerischer, 2001), a
biochemical system exhibiting multiple, nested singularities. The Methods section provides details on
the software architecture of DST3, the different ways to access its computational capabilities, and the
installation instructions via Docker.

RESULTS
Review of Key Concepts

Biochemical systems described by the power-law functions of chemical kinetics and the rational functions
of biochemical kinetics can be represented by generalized mass action (GMA) kinetics (Savageau and Voit,
1987) of the form:
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where aj and B represent rate constants and gy hji are kinetic orders. P; and Q; are the number of pos-
itive and negative terms in the i-th equation, respectively. X represent the variables of interest (typically the
concentration of a biochemical species) in a system containing a total of n dependent and m independent
variables. In general, dependent variables can be split into two groups: chemical variables, for which a dif-
ferential equation exists, and auxiliary variables, for which algebraic constraints are defined. Each group
contains nc and n — n. members, respectively. The set n. of chemical variables has a direct biological mean-
ing and represents all the chemical/biological entities (i.e., enzymes, metabolites, chemical species, mMRNA
molecules) of a given system. On the other hand, the set n — n. of auxiliary variables has meaning in the
context of recasting the system of ordinary differential equations into its GMA form. Independent variables
for which a differential equation or algebraic constraint are not defined are treated as parameters.

For any system, one of the P; positive terms and one of the Q; negative terms in Equation 1 will momentarily
dominate over the others in each one of the n equations in the system. This gives rise to a so-called domi-
nant S-System (Savageau, 1969; Savageau et al., 2009), which can be generically described by Equation 2:

de n+m g n+m h
— pi ai =
4 = % IT X" =64 T X™ i=1,.nc
j= j=1
n+m n+m h
0=ap [ X™ 64 [] X™ i=(nc+1),..n (Equation 2)
j=1 j=1

with p; and g; being the indices of the dominant positive and dominant negative term in the i-th equation,
respectively. In steady state, Equation 2 can be combined into a single equation:

n+m n+m

0= ap, H ng”"'fﬁ,‘q, H th"q’ i=1,..,n (Equation 3)
j=1 j=1

The validity of a dominant S-System in steady state implies certain conditions (Savageau et al., 2009; Fasani
and Savageau, 2010), which are represented by inequalities of the form:

n+m n+m
ap [ X" >an [[ X Vk={1,2,3,...Plk#p;} (Equation 4)
j=1 j=1
Bia, H thm > Bix H thvk Vk={1,2,3,..,Qlk # q;}. (Equation 5)
j=1 e

Here, k represents indices of corresponding non-dominant terms. Steady-state concentrations of the
dependent variables can be obtained in three steps (Savageau, 1969; Fasani and Savageau, 2010). By re-
arranging Equation 3 and taking logarithms, one obtains Equation 6:

log ajp, + Z Jip: log Xj=log Bg, + Z hijg log Xj, (Equation 6)
=1 =1
which can be written in matrix form as:
Ay = b, (Equation 7)

wherey; = In Xj, ajj = gjjp, — hijjg,, and bi = In(8;, /aiq). In a second step, dependent (yp) and independent (y))
variables are split to obtain:

ADyD =b-— Alyl- (Equation 8)
The vector of dependent concentration variables yp can be obtained in a third step by matrix operations:
Yb = A51b — A51A,y,. (Equation 9)

The vector of dependent flux variables log F; is obtained by matrix multiplication:

log F = Gy. (Equation 10)
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Figure 1. Systems Containing Cycles, Conservation Constraints, and Metabolic Imbalances

(A) A cycle comprising three metabolic species is shown. Mass action kinetics is used to mathematically describe the flux
through each reaction. Rate constants for each one of these reactions are shown.

(B) If the fluxes represented by the blue arrows dominate over the others, a singularity arises that prevents the system from
having a unique steady-state solution. This singularity is resolved by introducing a mass balance equation around a
control volume (blue rectangle) containing the cycle.

(C) Three-component system containing one conservation constraint. Fluxes to and from metabolite pools Xj, Xz, and X3
are mathematically described using mass action kinetics.

(D) No fluxes enter or leave the control volume (blue rectangle) around metabolites involved in the conservation.

(E) Metabolic pool with one input and one output flux. Depending on the numerical values of fluxes v and vy, the
concentration of X; can steadily increase (v >v1), decrease (v<vi), or remain unchanged over time (v = vy).

The concept of biochemical phenotype (or simply phenotype) is an integral element of the Design Space
formalism and will be broadly used throughout this work. A phenotype is defined in the context of a mech-
anistic mathematical model of a given biological system. The mathematical representation of a biochem-
ical system decomposed into its repertoire of steady-state phenotypes, each given by a set of dominant S-
system equations (Equation 3) and associated boundaries, involves a comprehensive integration of infor-
mation for all the system’s concentrations, fluxes, and parameters (Savageau et al., 2009; Fasani and Sav-
ageau, 2010). From a biological point of view, most of the mathematical properties of a biochemical pheno-
type, for instance, its dynamic behavior (discussed in section “Phenotype Analysis Reveals Dynamic
Properties of the System”) and logarithmic gains (discussed in section “Logarithmic Gains Can Guide
the Design of Engineering Strategies”) can be experimentally observed and measured, thus rendering
biochemical phenotypes a powerful tool for the elucidation of design principles for natural systems and
for the design of synthetic networks with novel functionalities.

Strategies for Treating Three Types of Singularities

Earlier versions of the Design Space Toolbox (Fasani and Savageau, 2010; Lomnitz and Savageau, 2016b)
have exclusively dealt with cases for which the inverse of the matrix Ap exists (Figure S4). However, a
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number of important system topologies—cycles, conservations, metabolic imbalances (Figure 1)—cause
the matrix Ap to become singular and effectively limit the utility of earlier versions of the Design Space
Toolbox. The ubiquity of such topologies in biochemical networks renders their automatic handling highly
relevant in the context of the Design Space formalism.

The mathematical framework presented here to deal with these singularities can be seen as an extension of
previous theory with ad hoc applications in a more limited context by our group (refer to Savageau, 1969 for
metabolicimbalances; Alves and Savageau, 2003 for conservations; Tolla et al., 2015 for cycles). The exten-
sion presented in this work generalizes the theory and automates the computational applications thereby
expanding the Design Space formalism (Savageau et al., 2009). The strategies are illustrated by means of
simple examples treated briefly below with mathematical details given in section “Strategies for Treating
Three Types of Singularities” of the Supplemental Information.

Cycles Are Resolved by Considering Global Dominance Equations

Cycles of reactions are a common feature of biochemical systems. They typically have a number of input
and output fluxes. A simple example is the fumarate nitrate reduction (FNR) regulator of Escherichia coli
that exists in a cycle with three forms having one influx and two effluxes (Tolla et al., 2015). The FNR global
regulator is responsible for sensing the environment, more specifically the availability of O,. It modifies the
global gene expression of the cell to adapt its machinery for the transition from aerobic to anaerobic
growth. Let us consider the simple system shown in Figure 1A, in which species Xi, X3, and X3 interact to
form a substrate cycle driven far from thermodynamic equilibrium. This example is deliberately selected
to focus on the mathematical details of the singularity contained in the kinetic equations and on the strat-
egy that resolves it. We start by setting up equations to describe the change in the concentration of each
chemical species over time. Mass action kinetics are used to generate the rate laws describing the flux
through each reaction. The resulting expressions are then combined by means of Kirchhoff's node law
to generate balance equations for each metabolite in the system.

The Design Space formalism (Savageau et al., 2009) can be applied to decompose this set of equations into
different cases, each having a unique set of dominant terms and being valid within a specific region in parameter
space. One such case for this system is case number 27, with case signature [22 11 21]. This signature contains
three pairs of indices, one for each equation, indicating the identity of the positive and negative term dominating
in each equation. Visual inspection of the matrix Ap for this case reveals the presence of a linear dependency
among its rows, and, thus, there is no unique steady-state solution. Nevertheless, the system of algebraic equa-
tions is consistent and a solution (or set of solutions) can be found by analyzing global dominance conditions on
the influxes and effluxes that describe a mass balance around the cycle present in this system.

Once the extended system has been automatically set up, the Design Space formalism can be applied to
identify valid sub-cases that resolve the cyclical case. Table S1 shows S-system equations for each one of
the six valid sub-cases generated from the extended system. Note the special form of these equations. S-
systems originating from the dominance analysis of the global dominance equation are used to replace the
differential equation for the pool with the dominant efflux. For instance, the expression aj1 — 811X; (ob-
tained when the first positive and first negative term in the global dominance equation are dominant) is
used to replace the differential equation for X; (refer to sub-case 1 in Table S1). Additionally, this expres-
sion is scaled to match the coefficient of the negative term in the Full System (i.e., the original set of equa-
tions). Consider for instance the expression a1 — 2833X3, which is obtained when the first positive and third
negative term in the global dominance equation are dominant. Since the coefficient of the negative term in
the original equation is 1, the scaled expression Ja;1 — 333 is used to construct sub-case 3 of Table S1.

Owing to the special way in which terms stemming from the global dominance equation are used to
construct equations for sub-cases, a three-digit case signature is introduced. This allows for tracking the
origin of terms that make up the S-systems of these sub-cases. In addition to the indices of dominant pos-
itive and negative terms contained in the traditional two-digit signature, the extended three-digit signature
contains the index of the equation from which its positive dominant term originated. Consider, for instance,
the case signature for sub-case 27_5in Table ST and its associated S-system. The signature [22 312 21] dic-
tates that differential equations for pools X; and X3 are constructed by picking dominant terms in the tradi-
tional way, whereas the differential equation for pool X; is made from the first positive term of the third
equation and the second negative term of the second equation.
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Conserved Moieties Are Handled by Considering the Total Size of Conserved Pools

Pools of metabolites with constant total concentration, on some timescale, are a common feature of com-
plex metabolic and signaling systems. They involve conserved moieties, which are groups of atoms that
remain intact in all reactions of a system. AMP, NAD*, and NADP™ are prominent examples of conserved
moieties in energy metabolism (Haraldsdéttir and Fleming, 2016). Consider the simple system in Figure 1C
with three components linked by a conservation relationship. As in the case of the cycles in section “Cycles
Are Resolved by Considering Global Dominance Equations,” the presence of conservations causes the ma-
trix Ap to be singular, since the three concentrations are not independent. Nevertheless, steady-state so-
lutions can be obtained by discarding one of the differential equations and adding the algebraic constraint
that the sum of the three concentrations must equal their conserved amount.

The analysis of the differential-algebraic system using the Design Space formalism involves the usual generation
of cases by picking dominant terms for each of the equations of the system. The three cases that result are shown
in Table S2. Note that each case is defined by only two differential equations and one algebraic constraint. In
order to capture the special way in which the equations are constructed for each case, the indices of the differ-
ential equation being deleted are set to zero in the case signature. Case 3, for instance, in which the differential
equation for pool Xj3 is missing, has a case signature of [11 11 00 13] to reflect this fact.

Metabolic Imbalances Are Treated by Considering Knife-Edge Conditions

Flux imbalances are frequently encountered in the metabolism of engineered microbial strains (Dahl et al.,
2013; George et al., 2014; Alonso-Gutierrez et al., 2017) and in inborn metabolic diseases such as phenyl-
ketonuria (Levy, 1999) and maple syrup urine disease (Haymond et al., 1973), often by the excretion of some
metabolite. Let us consider the simplest example of a metabolic pool as shown in Figure 1E with one input
(vo) and one output (v1) flux, where v is a constant and the output flux is described by a Michaelis-Menten
rate law v; = (VuXiKi') (1+X K,j)_w. K and V) represent the Michaelis constant and maximal reaction
rate, respectively. The change in concentration of metabolite X; over time can be described by the gener-
alized mass action system

% =vy — VMK,\’A1X1 D’ (Equation 11)
0=1+Ky'X; —D. (Equation 12)

where D represents an auxiliary variable introduced in the recasting process to describe the denominator
of the Michaelis-Menten rate law. Let us now consider the equations for the case with signature [11 21]:

X

% = v — VuKy,' X, D™ (Equation 13)
0= K,(41X1 - D, (Equation 14)

which together with its associated dominance condition
Ky Xi>1, (Equation 15)

imply
X

% = vy — V. (Equation 16)

This system does not have a steady-state solution. Indeed, Equation 16 only provides a consistency condi-
tion for the concentration of X; to remain unchanged over time: 0 = vy — V. We will refer to this kind of
constraint as a knife-edge condition. In general, we are interested in the behavior of the system when
knife-edge conditions are not satisfied, i.e., vp# Viy. Violating the knife-edge condition in a specific direc-
tion implies an extreme value for X;:X; — « or X; = 0. The validity of either situation is assessed by checking
the validity of the associated dominance conditions, as shown in Table S3. Taken together, these results
indicate that, for the system shown in Figure 1E, the concentration of the pool X; will steadily increase
over time, i.e., it will blow up if the system’s parameters fulfill the conditions K,(/Xw >1 and VOV,\j,1 > 1.

Note that the case with signature [11 11], and associated dominance condition, has a conventional steady-
state solution given by X; =Ky V;;' for Ki;'Xi<1. The general procedure for treating cases with multiple
knife-edge conditions is presented in section "Metabolic Imbalances are Treated by Considering Knife-
Edge Conditions” of the Supplemental Information.
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Analysis of a Biochemical System Exhibiting Multiple Singularities

For a case study, we have selected the protocatechuate degradation pathway of Acinetobacter sp. strain
ADP1. Protocatechuate is a chemical compound derived from phenolic species including p-cresol, 4-hy-
droxybenzoate, and numerous lignin monomers and is converted to B-ketoadipate by the pathway under
study (Harwood and Parales, 1996). The protocatechuate degradation pathway is one of the two branches
of the B-ketoadipate pathway and is widely distributed among taxonomically diverse eubacteria and fungi
(Harwood and Parales, 1996). The ecological importance of the B-ketoadipate pathway resides in its key
role in recycling vast amounts of aromatic material in the natural carbon cycle. From an industrial point
of view, the protocatechuate degradation pathway plays a central role in the valorization of lignin for the
production of fuels, chemicals, and materials (Linger et al., 2014; Salvachua et al., 2015) as well as in the
detoxification of environmental pollutants (Harwood and Parales, 1996). There are many microbes capable
of these industrially important processes in the context of toxic environmental hydrocarbons. Although
they may have similar if not identical pathways for these functions, their genomic architectures exhibit ma-
jor differences that are not well understood (Jiménez et al., 2002; Harwood and Parales, 1996). One of the
simplest of these architectures for the transport and catabolism of protocatechuate is found in Acineto-
bacter sp. strain ADP1. Its genetic system encodes a single polycistronic mRNA for transporter and cata-
bolic enzymes of the protocatechuate specific pathway, as well as several shared enzymes (Trautwein
and Gerischer, 2001; Dal et al., 2005). For our purposes, we shall focus only on the protocatechuate specific
pathway illustrated in Figure 2A (refer to Table S5 in the Supplemental Information for a summary of sym-
bols used in this section). The system is composed of a signaling cascade, a gene circuit, and a metabolic
module. The transcription factor (Pcal) functions as both a repressor (U;) and an activator (U;) and has a
conserved total concentration of Ur = U + U,. It controls the synthesis of a polycistronic mRNA (Ms3)
that encodes the transporter, PcaK (Ty), and several enzymes, three of which constitute this pathway: pro-
tocatechuate 3,4-dioxygenase, PcaGH (GHs), 8-carboxy-cis, cis-muconate cycloisomerase, PcaB (By), and 4-
carboxymuconolactone decarboxylase, PcaC (C;). The environmentally supplied substrate protocatechu-
ate (Pp) is transported into the cell where it becomes intracellular protocatechuate (Pg), which is both a
metabolic intermediate and the natural inducer for the transcription factor. The following metabolites in
the pathway are B-carboxy-cis,cis-muconate (CMs) and y-carboxymuconolactone (CLyg) (Dal et al., 2005).

This system exhibits all three types of singularities discussed in section “Strategies for Treating Three Types
of Singularities,” thus making it an excellent example for demonstrating the relevance of our work. It con-
tains a conservation relationship from the transcription factor, cycles from the reversible enzymatic reac-
tions within the metabolic pathway, and blow-ups from imbalances within the same pathway. The dynamics
of the system can be described by a set of differential algebraic equations involving 30 parameter values,
which can be considered unknown for our purposes here. Refer to Equations $34-545 in the Supplemental
Information for details on the mathematical model and to Tables S5 and Sé for an overview of the symbols
used and their biological context.

Filtering the Phenotypic Repertoire for Phenotypes of Interest

Enumerating the phenotypic repertoire of a system is typically the first step in the phenotype-centric
modeling strategy (Valderrama-Gémez et al., 2018). Even systems of moderate size can exhibit a surpris-
ingly large number of biochemical phenotypes. Therefore, the second important step is to filter the reper-
toire for the phenotypes of interest. For example, filtering for cases with 2 eigenvalues with positive real
part can be used to identify oscillatory phenotypes (Lomnitz and Savageau, 2014), filtering for cases with
1 eigenvalue with positive real part can be used to identify multi-stability and hysteresis (Fasani and Sav-
ageau, 2013), and filtering for a logical function consisting of a pattern of dependent variables that in-
crease, decrease, or remain unchanged in response to a change in an independent variable can be used
for model discrimination (Lomnitz and Savageau, 2016a). Since all of the phenotype characteristics can
be exported from DST3 to an Excel spread sheet, many types of user-defined filters can be customized
to meet the user’s needs (see part 3 of the tutorial contained within the DST3 Docker image for an
example).

Here, we show how one can progressively filter the repertoire of the protocatechuate system to narrow the
focus on phenotypes of interest. If we allow for all possibilities, DST3 shows that the system represented in
Figure 2A is capable of exhibiting 3,450 valid phenotypes, of a total of 10,368 potential phenotypes (Fig-
ure S7). However, we can progressively filter this list automatically to include only those phenotypes of in-
terest. In the context of this case study, we are interested in the steady states of this system that maximizes
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Figure 2. Integrated System Exhibiting Multiple Singularities and its Characterization by DST3

(A) The signaling module responds to the inducer signal Pg, which stimulates the conversion of the transcription factor
from the repressor Us into the activator U, form. The regulator controls the synthesis of a polycistronic mMRNA molecule
M3, from which four proteins T4, GHs, Bs, and C; are translated. Transporter T, catalyzes the import of metabolite Pg into
the cell from an external pool Py. Enzymes GHs and B then catalyze the reversible conversion of Pg into CMg and CMj into
Clio. The last enzyme C; catalyzes the conversion of ClLyg into the end-product B-ketoadipate enol-lactone (not shown).
(B) A Design Space Plot around phenotype 7633 is shown. The white dot represents the operating point of the system,
which is automatically calculated using the Analyze Case tab of the DST3 user interface. Parameter values predicted for
this operating point are: Ky = 0.316227766017, Ky = 0.1, Kpo = 10.0, Kyss = 1.0, Kuse = 1.0, Kygs = 1.0, Kver = 1.0, Kz =
1.0, KeqS = 100, Keqé = 10, UT = 10, P() = 10, a1 = 10, A3basal = 01, A3max = 10, 3min = 001, o4 = 10, a5 = 10, g = 10,
a7 = 10.0, By = 1.0, B3 = 1.0, Bs = 1.0, Bs = 1.0, Bs = 1.0, B7 = 1.0, kewa = 1.0, kewts = 1.0, keats = 1.0, keatr = 1.0; Kinetic
order(s): m = 2, p = 2; Parametric constraints: o.3max >%3basal >%3min-

(C) ATrajectories Plot is used to characterize the operating point shown in (B) The solid gray line represents the evolution
of the system starting from an initial state in which all concentrations are set to 0.001. The gray star represents the steady
state reached by the system after numerical integration for 500 time units. Refer to Table S7 for further details on the
numerical solvers used by DST3. The black dot next to the gray star represents the steady state predicted by DST3 for
phenotype 7633 using linear algebra.

(D) The operating point of the system has been modified by decreasing kcats from 1.0 to 0.01 so that it is now contained
within the region of the pathological phenotype 7718.1.
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Figure 2. Continued

(E) A Trajectories Plot is used to characterize the operating point shown in (D) The temporal behavior of metabolite pools
Pg and CMj is shown. CMs reaches a steady state of approximately 0.01, whereas the concentration of Pg continuously
increases over time and does not reach a steady state. The gray star represents the state of the system after numerical
integration for 50,000 time units. When integrated for a longer period of time, the gray star continues moving further to
the right at a constant CMg concentration, till it eventually reaches and passes the location of the black dot. Initial
conditions are the same as in (C).

the pathway flux, while minimizing the accumulation of toxic intermediates. First, if we filter for phenotypes
that are non-pathological by not checking for blow-ups (Figure S5), i.e., that do not have imbalances result-
ing in concentrations that continuously increase or decrease, then the number of non-pathological pheno-
types is 384 and they are all stable (all eigenvalues have a negative real part). Second, if we filter these for
phenotypes that respond to changes in the environmental substrate Py, by requiring a non-zero logarithmic
gain in metabolite concentrations and pathway flux in response to a change in substrate, then there are
only 192 responders. Third, if we filter these for phenotypes that are inducible, by requiring a non-zero log-
arithmic gain in mRNA in response to changes in substrate, then there are only 64 inducible responders.
Finally, if we group the inducible phenotypes for specific non-zero logarithmic gains in mRNA, then we
find only three values: L(M3, Pg) =2 with 32 examples, L(Ms, Pg) =4 with 28 examples, and L(M3,Pg)= 6
with 4 examples.

Following this initial screening, the DST3 can be used to characterize automatically the inducible re-
sponders by comparing them on the basis of three functional criteria: global robustness to a change in
phenotype, energy index (maximum flux with minimum production of protein machinery), and toxicity in-
dex (maximum flux with minimum accumulation of toxic intermediates). Global robustness is determined
by the product of the global tolerances (Coelho et al., 2009) for all of the parameters of the system, which
is a proxy for the volume of the phenotype’s polytope in the system Design Space—note that the ability to
automatically compute phenotypic volumes is exclusive to DST3. We define the energy index as the cost/
benefit determined by the ratio of the logarithmic gain in mMRNA, which is a proxy for the increased expen-
diture of energy for protein production, to the logarithmic gain in the pathway flux produced,
energy index = L(Ms,Py)/L(F,Po). The toxicity index is the cost/benefit determined by the ratio of the log-
arithmic gain in the toxic intermediate, protocatechuate (Pg), to the logarithmic gain in the pathway flux
produced, toxicity index = L(Ps,Po)/L(F,Po).

The results summarized in Table 1 show that 32 of the 64 phenotypes have the best global robustness, best
energy index, and best toxicity index. The next 28 phenotypes have intermediate values for these three
criteria and the remaining 4 phenotypes have the worst global robustness and worst energy and toxicity
indices. There is a clear trade-off revealed by this analysis. The pathway flux can be increased by moving
from the phenotypes in the first group to those in the third group, but only by sacrificing global robustness,
energy efficiency, and toxicity. Note that generation of the results in Table 1 did not require any kind of
simulation or optimization. Rather, it involved the application of linear algebra to analyze phenotype-spe-
cific properties, such as logarithmic gains and phenotypic volumes, that were used to compare a given set
of biochemical phenotypes using three different criteria: global robustness as well as energy and toxicity
indices. After values for these criteria were calculated, the set of phenotypes were distributed into three
different groups. Then, these groups were sorted by its total normalized volume (global robustness).

Phenotype Analysis Reveals Dynamic Properties of the System

Let us consider the phenotype numbered 7633 as a representative member of the best class, which could
conceivably have been selected in nature. We start our analysis by using DST3 to predict specific values for
each one of the 30 parameters required to fully define an operating point of the system within phenotype
7633 along with its phenotypic boundaries. For that, we use the Analyze Case tab (Figure S9A) within the
Main Menu of the DST3 user interface. Note that an analogous analysis can be performed for any other
phenotype.

Since we have the ability to characterize the Full System exhibiting this phenotype, we can ask if there might
be a strategy for further improving its performance (section “Logarithmic Gains Can Guide the Design of
Engineering Strategies”) or for avoiding dysfunction through rational engineering. An obvious dysfunction
occurs when there is a violation of one of the most basic design principles, namely, the maximal velocity of a
downstream enzyme should be greater than that of the upstream enzymes in the pathway (Savageau et al.,
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Group
1 2 3
Number of phenotypes in 32 28 4
group
Representative phenotype 7633 7658 7593
L(M3,Po) 2 4 )
L(Ps,Po) 1 2 3
L(CMy, Po) 1 1 2
L(CLo,Po) 1 1 1
L(F,Po) 3 5 7
Normalized volume of 1.94 x 1078 9.46 x 10~ 9.72 x 107'®
representative phenotype
Total normalized volume of 5.61x 1077 532x 10" 3.40 x 107"
group
Energy index 0.67 0.80 0.86
Toxicity index 0.33 0.40 0.43

Table 1. Repertoire of 64 Biochemical Phenotypes of the Protocatechuate Pathway that Are Responding to
Substrate, Are Stable and Inducible

This table was generated for the system described by Equation S46-S62 of the Supplemental Information using the tab
Phenotypic Repertoire of the Main Menu of the user interface of DST3 (Figure S6B) and filtered for desirable phenotypes
as described in the main text.

2009). The relation of this pathology to the phenotype 7633 is made evident in a Design Space Plot (Fig-
ure 2B) with the turnover number (keats) for the enzyme converting intracellular protocatechuate (Pg) to
B-carboxy-cis,cis-muconate (CMo) on the y axis. The relative location of physiologically relevant pheno-
types coded by color is shown in Figure 2B. The operating point of the system, which was automatically
calculated by DST3, is represented by the white dot within the valid region for phenotype 7633 (red poly-
tope). In this specific view of the Design Space, the white blank region in the lower portion of the plot in-
dicates the location of pathological phenotypes exhibiting metabolic imbalances.

The dynamical behavior of the Full System, when its steady-state operating point is located within the valid
region for phenotype 7633, can be studied by simulation using a Trajectories Plot (Figure 2C), one of three
types of plots available in the Full System tab of the Main Menu. This plot shows the evolution of the system
starting from a set of initial conditions to reach its steady state, which is marked by a gray star in Figure 2C.
The black dot in this figure represents the steady-state prediction made by DST3 for phenotype 7633 using
linear algebra. The relative position of the black dot and the gray star in the trajectories plot demonstrates
the accuracy of DST3 when approximating steady states. The Full System tab also allows dynamic pheno-
types (case number and signature) to be reported at each point in the solution when there is a change in
dominance conditions; this is currently implemented as an exportable.xlsx file (data not shown). In the spe-
cific example of the trajectory shown in Figure 2C, the initial conditions of the system locate its operating
point in phenotype 1515. As the concentrations of the pools in the system evolve toward a steady state, the
operating point of the system transits through phenotypes 649 and 721 to finally reach its steady state
located within phenotype 7633.

DST3 makes it possible to identify the nature of pathological phenotypes. By clicking the “Check for
Blowups” option in the construction of the Design Space (Figure S5), we obtain Figure 2D, which has
five additional phenotypes displayed (7718.1, 7754.1, 7758.1, 9030_10.1, and 9066_10.1). Note that the
ability to identify pathological phenotypes exhibiting metabolic imbalances is unique to DST3. The dynam-
ical nature of the pathological phenotypes contained in the lower portion of the Design Space Plot can be
trivially predicted. Decreasing the numerical value of ka5 while keeping all other parameter values con-
stant at the operating point of the system would lead to a steady increase of the toxic intermediate Ps.
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A Trajectories Plot (Figure 2E), with kc.ts decreased from its nominal value of 1 to 0.01, is used to charac-
terize the dynamics of the Full System when the operating point of the system is located within the region of
pathological phenotype 7718.1 (Figure 2D). In Figure 2E, the state of the system after numerical integration
using the IDA solver (refer to Table S7) is marked by a gray star, whereas the black dot represents the pre-
diction made by DST3 for phenotype 7718.1 using linear algebra (note that the value of 10'2is an arbitrarily
large value used to signify an approach to infinity). As expected, the numerical analysis of the Full System
indicates a continuous accumulation of the toxic intermediate Pg, whereas the intermediate CMo reaches a
steady-state value.

In summary, a comparison of the results obtained by numerical integration of the Full System (Figures 2C
and 2E) demonstrates the ability of DST3 to predict steady-state values when they exist and predict the
blow-up nature of a variable when it does not have a steady-state solution.

Logarithmic Gains Can Guide the Design of Engineering Strategies

Once a stable and globally robust operating point for a given system has been identified, one might be inter-
ested in finding strategies to increase the flux through a specific metabolic pathway or to increase the steady-
state concentration of certain intermediate metabolites. Here, we exemplify how an analysis of logarithmic gains
can be used to identify such strategies. Logarithmic gains are amplification factors relating changes in input sig-
nals (independent variables) to the resulting changes in output signals (dependent variables). The term param-
eter sensitivity is used instead of logarithmic gain when the effect of varying a parameter on a dependent variable
is analyzed. These parameter (in)sensitivities represent the local robustness of a system, in contrast to the global
robustness provided by the volume of the valid region of a phenotype in Design Space. Both logarithmic gains
and parameter sensitivities are properties that depend exclusively on the kinetic orders of the system and can be
calculated for concentrations or fluxes (Savageau, 1971a). DST3 allows the calculation of logarithmic gains and
parameter sensitivities using the tab Analyze Case of the Main Menu in the user interface (Figure S9A). For
simplicity, we will use the term logarithmic gain for both logarithmic gains and parameter sensitivities. Table
2 lists logarithmic gains for the phenotype 7633, the representative phenotype of the first group of phenotypes
with desired properties (Table 1).

A number of engineering strategies are contained in Table 2. For instance, interventions increasing the flux
through the metabolic pathway without altering the steady-state concentration of the potentially toxic
metabolic intermediate Pg are identified in the third column of Table 2 and are graphically represented
in Figure 3A, where each individual arrow represents a different strategy. Note that all these strategies
ultimately lead to an increase in the availability of the mRNA molecule M3 and can be categorized into
two groups. The first group contains strategies that directly increase the synthesis (by either increasing
a3max, decreasing the binding constant K, or increasing Kj) and reduce the degradation (by decreasing
the rate constant (83) of Ms.

The second group encompasses indirect strategies that point at increasing the steady-state concentration
of the activator form of the transcription factor U, by modifying rate constants (Pg or M3). An analogous
analysis can be done to identify strategies increasing the steady-state concentration of metabolic interme-
diates without increasing the pathway flux. We use the Full System tab within the Main Menu of the user
interface of DST3 (Figure S11) to demonstrate the validity of these predictions by means of two Titration
Plots. In each case, the maximal synthesis rate asmax is increased 100-fold and decreased 10-fold from
its nominal operating value of 1 and the effect on the pathway flux F (Figure 3B) and on the steady-state
concentration of the toxic metabolic intermediate Pg (Figure 3C) is computed for the Full System. As pre-
dicted by a logarithmic gain of L(F, azmax) = 1 for phenotype 7633, increasing azmax leads to an increase in
the steady-state flux through the metabolic pathway in the Full System. On the other hand, and as indicated
by a logarithmic gain of L(Ps,a3max) = O, increasing or decreasing asmax has no effect on the steady-state
concentration of Pg in the Full System. Thus, increasing asmax, Which can be experimentally achieved by en-
gineering the promoter region of the polycistronic mRNA or increasing the copy number of the pca
operon, from its nominal operating value can be used as a strategy to increase the flux through the meta-
bolic pathway without increasing the steady-state concentration of Pg.

DST3 Efficiently Locates Experimentally Observed Induction Patterns of the System

Trautwein and Gerischer (2001) experimentally characterized the effect exerted by the regulator PcaU from
Acinetobacter sp. strain ADP1 on the expression of the pca genes encoding the protocatechuate pathway
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Module Parameters Change Dependent Variables
M3 Ps CMy Clio F
Signaling o ! -2 0 0 0 -2
8 1 2 0 0 0 2
Gene Circuitry Ky 1 2 0 0 0 2
O3max 1 1 0 0 0 1
K> l -2 0 0 0 -2
B3 ! -1 0 0 0 —1
ay - 2 1 1 1 3
8, - -2 1 1 -1 -3
as - -2 =1 0 0 -2
Bs - 2 1 0 0 2
o - 0 0 -1 0 0
Be - 0 0 1 0 0
oz - 0 0 0 -1 0
87 - 0 0 0 1 0
Metabolism Keata - 2 1 1 1 3
Ko - -2 —1 =1 =1 =3
Po - 2 1 1 1 3
Keats - =2 —1 0 0 -2
Kisf - 2 1 0 0 2
Kears - 0 0 1 0 0
Kivier - 0 0 1 0 0
Keatr - 0 0 0 1 0
Kz - 0 0 0 1 0

Table 2. Logarithmic Gains for Phenotype 7633

This table was generated using the tab Analyze Case of the Main Menu in the DST3 user interface. Shown are logarithmic
gains for the steady-state concentration of the mRNA molecule M3; the three pathway intermediates Pg, CMy, and Cly;
and the flux through the metabolic pathway F. Parameters with no effect on any of the variables are not shown. A logarithmic
gain of O indicates no effect. Strategies for changing parameters that increase the pathway flux (F) while keeping the intra-
cellular protocatechuate concentration (Pg) unaltered are identified by an arrow in the third column. A minus sign indicates
the lack of an applicable strategy. Refer to Tables S5 and Sé for the biological context of the symbols used in this table.

studied in this work. Based on expression experiments under different conditions, Trautwein and Gerischer
suggested a bifunctional nature of the transcription factor PcaU, concluded that protocatechuate-depen-
dent regulation of the pca genes only occurs in the presence of a functional PcaU, and quantitatively char-
acterized the degree of induction of the pathway under different growth conditions. The authors measured
a 94-fold induction of the pathway, when the pca gene expression was compared between growth on suc-
cinate and growth on p-hydroxybenzoate—note that Acinetobacter sp. strain ADP1 degrades p-hydroxy-
benzoate via protocatechuate, which induces pca gene expression by activating the regulator PcaU. On the
other hand, succinate or its degradation products do not induce pca gene expression. This value repre-
sented the highest degree of induction observed by the authors among different growth conditions.

Trautwein and Gerischer (2001) also studied the effect that Pcal had on pca gene expression in the
absence of the inducer protocatechuate. This analysis involved a wild-type and a mutant strain missing
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Figure 3. Engineering Strategies for Phenotype 7633

(A) Six different strategies to increase the flux through the metabolic pathway without increasing the steady-state
concentration of Pg are shown. Each colored arrow represents an individual strategy. An arrow placed directly over a
synthesis or a degradation flux targets its associated rate constant: « for synthesis and 8 for degradation. Arrows located
within gray boxes usually target kinetic properties of an enzyme or a process. Blue upward arrows symbolize increase,
whereas red downward arrows represent decrease. All of the strategies represented in the figure are biologically feasible.
However, modifying kinetic properties of a given enzyme or process requires, in most of the cases, a greater experimental
effort than modifying its synthesis rate. The effects of perturbing the maximal synthesis rate of the mRNA molecule

M3 (a3max) on the flux through the metabolic pathway F and the steady-state concentration of Pg are shown in (B) and (C),
respectively. The operating point of the system is the one depicted in Figure 2B by the white dot. Vertical dashed lines
represent the nominal value of azmax, from which the system is perturbed. The black solid line represents the behavior of
phenotype 7633. The generation of each Titration Plot for the Full System involved numerical integration for 100 different
values of azmax within the range [0.1 100]. For each point, the system was integrated for 500 time units. To test its stability,
the system was integrated for increasing (blue solid line, not shown since covered by orange line) and decreasing azmax
values (orange line). Since the system follows the same path when integrated forward and backward, it exhibits mono-
stable behavior, as predicted by DST3 based on the number of eigenvalues with positive real part for phenotype 7633.
Discrepancies in the location of the solid black and orange lines are due to the simplifications made by the Design Space
formalism to generate mathematical expressions for phenotype 7633. However, note that the slope of the black line
accurately describes the slope of the orange line.

two-thirds of the pcaU gene. After growth on succinate, pyruvate, and acetate, the ApcaU derivative strain
expressed between 2- and 3.5-fold higher enzyme levels than the wild-type under the same conditions,
thus suggesting that PcaU can act as a repressor in the absence of high concentrations of the inducer
protocatechuate.

In section “Filtering the Phenotypic Repertoire for Phenotypes of Interest,” we filtered the phenotypic
repertoire exhibited by the network represented in Figure 2A to identify 64 phenotypes of interest that
were inducible and responded to changes in the concentration of the inducer protocatechuate. Here,
we ask the question whether these phenotypes are able to exhibit induction patterns that match the exper-
imental observations made by Trautwein and Gerischer (2001). Once again, we focus our analysis around
phenotype 7633, which is a representative phenotype for the group 1in Table 1. Figure 4A shows a Design
Space plot centered on this phenotype. The x axis corresponds to the logarithm of the concentration of the
environmentally supplied substrate protocatechuate Py, whereas the y axis corresponds to the logarithm of
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Figure 4. Induction Patterns of the Protocatechuate Pathway Around Phenotype 7633

(A) A Design Space plot around phenotype 7633 is shown. An asterisk next to the phenotype number denotes that at least
one boundary condition of the phenotype is on the edge. Parameter values are the same as in Figure 2A.

(B) The logarithm of the steady-state concentration of the mRNA molecule M3, a proxy for the expression level of the
protocatechuate pathway, is shown as a heatmap. These concentrations were calculated using S-system equations for
each one of the phenotypes shown in (A). This plot was created through the Create Plot tab of the Main Menu of DST3
(Figure S10). As mentioned before, the calculation of steady states within the Design Space formalism only involves matrix
operations, rather than numerical integration of the Full System with ODE or DAE solvers. Additionally, note that (B)
represents an overview of the potential expression patterns exhibited by the protocatechuate pathway as a function of the
external inducer concentration Py and the level of the regulator Ur. Four specific induction patterns (denoted by the white
dashed lines in [B]) are visualized by means of titration plots.

(C-F) (C) and (D) represent titration plots at two different constant levels of Ur(log;oUr = +2.5and — 2.5, respectively).
On the other hand, (E) and (F) represent titration plots at two different constant levels of the environmentally supplied
inducer protocatechuate (log;y(Po) = —2.0and + 2.0, respectively). All titration plots were generated using the
parameter values of Figure 2B and show the fold change between the lowest and highest level of the concentration of the
mRNA molecule M3. Black solid lines in each titration plot represent the behavior of specific phenotypes of the system.
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Figure 4. Continued

The generation of each titration plot for the Full System (orange lines) involved numerical integration for 100 different
values of the variable shown in the x axis Py or Ur, within the range [0.001 1000]. For each step within this range, the
system was integrated for 5,000 time units.

the total amount of the regulator PcaU present in the system (Ur). Parameter values are the same as in
Figure 2B.

To obtain a global view of the expression pattern exhibited by the system around phenotype 7633, we
generated a Steady State Concentration Plot (Figure 4B) of the mRNA molecule Ms. This plot has the
same axes as Figure 4A but shows the logarithm of the concentration of the mRNA molecule M3 as a heat-
map. Solid black lines in Figure 4B represent boundaries between phenotypes, whose identity can be ob-
tained from Figure 4A. Detailed induction patterns were extracted from Figure 4B by a series of two Titra-
tion Plots at different constant levels of the regulator PcaU (Figures 4C and 4D) and two Titration Plots at
constant levels of Pg (Figures 4E and 4F). The parametric trajectories followed by each one of these titration
plots are denoted by the white dashed lines in Figure 4B.

Taken together, these four titration plots correctly capture key experimental observations made by Traut-
wein and Gerischer (2001). Figure 4C along with Figure 4D clearly demonstrates that the protocatechuate-
dependent regulation of the pca genes only occurs in the presence of a sufficiently high concentration of
the regulator PcaU (Ur). If the concentration of PcaU is too low, or if the regulator is not present in a func-
tional form, increasing the concentration of protocatechuate (Pg) will not lead to a change from the basal
state of the system, as shown in Figure 4D by a constant steady-state concentration of the mRNA molecule
M3s. However, if Ut is increased to a sufficiently high value, a 100-fold pca gene induction by Pq is observed
(Figure 4C). Interestingly, this extent of induction is in agreement with the maximal induction factor exper-
imentally observed by Trautwein and Gerischer (2007).

Evidence for the repressor activity of PcaU at a low protocatechuate level is shown in Figure 4E by an in-
crease in the steady-state concentration of the mRNA molecule M3 as the total amount of Pcal (Ur) is
decreased. Interestingly, a calculated 10-fold repression is in the same order of magnitude as the experi-
mentally observed 2- to 3.5-fold repression. Note that, at a high concentration of the inducer, decreasing
the total amount of PcaU (Ut) leads to a decrease in the steady-state concentration of the mRNA molecule
M3, thus reinforcing the observation that PcaU acts as a repressor only at low concentrations of the inducer
protocatechuate.

The ability of the underlying mathematical model to correctly describe experimentally observed induction
patterns is not completely surprising, partly because the potential for these features was incorporated dur-
ing the construction of the model. Rather, the information extracted from Figures 4C-4F confirms the suit-
ability of the model for the mathematical analysis performed in section “Logarithmic Gains Can Guide the
Design of Engineering Strategies.” On the other hand, what is indeed surprising is the ability of the Design
Space toolbox to quickly identify and locate regions of a 30-dimensional parameter space exhibiting
desired properties without using any a priori knowledge of the involved parameters.

DISCUSSION

The Design Space Toolbox v.3.0 offers a variety of advantages over its predecessor version. By distributing
the software via a Docker image, the installation process of DST3 is reduced to installing Docker itself. All
necessary software dependencies and configurations are already contained within the Docker image, so
that users can focus on the actual application of the tools to the analysis of biochemical systems. To
improve software usability, DST3 comes with a more stable user interface. By integrating ODE and DAE
solvers into the user interface (see Table S7 for further details), it is now possible to directly test indepen-
dently the accuracy of predictions made by the Design Space formalism from within DST3. Additionally, the
capabilities of the computational engine of the Design Space Toolbox were extended. DST3 is now able to
analyze biochemical systems containing multiple, nested singularities, something that was out of the reach
of previous versions of the toolbox. We demonstrated the utility of DST3 by analyzing a case study of an
integrated biochemical system consisting of a signaling cascade, a gene circuit, and a metabolic pathway.
The system’s topology encoded a cycle, a conservation relationship, and the potential to exhibit blow-up
behavior.
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We applied a recently developed phenotype-centric modeling strategy (Lomnitz and Savageau, 2015; Val-
derrama-Goémez et al., 2018) to identify a stable and globally robust operating point of the system. This
process involved listing the phenotypic repertoire and filtering it for phenotypes of interest. From a total
of 3,450 valid phenotypes, 384 were found to be non-pathological, 192 of these physiological phenotypes
were responsive to changes in the concentration of environmental substrate protocatechuate (Pg), and 64
of the responder phenotypes were found to be inducible. The latter fell into three groups based on the
steepness of the induction characteristic: L(Ms,Pg) =2 with 32 phenotypes, L(Ms,Pp)=4 with 28, and
L(M3, Pg) =6 with 4. When compared on the bases of three criteria, global robustness, energy efficiency,
and toxicity, the first group was best and the third group was worst. An analysis of the volume of the 64
phenotypes with desired properties revealed that their combined volume only accounted for 5.61 %
107°% of the total volume of all non-pathological phenotypes identified by DST3 (see Table 1). When path-
ological phenotypes were considered (phenotypes exhibiting a blow-up behavior), this value decreased to
2.93 x 107%2%. This suggests that desirable phenotypes will have to be actively selected for by nature, since
the vast majority of parameter values chosen at random (increased entropy) would produce few desirable
phenotypes.

These figures highlight the power of DST3 and the phenotype-centric modeling strategy it enables.
Finding the reported operating point for the representative phenotype 7633 and characterizing its robust-
ness and associated boundaries in a 30-dimensional parameter space by means of parameter sampling
would have been computationally expensive and impractical. Indeed, current methods based on the
ensemble modeling approach (Tran et al., 2008) for robustness analysis (Lee et al., 2014) involve computa-
tionally expensive dense parameter sampling and numerical integration by ODE solvers for stability assess-
ment. These approaches require a long computational time for large model ensembles, and they do not
allow for a rigorous identification of stability boundaries. On the other hand, the Design Space formalism
decomposes the parameter space into a set of polytopes, biochemical phenotypes, whose boundaries and
properties are well defined. DST3 not only identifies these phenotypes but also allows the automatic pre-
diction of nominal parameter sets for their realization. This greatly facilitates deterministic simulations of
the Full System (Forger and Peskin, 2003; Zhou et al., 2005; Mirsky et al., 2009), which require parameter
values, as demonstrated in Figures 2C and 2E, Figures 3B and 3C, and Figures 4C—4F. Similarly, stochastic
simulations, which also require parameter values for propensity functions (Drawert et al., 2016), can benefit
from the innovations offered by DST3.

DST3 predictions regarding steady states, stability, and blow-up behavior were accurate, as demonstrated
by time course, titration, and trajectory plots generated for the Full System. By finding strategies to in-
crease the flux through the metabolic pathway of the system without increasing the steady-state concen-
tration of an intermediate metabolite, we aimed at showing a glimpse of the potential that the Design
Space formalism has to offer to the field of rational Metabolic Engineering (Bailey, 1991). Further potential
applications relate to the ability of DST3 to correctly identify and characterize blow-up phenotypes, which
are commonly found in metabolic systems. Often, in the process of strain development, intermediate
strains are generated, in which a given intermediate metabolite excessively accumulates or is totally
consumed, thus generating a metabolic imbalance within the cell. This decreases strain fitness and can ul-
timately lead to cellular death (Dahl et al., 2013; George et al., 2014; Alonso-Gutierrez et al., 2017). DST3 is
able to identify regions in the parameter space leading to metabolic imbalances and to provide clues to
rectify these phenotypes. For instance, consider the operating point of the system shown in Figure 2D,
which is located within the blow-up phenotype 7718.1. Inspection of the Design Space plot around this
phenotype indicates that increasing the value of keas to values larger than 0.1 would place the operating
point of the system within phenotype 7705, 7633, 4,177 or 5,473_6, all of which exhibit a stable, non-path-
ological steady state. The specific location of the operating point within any of these phenotypes, and the
resulting behavior, will depend on the extent of the increase. Alternative, and more practical strategies to
rectify the pathological behavior of an operating point located within phenotype 7718.1 include increasing
the amount of the PcaGH enzyme by cloning its gene sequence on a controllable plasmid or engineering its
ribosomal binding site.

The application of mechanistic models for the identification of metabolic engineering strategies has been
rather limited. This has been mainly caused by a lack of knowledge of associated parameter values. As a
consequence, constraint-based modeling has been the method of choice applied to rationally guide meta-
bolic engineering strategies (Valderrama-Gémez et al., 2017). By enabling a mechanistic, phenotype-
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centric modeling strategy not dependent on parameter values, the Design Space formalism and associated
toolbox offers enormous potential for the field of metabolic engineering.

Elucidating biological design principles is another important area for application of the Design Space
formalism that was not explored in this work owing to space limitations. In the Design Space, boundaries
delimiting biochemical phenotypes are linear functions of the system'’s parameters in logarithmic coordi-
nates. Thus, design principles can be readily identified in the form of mathematical inequalities involving
the parameters of the system. These ideas were applied by Fasani and Savageau (2013) to study properties
of toxin-antitoxin systems, which have been linked with the medically relevant persister phenotype ex-
hibited by certain bacterial strains. The study revealed factors affecting the frequency of persisters in the
population, such as the overall number of toxin-antitoxin modules and the size and position of the bistable
region, a property emerging from the system’s architecture.

There are many examples of systems that appear to perform the same function, and yet they exhibit radi-
cally different genomic architectures, the reasons for which are poorly understood. An example is provided
by the protocatechuate degradation pathway studied in this work. It is one of the two branches of the B-ke-
toadipate pathway, a chromosomally encoded convergent pathway for aromatic compound degradation
that is widely distributed in soil bacteria and fungi. Enzyme studies suggest that the pathway is highly
conserved in diverse bacteria; however, its regulation and gene organization differ greatly (Harwood
and Parales, 1996). For instance, the pathway genes from Pseudomonas aeruginosa and P. syringae are ar-
ranged in three and four different clusters, respectively. By contrast, all genes are arranged in a single clus-
ter in Acinetobacter sp. ADP1 (studied in this work) and in P. fluorescens (Jiménez et al., 2002). It has been
suggested that evolutionary processes have shaped moldable aspects of the B-ketoadipate pathway to
optimally serve diverse lifestyles of bacteria (Harwood and Parales, 1996). DST3 could be used to compare
and contrast inherent aspects of each system, such as its dynamic properties, induction characteristics, and
trade-offs regarding energy and toxicity, thus potentially allowing the elucidation of underlying design
principles used by nature to create the alternative genomic architectures observed in organisms with
different environments and lifestyles.

Limitations of the Study

Even moderate-sized systems are capable of exhibiting a large number of biochemical phenotypes. The ability
to filter the repertoire for specific phenotypes is limited by currently available filtering criteria: hysteretic switches,
limit cycle oscillations, global robustness, and logical patterns of system-wide increasing and decreasing re-
sponses to a given input stimulus. Although we are developing additional criteria, users may need to develop
criteria to characterize phenotypes specifically of interest to them. Although the rigorous definition of bound-
aries between phenotypes is of primary focus in the novel phenotype-centric modeling strategy, three limitations
have their origin in the mathematical transformations used to decompose the Full System into a finite set of
dominant biochemical phenotypes (represented by S-Systems) and to mathematically analyze them in the log-
arithmic space. (1) Numerical accuracy, which becomes undefined at boundaries between phenotypes in param-
eter space where there is no clear pattern of dominance. We denote the extreme case when the operating point
of the system is directly located on a phenotypic boundary by a phenotype number with an asterisk. This limi-
tation can be easily overcome by placing the operating point of the system far away from a phenotypic boundary.
The Design Space Toolbox provides necessary functionalities to modify the operating point of the system
accordingly (see the tutorial contained in the Docker image under /Tutorials/Tutorial_DST3). (2) The logarithmic
transformation employed to linearize S-System equations causes trivial solutions to be ignored. In such a solu-
tion, at least one of the dependent variables has a steady-state value of zero. We are currently implementing
computational routines that address this limitation. (3) The description of some processes, such as the mem-
brane potential, require mathematical functions (e.g., exponential functions) that cannot be transformed trivially
into the GMA form, which in the Design Space formalism is used to represent the Full System. An approximation
by rational functions is necessary, and in most cases generating the right approximation requires some expertise.
We will be addressing this topic in a future study.

Resource Availability
Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-
tact, Michael A. Savageau (masavageau@ucdavis.edu).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability
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The Docker images used by DST3 are freely available at https://hub.docker.com/r/savageau/dst3.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/}.is¢i.2020.101200.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the US National Science Foundation, Grant number MCB

1716833.

AUTHOR CONTRIBUTIONS

Conceptualization, M.AS., RAF.,, J.G.L,, and M.AV.-G.; Methodology, M.A.S. and M.A.V.-G.; Software,
J.G.L. and M.AV.-G.; Validation, M.AV.-G. and M.A.S.; Investigation, M.A.S. and M.A.V.-G.; Writing,
M.AV.-G. and M.A.S.; Supervision, M.A.S.; Funding Acquisition, M.A.S.

DECLARATION OF INTERESTS

The authors declare no conflict of interests.

Received: January 21, 2020
Revised: May 4, 2020
Accepted: May 21, 2020
Published: June 26, 2020

REFERENCES

Alonso-Gutierrez, J., Koma, D., Hu, Q. Yang, Y.,
Chan, L.J.G., Petzold, C.J., Adams, P.D., Vickers,
C.E., Nielsen, LK., Keasling, J.D., and Lee, T.S.
(2017). Toward industrial production of
isoprenoids in Escherichia coli: lessons learned
from CRISPR-Cas9 based optimization of a
chromosomally integrated mevalonate pathway.
Biotechnol. Bioeng. 115, 1000-1013.

Alves, R., and Savageau, M.A. (2003).
Comparative analysis of prototype two-
component systems with either bifunctional or
monofunctional sensors: differences in molecular
structure and physiological function. Mol.
Microbiol. 48, 25-51.

Andersson, C., Fihrer, C., and Akesson, J. (2015).
Assimulo: a unified framework for ODE solvers.
Math. Comput. Simul. 116, 26-43.

Bailey, J.E. (1991). Toward a science of metabolic
engineering. Science 252, 1668-1675.

Boettiger, C. (2015). An introduction to Docker for
reproducible research. ACM SIGOPS Oper. Syst.
Rev. 49, 71-79.

Coelho, P.M., Salvador, A., and Savageau, M.A.
(2009). Quantifying global tolerance of
biochemical systems: design implications for
moiety-transfer cycles. PLoS Comput. Biol. 5,
e1000319.

18 iScience 23, 101200, June 26, 2020

Dahl, H.R., Zhang, F., Alonso-Gutierrez, J.,
Baidoo, E., Batth, T.S., Redding-Johanson, A.M.,
Petzold, C.J., Mukhopadhyay, A., Lee, T.S.,
Adams, P.D., and Keasling, J.D. (2013).
Engineering dynamic pathway regulation using
stress-response promoters. Nat. Biotechnol. 37,
1039-1046.

Dal, S., Trautwein, G., and Gerischer, U. (2005).
Transcriptional organization of genes for
protocatechuate and quinate degradation from
Acinetobacter sp. strain ADP1. Appl. Environ.
Microbiol. 71, 1025-1034.

Drawert, B., Hellander, A, Bales, B., Banerjee, D.,
Bellesia, G., Daigle, B.J., Douglas, G., Gu, M.,
Gupta, A., Hellander, S., et al. (2016). Stochastic
simulation service: bridging the gap between the
computational expert and the biologist. PLoS
Comput. Biol. 12, €1005220.

Fasani, R.A., and Savageau, M.A. (2010).
Automated construction and analysis of the
design space for biochemical systems.
Bioinformatics 26, 2601-2609.

Fasani, R.A., and Savageau, M.A. (2013).
Molecular mechanisms of multiple toxin-antitoxin
systems are coordinated to govern the persister
phenotype. Proc. Natl. Acad. Sci. U.S.A 110,
2528-2537.

Forger, D.B., and Peskin, C.S. (2003). A detailed
predictive model of the mammalian circadian
clock. Proc. Natl. Acad. Sci. U.S.A 100, 14806—
14811.

George, KW., Chen, A., Jain, A., Batth, T.S.,
Baidoo, E.EK., Wang, G., Adams, P.D., Petzold,
C.J., Keasling, J.D., and Lee, T.S. (2014).
Correlation analysis of targeted proteins and
metabolites to assess and engineer microbial
isopentenol production. Biotechnol. Bioeng. 111,
1648-1658.

Harwood, C.S., and Parales, R.E. (1996). The
B-ketoadipate pathway and the biology of self-
identity. Annu. Rev. Microbiol. 50, 553-590.

Haraldsdéttir, H.S., and Fleming, R.M.T. (2016).
Identification of conserved moieties in metabolic
networks by graph theoretical analysis of atom
transition networks. PLoS Comput. Biol. 12,
e1004999.

Haymond, M.W., Karl, |.E., Feigin, R.D., De Vino,
D., and Pagliara, A.S. (1973). Hypoglycemia and
maple syrup urine disease: defective
gluconeogenesis. Pediat. Res. 7, 500-508.

Jiménez, J.I., Mifiambres, B., Garcia, J.L., and
Diaz, E. (2002). Genomic analysis of the aromatic
catabolic pathways from Pseudomonas putida
KT2440. Environ. Microbiol. 4, 824-841.


https://hub.docker.com/r/savageau/dst3
https://doi.org/10.1016/j.isci.2020.101200
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref17

iScience
Article

Klipp, E., and Liebermeister, W. (2006).
Mathematical modeling of intracellular signaling
pathways. BMC Neurosci. 7, S10.

Lee, Y., Lafontaine Rivera, J.G., and Liao, J.C.
(2014). Ensemble modeling for robustness
analysis in engineering non-native metabolic
pathways. Metab. Eng. 25, 63-71.

Levy, H.L. (1999). Phenylketonuria: old disease,
new approach to treatment. Proc. Natl. Acad. Sci.
USA 96 1811-1813.

Linger, J.G., Vardon, D.R., Guarnieri, M.T., Karp,
E.M., Hunsinger, G.B., Franden, M.A., Johnson,
C.W., Chupka, G., Strathmann, T.J., Pienkos, P.T.,
and Beckham, G.T. (2014). Lignin valorization
through integrated biological funneling and
chemical catalysis. Proc. Natl. Acad. Sci. U S A
111, 12013-12018.

Lomnitz, J.G., and Savageau, M.A. (2014).
Strategy revealing phenotypic differences among
synthetic oscillator designs. ACS Synth. Biol. 3,
686-701.

Lomnitz, J.G., and Savageau, M.A. (2015).
Elucidating the genotype-phenotype map by
automatic enumeration and analysis of the
phenotypic repertoire. Npj. Syst. Biol. Appl. 1,
15003.

Lomnitz, J.G., and Savageau, M.A. (2016a). Rapid
discrimination among putative mechanistic
models of biochemical systems. Sci. Rep. 6,
32375.

Lomnitz, J.G., and Savageau, M.A. (2016b).
Design Space Toolbox V2: automated software
enabling a novel phenotype-centric modeling
strategy for natural and synthetic biological
systems. Front. Genet. 7, 118.

Mirsky, H.P., Liu, A.C., Welsh, D.K., Kay, S.A., and
Doyle, F.J., 11 (2009). A model of the cell-
autonomous mammalian circadian clock. Proc.
Natl. Acad. Sci. U S A 106, 11107-11112.

Petzold, L.R. (1983). Automatic selection of
methods for solving stiff and nonstiff systems of
ordinary differential equations. Siam. J. Sci. Stat.
Comput. 4, 136-148.

Salvachua, D., Karp, E.M., Nimlos, C.T., Vardon,
D.R., and Beckham, G.T. (2015). Towards lignin
consolidated bioprocessing: simultaneous lignin
depolymerization and product generation by
bacteria. Green. Chem. 17, 4951-4967.

Savageau, M.A. (1969). Biochemical systems
analysis: II. The steady-state solutions for an n-
pool system using a power-law approximation.
J. Theor. Biol. 25, 370-379.

Savageau, M.A. (1971a). Concepts relating the
behavior of biochemical systems to their
underlying molecular properties. Arch. Biochem.
Biophys. 145, 612-621.

Savageau, M.A. (1971b). Parameter sensitivity as a
criterion for evaluating and comparing the
performance of biochemical systems. Nature 229,
542-544.

Savageau, M.A., and Voit, E.O. (1987). Recasting
nonlinear differential equations as S-systems: a
canonical nonlinear form. Math. Biosci. 87,
83-115.

Savageau, M.A., Coelho, P.M.B.M,, Fasani, R.A.,
Tolla, D.A., and Salvador, A. (2009). Phenotypes
and tolerances in the design space of
biochemical systems. Proc. Natl. Acad. Sci. U.S.A
106, 6435-6440.

¢? CellPress

OPEN ACCESS

Schuster, S., Fell, D.A., and Dandekar, T. (2000). A
general definition of metabolic pathways useful
for systematic organization and analysis of
complex metabolic networks. Nat. Biotechnol.
18, 326-332.

Strang, G. (2005). Linear Algebra and its
Applications, 4™ edition (Cengage Learning).

Tolla, D.A., Kiley, P.J., Lomnitz, J.G., and
Savageau, M.A. (2015). Design principles of a
conditional futile cycle exploited for regulation.
Mol. Biosyst. 11, 1841-1849.

Tran, L.M., Rizk, M.L., and Liao, J.C. (2008).
Ensemble modeling of metabolic networks.
Biophys. J. 95, 5606-5617.

Trautwein, G., and Gerischer, U. (2001). Effects
exerted by transcriptional regulator Pcal from
Acinetobacter sp. strain ADP1. J. Bacteriol. 183,
873-881.

Valderrama-Gémez, M.A., Kreitmayer, S., Wolf,
S., Marin-Sanguino, A., and Kremling, A. (2017).
Application of theoretical methods to increase
succinate production in engineered strains.
Bioproc. Biosyst. Eng. 40, 479-497.

Valderrama-Gémez, M.A., Parales, R.E., and
Savageau, M.A. (2018). Phenotype-centric
modeling for elucidation of biological design
principles. J. Theor. Biol. 455, 281-292.

Zhou, L., Salem, J.E., Saidel, G.M., Stainley, W.C.,
and Cabrera, M.E. (2005). Mechanistic model of
cardiac energy metabolism predicts localization
of glycolysis to cytosolic subdomain during
ischemia. Am. J. Physiol. Heart Circ. Physiol. 288,
H2400-H2411.

iScience 23, 101200, June 26, 2020 19


http://refhub.elsevier.com/S2589-0042(20)30385-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref35
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref35
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref35
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref36
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref36
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref36
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref36
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref37
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref37
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref37
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref38
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref38
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref38
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref38
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref39
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref39
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref39
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref39
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref39
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref40
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref40
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref40
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref40
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41
http://refhub.elsevier.com/S2589-0042(20)30385-0/sref41

iScience, Volume 23

Supplemental Information

Mechanistic Modeling of Biochemical Systems
without A Priori Parameter Values

Using the Design Space Toolbox v.3.0

Miguel A. Valderrama-Gémez, Jason G. Lomnitz, Rick A. Fasani, and Michael A. Savageau



Supplemental Figures

Host Operating System
http://localhost:8888/ J
docker pull savageau/dst3

docker run -d -p 8888:8888 savageau/dst3

DST3 Assimulo
User
Interface

GNU
Scientific DST3 C DST3
Llorary Library Python

Package

C language
epuo) Aq
juswuoliAug uoyihd

\

A J

Figure S1. Architecture of DST3 and Its Interaction with the Host Operating System via Docker. Related to
Figures 2, 3 and 4. The three components of DST3 are integrated in a layered fashion. The C library is the
heart of DST3. It leverages the GNU Scientific Library (GSL) to perform numerical computations, specifically
matrix operations. A customized version of the GNU Linear Programming Kit (GLPK) is used to solve linear
programming problems within DST3. Google protocol buffers (Protobut/Protobuf-c) are used to write and
read data. Access to the C library from Python is provided by SWIG, which stands for Simplified Wrapper
and Interface Generator. This allows the creation of a DST3 Python Package. The DST3 User Interface is
based on widgets provided by the IPython Notebook. The Python environment is managed by Conda. The
standard Docker Image for DST3 is savageau/dst3. Advanced users might prefer savageau/dst3:python3,
which comes with a DST3 Python Package for Python 3.7.3.
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Figure S2. Overview of Menus and Windows Comprising the IPython-based User Interface of DST3.
Related to Figures 2, 3 and 4 as well as Table 1 and 2. The user interface consists of a collection of tabs,
buttons and text fields that facilitate access to computational tools contained in the DST3 C library. Data
can be saved to and loaded from .dsipy files. Tables generated from the menu Phenotypic Repertoire
and Full System can be exported to . x1sx files for further analysis. Additionally, parameter values can be
loaded from tables contained in files with the same extension. The User Interface of DST3 is built on legacy
code inherited from DST2. Its portability is guaranteed through the virtualization technology offered by
Docker.
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Figure S3. Phenotypic Deconstruction of a Biochemical System Using the DST3 Python Module. Related
to Figure 1. Three steps are involved in the computational Design Space analysis of any biochemical
system. First, an Equations Python object is generated by means of the class dspace.Equations. This
process involves recasting ordinary differential equations describing the systems’ dynamics into the GMA
form, followed by a further transformation into a list of strings according to syntax rules described in the
main text. Auxiliary variables stemming from the recasting process or introduced by conservation
constraints need to be declared explicitly using the key argument aux var. In a second step, the
Equations object is passed to the class dspace.DesignSpace along with necessary key arguments to
inform the computational engine about the presence of conservations, cycles or metabolic imbalances. The
output of this second step is a DesignSpace object. Methods associated with this object allow, among
other things, the generation of a list of strings containing identifiers of valid cases. In a third step, the
DesignSpace object can be used to generate Case objects using valid case identifiers as input. Each
Case Object contains a respective sSystem object. Methods associated with these two objects allow a
comprehensive characterization of each valid case, which includes, but is by no means limited to,
calculation of interior parameter sets, logarithmic gains, determination of dynamical stability, etc. Refer to
Lomnitz and Savageau (2016) and to the documentation contained in the Docker Image of DST3 for more
details and usage examples of the module dspace.
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Figure S4. Overview of the computational workflow implemented by DST3. Related to Figure 2. Three main
checkpoints define the set of computational algorithms applied to analyze a potential phenotype of a given
system. Routines to handle under-determined cases (conserved relationships, metabolic imbalances and
cycles) are exclusive to DST3. Refer to Section 2 of the Supplementary Information for details on the
mathematical treatment.
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T4. = a4*M3 - b4*T4
GHS5. = a5*M3 - b5*GH5
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C7. =a7*M83 - b7*C7
P8. = T4*kcat4*(KMOA-1)*P0*(D4A-1) + GH5*kcat5*(KM5fA-1)*
(Keq5/-1)*CM9*(D5A-1) - GH5*kcat5*(KM5fA-1)*P8*(D54-1)
CM9. = GH5*kcat5*(KM5fA-1)*P8*(D5A-1) + B6*kcat6*(KM6BfA-1)*
(Keq6/-1)*CL10%(D67-1) - GH5*kcat5*(KM5fA-1)*(Keq52-1)*CM9*
(D57-1) - B6*kcat6*(KM6fA-1)“CM9*(D6A-1)
CL10. = B6*kcat6*(KM6f*-1)*CM9*(D6/-1) - B6*kcat6*(KM6fA-1)*
(Keq6/-1)*CL10%(D67-1) - C7*kcat7*(KM7/-1)*CL10*(D7/-1)
F. = C7*kcat7*(KM7/-1)*CL10*(D7/-1) - F
0 =1+ (K172-n)*(U14n) + (K27-p)*(U2/p) - D3
0 =1+ (KM0*-1)*PO -D4
0 =1 + (KM5fA-1)*P8 + (KM5rA-1)*CM9 - D5
0 =1 + (KM6fA-1)*CM9 + (KM6rA-1)*CL10 - D6
0 =1+ (KM7~-1)*CL10 - D7

Auxiliary Variables = D3, D4, D5, D6, D7

Conservations 0 = UT-U1 -U2 ) o
Architectural Constraints
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Figure S5. Initial Input Window of the DST3 User Interface. Related to Figures 2, 3 and 4. Relevant
information defining the biochemical system under study such as its mame, equations, auxiliary variables,
parametric constraints and kinetic orders can be passed to the computational engine of DST3 through this
window. The conservations field (highlighted by the number 1 in the blue circle), as well as the checkboxes
for cycles (highlighted by the number 2 in the blue circle) and metabolic imbalances (e.g., blowing
phenotypes, highlighted by the number 3 in the blue circle) can be used to control computational routines
used by DSTS3 to analyze biochemical phenotypes.



A About Main Menu System Figures Tables

This software is a still under active development and may contain a number of bugs and issues. If you found a new bug in the stable or experimental version of the
design space toolbox; or would like to request an enhancement that has not yet been reported, please report it via email at mavalderramagomez@ucdavis.edu
You are using the Design Space Toolbox V3 iPython Notebook-based widget, a graphical interface for the Design Space Toolbox V3 originally created by Jason Lomnitz in

the laboratory of Michael A. and further by Miguel A. G

This software has been created for the analysis of mathematical models of biochemical systems. This library deconstructs a model into a series of sub-models that can be
analyzed by applying numerical and symbolic methods.

To begin, please enter the information in the required fields (marked by an "*") and optional fields. The Name field is used to save and load a model workspace, which
includes the system equations, tables and figures. The primary input into the widget are the system equations, represented by a list of strings.

The equations must satisfy the following rules:

1. Each equation has to be explicitly stated as:

1.1 A differential equation, where the "." operator denotes the derivative with respect to time.

1.2 An algebraic constraint, where the left hand side is either a variable or a mathematical expression. Auxiliary variables associated with the constraint must be explicitly
defined (unless the left-hand side is the auxiliary variable).

2. Multiplication is represented by the *** operator.

3. Powers are represented by the "A" operator.

4. Architectural ints are defined as ir ities, where both sides of the inequality are products of power-laws.
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Figure S6. About and Main Menu Tabs of the DST3 User Interface. Related to Table 1. A. The About tab
provides general information about DST3, its developers as well as an email address to report bugs.
Additionally, syntax rules to be followed for the string representation of the mathematical model are
provided. B. The Main Menu tab provides access to the main functionalities of DST3, which are contained
in six different action tabs: Phenotypic Repertoire, Analyze Case, Case Intersections, Co-localizations,
Create Plot and Full System. The Phenotypic Repertoire tab is shown in this panel. It allows listing and
filtering the phenotypic repertoire of the model according to different user-defined criteria (volume,
logarithmic gains, etc.). Refer to the tutorial contained within the DST3 Docker Image under
/Tutorials/Tutorial_DST3/Part1_DST3_User_Interface for additional details on each one of these six
action tabs.



About Main Menu System Figures Tables
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Number of Cases: 10368
System Signature: [1111311111111121221211312131312112]
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Typeset Equations?
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Figure S7. System Tab of the DST3 User Interface. Related to Figure 2 and Table 1. General information
of the system under analysis such as the maximal number of biochemical phenotypes it can exhibit, its
signature and its equations are provided within the System tab.

A About Main Menu System Figures Tables

Delete Selected Figures

Figures that will not be saved:

B About Main Menu System Figures Tables

Delete Selected Tables

Figure S8. Figures and Tables Tab of the DST3 User Interface. Related to Figures 2, 3 and 4 and to Table
2. The Figures (A) and Tables (B) tabs contain elements saved in the current working session or loaded
from data files. It is possible to visualize elements and delete both figures and tables from these tabs.
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Actions

Phenotypic Repertoire Analyze Case Case Intersections Co-localizations Create Plot Full System

Cases indicated by signature?
* Analysis for case:

Biological constraints:

Create Analysis
Options
Edit Symbols

Edit Parameters

Save Data

Phenotypic Repertoire Analyze Case Case Intersections Co-localizations Create Plot Full System

* Cases to intersect: z
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Biological constraints:
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C Actions
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* Slice variables:
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Create Co-Localization

Figure S9. Analyze Case, Case Intersections and Co-localizations tabs of the DST3 User Interface. Related
to Table 2. The Analyze Case tab (A) allows the generation of a comprehensive analysis of a given
phenotype specified by its case number. A central functionality provided by this action tab is the automatic
calculation of parameter values for the realization of the specific biochemical phenotype. This set of
parameters allows a more directed exploration and analysis of the parameter space and the behavior of
the system using the tabs Create Plot (Fig. S10) and Full System (Fig. S11). The Case Intersections (B)
and Co-localizations (C) tabs are used to study the relative position of a given set of phenotypes in the
parameter space.
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Phenotypic Repertoire Analyze Case Case Intersections Co-localizations Create Plot Full System

* X-Axis PO A Design Space (interactive)
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Figure S10. Create Plot Tab of the DST3 User Interface. Related to Figure 2, 3 and 4. The Create Plot tab
allows the generation of seven different types of plots, shown in the blue box. These plots allow the
visualization of various properties of the biochemical phenotypes of the system under study, such as their
spatial arrangement in the parameter space, their stability properties and their steady states.
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Figure S11. Full System Tab of the DST3 User Interface. Related to Figures 2, 3 and 4. The Full System
tab allows the characterization of the dynamic properties of the mechanistic model under analysis using
numerical solvers (ODE and DAE). Refer to Table S7 for an overview of the solvers available in DST3.
Three different types of plots can be generated in this tab: Time Courses, Titrations and Trajectories plots.
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Table S1. Cyclic Cases, their Signatures and Case Numbers. Related to Figure 1. Resolving the singularity
contained in case 27 (see Fig. 1B) involves a Design Space analysis of the sub-system described by Egs.
S13-S16. This analysis generates six sub-cases, each one of which is generated as dictated by a three-
digit signature. Note that the reference system of equations from which dominant terms are picked
according to the case signature is the Full System (Egs. S1-S3) and not the sub-system used to resolve
the singularity (Egs. S13-S16). The case numbers for the valid sub-cases have the parent case humber
with an underscore followed by a number associated with the sub-case; e.g., 27_3.

Sub-case 27_1

Sub-case 27_2

Sub-case 27_3

[111 11 21] [22 112 21] [22 11 112]
dX dX dX
7;=06”—ﬁ11X1 7;:2ﬁ31X3_2ﬁ12X12 7;:2ﬁ31X3_2ﬁ12X12
dX dX. 1 dX
dtz _ﬂ12X12 _ﬁ23X2 dl‘2 :Eall_ﬁszz dt2 :ﬂlzXlz _ﬁ23X2
aX aX. aX 1
j:ﬁstz_ﬁan j:ﬂstz_ﬂ31X3 dt3 :50511_:833)(3
Sub-case 27_4 Sub-case 27_5 Sub-case 27_6
[311 11 21] [22 312 21] [22 11 312]
ax dX. dX
7;:20(31 _ﬁ]]Xl 7;:2[331)(3_2[312/\/12 7;:21831)(3_2[312)(12
dX 170, dX
dt2 :ﬁlzXlz _ﬁstz dt2 =0y _ﬁszz dtz :ﬁlzXlz _ﬁzaXz
dX dX dX
T;Zﬂstz_ﬁ31X3 j:ﬂ23X2_ﬂ31X3 7;20531_1833)(3




Table S2. Conserved Cases and their Signatures. Related to Figure 1. The synthetic network shown in Fig.
1C can be decomposed into three different cases by applying the Design Space formalism. Dominance
analysis on the conservation constraint, i.e., Eq. S25, gives rise to each of these cases. Note that each

case lacks n__ differential equations, when compared with the Full System (Egs. S22-S25). The missing
differential equation in each case is identified by a pair of zeros in the case signature.

Case 3
[11 11 00 13]

Case 2
[11 00 11 12]

Case 1
[00 11 11 11]

e dx dX

Tl‘zzﬁnXl_nleXz Ttl:an)g_ﬁ”)(l 71‘1:0(”)(3_[3”1\/1
AX dx dX

T;Zﬁ21X2_a11X3 Tt}:ﬁﬂXz_anXB dl‘2 :ﬁlle_ﬁZIXZ
0 =CR - X, 0 =CR-X, 0 =CR-X,

Table S3. Blow-Up Cases and their Case Numbers for a Single Knife-Edge Condition. Related to Figure 1.
Each sub-case is defined by the violation of its knife-edge condition in one of two possible directions. Sub-

case 2.1 is valid because X] — o fulfills the associated dominance condition K;XI > ] . The same is

not true for sub-case 2.2 because X, — 0 does not satisfy this dominance condition. Computationally

determining the validity of each sub-case involves the solution of a linear program, as described by Fasani
and Savageau (2010); the only difference being the incorporation of additional inequalities to account for
the violation of the knife-edge conditions and associated extreme values for the chemical pools. Since the

linear program is formulated in logarithmic coordinates, a value of log X, =12 or log X, =—12 is used

when X |~ or X = 0, respectively. The case numbers for the valid sub-cases have the parent case
number with a period followed by a number associated with the sub-case. The total number of sub-cases

corresponds to 2" | where n,,.. refers to the number of knife-edge conditions in the system.

ij

Sub-case 2.1 Sub-case 2.2
Violation of knife-edge v, >V, v, <V,
Implied extreme value X, > o0 X, -0
Dominance condition oo-Kj'é > ] O-K[‘é >
Validity Valid Not valid




Table S4. Blow-Up Cases for Two Knife-Edge Conditions. Related to Figure 1. Since Mo = 2,thereis a
total of four sub-cases to analyze. Only sub-cases 2 and 3 are valid. Sub-cases 1 and 2 exhibit an
inconsistent violation of their knife-edge conditions. Sub-case 1.1 for instance, dictates &, > ¢, and
o, > X, which implies X, —coand X, — co. By replacing extreme values into these inequalities, one

obtains (@, >, which cannot be fulfilled, rendering sub-case 1.1 invalid. Dominance conditions do not
exist for this example because the Full System being analyzed is already an S-System.

Sub-case 1.1 Sub-case 1.2 Sub-case 1.3 Sub-case 1.4

o >, o <ca, o >, o <a,

Violation of knife-edge
g 052>X1 o,> X, o, <X, o, <X,
X, — oo X, —0 X — oo X, —0

Implied extreme values
P X, —> o0 X, —> o0 X, -0 X, >0
Dominance conditions None None None None

Validity Not valid Valid Valid Not valid




Table S5. List of Symbols Used in the Mathematical Formulation of the Protocatechuate Degradation
Pathway. Related to Figure 2. The biological identity and context of symbols used to represent pools
modeled in Eqs. S34-S44 is provided.

Module Symbol Name or Function Description
U Repressor form of the PcaU pelpngs to the IcIR family of _
1 transcription factor PcaU transcrlptlonal regulators (I?obR gubfamlly)
and carries a helix-turn-helix motif at the N
Signaling _ terminus. It acts as an activator in the
U, Activator form of the presence of the inducer protocatechuate and
transcription factor PcaU as a repressor in its absence (Trautwein and
Gerischer, 2001)
M Polycistronic mRNA It encodes pca genes for the degradation of
8 molecule protocatechuate (pcaBKCHG)
4-Hydroxybenzoate This tranqurter protein, encoded by the
T4 transporter gene pcak, is also able to transport
P protocatechuate into the cell.
Dimer protein. The a sub-unit is encoded by
Protocatechuate 3,4- pcaG, while the  sub-unit is encoded by
GHs dioxvgenase pcaH. It catalyzes the reversible conversion
Gene Y9 of protocatechuate to B-carboxy-cis,cis-
Circuitry muconate.
This protein is encoded by the gene pcaB. It
B B-carboxy-cis,cis-muconate  catalyzes the reversible conversion of (3-
6 cycloisomerase carboxy-cis,cis-muconate to y-
carboxymuconolactone.
This protein is encodeded by the gene pcaC.
c 4-carboxymuconolactone It catalyzes the conversion of y-
4 decarboxylase carboxymuconolactone to B-ketoadipate
enol-lactone
Environmentally suoplied Protocatechuate is a (toxic) chemical
Po rotocatechuatg PP compound derived from phenolic species
P including p-cresol, 4-hydroxybenzoate and
numerous lignin monomers and is converted
Intracellular to B-ketoadipate by the pathway under study.
Metabolism  Ps protocatechuate Intracellular protocatechuate induces the
transcription of pca genes via PcaU.
CM, B-carboxy-cis,cis-muconate  |ntermediate metabolites of the
protocatechuate degradation pathway
CLqo y-carboxymuconolactone




Table S6. List of Parameters Involved in Modeling the Pathway for Protocatechuate Degradation. Related
to Figure 2. The biological meaning of each one of the 30 parameters used in Eqs. S34-S45 is provided.

Module Parameter Biological Meaning
al Bimolecular rate constant for formation of U1 from Uz
Signaling ﬁl Monomolecular rate constant for decay of U1 to Uz
U r Total concentration of the transcription factor PcaU (U1 + Uz)
a3basal Rate constant for the basal transcription rate of the mRNA molecule M3
a Rate constant for the minimum transcription rate of the mRNA molecule M3
3min (under repression by U1)
o Rate constant for the maximum transcription rate of the mRNA molecule Ma
3max (under activation by Uz)
Kl Binding constant of U1 for the promoter of the mRNA molecule M3
K2 Binding constant of Uz for the promoter of the mRNA molecule M3
ﬂ3 Rate constant for the degradation of the mRNA molecule Ms
Gene 0(4 Rate constant for the translation of the protein T4 from the mRNA molecule M3
ircuitr . .
Circuitry ﬁ 4 Rate constant for the degradation of the protein T4
o Rate constant for the translation of the protein GHs from the mRNA molecule
5 Ms
ﬁs Rate constant for the degradation of the protein GHs
0(6 Rate constant for the translation of the protein Bes from the mRNA molecule Ms
[3 s Rate constant for the degradation of the protein Be
0{7 Rate constant for the translation of the protein Cz from the mRNA molecule M3
ﬁ7 Rate constant for the degradation of the protein C7
P0 Concentration of the environmentally supplied protocatechuate
kcat4 Turnover number of the enzyme T4
KMO Michaelis Menten constant of enzyme Ta
kcatS Turnover number of the enzyme GHs
K M5 f Michaelis Menten constant of enzyme GHs for the forward reaction
Metabolism '
KeqS Equilibrium constant for the reaction catalyzed by GHs
K M5 Michaelis Menten constant of enzyme GH5 for the reverse reaction
kcat p Turnover number of the enzyme Be
K M6 S Michaelis Menten constant of enzyme Bs for the forward reaction
K Equilibrium constant for the reaction catalyzed by Be



Mer Michaelis Menten constant of enzyme Bs for the reverse reaction

cat] Turnover number of the enzyme C~

M7 Michaelis Menten constant of enzyme C~

Table S7. Numerical Solvers Available in DST3. Related to Figures 2, 3 and 4. The Full System tab of the
DSTS3 user interface (Fig. S11) offers access to three different numerical solvers: a solver of ordinary
differential equations (ODE) and two solvers of differential algebraic equations (DAE). When the Full
System contains a conservation relationship in the form of an algebraic constraint, one of the two DAE
solvers is used to numerically integrate the Full System. In this work, all numerical integrations reported
were done using the IDA solver of the Sundials solver suite. The step size was 10 steps per time unit for
all analyses. Default values for other relevant parameters are listed below.

Numerical Solver

IDA (Sundials) RADAU5 ODEINT

Problem Type DAE DAE ODE

Available in Assimulo (Andersson et Assimulo (Andersson et Sci

Python Package al., 2015) al., 2015) Py
Variable-order, variable- Adams methods for non-stiff
coefficient backward problems (orders 1-12).

Integration differentiation formulas in Runge-Kutta method of =~ Backward differentiation

method fixed-leading-coefficient order 5 formulas (orders 1-5 with
form. The method order modified Newton iteration) for
varies between 1 and 5 stiff problems

Absolute

Tolerance 1.00E-06 1.00E-06 1.49E-08

Relative Tolerance 1.00E-06 1.00E-06 1.49E-08

Maximal number

of steps for each 1000 Solver-determined

integration point
in time




1. Transparent Methods

The theoretical foundation of the Design Space formalism was laid back in the 70’s (Savageau,
1969; Savageau, 1971a; Savageau, 1971b; Savageau, 1979). This early work introduced the
concept of S-systems and their mathematical characterization regarding dynamic stability of
steady states, logarithmic gains for signal amplification, and parameter sensitivities for local
robustness. Recently, these concepts were integrated to describe a generic approach to the
construction of the Design Space, a structured parameter space in which qualitatively distinct
biochemical phenotypes can be identified, counted and located (Savageau et al., 2009). Linking
regions of the parameter space with biochemical phenotypes has allowed the elucidation of
design principles and the introduction of a radically new phenotype-centric modeling strategy
(Lomnitz and Savageau, 2016; Valderrama-Gémez and Savageau, 2018). Over the last decade,
two computational implementations of the Design Space formalism have been developed. Rick
Fasani first introduced the Design Space Toolbox for MATLAB (DST1), a formal software
implementation automating key steps of this methodology. Fasani’s contribution included an
elegant mathematical description of the Design Space and a detailed explanation of its
construction (Fasani and Savageau, 2010). Later, Jason Lomnitz introduced the Design Space
Toolbox V2 (DST2) (Lomnitz and Savageau, 2016). DST2 consisted of a collection of tools
comprised of a stand-alone library, written in the C language, that implements its own symbolic
algebra engine and leverages open-source compiled libraries for linear algebra and linear
optimization (via the GLPK library). By using multi-threaded concurrent algorithms to speed up
calculations, DST2 took advantage of the parallelizable nature of the Design Space approach by
analyzing each biochemical phenotype of the system independently.

Here, we show how various computational tools are integrated to create DST3. We go on to
explain how Docker images and containers can be used to access DST3 on virtually any operating
system. Then, we briefly describe two components of DST3 that can be used to access the
computational capabilities of DST3: its user interface and its Python module. Refer to Ipython-
notebooks contained in the Docker image under /Tutorials/Tutorial_ DST3 for a detailed

description of the user interface.



1.1 Design Space Toolbox v.3.0

Innovations contained in DST3 aim at improving three key aspects of the software: utility,
usability and portability. By further developing the C library of DST3 to allow for the automatic
identification and mathematical characterization of various types of singularities, we increased the
scope of systems that can be analyzed by DST3, thus improving its utility. By enhancing stability
and functionality of the IPython-based user interface of DST3, we increased software usability for
users with limited programming knowledge. For advanced users, we generated a python module
that runs on python 3.7.3 and can be integrated into customized programs. Due to its various
external software dependencies, DST2 suffered from a limited portability. We address this issue
by distributing DST3 via Docker. This effectively renders Docker the only software dependency

necessary to run DST3 and guarantees portability across major operating systems.

1.1.1 Technology overview

Three main components make up DST3: A C library, a Python package and a user interface
(Fig. S1). All three components are interconnected, with the C library being the computational
engine that performs most of the numerical analyses. The Python package was designed to
provide high-level access to the C library, making further software development simpler and
faster. The user interface was built using IPython widgets and accesses the C library through the

Python module.

Four steps are required to install and access all components of DST3:

1. Install Docker on your operating system. Refer to

https://savageaulab.wordpress.com/installing-docker/ for instructions.

2. Download the latest DST3 image by typing the following command in a Terminal or Prompt
Window:
docker pull savageau/dst3
This will download the latest stable version of DST3 running on Python 2.7.3, for which a
user interface is available. For advanced users, a Docker image of DST3 running on
Python 3.7.3 (only the Python module is available) can be downloaded instead by typing:
docker pull savageau/dst3:python3



3. Start a Docker container to access DST3 by typing the following command in a Terminal
or Prompt window:
docker run -d -p 8888:8888 savageau/dst3
That command will create a container without read and write privileges in the host
computer. Files created within the container will be lost after the container is stopped. In

order to grant read and write privileges, the following command should be used instead:
docker run -d -p 8888:8888 —--mount

type=bind, source=/Users,target=/Documents/host savageau/dst3

Windows users should use:

docker run -d -p 8888:8888 —--mount

type=bind, source=//c/Users,target=/Documents/host savageau/dst3
4. Access DST3 by opening the following address on any internet browser:

http://localhost:8888/

Windows users can refer to further the instructions contained in the webpage:

https://savageaulab.wordpress.com/docker-image-for-the-design-space-toolbox-v3/

1.1.2 DST3 User Interface

DST3 comes with an updated and more stable Ipython-based user interface. Fig. S2 presents
a hierarchical overview of the different menus available. The gray box represents the initial menu,
from which the functionality of DST3 can be accessed. The About menu (Fig. S6A) provides
general information about the software, including its version, developers and an option to report
bugs. Syntax rules for equations are also contained in this menu. Analyses supported by DST3
can be accessed from the Main Menu (Fig. S6B). Results, in the form of figures and tables, are
managed by the Figures (Fig. S8A) and Tables menus (Fig. S8B), respectively. The System tab
(Fig. S7) contains general information about the specific set of differential equations subject to
analysis. It includes the name of the system, the total number of potential cases and its system

signature.

Action tabs contained in Main Menu include the following:

Phenotypic Repertoire: This window allows the user to list and filter biochemical phenotypes

— cases — according to their validity, case signature, log-gain values, number of eigenvalues with



positive real part and volume (Fig. S6B). The resulting phenotypic repertoire can be exported to

a .xlsx file or saved into the Tables menu if desired.

Analyze Case: This tab creates the full analysis of a case referenced by its case number or
case signature (Fig. S9A). This analysis includes the S-system equations that mathematically
define the case, conditions that need to be fulfilled for its validity, its steady state solution — if it
exists — and boundary constraints. For cases with a steady state solution, logarithmic gains for
dependent variables with respect to independent variables and parameters are calculated and
reported. For valid cases, a bounding box for the corresponding high-dimensional polytope is also
provided. Additionally, it is possible to estimate a set of parameter values located within this high-
dimensional polytope through linear programming. Global tolerances can be calculated from that
nominal parameter set or from any other parameter set within the polytope by calculating
respective lower and upper bounds for each parameter. The Analyze Case window also provides
eigenvalues for the respective S-system. Note that individual tables generated by the Analyze

Case tab can be saved into the Tables menu.

Case Intersections: For a given set of cases, this tab indicates if there is a region in
parameter space where the cases overlap (Fig. S9B). If this region exist, global tolerances are

reported for a parameter set located within the intersecting polytope.

Co-localizations: For a given set of cases and so-called slice variables, this tab indicates if
regions of validity for each case exist within the given slice (Fig. S9C). If the co-localization is
valid, global tolerances are reported. Additionally, Design Space plots can be generated to

visualize the co-localization of the cases.

Create Plot: This window allows the generation of multiple plots, which are useful in
characterizing the Design Space and its predictions for stability, steady state concentrations,
fluxes, etc. (Fig. S10). Environmentally determined independent variables and genetically
determined parameters are typically plotted on the x- and y-axes, and the selected phenotypic
characteristics are plotted as a heat map on the z-axis. Even though an explorative
characterization of the Design Space is possible via the interactive Design Space plot,
functionalities contained in the Create Plot window are more effective when used to characterize

a specific region of interest in the parameter space. This region can be usually found by combining



functionalities of the Phenotypic Repertoire and Analyze Case windows. Plots generated by

this window can be saved in the menu Figures.

Full System: This window allows the characterization of the temporal response of the original
set of differential equations under study (Full System), as well as the analysis of its stability
properties (Time Course, Titration and Trajectory Plots). This characterization is useful to assess
the accuracy of predictions made using the S-system approximations (Fig. S11). Analysis of
systems of differential algebraic equations (DAE) is performed through the python package
Assimulo (Andersson et al., 2015), while systems of ordinary differential equations (ODE) are
numerically solved by the ODEINT solver of the Python package Scipy. Refer to Table S7 for
further details. Results generated by this window can be saved in the menu Figures or exported

to .xIsx files for further analysis.

1.1.3 DST3 Python Module

The capability of the DST3 C library to identify special phenotypes can be enabled by
changing default values of arguments passed to classes Equations and DesignSpace. Both
classes are contained in the DST3 Python Package dspace and play a central role in generating
Python objects involved in any computational Design Space analysis, as shown in Fig. S3. The
input to the class Equations consists of a machine-readable string representation of the system
of equations describing the dynamics of the network. A string representation that can be parsed

by the computational engine of DST3 should be compliant with following syntax rules:

1. Each equation has to be explicitly stated as:

a. A differential equation, where the "." operator denotes the derivative with respect
to time.

b. An algebraic constraint, where the left-hand side is either a variable or a
mathematical expression. Auxiliary variables associated with the constraint must
be explicitly defined (unless the left-hand side is the auxiliary variable). Algebraic
constraints can be used to represent conservation relationships. In that case, they
should be placed after regular algebraic constraints. Additionally, they should
follow the form dictated by Eq. S21. When using the Python module, associated

auxiliary variables should be explicitly declared as ‘Xci’, with i=1,...,n_. This



definition is not necessary when using the DST3 user interface. In any case,

variable names ‘Xci’, with = 1,...,ncr are reserved for the computational engine

and should not be contained in the system of equations defined by the user.
2. Multiplication is represented by the "*" operator.
Powers are represented by the "' operator.
Architectural constraints are defined as inequalities, where both sides of the inequality are

products of power-laws.

In order to exemplify the generation of valid machine-readable string representations and the
usage of the DST3 Python module, we calculate valid cases for three different synthetic
biochemical systems, each one exhibiting a different type of singularity. For each system, five

lines of Python code are presented and discussed. Computational steps involve in each case:

—

Importing the DST3 python module dspace,
Defining a string representation for the system,
Generating an Equations object,

Generating a DesignSpace object,

o k> WM

Generating a list of valid cases.

Cycles

The synthetic network under analysis is described by Eqgs. S1-S3. Generating a string
representation of this system is straightforward and results in a list of three strings, one for each

differential equation, as shown in of the snippet below.

import dspace

egs_str = ['X1l. = all + 2*b31*X3 - bll*X1l - 2*bl2* (X1"2)"',
'X2. = bl2* (X172) - b23*X2 - b22*X2',
'X3. = a3l + b23*X2 - b31*X3 - b33*X3']
equations = dspace.Equations (egs str)
ds = dspace.DesignSpace (equations, resolve cycles=True)

ds.valid cases()



['1','2','3','4','5','6','7','8','10','12','13','14','15','16','
17','18','21",'22','26','27 1','27 2','27 3','27 4','27 5",
27 6','29','30"]

Since the system does not contain any auxiliary variable, the object eq_stringis passed as the
sole positional argument to the class dspace.Equations () to generate the Equations object,
which is stored in the variable equations. In order to identify and resolve the cycle encoded
within this system, the key argument resolve cycles is setto True and passed along with the
equations object to the class dspace.DesignSpace () t0 generate a DesignSpace object
which is stored in the variable ds. A list of valid cases is generated through the method
valid cases () of the ds object. Note thatcases 27 1, 27 2,.., 27 6 result from resolving

the cyclical case 27 (refer to Table S1).

Conservations

As discussed before, the system described by Eqgs. S22-S25. contains a conservation constraint
among its constituent pools, as defined by Eq. S25. According to the DST3 syntax rules, this
conservation relationship can be explicitly defined as an algebraic constraint and should be placed
in the last position of the string representation of the system (see of the snippet below).
Since the Python module is being used to analyze this system, an associated auxiliary variable

needs to be explicitly defined, as shown in

import dspace

egs str = ['X1. = all*X3 - bll*X1l"',
'X2. = bll*X1 - b21*X2"',
'X3. = b21*X2 - all*X3',

'0 = CR1 - X1 - X2 - X3 ']

equations = dspace.Equations(egs_str,
auxiliary variables=['Xcl'])
ds = dspace.DesignSpace (eq, resolve conservations=True,

number conservations=1)
ds.valid cases()

['1', 12', l3']



The computational engine of DST3 is informed about the conservation constraint by using two
key arguments: number conservations=1 and resolve conservations=True. Valid

cases can be printed by means of the method valid cases () of the ds object.

Metabolic Imbalances

The last example consists of a system containing one differential equation and one algebraic
constraint, as defined by Eqgs. S26-S27. For certain parameter values, this system has the
potential to exhibit a blow-up for variable X, . The class dspace.Equations is informed about

the algebraic constraint contained in the string representation by using the key argument
auxiliary variables=['D']. Similarly, the DST3 computational engine is configured to
check for blow-ups by using the key argument resolve instability=True, as shown in the

shippet below:

import dspace

egs str = ['X1. = Vo - Vm* (D"-1)*K"(-1)*X1',
"0 =1+ (K*-1)*X1 - D ']

equations = dspace.Equations(egs_str,
auxiliary variables=['D'])
ds = dspace.DesignSpace (equations, resolve instability=True)

ds.valid cases()

[ re , v 2 . 10 ]
Valid cases can be customarily printed using the method valid_cases() of the ds object. Note that
the case identifier 2.1 refers to the sub-case 2.1 of Table S3.
1.2 Data and Code Availability

The Docker images used by DST3 are freely available at

https://hub.docker.com/r/savageau/dst3

1.3 Additional Resources

A tutorial is available as various IPython notebooks within the DST3 docker image under
[Tutorials/Tutorial_DST3



2. Strategies for Treating Three Types of Singularities
2.1 Cycles are resolved by considering global dominance equations.

We start by setting up Egs. S1 to S3 to describe the change in time for the concentration of
each chemical species shown in Fig. 1A in the main text. Mass action kinetics are used to
generate rate laws describing the flux through each reaction of the network. The resulting
expressions are then combined by means of Kirchhoff’s node law to generate balance equations

for each metabolite in the network.

dX.
711:0‘11+21831X3_ﬁ11X1_2ﬁ12X12 (S1)
axX.

dl‘2 = ﬁlzXf - ﬁ23X2 _ﬂszz (S2)
X
T;Za31+ﬁ23X2_ﬁ31X3_ﬁ33X3' (S3)

The Design Space formalism can be applied to decompose this set of equations into different
cases, each having a unique set of dominant terms and being valid within a specific region in
parameter space. Egs. S4 — S6 represent one of those cases, which is defined by the case

signature [22 11 21] and the case number 27.

dX
71 =28, X, -2B,X; (S4)
t
dX
dtz = ﬁlzXl2 _ﬁszz (S5)
dX
T;Zﬁan_ﬁme (S6)

Necessary conditions for these terms to be dominant are described by Egs. S7 — S11:

200 B, X, >1 (S7)



267 5,X,>1 (S8)

BB, >1 (S9)
230(3_11X2 >1 (S10)
BB >1 . (S11)

It should be noted that the notation used in the computational algorithms differs from the
conventional notation in the main text, where parameters (b-vector) and independent variables (

v, vector) are separate, since both are treated here as independent variables ( y, vector). The b-

vector, which conventionally represented ratios of parameters, is now used to represent only
stoichiometry values. This facilitates the computational matrix operations.
By setting the left-hand side of Eqs. S4-S6 to zero, taking logarithms and rearranging, one

obtains Eq. S12, which exhibits the form of Eq. 8 in the main text:

2 0 1 0 -1 1 0
2 -1 0 |y,=| 0 || 1 0 -1 |y, (S12)
0 1 -1 0 0 -1 1

with le):( log X, logX, logX, )and yf:( logB, logB, logp,,

Throught this Supplemental Material, vectors Ag and y, are defined as in the first version of the
Design Space Toolbox (DST1, Fasani and Savageau, 2010). Visual inspection of the matrix 4,
reveals the presence of a linear dependency among its rows: row,(A4,)=—row,(A4,)—row,(4,)
. This causes matrix A, to be rank deficient [rank(A,)=2] and prevents the computation of a
unique solution for y, . Inthis case, rank(A,|B—A,y,) <rows(A4,),where rank(A,|B—A,y,)
refers to the rank of the augmented matrix that results from concatenating the matrix 4, and the

vector B— 4,y, (Strang, 2005), and the system of algebraic equations has the potential to contain

a single or multiple cycles (Fig. S4). lts solution(s) can be found by applying the Design Space



formalism to an extended set of equations. The modification of the system consists in adding a

so-called global dominance equation, which describes a mass balance around each cycle present

in the system. The following steps are involved in generating the extended set of equations:

1.

Identify set(s) of cyclical variables C by computing the null space of matrix A, . Cyclical
variables are characterized by non-zero row entries in the null space matrix. Note that the

number of cycles contained in 4, is defined by the number of columns of the null space:

col(Null(A,)). For the specific case being analyzed one obtains:

T
[Null(AD):I :[ 1 11 } meaning that the system contains one single cycle, with the

set of cyclical variables C={ X, X, X, }

Set up a global dominance equation for each cycle. This equation is a mathematical
representation of a mass balance around a given cycle in steady state. In the case of the
network considered in Fig. 1A, the global dominance equation will be a function of fluxes
entering and leaving the control volume delimited by the blue rectangle in Fig. 1B, i.e,
fluxes governed by rate constants «,,,c;,,[3,,,8,, and &;;. Global dominance equations

are constructed by weighting those fluxes using coefficients obtained from the null space

T
of matrix A, . In this specific case one obtains: [Null(z‘lg)} =[ 1 2 2 ], which yields

the following global dominance equation: 0=, — 8, X, —2X,B,, + 20, —2X ...

Generate extended sub-system by introducing the global dominance equation(s). Egs.
S13-S16 along with the conditions defined by Eqgs. S7-S11 define the extended sub-

system that should be used to resolve the cyclical case generated by Eqgs. S4-S6.

dx

Tt': 2B, X, -2B,X; (S13)
dx

BN =B, (S14)
dx

—SZﬂstz_ﬂ31X3 (S15)

dt



0=o,, +20, — B, X, -2B,,X,-2B.X,. (S16)

DST3 implements steps 1 to 3 in a recursive fashion to resolve multiple and nested cycles. Once
the extended sub-system has been set up, the Design Space formalism can be applied to identify
valid sub-cases resolving the cyclical case. Table S1 shows S-system equations for each one of
the six valid sub-cases generated from the extended system. Note the special form of these
equations. S-systems originating from a dominance analysis on the global dominance equation

(Eg. S16) are used to replace the differential equation for the pool with the dominant efflux. For

instance, the expression @, — 8, X, , which is obtained when the first positive and first negative

term in Eq. S16 are dominant, is used to replace the differential equation for X, (refer to sub-

case 27_1 in Table S1). Additionally, this expression is scaled to match the stoichiometric

coefficient of the negative term in the Full System (i.e., the original set of equations). Consider for
instance the expression ¢, —28,. X, , which is obtained when the first positive and third negative
term of Eq. S16 are dominant. Since the original stoichiometric coefficient of the negative term is

1
1 (see Eq. S3), the scaled expression —¢,, — B, X, is used to construct sub-case 27_3 of Table
2

Si.

2.2 Conserved moieties are handled by considering the total size of conserved pools.

Consider the simple system in Fig. 1C in the main text with three components linked by a
conservation relationship. Mass balance equations can be set up for each metabolite using the

rate laws shown in Fig. 1C:

dX,

—=nen (517)

dX,

o =r-r (S18)
ax, (S19)
—==y -7

dt 3 1°

Balance Egs. S17-S19 can be compactly expressed in matrix form to yield Eq. S20:

= =9r, (S20)



with S being the stoichiometric matrix and » a vector of rate laws describing the flux through

each reaction. The number of conservations 7 within the system is given Dby:

n, = col(Null(S™)), which equals 1 for the system under consideration.

Conservation relationships can be mathematically described as linear dependencies among

metabolite pools. They can be expressed in matrix form as:

0=CR-Null(S")' x X . (S21)

CR is a vector of independent variables and CR. expresses the total pool size of each
conservation. X represents a vector of concentration pools. Applying Eq. S21 to the system
defined by Egs. S17-S19 yields: 0=CR — X, — X, — X,. DST3 is able to handle biochemical

systems with single or multiple conservation relationships. For the system depicted in Fig. 1C,
Eqgs. S22-S25 represents an appropriate set of equations that can be analyzed by DST3 given

the conservation relationship provided:

% =a, X,- X, (S22)
dzz =B.X,- B, X, (S23)
% =B, X,-o, X, (S24)
0=CR-X-X-X (S25)

The analysis of this system using the Design Space formalism involves the usual generation of
cases by picking dominant terms for each of the equations. To handle the singularity generated
by the conservation encoded in the system, DST3 eliminates the differential equation(s)

corresponding to the dominant negative term of each conservation relationship. This generates
cases with S-systems that are deficient in n_ differential equations. Table S2 contains three

cases that result from applying the Design Space formalism to the system defined by Eqs S22-
S25. Note that each case is defined by only two differential equations and one algebraic
constraint. In order to capture this special way of constructing the S-system equations, the indices

of the differential equation being deleted are set to zero in the case signature. Case 3 for instance,



in which the differential equation for pool X, is missing, has a case signature of [11 11 00 13] to

reflect this fact.

Note the similarity between the system topology of the cyclical case 27 (Fig. 1B) and the
conserved system of this section (Fig. 1C). In both instances, metabolites X,, X, and X,
interact in a cyclical fashion to introduce a linear dependency among their pools that renders their
A,, matrix singular. For cyclical cases (e.g. case 27), this dependency is eliminated by means of

a global dominance equation, which represents a mass balance around the cycle. This strategy
cannot be applied for conserved moieties, because they are not synthesized, degraded or
exchanged with the environment (Haraldsdéttir and Fleming, 2016). From a mass balance
perspective, this implies that fluxes entering or leaving the conservation do not exist, as
exemplified in Fig. 1D. The singularity is thus eliminated by replacing the differential equation for

one of the metabolites involved in the conservation by an algebraic constraint that contains an

additional independent parameter (CR,).

2.3 Metabolic Imbalances are treated by considering knife-edge conditions

Given the system shown in Fig. 1E and described by Egs. 11-12 in the main text, consider the

equations for case 2 with signature [11 21]:

Xm -1 -1

— =% V,D'K X, (S26)

0=K,X,-D (527)
and its associated dominance condition:

K X >1. (S28)

Substituting the algebraic constraint (Eq. S27) into the differential equation for X, (Eq. S26) yields

the following dynamical system:

il N v, - VM _ (S29)



Setting the left-hand side of this equation to zero, taking logarithms of both sides and rearranging

in matrix notation analogously to Eqg. 8 in the main text results in:
[0]v,=[0]-| 1 -1 ]v,. (S30)

with yD:[logXJ and y;z[ logv, logV,, ]Since rank(A,|B—A,y,)=rows(A4,), where

rank(A, | B— A4,y,) refers to the rank of the augmented matrix that results from concatenating

the matrix 4, and the vector B— 4,y, (Strang, 2005), the system does not have a steady state
solution but has rather the potential to contain a metabolic imbalance (Fig. S4). Indeed, Eq. S29

only provides a consistency condition for the concentration X, to remain unchanged over time:
0=v,—-V,, . We will refer to this kind of constraint as a knife-edge condition. In general, we are
interested in the behavior of the system when knife-edge conditions are not satisfied, i.e., v, # VM
. Violating the knife-edge condition in a specific direction implies an extreme value for X,: X, —> o

or X, — (0. The validity of either situation is assessed by checking the validity of the associated
dominance conditions, as shown in Table S3. Taken together, these results indicate that for the

system shown in Fig. 1E, the concentration of the pool X, will steadily increase over time, i.e., it

will blow up if variables fulfill the conditions K, X, >1 and vV, >1.
To introduce further concepts required to establish a general framework for the treatment of

cases for which rank(A,|B— A,y,)=rows(A4,), consider the system described by Egs. S31-

S32:
dx,
? =0,- 0, (S31)
dX2
Wzaz_le (S32)

which when rearranged and expressed in matrix notation to resemble the form of Eqg. 8 in the

main text yields:



00 (0] [1 -1
(b2} 1)

with y£=[ log X, logX, } and yIT=[ loger, loge, } Since the matrix 4, is singular and

rank(A, | B—A,y,)=rows(4,)=2, the system does not have a valid steady state solution. It

rather has the potential to exhibit a metabolic imbalance. The structure of the matrix A, indicates

the existence of two knife-edge conditions, which give rise to four sub-cases, as shown in Table

Mnife

S4. In general, the number of subcases to be tested equals 2", with n, . the number of knife

edges present in the system. Out of four possible sub-cases, only sub-case 2 and sub-case 3

are valid because of the way in which they violate both knife-edge conditions is consistent. The
fact that the matrix 4, has one degree of freedom, row(A4,)—rank(A4,)=2-1=1, implies a
relationship between the two knife edge conditions. Indeed, violating the knife-edge condition

o, =, in either direction sets an extreme value for X, . This in turn dictates the way in which the

second knife edge @, = X, will be violated, thus setting an extreme value for X, . Since the

structure of the matrix A4, prevents X, from being calculated via matrix operations, after an

extreme value for X, has been set we opt for testing the validity of each possible sub-system via

linear programming.

More generally, three steps are involved in resolving cases for which

rank(A,) <rank(A,|B—A,y,):

1. Merge auxiliary variables into differential equations to obtain dynamical systems without
algebraic constraints.

2. ldentify the number and identity of knife-edge conditions as a function of the degrees of

freedom (7,,,, ) of matrix 4, and the number of zeros in its diagonal (7

zeros ) )



a. If is equal to 7

zeros ’

M edom then 1. =1, .n» and knife edge conditions

correspond to balance equations for pools with a zero entry in the diagonal of 4,

b. If n < N and knife edge conditions correspond to

zeros

then nkm.fe =n

freedom zeros ?

balance equations for pools with a zero entry in the diagonal A4,

c. It n > N then 1. =N, .» and knife edge conditions correspond to

freedom zeros

balance equations for 7, randomly selected pools.

Menife

3. Construct and test the validity of 2" different linear programs, each violating knife edge

conditions in a unique way. Note that the test for validity should include dominance
conditions associated with the case under analysis.

3. Analysis of a Biochemical System Exhibiting Multiple Singularities

3.1 Differential Equations for the Biochemical System

Transcription factor:

dU,
d = 061U2 - ﬁlf;Ul (S34)
t
dU,
d = 131P8U1 - 0£1U2 (S35)
t
0=U,-U,-U, (S36)
Transcriptional unit:

-

n p
Ul 2
a3bmal + a3min e + a3max e
M ‘ K, K,
3 _ ﬁ M

- (S37)
dt n P 3 3
1+ Y + Y,
Kl KZ
Protein synthesis:
dT,
7; = O(4M3 - ﬂ47:1 (S38)
dGH
* = M,~ BGH, (S39)

dt



45 (S40)

7; = aéMS - ﬁsBe
dC
&~ M, (841)
t
Enzymatic reactions:
P 1 (CM
T4kcat4( R) } GHSkcatS[K : J[l_ K [ P 9}]
% B # renth - 5 Yl S42
1+[KO ] 14| L +[CM9J (542)
M0 KMS_/' KMSr
_ﬁsps - ﬁIPSUl
P CM
GHSkcaIS : 1_ 1 ( > J
dCM9 _ KMSf KeqS 1)8
dt P CM,
1+ X S |+ e 2
M5f M5r (S43)
5 [ CM, ][1_ 1 (cgo ]]
6 “cat6
_ MM()f Keq() CM9
[ om, )+( CLIOJ
MM6f KMGr
B6kcar6[ CM9 J|:1_ 1 (CLIO J:| C7kcat7(CL]0j
dCL]O — MMGf Keqﬁ CM9 _ KM7 (844)
dt 1+£ CM, J+(CL10J ]+(CL]0)
MM6f KM6r KM7
Pathway flux:
CL
C7kca17 =
KM7
_ =2 (S45)

3.2 GMA Equations for the Biochemical System

Equations S34 to S45 can be recast into their GMA form to yield 10 differential equations, 6

algebraic constraints and 1 conservation relationship as shown in Egs. S46 to S62. Note that the



terms +a,U, and —f, RU, were omitted from the differential equation for the pool P, (Eq. S53).
This is because in a biological context, these fluxes will never be dominant fluxes defining the

dynamics of the pool F,.

Differential equations:
du
dtl =aU,-BRU, (S46)
du
P 2= ﬁngU1 - U, (S47)
t
dM n n -
dt t= a3basalD3 + a3m1nK1 U D + a3maxK2 pU2pD3 - ﬁ3M3 (848)
dT,
7;:0:4M3—ﬂ4T4 (S49)
dGH
oM, ,B GH, (S50)
dt
dB,
—r=oM,~ BB, (S51)
dC
—T=a,M,-BC, (S52)
dPF,
=Tk 4KMOPD +GH k,, KM5 K CM, D‘
dr ot 4 (S53)
HSkcaISKMSfPD ﬂ P
dCM,

-1 -
dt GHSkcatSKMS fPD + B()kcat()KM() fKeqSCLIODé (854)

~GH kK, K. \CM,D;' - Bk, K, CM,D,’

6 “cat6” M6 f

dCL,,
=Bk, K, CM,D,'
dt 6 "cat6” " M6 f (855)

~ Bk, K K. CL D' = C.k, . K;1.CL, D'

6 cat6” M6 [ 6
Algebraic constraints:

0=Ck_.K, CL D;'-F (S56)
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0=1+K"U'+K;"U; - D, (S57)

0=1+K;,P,-D, (S58)
0=1+K,, B+K, CM,~D, (S59)
0=1+K,, CM,+K  CL ~D, (S60)
0=1+K, CL, -D, (S61)

Conservation relationship

0=U,-U,~U,. (S62)

The cooperativity (Hill number) for transcription factor binding is represented by the kinetic

orders n and p. The combination of transcriptional repression and activation requires the

constraints: o, . <0 <o, .The a and f§ parameters are rate constants for synthesis and

3basal 3max

degradation processes, respectively. The kc and K, parameters used in the metabolic

at

pathway represent turnover numbers and Michaelis constants, respectively. Auxiliary variables
D, to D, replace the denominators in the biochemical kinetic expressions during the process of

recasting the original ODE system into the equivalent GMA system. Refer to Tables S5 and S6
for the biological context of symbols used in Egs. S46 to S62. The 17 equations (Egs. S46-S62)
contain a total of 30 parameters (Table S6). As shown in the main text, no previous knowledge
(other than the constraints noted above) for any of these parameter values is required by DST3
to characterize the dynamical behavior of the system and identify a robust operating point for the

system.
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