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Gómez, Jason G.

Lomnitz, Rick A.

Fasani, Michael A.

Savageau

masavageau@ucdavis.edu

HIGHLIGHTS
DST3 extends the Design

Space formalism by

identifying additional

phenotypes

Additional phenotypes

arise from cycles,

conservations, and

metabolic imbalances

DST3 enables mechanistic

modeling without

previous knowledge of

parameter values

It fully unlocks the

potential of the novel

phenotype-centric

modeling strategy

Valderrama-Gómez et al.,
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SUMMARY

Mechanistic models of biochemical systems provide a rigorous description of bio-
logical phenomena. They are indispensable for making predictions and eluci-
dating biological design principles. To date, mathematical analysis and character-
ization of these models encounter a bottleneck consisting of large numbers of
unknown parameter values. Here, we introduce the Design Space Toolbox
v.3.0 (DST3), a software implementation of the Design Space formalism enabling
mechanistic modeling without requiring previous knowledge of parameter
values. This is achieved by using a phenotype-centricmodeling approach, in which
the system is first decomposed into a series of biochemical phenotypes. Param-
eter values realizing phenotypes of interest are subsequently predicted. DST3
represents the most generally applicable implementation of the Design Space
formalism and offers unique advantages over earlier versions. By expanding
the Design Space formalism and streamlining its distribution, DST3 represents
a valuable tool for elucidating biological design principles and designing novel
synthetic circuits.
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INTRODUCTION

Mechanistic modeling is the current gold standard for quantitative characterization and understanding of

complex biological phenomena. However, mathematical analysis of rigorous mechanistic models is not yet

the method of choice to address biological questions owing to a persistent gap in knowledge of the

involved parameter values. Within this context, modeling without a priori values for the parameters is a

radical claim. To see how radical, it helps to contrast the fundamentally new phenotype-centric approach

implemented here with the conventional simulation-centric approach based on sampling and simulation

(Lomnitz and Savageau, 2016a; Valderrama-Gómez et al., 2018). Both approaches start with a typical

qualitative hypothesis or model consisting of (1) the number of molecular elements, (2) their interactions

with one another (connections), (3) the signs of their interactions (+/�), and (4) the stoichiometry of the in-

teractions (number of molecules involved). Such a model would have numerous mechanistic parameters

(rate constants, binding constants, equilibrium constants) whose values are unknown and difficult to

determine.

In the conventional strategy, one samples parameter values, which can be done by randomly drawing

values from a uniform distribution within a pre-defined range (Lee et al., 2014), simulates the non-linear dif-

ferential equations, and compares the results with the corresponding experimentally observed quantitative

phenotypes of the system. This is repeated numerous times to select the values that tend to improve the fit

between the simulated results and the experimental data (some examples of this methodology include the

work by Forger and Peskin (2003), which implemented a coordinate search algorithm to find optimal

parameter values; the work by Zhou et al. (2005), which manually tuned parameter values; and the work

by Mirsky et al. (2009), which used an evolutionary strategy to find a set of parameters that most closely

matched experimental data). The result might be a good fit, one that is marginally acceptable, or no fit

at all.

In contrast to this conventional approach, the phenotype-centric approach provides a fundamental

advance that is entirely different. It starts with the same qualitative model as the conventional approach.
iScience 23, 101200, June 26, 2020 ª 2020 The Author(s).
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However, well-stablished powerful linear analysis methods (Strang, 2005) are used (Savageau, 1969,

1971a, 1971b) to identify and enumerate the entire repertoire of biochemical phenotypes for the model

(Savageau et al., 2009). In this first step there is already the ability to discriminate among models/hypoth-

esis; if the experimentally observed phenotype is not present in the repertoire, then the model can be

eliminated (Lomnitz and Savageau, 2016b). On the other hand, if the phenotype of interest is present

in the repertoire, then the same, powerful, well-stablished linear analytic methods can be used to predict

a full set of parameter values that will realize that phenotype (Fasani and Savageau, 2010; Lomnitz and

Savageau, 2016a; Valderrama-Gómez et al., 2018).

Here, we introduce the Design Space Toolbox v.3.0 (DST3) to expand the capabilities of the Design Space

formalism (Savageau et al., 2009). This new version builds on previous iterations of the software (DST1:

Fasani and Savageau, 2010, implemented the general data structures; DST2: Lomnitz and Savageau, 2016a,

added parallelization routines and a graphical user interface) to allow the automatic identification and mathe-

matical characterization of additional biochemical phenotypes arising from critically important under-deter-

mined cases.

These special phenotypes emerge from cycles, metabolic imbalances, and conservation constraints

present in many biochemical systems. Examples of such systems include but are not limited to

metabolic networks containing multiple reversible reactions (Schuster et al., 2000), a common

motif leading to cycles; signaling cascades of chemical species with different regulatory states

(e.g., achieved by different conformational or phosphorylation states) that are linked by conservation

relationships (Haraldsdóttir and Fleming, 2016; Klipp and Liebermeister, 2006); and saturable

processes, for which a pathway pool is imbalanced with respect its influx and efflux, thus

generating a steady accumulation or depletion of material within the system (Levy, 1999; Dahl et al.,

2013).

Besides the expanded computational engine of DST3, its C-library that is now able to handle these biolog-

ically important singularities automatically when they appear individually and simultaneously, the new

version of the Design Space Toolbox (DST3) has further unique features that distinguish it from previous

versions. First, the portability and installation of DST3 (Figure S1) is greatly improved and simplified by us-

ing Docker (Boettiger, 2015). Second, DST3 offers an improved and more stable IPython-based user inter-

face for users with limited programming experience (refer to Figures S2 and S5–S11). Third, calculating the

product of the global tolerances (Coelho et al., 2009) for all parameters in log-coordinates, a proxy for a

phenotype’s volume in parameter space and for its associated global robustness (Valderrama-Gómez

et al., 2018) is now automated within DST3. Fourth, solvers for systems of both ordinary differential

(ODE) and differential algebraic (DAE) equations (Petzold, 1983; Andersson et al., 2015) were incorporated,

thus allowing a fully integrated dynamic characterization of the Full System. The analysis of the Full System

by these completely different methodologies provides an independent means of confirming the results ob-

tained by the Design Space methodology.

The Results section is divided into three sub-sections. The first sub-section reviews briefly key concepts of

the Design Space formalism (see Savageau et al., 2009 and Fasani and Savageau, 2010 for a more detailed

theoretical treatment) needed to understand the advances described in this work. In the second sub-sec-

tion, we build on these concepts to develop general mathematical strategies aimed at resolving matrix sin-

gularities arising from system topologies containing cycles, moiety conservations, and metabolic imbal-

ances. In the third sub-section, we illustrate the capabilities of DST3 by analyzing a case study, the

protocatechuate metabolic system of Acinetobacter (Dal et al., 2005; Trautwein and Gerischer, 2001), a

biochemical system exhibiting multiple, nested singularities. The Methods section provides details on

the software architecture of DST3, the different ways to access its computational capabilities, and the

installation instructions via Docker.
RESULTS

Review of Key Concepts

Biochemical systems described by the power-law functions of chemical kinetics and the rational functions

of biochemical kinetics can be represented by generalized mass action (GMA) kinetics (Savageau and Voit,

1987) of the form:
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gijk
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j =1

X
hijk
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XPi Yn+m XQi Yn+m
0 =
k = 1

aik

j = 1

X
gijk

j �
k = 1

bik

j = 1

X
hijk
j i = ðnc + 1Þ; :::;n (Equation 1)

where aik and bik represent rate constants and gijk hijk are kinetic orders. Pi and Qi are the number of pos-

itive and negative terms in the i-th equation, respectively. Xi represent the variables of interest (typically the

concentration of a biochemical species) in a system containing a total of n dependent andm independent

variables. In general, dependent variables can be split into two groups: chemical variables, for which a dif-

ferential equation exists, and auxiliary variables, for which algebraic constraints are defined. Each group

contains nc and n� nc members, respectively. The set nc of chemical variables has a direct biological mean-

ing and represents all the chemical/biological entities (i.e., enzymes, metabolites, chemical species, mRNA

molecules) of a given system. On the other hand, the set n� nc of auxiliary variables has meaning in the

context of recasting the system of ordinary differential equations into its GMA form. Independent variables

for which a differential equation or algebraic constraint are not defined are treated as parameters.

For any system, one of the Pi positive terms and one of theQi negative terms in Equation 1 will momentarily

dominate over the others in each one of the n equations in the system. This gives rise to a so-called domi-

nant S-System (Savageau, 1969; Savageau et al., 2009), which can be generically described by Equation 2:

dXi

dt
= aipi

Yn+m

j = 1

X
gijpi
j � biqi

Yn+m

j = 1

X
hijqi
j i = 1; :::; nc

Yn+m Yn+m
0 = aipi

j =1

X
gijpi
j � biqi

j = 1

X
hijqi
j i = ðnc + 1Þ; :::; n (Equation 2)

with pi and qi being the indices of the dominant positive and dominant negative term in the i-th equation,

respectively. In steady state, Equation 2 can be combined into a single equation:

0 = aipi

Yn+m

j = 1

X
gijpi
j � biqi

Yn+m

j = 1

X
hijqi
j i = 1; :::; n (Equation 3)

The validity of a dominant S-System in steady state implies certain conditions (Savageau et al., 2009; Fasani

and Savageau, 2010), which are represented by inequalities of the form:

aipi

Yn+m

j = 1

X
gijpi
j >aik

Yn+m

j =1

X
gijk

j ck =
�
1;2; 3; :::;Pi

��kspi

�
(Equation 4)

Yn+m Yn+m � � �

biqi

j = 1

X
hijqi
j >bik

j = 1

X
hijk
j ck = 1; 2;3; :::;Qi

�ksqi : (Equation 5)

Here, k represents indices of corresponding non-dominant terms. Steady-state concentrations of the

dependent variables can be obtained in three steps (Savageau, 1969; Fasani and Savageau, 2010). By re-

arranging Equation 3 and taking logarithms, one obtains Equation 6:

log aipi +
Xn+m

j = 1

gijpi log Xj = log biqi
+

Xn+m

j = 1

hijqi log Xj; (Equation 6)

which can be written in matrix form as:

Ay = b; (Equation 7)

where yj = ln Xj , aij = gijpi
� hijqi

, and bi = lnðbin =aiqÞ. In a second step, dependent (yD ) and independent (yI)

variables are split to obtain:

ADyD = b � AIyI: (Equation 8)

The vector of dependent concentration variables yD can be obtained in a third step by matrix operations:

yD = A�1
D b � A�1

D AIyI: (Equation 9)

The vector of dependent flux variables log Fi is obtained by matrix multiplication:

log F = Gy: (Equation 10)
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Figure 1. Systems Containing Cycles, Conservation Constraints, and Metabolic Imbalances

(A) A cycle comprising three metabolic species is shown. Mass action kinetics is used to mathematically describe the flux

through each reaction. Rate constants for each one of these reactions are shown.

(B) If the fluxes represented by the blue arrows dominate over the others, a singularity arises that prevents the system from

having a unique steady-state solution. This singularity is resolved by introducing a mass balance equation around a

control volume (blue rectangle) containing the cycle.

(C) Three-component system containing one conservation constraint. Fluxes to and from metabolite pools X1, X2, and X3

are mathematically described using mass action kinetics.

(D) No fluxes enter or leave the control volume (blue rectangle) around metabolites involved in the conservation.

(E) Metabolic pool with one input and one output flux. Depending on the numerical values of fluxes v0 and v1, the

concentration of X1 can steadily increase (v0>v1), decrease (v0<v1), or remain unchanged over time (v0 = v1).
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The concept of biochemical phenotype (or simply phenotype) is an integral element of the Design Space

formalism and will be broadly used throughout this work. A phenotype is defined in the context of a mech-

anistic mathematical model of a given biological system. The mathematical representation of a biochem-

ical system decomposed into its repertoire of steady-state phenotypes, each given by a set of dominant S-

system equations (Equation 3) and associated boundaries, involves a comprehensive integration of infor-

mation for all the system’s concentrations, fluxes, and parameters (Savageau et al., 2009; Fasani and Sav-

ageau, 2010). From a biological point of view, most of themathematical properties of a biochemical pheno-

type, for instance, its dynamic behavior (discussed in section ‘‘Phenotype Analysis Reveals Dynamic

Properties of the System’’) and logarithmic gains (discussed in section ‘‘Logarithmic Gains Can Guide

the Design of Engineering Strategies’’) can be experimentally observed and measured, thus rendering

biochemical phenotypes a powerful tool for the elucidation of design principles for natural systems and

for the design of synthetic networks with novel functionalities.
Strategies for Treating Three Types of Singularities

Earlier versions of the Design Space Toolbox (Fasani and Savageau, 2010; Lomnitz and Savageau, 2016b)

have exclusively dealt with cases for which the inverse of the matrix AD exists (Figure S4). However, a
4 iScience 23, 101200, June 26, 2020
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number of important system topologies—cycles, conservations, metabolic imbalances (Figure 1)—cause

the matrix AD to become singular and effectively limit the utility of earlier versions of the Design Space

Toolbox. The ubiquity of such topologies in biochemical networks renders their automatic handling highly

relevant in the context of the Design Space formalism.

Themathematical framework presented here to deal with these singularities can be seen as an extension of

previous theory with ad hoc applications in a more limited context by our group (refer to Savageau, 1969 for

metabolic imbalances; Alves and Savageau, 2003 for conservations; Tolla et al., 2015 for cycles). The exten-

sion presented in this work generalizes the theory and automates the computational applications thereby

expanding the Design Space formalism (Savageau et al., 2009). The strategies are illustrated by means of

simple examples treated briefly below with mathematical details given in section ‘‘Strategies for Treating

Three Types of Singularities’’ of the Supplemental Information.

Cycles Are Resolved by Considering Global Dominance Equations

Cycles of reactions are a common feature of biochemical systems. They typically have a number of input

and output fluxes. A simple example is the fumarate nitrate reduction (FNR) regulator of Escherichia coli

that exists in a cycle with three forms having one influx and two effluxes (Tolla et al., 2015). The FNR global

regulator is responsible for sensing the environment, more specifically the availability of O2. It modifies the

global gene expression of the cell to adapt its machinery for the transition from aerobic to anaerobic

growth. Let us consider the simple system shown in Figure 1A, in which species X1, X2, and X3 interact to

form a substrate cycle driven far from thermodynamic equilibrium. This example is deliberately selected

to focus on the mathematical details of the singularity contained in the kinetic equations and on the strat-

egy that resolves it. We start by setting up equations to describe the change in the concentration of each

chemical species over time. Mass action kinetics are used to generate the rate laws describing the flux

through each reaction. The resulting expressions are then combined by means of Kirchhoff’s node law

to generate balance equations for each metabolite in the system.

The Design Space formalism (Savageau et al., 2009) can be applied to decompose this set of equations into

different cases, each having a unique set of dominant terms andbeing valid within a specific region in parameter

space. One such case for this system is case number 27, with case signature [22 11 21]. This signature contains

threepairs of indices, one for eachequation, indicating the identityof thepositive andnegative termdominating

in each equation. Visual inspection of the matrix AD for this case reveals the presence of a linear dependency

among its rows, and, thus, there is no unique steady-state solution. Nevertheless, the system of algebraic equa-

tions is consistent and a solution (or set of solutions) can be found by analyzing global dominance conditions on

the influxes and effluxes that describe a mass balance around the cycle present in this system.

Once the extended system has been automatically set up, the Design Space formalism can be applied to

identify valid sub-cases that resolve the cyclical case. Table S1 shows S-system equations for each one of

the six valid sub-cases generated from the extended system. Note the special form of these equations. S-

systems originating from the dominance analysis of the global dominance equation are used to replace the

differential equation for the pool with the dominant efflux. For instance, the expression a11 � b11X1 (ob-

tained when the first positive and first negative term in the global dominance equation are dominant) is

used to replace the differential equation for X1 (refer to sub-case 1 in Table S1). Additionally, this expres-

sion is scaled to match the coefficient of the negative term in the Full System (i.e., the original set of equa-

tions). Consider for instance the expression a11 � 2b33X3, which is obtained when the first positive and third

negative term in the global dominance equation are dominant. Since the coefficient of the negative term in

the original equation is 1, the scaled expression 1
2a11 � b33X3 is used to construct sub-case 3 of Table S1.

Owing to the special way in which terms stemming from the global dominance equation are used to

construct equations for sub-cases, a three-digit case signature is introduced. This allows for tracking the

origin of terms that make up the S-systems of these sub-cases. In addition to the indices of dominant pos-

itive and negative terms contained in the traditional two-digit signature, the extended three-digit signature

contains the index of the equation fromwhich its positive dominant term originated. Consider, for instance,

the case signature for sub-case 27_5 in Table S1 and its associated S-system. The signature [22 312 21] dic-

tates that differential equations for pools X1 and X3 are constructed by picking dominant terms in the tradi-

tional way, whereas the differential equation for pool X2 is made from the first positive term of the third

equation and the second negative term of the second equation.
iScience 23, 101200, June 26, 2020 5
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Conserved Moieties Are Handled by Considering the Total Size of Conserved Pools

Pools of metabolites with constant total concentration, on some timescale, are a common feature of com-

plex metabolic and signaling systems. They involve conserved moieties, which are groups of atoms that

remain intact in all reactions of a system. AMP, NAD+, and NADP+ are prominent examples of conserved

moieties in energy metabolism (Haraldsdóttir and Fleming, 2016). Consider the simple system in Figure 1C

with three components linked by a conservation relationship. As in the case of the cycles in section ‘‘Cycles

Are Resolved by Considering Global Dominance Equations,’’ the presence of conservations causes the ma-

trix AD to be singular, since the three concentrations are not independent. Nevertheless, steady-state so-

lutions can be obtained by discarding one of the differential equations and adding the algebraic constraint

that the sum of the three concentrations must equal their conserved amount.

The analysis of the differential-algebraic system using the Design Space formalism involves the usual generation

of cases by picking dominant terms for eachof the equations of the system. The three cases that result are shown

in Table S2. Note that each case is defined by only two differential equations and one algebraic constraint. In

order to capture the special way in which the equations are constructed for each case, the indices of the differ-

ential equation being deleted are set to zero in the case signature. Case 3, for instance, in which the differential

equation for pool X3 is missing, has a case signature of [11 11 00 13] to reflect this fact.

Metabolic Imbalances Are Treated by Considering Knife-Edge Conditions

Flux imbalances are frequently encountered in the metabolism of engineered microbial strains (Dahl et al.,

2013; George et al., 2014; Alonso-Gutierrez et al., 2017) and in inborn metabolic diseases such as phenyl-

ketonuria (Levy, 1999) andmaple syrup urine disease (Haymond et al., 1973), often by the excretion of some

metabolite. Let us consider the simplest example of a metabolic pool as shown in Figure 1E with one input

(v0) and one output (v1) flux, where v0 is a constant and the output flux is described by a Michaelis-Menten

rate law v1 =
�
VMX1K

�1
M

��
1+X1K

�1
M

��1
. KM and VM represent the Michaelis constant and maximal reaction

rate, respectively. The change in concentration of metabolite X1 over time can be described by the gener-

alized mass action system

dX1

dt
= v0 � VMK

�1
M X1D

�1 (Equation 11)

�1
0 = 1+KM X1 �D: (Equation 12)

where D represents an auxiliary variable introduced in the recasting process to describe the denominator

of the Michaelis-Menten rate law. Let us now consider the equations for the case with signature [11 21]:

dX1

dt
= v0 � VMK

�1
M X1D

�1 (Equation 13)

�1
0 = KM X1 �D; (Equation 14)

which together with its associated dominance condition

K�1
M X1>1; (Equation 15)

imply

dX1

dt
= v0 � VM: (Equation 16)

This system does not have a steady-state solution. Indeed, Equation 16 only provides a consistency condi-

tion for the concentration of X1 to remain unchanged over time: 0 = v0 � VM. We will refer to this kind of

constraint as a knife-edge condition. In general, we are interested in the behavior of the system when

knife-edge conditions are not satisfied, i.e., v0sVM. Violating the knife-edge condition in a specific direc-

tion implies an extreme value for X1:X1/N or X1/0. The validity of either situation is assessed by checking

the validity of the associated dominance conditions, as shown in Table S3. Taken together, these results

indicate that, for the system shown in Figure 1E, the concentration of the pool X1 will steadily increase

over time, i.e., it will blow up if the system’s parameters fulfill the conditions K�1
M X1>1 and v0V

�1
M > 1.

Note that the case with signature [11 11], and associated dominance condition, has a conventional steady-

state solution given by X1 = v0KMV
�1
M for K�1

M X1<1. The general procedure for treating cases with multiple

knife-edge conditions is presented in section ‘‘Metabolic Imbalances are Treated by Considering Knife-

Edge Conditions’’ of the Supplemental Information.
6 iScience 23, 101200, June 26, 2020
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Analysis of a Biochemical System Exhibiting Multiple Singularities

For a case study, we have selected the protocatechuate degradation pathway of Acinetobacter sp. strain

ADP1. Protocatechuate is a chemical compound derived from phenolic species including p-cresol, 4-hy-

droxybenzoate, and numerous lignin monomers and is converted to b-ketoadipate by the pathway under

study (Harwood and Parales, 1996). The protocatechuate degradation pathway is one of the two branches

of the b-ketoadipate pathway and is widely distributed among taxonomically diverse eubacteria and fungi

(Harwood and Parales, 1996). The ecological importance of the b-ketoadipate pathway resides in its key

role in recycling vast amounts of aromatic material in the natural carbon cycle. From an industrial point

of view, the protocatechuate degradation pathway plays a central role in the valorization of lignin for the

production of fuels, chemicals, and materials (Linger et al., 2014; Salvachua et al., 2015) as well as in the

detoxification of environmental pollutants (Harwood and Parales, 1996). There are many microbes capable

of these industrially important processes in the context of toxic environmental hydrocarbons. Although

they may have similar if not identical pathways for these functions, their genomic architectures exhibit ma-

jor differences that are not well understood (Jiménez et al., 2002; Harwood and Parales, 1996). One of the

simplest of these architectures for the transport and catabolism of protocatechuate is found in Acineto-

bacter sp. strain ADP1. Its genetic system encodes a single polycistronic mRNA for transporter and cata-

bolic enzymes of the protocatechuate specific pathway, as well as several shared enzymes (Trautwein

and Gerischer, 2001; Dal et al., 2005). For our purposes, we shall focus only on the protocatechuate specific

pathway illustrated in Figure 2A (refer to Table S5 in the Supplemental Information for a summary of sym-

bols used in this section). The system is composed of a signaling cascade, a gene circuit, and a metabolic

module. The transcription factor (PcaU) functions as both a repressor (U1) and an activator (U2) and has a

conserved total concentration of UT = U1 +U2. It controls the synthesis of a polycistronic mRNA (M3)

that encodes the transporter, PcaK (T4), and several enzymes, three of which constitute this pathway: pro-

tocatechuate 3,4-dioxygenase, PcaGH (GH5), b-carboxy-cis,cis-muconate cycloisomerase, PcaB (B6), and 4-

carboxymuconolactone decarboxylase, PcaC (C7). The environmentally supplied substrate protocatechu-

ate (P0) is transported into the cell where it becomes intracellular protocatechuate (P8), which is both a

metabolic intermediate and the natural inducer for the transcription factor. The following metabolites in

the pathway are b-carboxy-cis,cis-muconate (CM9) and g-carboxymuconolactone (CL10) (Dal et al., 2005).

This system exhibits all three types of singularities discussed in section ‘‘Strategies for Treating Three Types

of Singularities,’’ thus making it an excellent example for demonstrating the relevance of our work. It con-

tains a conservation relationship from the transcription factor, cycles from the reversible enzymatic reac-

tions within the metabolic pathway, and blow-ups from imbalances within the same pathway. The dynamics

of the system can be described by a set of differential algebraic equations involving 30 parameter values,

which can be considered unknown for our purposes here. Refer to Equations S34–S45 in the Supplemental

Information for details on the mathematical model and to Tables S5 and S6 for an overview of the symbols

used and their biological context.

Filtering the Phenotypic Repertoire for Phenotypes of Interest

Enumerating the phenotypic repertoire of a system is typically the first step in the phenotype-centric

modeling strategy (Valderrama-Gómez et al., 2018). Even systems of moderate size can exhibit a surpris-

ingly large number of biochemical phenotypes. Therefore, the second important step is to filter the reper-

toire for the phenotypes of interest. For example, filtering for cases with 2 eigenvalues with positive real

part can be used to identify oscillatory phenotypes (Lomnitz and Savageau, 2014), filtering for cases with

1 eigenvalue with positive real part can be used to identify multi-stability and hysteresis (Fasani and Sav-

ageau, 2013), and filtering for a logical function consisting of a pattern of dependent variables that in-

crease, decrease, or remain unchanged in response to a change in an independent variable can be used

for model discrimination (Lomnitz and Savageau, 2016a). Since all of the phenotype characteristics can

be exported from DST3 to an Excel spread sheet, many types of user-defined filters can be customized

to meet the user’s needs (see part 3 of the tutorial contained within the DST3 Docker image for an

example).

Here, we show how one can progressively filter the repertoire of the protocatechuate system to narrow the

focus on phenotypes of interest. If we allow for all possibilities, DST3 shows that the system represented in

Figure 2A is capable of exhibiting 3,450 valid phenotypes, of a total of 10,368 potential phenotypes (Fig-

ure S7). However, we can progressively filter this list automatically to include only those phenotypes of in-

terest. In the context of this case study, we are interested in the steady states of this system that maximizes
iScience 23, 101200, June 26, 2020 7
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Figure 2. Integrated System Exhibiting Multiple Singularities and its Characterization by DST3

(A) The signaling module responds to the inducer signal P8 , which stimulates the conversion of the transcription factor

from the repressor U1 into the activator U2 form. The regulator controls the synthesis of a polycistronic mRNA molecule

M3 , from which four proteins T4, GH5, B6, and C7 are translated. Transporter T4 catalyzes the import of metabolite P8 into

the cell from an external pool P0. EnzymesGH5 and B6 then catalyze the reversible conversion of P8 intoCM9 andCM9 into

CL10. The last enzyme C7 catalyzes the conversion of CL10 into the end-product b-ketoadipate enol-lactone (not shown).

(B) A Design Space Plot around phenotype 7633 is shown. The white dot represents the operating point of the system,

which is automatically calculated using the Analyze Case tab of the DST3 user interface. Parameter values predicted for

this operating point are: K1 = 0:316227766017, K2 = 0:1, KM0 = 10:0, KM5f = 1:0, KM5r = 1:0, KM6f = 1:0, KM6r = 1:0, KM7 =

1:0, Keq5 = 10:0, Keq6 = 1:0, UT = 1:0, P0 = 1:0, a1 = 1:0, a3basal = 0:1, a3max = 1:0, a3min = 0:01, a4 = 1:0, a5 = 1:0, a6 = 1:0,

a7 = 10:0, b1 = 1:0, b3 = 1:0, b4 = 1:0, b5 = 1:0, b6 = 1:0, b7 = 1:0, kcat4 = 1:0, kcat5 = 1:0, kcat6 = 1:0, kcat7 = 1:0; Kinetic

order(s): m = 2, p = 2; Parametric constraints: a3max>a3basal>a3min.

(C) A Trajectories Plot is used to characterize the operating point shown in (B) The solid gray line represents the evolution

of the system starting from an initial state in which all concentrations are set to 0.001. The gray star represents the steady

state reached by the system after numerical integration for 500 time units. Refer to Table S7 for further details on the

numerical solvers used by DST3. The black dot next to the gray star represents the steady state predicted by DST3 for

phenotype 7633 using linear algebra.

(D) The operating point of the system has been modified by decreasing kcat5 from 1.0 to 0.01 so that it is now contained

within the region of the pathological phenotype 7718.1.

ll
OPEN ACCESS

8 iScience 23, 101200, June 26, 2020

iScience
Article



Figure 2. Continued

(E) A Trajectories Plot is used to characterize the operating point shown in (D) The temporal behavior of metabolite pools

P8 and CM9 is shown. CM9 reaches a steady state of approximately 0.01, whereas the concentration of P8 continuously

increases over time and does not reach a steady state. The gray star represents the state of the system after numerical

integration for 50,000 time units. When integrated for a longer period of time, the gray star continues moving further to

the right at a constant CM9 concentration, till it eventually reaches and passes the location of the black dot. Initial

conditions are the same as in (C).
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the pathway flux, while minimizing the accumulation of toxic intermediates. First, if we filter for phenotypes

that are non-pathological by not checking for blow-ups (Figure S5), i.e., that do not have imbalances result-

ing in concentrations that continuously increase or decrease, then the number of non-pathological pheno-

types is 384 and they are all stable (all eigenvalues have a negative real part). Second, if we filter these for

phenotypes that respond to changes in the environmental substrate P0, by requiring a non-zero logarithmic

gain in metabolite concentrations and pathway flux in response to a change in substrate, then there are

only 192 responders. Third, if we filter these for phenotypes that are inducible, by requiring a non-zero log-

arithmic gain in mRNA in response to changes in substrate, then there are only 64 inducible responders.

Finally, if we group the inducible phenotypes for specific non-zero logarithmic gains in mRNA, then we

find only three values: LðM3;P0Þ= 2 with 32 examples, LðM3;P0Þ= 4 with 28 examples, and LðM3;P0Þ= 6

with 4 examples.

Following this initial screening, the DST3 can be used to characterize automatically the inducible re-

sponders by comparing them on the basis of three functional criteria: global robustness to a change in

phenotype, energy index (maximum flux with minimum production of protein machinery), and toxicity in-

dex (maximum flux with minimum accumulation of toxic intermediates). Global robustness is determined

by the product of the global tolerances (Coelho et al., 2009) for all of the parameters of the system, which

is a proxy for the volume of the phenotype’s polytope in the system Design Space—note that the ability to

automatically compute phenotypic volumes is exclusive to DST3. We define the energy index as the cost/

benefit determined by the ratio of the logarithmic gain in mRNA, which is a proxy for the increased expen-

diture of energy for protein production, to the logarithmic gain in the pathway flux produced,

energy index = LðM3;P0Þ=LðF;P0Þ. The toxicity index is the cost/benefit determined by the ratio of the log-

arithmic gain in the toxic intermediate, protocatechuate (P8), to the logarithmic gain in the pathway flux

produced, toxicity index = LðP8;P0Þ=LðF;P0Þ.

The results summarized in Table 1 show that 32 of the 64 phenotypes have the best global robustness, best

energy index, and best toxicity index. The next 28 phenotypes have intermediate values for these three

criteria and the remaining 4 phenotypes have the worst global robustness and worst energy and toxicity

indices. There is a clear trade-off revealed by this analysis. The pathway flux can be increased by moving

from the phenotypes in the first group to those in the third group, but only by sacrificing global robustness,

energy efficiency, and toxicity. Note that generation of the results in Table 1 did not require any kind of

simulation or optimization. Rather, it involved the application of linear algebra to analyze phenotype-spe-

cific properties, such as logarithmic gains and phenotypic volumes, that were used to compare a given set

of biochemical phenotypes using three different criteria: global robustness as well as energy and toxicity

indices. After values for these criteria were calculated, the set of phenotypes were distributed into three

different groups. Then, these groups were sorted by its total normalized volume (global robustness).

Phenotype Analysis Reveals Dynamic Properties of the System

Let us consider the phenotype numbered 7633 as a representative member of the best class, which could

conceivably have been selected in nature. We start our analysis by using DST3 to predict specific values for

each one of the 30 parameters required to fully define an operating point of the system within phenotype

7633 along with its phenotypic boundaries. For that, we use the Analyze Case tab (Figure S9A) within the

Main Menu of the DST3 user interface. Note that an analogous analysis can be performed for any other

phenotype.

Since we have the ability to characterize the Full System exhibiting this phenotype, we can ask if there might

be a strategy for further improving its performance (section ‘‘Logarithmic Gains Can Guide the Design of

Engineering Strategies’’) or for avoiding dysfunction through rational engineering. An obvious dysfunction

occurs when there is a violation of one of themost basic design principles, namely, themaximal velocity of a

downstream enzyme should be greater than that of the upstream enzymes in the pathway (Savageau et al.,
iScience 23, 101200, June 26, 2020 9



Group

1 2 3

Number of phenotypes in

group

32 28 4

Representative phenotype 7633 7658 7593

LðM3;P0Þ 2 4 6

LðP8;P0Þ 1 2 3

LðCM9;P0Þ 1 1 2

LðCL10;P0Þ 1 1 1

LðF;P0Þ 3 5 7

Normalized volume of

representative phenotype

1.94 3 10�8 9.46 3 10�12 9.72 3 10�16

Total normalized volume of

group

5.61 3 10�7 5.32 3 10�11 3.40 3 10�15

Energy index 0.67 0.80 0.86

Toxicity index 0.33 0.40 0.43

Table 1. Repertoire of 64 Biochemical Phenotypes of the Protocatechuate Pathway that Are Responding to

Substrate, Are Stable and Inducible

This table was generated for the system described by Equation S46–S62 of the Supplemental Information using the tab

Phenotypic Repertoire of the Main Menu of the user interface of DST3 (Figure S6B) and filtered for desirable phenotypes

as described in the main text.
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2009). The relation of this pathology to the phenotype 7633 is made evident in a Design Space Plot (Fig-

ure 2B) with the turnover number (kcat5 ) for the enzyme converting intracellular protocatechuate (P8 ) to

b-carboxy-cis,cis-muconate (CM9 ) on the y axis. The relative location of physiologically relevant pheno-

types coded by color is shown in Figure 2B. The operating point of the system, which was automatically

calculated by DST3, is represented by the white dot within the valid region for phenotype 7633 (red poly-

tope). In this specific view of the Design Space, the white blank region in the lower portion of the plot in-

dicates the location of pathological phenotypes exhibiting metabolic imbalances.

The dynamical behavior of the Full System, when its steady-state operating point is located within the valid

region for phenotype 7633, can be studied by simulation using a Trajectories Plot (Figure 2C), one of three

types of plots available in the Full System tab of theMainMenu. This plot shows the evolution of the system

starting from a set of initial conditions to reach its steady state, which is marked by a gray star in Figure 2C.

The black dot in this figure represents the steady-state prediction made by DST3 for phenotype 7633 using

linear algebra. The relative position of the black dot and the gray star in the trajectories plot demonstrates

the accuracy of DST3 when approximating steady states. The Full System tab also allows dynamic pheno-

types (case number and signature) to be reported at each point in the solution when there is a change in

dominance conditions; this is currently implemented as an exportable.xlsx file (data not shown). In the spe-

cific example of the trajectory shown in Figure 2C, the initial conditions of the system locate its operating

point in phenotype 1515. As the concentrations of the pools in the system evolve toward a steady state, the

operating point of the system transits through phenotypes 649 and 721 to finally reach its steady state

located within phenotype 7633.

DST3 makes it possible to identify the nature of pathological phenotypes. By clicking the ‘‘Check for

Blowups’’ option in the construction of the Design Space (Figure S5), we obtain Figure 2D, which has

five additional phenotypes displayed (7718.1, 7754.1, 7758.1, 9030_10.1, and 9066_10.1). Note that the

ability to identify pathological phenotypes exhibitingmetabolic imbalances is unique to DST3. The dynam-

ical nature of the pathological phenotypes contained in the lower portion of the Design Space Plot can be

trivially predicted. Decreasing the numerical value of kcat5 while keeping all other parameter values con-

stant at the operating point of the system would lead to a steady increase of the toxic intermediate P8 .
10 iScience 23, 101200, June 26, 2020
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A Trajectories Plot (Figure 2E), with kcat5 decreased from its nominal value of 1 to 0.01, is used to charac-

terize the dynamics of the Full Systemwhen the operating point of the system is located within the region of

pathological phenotype 7718.1 (Figure 2D). In Figure 2E, the state of the system after numerical integration

using the IDA solver (refer to Table S7) is marked by a gray star, whereas the black dot represents the pre-

diction made by DST3 for phenotype 7718.1 using linear algebra (note that the value of 1012 is an arbitrarily

large value used to signify an approach to infinity). As expected, the numerical analysis of the Full System

indicates a continuous accumulation of the toxic intermediate P8 , whereas the intermediate CM9 reaches a

steady-state value.

In summary, a comparison of the results obtained by numerical integration of the Full System (Figures 2C

and 2E) demonstrates the ability of DST3 to predict steady-state values when they exist and predict the

blow-up nature of a variable when it does not have a steady-state solution.

Logarithmic Gains Can Guide the Design of Engineering Strategies

Once a stable and globally robust operating point for a given system has been identified, one might be inter-

ested in finding strategies to increase the flux through a specific metabolic pathway or to increase the steady-

state concentration of certain intermediatemetabolites. Here, we exemplify how an analysis of logarithmic gains

can be used to identify such strategies. Logarithmic gains are amplification factors relating changes in input sig-

nals (independent variables) to the resulting changes in output signals (dependent variables). The term param-

eter sensitivity is used insteadof logarithmicgainwhen the effect of varying aparameter onadependent variable

is analyzed. These parameter (in)sensitivities represent the local robustness of a system, in contrast to the global

robustness provided by the volume of the valid region of a phenotype in Design Space. Both logarithmic gains

and parameter sensitivities are properties that depend exclusively on the kinetic orders of the system and canbe

calculated for concentrations or fluxes (Savageau, 1971a). DST3 allows the calculation of logarithmic gains and

parameter sensitivities using the tab Analyze Case of the Main Menu in the user interface (Figure S9A). For

simplicity, we will use the term logarithmic gain for both logarithmic gains and parameter sensitivities. Table

2 lists logarithmic gains for the phenotype 7633, the representative phenotype of the first group of phenotypes

with desired properties (Table 1).

A number of engineering strategies are contained in Table 2. For instance, interventions increasing the flux

through the metabolic pathway without altering the steady-state concentration of the potentially toxic

metabolic intermediate P8 are identified in the third column of Table 2 and are graphically represented

in Figure 3A, where each individual arrow represents a different strategy. Note that all these strategies

ultimately lead to an increase in the availability of the mRNA molecule M3 and can be categorized into

two groups. The first group contains strategies that directly increase the synthesis (by either increasing

a3max, decreasing the binding constant K2 or increasing K1) and reduce the degradation (by decreasing

the rate constant b3) of M3.

The second group encompasses indirect strategies that point at increasing the steady-state concentration

of the activator form of the transcription factor U2 by modifying rate constants (P8 or M3). An analogous

analysis can be done to identify strategies increasing the steady-state concentration of metabolic interme-

diates without increasing the pathway flux. We use the Full System tab within the Main Menu of the user

interface of DST3 (Figure S11) to demonstrate the validity of these predictions by means of two Titration

Plots. In each case, the maximal synthesis rate a3max is increased 100-fold and decreased 10-fold from

its nominal operating value of 1 and the effect on the pathway flux F (Figure 3B) and on the steady-state

concentration of the toxic metabolic intermediate P8 (Figure 3C) is computed for the Full System. As pre-

dicted by a logarithmic gain of LðF;a3maxÞ= 1 for phenotype 7633, increasing a3max leads to an increase in

the steady-state flux through themetabolic pathway in the Full System. On the other hand, and as indicated

by a logarithmic gain of LðP8;a3maxÞ = 0, increasing or decreasing a3max has no effect on the steady-state

concentration of P8 in the Full System. Thus, increasing a3max, which can be experimentally achieved by en-

gineering the promoter region of the polycistronic mRNA or increasing the copy number of the pca

operon, from its nominal operating value can be used as a strategy to increase the flux through the meta-

bolic pathway without increasing the steady-state concentration of P8.

DST3 Efficiently Locates Experimentally Observed Induction Patterns of the System

Trautwein and Gerischer (2001) experimentally characterized the effect exerted by the regulator PcaU from

Acinetobacter sp. strain ADP1 on the expression of the pca genes encoding the protocatechuate pathway
iScience 23, 101200, June 26, 2020 11



Module Parameters Change Dependent Variables

M3 P8 CM9 CL10 F

Signaling a1 Y �2 0 0 0 �2

b1 [ 2 0 0 0 2

Gene Circuitry K1 [ 2 0 0 0 2

a3max [ 1 0 0 0 1

K2 Y �2 0 0 0 �2

b3 Y �1 0 0 0 �1

a4 – 2 1 1 1 3

b4 – �2 �1 �1 �1 �3

a5 – �2 �1 0 0 �2

b5 – 2 1 0 0 2

a6 – 0 0 �1 0 0

b6 – 0 0 1 0 0

a7 – 0 0 0 �1 0

b7 – 0 0 0 1 0

Metabolism kcat4 – 2 1 1 1 3

KM0 – �2 �1 �1 �1 �3

P0 – 2 1 1 1 3

kcat5 – �2 �1 0 0 �2

KM5f – 2 1 0 0 2

kcat6 – 0 0 �1 0 0

KM6f – 0 0 1 0 0

kcat7 – 0 0 0 �1 0

KM7 – 0 0 0 1 0

Table 2. Logarithmic Gains for Phenotype 7633

This table was generated using the tab Analyze Case of the Main Menu in the DST3 user interface. Shown are logarithmic

gains for the steady-state concentration of the mRNA molecule M3; the three pathway intermediates P8;CM9; and CL10;

and the flux through the metabolic pathway F. Parameters with no effect on any of the variables are not shown. A logarithmic

gain of 0 indicates no effect. Strategies for changing parameters that increase the pathway flux ðFÞ while keeping the intra-

cellular protocatechuate concentration ðP8Þ unaltered are identified by an arrow in the third column. A minus sign indicates

the lack of an applicable strategy. Refer to Tables S5 and S6 for the biological context of the symbols used in this table.
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studied in this work. Based on expression experiments under different conditions, Trautwein and Gerischer

suggested a bifunctional nature of the transcription factor PcaU, concluded that protocatechuate-depen-

dent regulation of the pca genes only occurs in the presence of a functional PcaU, and quantitatively char-

acterized the degree of induction of the pathway under different growth conditions. The authors measured

a 94-fold induction of the pathway, when the pca gene expression was compared between growth on suc-

cinate and growth on p-hydroxybenzoate—note that Acinetobacter sp. strain ADP1 degrades p-hydroxy-

benzoate via protocatechuate, which induces pca gene expression by activating the regulator PcaU. On the

other hand, succinate or its degradation products do not induce pca gene expression. This value repre-

sented the highest degree of induction observed by the authors among different growth conditions.

Trautwein and Gerischer (2001) also studied the effect that PcaU had on pca gene expression in the

absence of the inducer protocatechuate. This analysis involved a wild-type and a mutant strain missing
12 iScience 23, 101200, June 26, 2020
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Figure 3. Engineering Strategies for Phenotype 7633

(A) Six different strategies to increase the flux through the metabolic pathway without increasing the steady-state

concentration of P8 are shown. Each colored arrow represents an individual strategy. An arrow placed directly over a

synthesis or a degradation flux targets its associated rate constant: a for synthesis and b for degradation. Arrows located

within gray boxes usually target kinetic properties of an enzyme or a process. Blue upward arrows symbolize increase,

whereas red downward arrows represent decrease. All of the strategies represented in the figure are biologically feasible.

However, modifying kinetic properties of a given enzyme or process requires, in most of the cases, a greater experimental

effort than modifying its synthesis rate. The effects of perturbing the maximal synthesis rate of the mRNA molecule

M3ða3maxÞ on the flux through the metabolic pathway F and the steady-state concentration of P8 are shown in (B) and (C),

respectively. The operating point of the system is the one depicted in Figure 2B by the white dot. Vertical dashed lines

represent the nominal value of a3max, from which the system is perturbed. The black solid line represents the behavior of

phenotype 7633. The generation of each Titration Plot for the Full System involved numerical integration for 100 different

values of a3max within the range [0.1 100]. For each point, the system was integrated for 500 time units. To test its stability,

the system was integrated for increasing (blue solid line, not shown since covered by orange line) and decreasing a3max

values (orange line). Since the system follows the same path when integrated forward and backward, it exhibits mono-

stable behavior, as predicted by DST3 based on the number of eigenvalues with positive real part for phenotype 7633.

Discrepancies in the location of the solid black and orange lines are due to the simplifications made by the Design Space

formalism to generate mathematical expressions for phenotype 7633. However, note that the slope of the black line

accurately describes the slope of the orange line.
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two-thirds of the pcaU gene. After growth on succinate, pyruvate, and acetate, the DpcaU derivative strain

expressed between 2- and 3.5-fold higher enzyme levels than the wild-type under the same conditions,

thus suggesting that PcaU can act as a repressor in the absence of high concentrations of the inducer

protocatechuate.

In section ‘‘Filtering the Phenotypic Repertoire for Phenotypes of Interest,’’ we filtered the phenotypic

repertoire exhibited by the network represented in Figure 2A to identify 64 phenotypes of interest that

were inducible and responded to changes in the concentration of the inducer protocatechuate. Here,

we ask the question whether these phenotypes are able to exhibit induction patterns that match the exper-

imental observations made by Trautwein and Gerischer (2001). Once again, we focus our analysis around

phenotype 7633, which is a representative phenotype for the group 1 in Table 1. Figure 4A shows a Design

Space plot centered on this phenotype. The x axis corresponds to the logarithm of the concentration of the

environmentally supplied substrate protocatechuate P0, whereas the y axis corresponds to the logarithm of
iScience 23, 101200, June 26, 2020 13
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Figure 4. Induction Patterns of the Protocatechuate Pathway Around Phenotype 7633

(A) A Design Space plot around phenotype 7633 is shown. An asterisk next to the phenotype number denotes that at least

one boundary condition of the phenotype is on the edge. Parameter values are the same as in Figure 2A.

(B) The logarithm of the steady-state concentration of the mRNA molecule M3, a proxy for the expression level of the

protocatechuate pathway, is shown as a heatmap. These concentrations were calculated using S-system equations for

each one of the phenotypes shown in (A). This plot was created through the Create Plot tab of the Main Menu of DST3

(Figure S10). As mentioned before, the calculation of steady states within the Design Space formalism only involves matrix

operations, rather than numerical integration of the Full System with ODE or DAE solvers. Additionally, note that (B)

represents an overview of the potential expression patterns exhibited by the protocatechuate pathway as a function of the

external inducer concentration P0 and the level of the regulator UT. Four specific induction patterns (denoted by the white

dashed lines in [B]) are visualized by means of titration plots.

(C–F) (C) and (D) represent titration plots at two different constant levels of UTðlog10UT = þ2:5 and � 2:5; respectivelyÞ.
On the other hand, (E) and (F) represent titration plots at two different constant levels of the environmentally supplied

inducer protocatechuate ðlog10ðP0Þ = � 2:0 and + 2:0; respectivelyÞ. All titration plots were generated using the

parameter values of Figure 2B and show the fold change between the lowest and highest level of the concentration of the

mRNA molecule M3. Black solid lines in each titration plot represent the behavior of specific phenotypes of the system.
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Figure 4. Continued

The generation of each titration plot for the Full System (orange lines) involved numerical integration for 100 different

values of the variable shown in the x axis P0 or UT, within the range [0.001 1000]. For each step within this range, the

system was integrated for 5,000 time units.
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the total amount of the regulator PcaU present in the system ðUTÞ. Parameter values are the same as in

Figure 2B.

To obtain a global view of the expression pattern exhibited by the system around phenotype 7633, we

generated a Steady State Concentration Plot (Figure 4B) of the mRNA molecule M3. This plot has the

same axes as Figure 4A but shows the logarithm of the concentration of the mRNA molecule M3 as a heat-

map. Solid black lines in Figure 4B represent boundaries between phenotypes, whose identity can be ob-

tained from Figure 4A. Detailed induction patterns were extracted from Figure 4B by a series of two Titra-

tion Plots at different constant levels of the regulator PcaU (Figures 4C and 4D) and two Titration Plots at

constant levels of P0 (Figures 4E and 4F). The parametric trajectories followed by each one of these titration

plots are denoted by the white dashed lines in Figure 4B.

Taken together, these four titration plots correctly capture key experimental observations made by Traut-

wein and Gerischer (2001). Figure 4C along with Figure 4D clearly demonstrates that the protocatechuate-

dependent regulation of the pca genes only occurs in the presence of a sufficiently high concentration of

the regulator PcaU ðUTÞ. If the concentration of PcaU is too low, or if the regulator is not present in a func-

tional form, increasing the concentration of protocatechuate ðP0Þ will not lead to a change from the basal

state of the system, as shown in Figure 4D by a constant steady-state concentration of the mRNAmolecule

M3. However, if UT is increased to a sufficiently high value, a 100-fold pca gene induction by P0 is observed

(Figure 4C). Interestingly, this extent of induction is in agreement with the maximal induction factor exper-

imentally observed by Trautwein and Gerischer (2001).

Evidence for the repressor activity of PcaU at a low protocatechuate level is shown in Figure 4E by an in-

crease in the steady-state concentration of the mRNA molecule M3 as the total amount of PcaU ðUTÞ is
decreased. Interestingly, a calculated 10-fold repression is in the same order of magnitude as the experi-

mentally observed 2- to 3.5-fold repression. Note that, at a high concentration of the inducer, decreasing

the total amount of PcaU ðUTÞ leads to a decrease in the steady-state concentration of the mRNAmolecule

M3, thus reinforcing the observation that PcaU acts as a repressor only at low concentrations of the inducer

protocatechuate.

The ability of the underlying mathematical model to correctly describe experimentally observed induction

patterns is not completely surprising, partly because the potential for these features was incorporated dur-

ing the construction of the model. Rather, the information extracted from Figures 4C–4F confirms the suit-

ability of the model for the mathematical analysis performed in section ‘‘Logarithmic Gains Can Guide the

Design of Engineering Strategies.’’ On the other hand, what is indeed surprising is the ability of the Design

Space toolbox to quickly identify and locate regions of a 30-dimensional parameter space exhibiting

desired properties without using any a priori knowledge of the involved parameters.
DISCUSSION

The Design Space Toolbox v.3.0 offers a variety of advantages over its predecessor version. By distributing

the software via a Docker image, the installation process of DST3 is reduced to installing Docker itself. All

necessary software dependencies and configurations are already contained within the Docker image, so

that users can focus on the actual application of the tools to the analysis of biochemical systems. To

improve software usability, DST3 comes with a more stable user interface. By integrating ODE and DAE

solvers into the user interface (see Table S7 for further details), it is now possible to directly test indepen-

dently the accuracy of predictions made by the Design Space formalism fromwithin DST3. Additionally, the

capabilities of the computational engine of the Design Space Toolbox were extended. DST3 is now able to

analyze biochemical systems containing multiple, nested singularities, something that was out of the reach

of previous versions of the toolbox. We demonstrated the utility of DST3 by analyzing a case study of an

integrated biochemical system consisting of a signaling cascade, a gene circuit, and a metabolic pathway.

The system’s topology encoded a cycle, a conservation relationship, and the potential to exhibit blow-up

behavior.
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We applied a recently developed phenotype-centric modeling strategy (Lomnitz and Savageau, 2015; Val-

derrama-Gómez et al., 2018) to identify a stable and globally robust operating point of the system. This

process involved listing the phenotypic repertoire and filtering it for phenotypes of interest. From a total

of 3,450 valid phenotypes, 384 were found to be non-pathological, 192 of these physiological phenotypes

were responsive to changes in the concentration of environmental substrate protocatechuate (P0), and 64

of the responder phenotypes were found to be inducible. The latter fell into three groups based on the

steepness of the induction characteristic: LðM3;P0Þ= 2 with 32 phenotypes, LðM3;P0Þ= 4 with 28, and

LðM3;P0Þ= 6 with 4. When compared on the bases of three criteria, global robustness, energy efficiency,

and toxicity, the first group was best and the third group was worst. An analysis of the volume of the 64

phenotypes with desired properties revealed that their combined volume only accounted for 5.61 3

10�5% of the total volume of all non-pathological phenotypes identified by DST3 (see Table 1). When path-

ological phenotypes were considered (phenotypes exhibiting a blow-up behavior), this value decreased to

2.933 10�22%. This suggests that desirable phenotypes will have to be actively selected for by nature, since

the vast majority of parameter values chosen at random (increased entropy) would produce few desirable

phenotypes.

These figures highlight the power of DST3 and the phenotype-centric modeling strategy it enables.

Finding the reported operating point for the representative phenotype 7633 and characterizing its robust-

ness and associated boundaries in a 30-dimensional parameter space by means of parameter sampling

would have been computationally expensive and impractical. Indeed, current methods based on the

ensemble modeling approach (Tran et al., 2008) for robustness analysis (Lee et al., 2014) involve computa-

tionally expensive dense parameter sampling and numerical integration by ODE solvers for stability assess-

ment. These approaches require a long computational time for large model ensembles, and they do not

allow for a rigorous identification of stability boundaries. On the other hand, the Design Space formalism

decomposes the parameter space into a set of polytopes, biochemical phenotypes, whose boundaries and

properties are well defined. DST3 not only identifies these phenotypes but also allows the automatic pre-

diction of nominal parameter sets for their realization. This greatly facilitates deterministic simulations of

the Full System (Forger and Peskin, 2003; Zhou et al., 2005; Mirsky et al., 2009), which require parameter

values, as demonstrated in Figures 2C and 2E, Figures 3B and 3C, and Figures 4C–4F. Similarly, stochastic

simulations, which also require parameter values for propensity functions (Drawert et al., 2016), can benefit

from the innovations offered by DST3.

DST3 predictions regarding steady states, stability, and blow-up behavior were accurate, as demonstrated

by time course, titration, and trajectory plots generated for the Full System. By finding strategies to in-

crease the flux through the metabolic pathway of the system without increasing the steady-state concen-

tration of an intermediate metabolite, we aimed at showing a glimpse of the potential that the Design

Space formalism has to offer to the field of rationalMetabolic Engineering (Bailey, 1991). Further potential

applications relate to the ability of DST3 to correctly identify and characterize blow-up phenotypes, which

are commonly found in metabolic systems. Often, in the process of strain development, intermediate

strains are generated, in which a given intermediate metabolite excessively accumulates or is totally

consumed, thus generating a metabolic imbalance within the cell. This decreases strain fitness and can ul-

timately lead to cellular death (Dahl et al., 2013; George et al., 2014; Alonso-Gutierrez et al., 2017). DST3 is

able to identify regions in the parameter space leading to metabolic imbalances and to provide clues to

rectify these phenotypes. For instance, consider the operating point of the system shown in Figure 2D,

which is located within the blow-up phenotype 7718.1. Inspection of the Design Space plot around this

phenotype indicates that increasing the value of kcat5 to values larger than 0.1 would place the operating

point of the system within phenotype 7705, 7633, 4,177 or 5,473_6, all of which exhibit a stable, non-path-

ological steady state. The specific location of the operating point within any of these phenotypes, and the

resulting behavior, will depend on the extent of the increase. Alternative, and more practical strategies to

rectify the pathological behavior of an operating point located within phenotype 7718.1 include increasing

the amount of the PcaGH enzyme by cloning its gene sequence on a controllable plasmid or engineering its

ribosomal binding site.

The application of mechanistic models for the identification of metabolic engineering strategies has been

rather limited. This has been mainly caused by a lack of knowledge of associated parameter values. As a

consequence, constraint-basedmodeling has been themethod of choice applied to rationally guide meta-

bolic engineering strategies (Valderrama-Gómez et al., 2017). By enabling a mechanistic, phenotype-
16 iScience 23, 101200, June 26, 2020
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centric modeling strategy not dependent on parameter values, the Design Space formalism and associated

toolbox offers enormous potential for the field of metabolic engineering.

Elucidating biological design principles is another important area for application of the Design Space

formalism that was not explored in this work owing to space limitations. In the Design Space, boundaries

delimiting biochemical phenotypes are linear functions of the system’s parameters in logarithmic coordi-

nates. Thus, design principles can be readily identified in the form of mathematical inequalities involving

the parameters of the system. These ideas were applied by Fasani and Savageau (2013) to study properties

of toxin-antitoxin systems, which have been linked with the medically relevant persister phenotype ex-

hibited by certain bacterial strains. The study revealed factors affecting the frequency of persisters in the

population, such as the overall number of toxin-antitoxin modules and the size and position of the bistable

region, a property emerging from the system’s architecture.

There are many examples of systems that appear to perform the same function, and yet they exhibit radi-

cally different genomic architectures, the reasons for which are poorly understood. An example is provided

by the protocatechuate degradation pathway studied in this work. It is one of the two branches of the b-ke-

toadipate pathway, a chromosomally encoded convergent pathway for aromatic compound degradation

that is widely distributed in soil bacteria and fungi. Enzyme studies suggest that the pathway is highly

conserved in diverse bacteria; however, its regulation and gene organization differ greatly (Harwood

and Parales, 1996). For instance, the pathway genes from Pseudomonas aeruginosa and P. syringae are ar-

ranged in three and four different clusters, respectively. By contrast, all genes are arranged in a single clus-

ter in Acinetobacter sp. ADP1 (studied in this work) and in P. fluorescens (Jiménez et al., 2002). It has been

suggested that evolutionary processes have shaped moldable aspects of the b-ketoadipate pathway to

optimally serve diverse lifestyles of bacteria (Harwood and Parales, 1996). DST3 could be used to compare

and contrast inherent aspects of each system, such as its dynamic properties, induction characteristics, and

trade-offs regarding energy and toxicity, thus potentially allowing the elucidation of underlying design

principles used by nature to create the alternative genomic architectures observed in organisms with

different environments and lifestyles.
Limitations of the Study

Even moderate-sized systems are capable of exhibiting a large number of biochemical phenotypes. The ability

to filter the repertoire for specific phenotypes is limited by currently available filtering criteria: hysteretic switches,

limit cycle oscillations, global robustness, and logical patterns of system-wide increasing and decreasing re-

sponses to a given input stimulus. Although we are developing additional criteria, users may need to develop

criteria to characterize phenotypes specifically of interest to them. Although the rigorous definition of bound-

aries betweenphenotypes is of primary focus in the novel phenotype-centricmodeling strategy, three limitations

have their origin in the mathematical transformations used to decompose the Full System into a finite set of

dominant biochemical phenotypes (represented by S-Systems) and to mathematically analyze them in the log-

arithmic space. (1) Numerical accuracy, which becomes undefined at boundaries betweenphenotypes in param-

eter space where there is no clear pattern of dominance.We denote the extreme case when the operating point

of the system is directly located on a phenotypic boundary by a phenotype number with an asterisk. This limi-

tation canbeeasily overcomebyplacing the operatingpoint of the system far away fromaphenotypicboundary.

The Design Space Toolbox provides necessary functionalities to modify the operating point of the system

accordingly (see the tutorial contained in the Docker image under /Tutorials/Tutorial_DST3). (2) The logarithmic

transformation employed to linearize S-System equations causes trivial solutions to be ignored. In such a solu-

tion, at least one of the dependent variables has a steady-state value of zero. We are currently implementing

computational routines that address this limitation. (3) The description of some processes, such as the mem-

brane potential, require mathematical functions (e.g., exponential functions) that cannot be transformed trivially

into theGMA form, which in theDesign Space formalism is used to represent the Full System. An approximation

by rational functions is necessary, and inmost casesgenerating the right approximation requires someexpertise.

We will be addressing this topic in a future study.
Resource Availability
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The Docker images used by DST3 are freely available at https://hub.docker.com/r/savageau/dst3.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101200.
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Supplemental Figures 
 
 

 
 
Figure S1. Architecture of DST3 and Its Interaction with the Host Operating System via Docker. Related to 
Figures 2, 3 and 4. The three components of DST3 are integrated in a layered fashion. The C library is the 
heart of DST3. It leverages the GNU Scientific Library (GSL) to perform numerical computations, specifically 
matrix operations. A customized version of the GNU Linear Programming Kit (GLPK) is used to solve linear 
programming problems within DST3. Google protocol buffers (Protobut/Protobuf-c) are used to write and 
read data. Access to the C library from Python is provided by SWIG, which stands for Simplified Wrapper 
and Interface Generator. This allows the creation of a DST3 Python Package. The DST3 User Interface is 
based on widgets provided by the IPython Notebook. The Python environment is managed by Conda. The 
standard Docker Image for DST3 is savageau/dst3. Advanced users might prefer savageau/dst3:python3, 
which comes with a DST3 Python Package for Python 3.7.3. 
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Figure S2.  Overview of Menus and Windows Comprising the IPython-based User Interface of DST3. 
Related to Figures 2, 3 and 4 as well as Table 1 and 2. The user interface consists of a collection of tabs, 
buttons and text fields that facilitate access to computational tools contained in the DST3 C library. Data 
can be saved to and loaded from .dsipy files. Tables generated from the menu Phenotypic Repertoire 
and Full System can be exported to .xlsx files for further analysis. Additionally, parameter values can be 
loaded from tables contained in files with the same extension. The User Interface of DST3 is built on legacy 
code inherited from DST2. Its portability is guaranteed through the virtualization technology offered by 
Docker.  
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Figure S3. Phenotypic Deconstruction of a Biochemical System Using the DST3 Python Module. Related 
to Figure 1. Three steps are involved in the computational Design Space analysis of any biochemical 
system. First, an Equations Python object is generated by means of the class dspace.Equations. This 
process involves recasting ordinary differential equations describing the systems’ dynamics into the GMA 
form, followed by a further transformation into a list of strings according to syntax rules described in the 
main text. Auxiliary variables stemming from the recasting process or introduced by conservation 
constraints need to be declared explicitly using the key argument aux_var. In a second step, the 
Equations object is passed to the class dspace.DesignSpace along with necessary key arguments to 
inform the computational engine about the presence of conservations, cycles or metabolic imbalances. The 
output of this second step is a DesignSpace object. Methods associated with this object allow, among 
other things, the generation of a list of strings containing identifiers of valid cases.  In a third step, the 
DesignSpace object can be used to generate Case objects using valid case identifiers as input. Each 
Case object contains a respective SSystem object. Methods associated with these two objects allow a 
comprehensive characterization of each valid case, which includes, but is by no means limited to, 
calculation of interior parameter sets, logarithmic gains, determination of dynamical stability, etc. Refer to 
Lomnitz and Savageau (2016) and to the documentation contained in the Docker Image of DST3 for more 
details and usage examples of the module dspace. 
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Figure S4. Overview of the computational workflow implemented by DST3. Related to Figure 2. Three main 
checkpoints define the set of computational algorithms applied to analyze a potential phenotype of a given 
system. Routines to handle under-determined cases (conserved relationships, metabolic imbalances and 
cycles) are exclusive to DST3. Refer to Section 2 of the Supplementary Information for details on the 
mathematical treatment.  
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Figure S5. Initial Input Window of the DST3 User Interface. Related to Figures 2, 3 and 4. Relevant 
information defining the biochemical system under study such as its mame, equations, auxiliary variables, 
parametric constraints and kinetic orders can be passed to the computational engine of DST3 through this 
window. The conservations field (highlighted by the number 1 in the blue circle), as well as the checkboxes 
for cycles (highlighted by the number 2 in the blue circle) and metabolic imbalances (e.g., blowing 
phenotypes, highlighted by the number 3 in the blue circle) can be used to control computational routines 
used by DST3 to analyze biochemical phenotypes.  
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Figure S6. About and Main Menu Tabs of the DST3 User Interface. Related to Table 1. A. The About tab 
provides general information about DST3, its developers as well as an email address to report bugs. 
Additionally, syntax rules to be followed for the string representation of the mathematical model are 
provided. B. The Main Menu tab provides access to the main functionalities of DST3, which are contained 
in six different action tabs: Phenotypic Repertoire, Analyze Case, Case Intersections, Co-localizations, 
Create Plot and Full System. The Phenotypic Repertoire tab is shown in this panel. It allows listing and 
filtering the phenotypic repertoire of the model according to different user-defined criteria (volume, 
logarithmic gains, etc.). Refer to the tutorial contained within the DST3 Docker Image under 
/Tutorials/Tutorial_DST3/Part1_DST3_User_Interface for additional details on each one of these six 
action tabs.  
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Figure S7. System Tab of the DST3 User Interface. Related to Figure 2 and Table 1. General information 
of the system under analysis such as the maximal number of biochemical phenotypes it can exhibit, its 
signature and its equations are provided within the System tab.    

 

 

Figure S8. Figures and Tables Tab of the DST3 User Interface. Related to Figures 2, 3 and 4 and to Table 
2. The Figures (A) and Tables (B) tabs contain elements saved in the current working session or loaded 
from data files. It is possible to visualize elements and delete both figures and tables from these tabs.   

A

B



 

 

 

Figure S9. Analyze Case, Case Intersections and Co-localizations tabs of the DST3 User Interface. Related 
to Table 2. The Analyze Case tab (A) allows the generation of a comprehensive analysis of a given 
phenotype specified by its case number. A central functionality provided by this action tab is the automatic 
calculation of parameter values for the realization of the specific biochemical phenotype. This set of 
parameters allows a more directed exploration and analysis of the parameter space and the behavior of 
the system using the tabs Create Plot (Fig. S10) and Full System (Fig. S11). The Case Intersections (B) 
and Co-localizations (C) tabs are used to study the relative position of a given set of phenotypes in the 
parameter space.  
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Figure S10. Create Plot Tab of the DST3 User Interface. Related to Figure 2, 3 and 4. The Create Plot tab 
allows the generation of seven different types of plots, shown in the blue box. These plots allow the 
visualization of various properties of the biochemical phenotypes of the system under study, such as their 
spatial arrangement in the parameter space, their stability properties and their steady states.  

 



 

 

Figure S11. Full System Tab of the DST3 User Interface. Related to Figures 2, 3 and 4. The Full System 
tab allows the characterization of the dynamic properties of the mechanistic model under analysis using 
numerical solvers (ODE and DAE). Refer to Table S7 for an overview of the solvers available in DST3. 
Three different types of plots can be generated in this tab: Time Courses, Titrations and Trajectories plots.  

 

 

 

 

 



 

Supplemental Tables 
 
Table S1. Cyclic Cases, their Signatures and Case Numbers. Related to Figure 1. Resolving the singularity 
contained in case 27 (see Fig. 1B) involves a Design Space analysis of the sub-system described by Eqs. 
S13-S16. This analysis generates six sub-cases, each one of which is generated as dictated by a three-
digit signature. Note that the reference system of equations from which dominant terms are picked 
according to the case signature is the Full System (Eqs. S1-S3) and not the sub-system used to resolve 
the singularity (Eqs. S13-S16). The case numbers for the valid sub-cases have the parent case number 
with an underscore followed by a number associated with the sub-case; e.g., 27_3. 
 

Sub-case 27_1 
[111 11 21] 

Sub-case 27_2 
[22 112 21] 

Sub-case 27_3 
[22 11 112] 

 

 

 

 

 

 

 

 

 

Sub-case 27_4 
[311 11 21] 

Sub-case 27_5 
[22 312 21] 

Sub-case 27_6 
[22 11 312] 
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Table S2. Conserved Cases and their Signatures. Related to Figure 1. The synthetic network shown in Fig. 
1C can be decomposed into three different cases by applying the Design Space formalism. Dominance 
analysis on the conservation constraint, i.e., Eq. S25, gives rise to each of these cases. Note that each 
case lacks differential equations, when compared with the Full System (Eqs. S22-S25). The missing 
differential equation in each case is identified by a pair of zeros in the case signature.  
 

Case 1 
[00 11 11 11] 

Case 2 
[11 00 11 12] 

Case 3 
[11 11 00 13] 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Table S3. Blow-Up Cases and their Case Numbers for a Single Knife-Edge Condition. Related to Figure 1. 
Each sub-case is defined by the violation of its knife-edge condition in one of two possible directions. Sub-
case 2.1 is valid because  fulfills the associated dominance condition . The same is 

not true for sub-case 2.2 because  does not satisfy this dominance condition.  Computationally 
determining the validity of each sub-case involves the solution of a linear program, as described by Fasani 
and Savageau (2010); the only difference being the incorporation of additional inequalities to account for 
the violation of the knife-edge conditions and associated extreme values for the chemical pools. Since the 
linear program is formulated in logarithmic coordinates, a value of  or  is used 

when  or , respectively. The case numbers for the valid sub-cases have the parent case 
number with a period followed by a number associated with the sub-case. The total number of sub-cases 

corresponds to , where  refers to the number of knife-edge conditions in the system.  
 
 Sub-case 2.1 Sub-case 2.2 

Violation of knife-edge   

Implied extreme value    

Dominance condition   

Validity Valid  Not valid 
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Table S4. Blow-Up Cases for Two Knife-Edge Conditions. Related to Figure 1. Since , there is a 
total of four sub-cases to analyze. Only sub-cases 2 and 3 are valid. Sub-cases 1 and 2 exhibit an 
inconsistent violation of their knife-edge conditions. Sub-case 1.1 for instance, dictates  and 

, which implies and . By replacing extreme values into these inequalities, one 

obtains , which cannot be fulfilled, rendering sub-case 1.1 invalid. Dominance conditions do not 
exist for this example because the Full System being analyzed is already an S-System.  
 
 Sub-case 1.1 Sub-case 1.2 Sub-case 1.3 Sub-case 1.4 

Violation of knife-edge      

Implied extreme values     

Dominance conditions 
 

None None None None 

Validity Not valid Valid Valid Not valid 

 
 
  

nknife = 2

α1 >α 2
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Table S5. List of Symbols Used in the Mathematical Formulation of the Protocatechuate Degradation 
Pathway. Related to Figure 2. The biological identity and context of symbols used to represent pools 
modeled in Eqs. S34-S44 is provided.  
 
Module Symbol Name or Function Description 

Signaling 

U1 Repressor form of the 
transcription factor PcaU  

PcaU belongs to the IclR family of 
transcriptional regulators (PobR subfamily) 
and carries a helix-turn-helix motif at the N 
terminus. It acts as an activator in the 
presence of the inducer protocatechuate and 
as a repressor in its absence (Trautwein and 
Gerischer, 2001) 

U2 Activator form of the 
transcription factor PcaU 

Gene 
Circuitry 

M3 Polycistronic mRNA 
molecule 

It encodes pca genes for the degradation of 
protocatechuate (pcaBKCHG)  

T4 4-Hydroxybenzoate 
transporter 

This transporter protein, encoded by the 
gene pcaK, is also able to transport 
protocatechuate into the cell. 

GH5 Protocatechuate 3,4-
dioxygenase 

Dimer protein. The α sub-unit is encoded by 
pcaG, while the β sub-unit is encoded by 
pcaH. It catalyzes the reversible conversion 
of protocatechuate to β-carboxy-cis,cis-
muconate. 

B6 β-carboxy-cis,cis-muconate 
cycloisomerase  

This protein is encoded by the gene pcaB. It 
catalyzes the reversible conversion of β-
carboxy-cis,cis-muconate to γ-
carboxymuconolactone. 

C7 4-carboxymuconolactone 
decarboxylase  

This protein is encodeded by the gene pcaC. 
It catalyzes the conversion of γ-
carboxymuconolactone to β-ketoadipate 
enol-lactone 

Metabolism 

P0 Environmentally supplied 
protocatechuate 

Protocatechuate is a (toxic) chemical 
compound derived from phenolic species 
including p-cresol, 4-hydroxybenzoate and 
numerous lignin monomers and is converted 
to β-ketoadipate by the pathway under study. 
Intracellular protocatechuate induces the 
transcription of pca genes via PcaU.  

P8 Intracellular 
protocatechuate 

CM9 β-carboxy-cis,cis-muconate Intermediate metabolites of the 
protocatechuate degradation pathway 

CL10 γ-carboxymuconolactone 
 
 
 



 

Table S6. List of Parameters Involved in Modeling the Pathway for Protocatechuate Degradation. Related 
to Figure 2. The biological meaning of each one of the 30 parameters used in Eqs. S34-S45 is provided.  
 

Module Parameter Biological Meaning 

Signaling 

 Bimolecular rate constant for formation of U1 from U2 

 Monomolecular rate constant for decay of U1 to U2 

 Total concentration of the transcription factor PcaU (U1 + U2) 

Gene 
Circuitry 

 Rate constant for the basal transcription rate of the mRNA molecule M3 

 
Rate constant for the minimum transcription rate of the mRNA molecule M3 
(under repression by U1) 

 
Rate constant for the maximum transcription rate of the mRNA molecule M3 
(under activation by U2) 

 Binding constant of U1 for the promoter of the mRNA molecule M3 

 Binding constant of U2 for the promoter of the mRNA molecule M3 

 Rate constant for the degradation of the mRNA molecule M3 

 Rate constant for the translation of the protein T4 from the mRNA molecule M3 

 Rate constant for the degradation of the protein T4 

 
Rate constant for the translation of the protein GH5 from the mRNA molecule 
M3 

 Rate constant for the degradation of the protein GH5 

 Rate constant for the translation of the protein B6 from the mRNA molecule M3 

 Rate constant for the degradation of the protein B6 

 Rate constant for the translation of the protein C7 from the mRNA molecule M3 

 Rate constant for the degradation of the protein C7 

Metabolism 

 Concentration of the environmentally supplied protocatechuate 

 Turnover number of the enzyme T4 

 Michaelis Menten constant of enzyme T4 

 Turnover number of the enzyme GH5 

 Michaelis Menten constant of enzyme GH5 for the forward reaction 

 Equilibrium constant for the reaction catalyzed by GH5 

 Michaelis Menten constant of enzyme GH5 for the reverse reaction 

 Turnover number of the enzyme B6 

 Michaelis Menten constant of enzyme B6 for the forward reaction 

 Equilibrium constant for the reaction catalyzed by B6 

α
1

β
1
UT

α3basal

α3min

α3max

K1

K2

β3

α 4

β4

α5

β5

α6

β6

α7

β7

P0
kcat4

KM 0

kcat5

KM 5 f

Keq5

KM 5r

kcat6

KM 6 f

Keq6



 

 Michaelis Menten constant of enzyme B6 for the reverse reaction 

 Turnover number of the enzyme C7 

 Michaelis Menten constant of enzyme C7 

 
 
 
Table S7. Numerical Solvers Available in DST3. Related to Figures 2, 3 and 4. The Full System tab of the 
DST3 user interface (Fig. S11) offers access to three different numerical solvers: a solver of ordinary 
differential equations (ODE) and two solvers of differential algebraic equations (DAE). When the Full 
System contains a conservation relationship in the form of an algebraic constraint, one of the two DAE 
solvers is used to numerically integrate the Full System. In this work, all numerical integrations reported 
were done using the IDA solver of the Sundials solver suite. The step size was 10 steps per time unit for 
all analyses. Default values for other relevant parameters are listed below.  
 
 Numerical Solver 

 IDA (Sundials) RADAU5 ODEINT 

Problem Type DAE DAE ODE 

Available in 
Python Package 

Assimulo (Andersson et 
al., 2015) 

Assimulo (Andersson et 
al., 2015) Scipy 

Integration 
method 

Variable-order, variable-
coefficient backward 
differentiation formulas in 
fixed-leading-coefficient 
form. The method order 
varies between 1 and 5 

Runge-Kutta method of 
order 5 

Adams methods for non-stiff 
problems (orders 1-12). 
Backward differentiation 
formulas (orders 1-5 with 
modified Newton iteration) for 
stiff problems 

Absolute 
Tolerance 1.00E-06 1.00E-06 1.49E-08 

Relative Tolerance 1.00E-06 1.00E-06 1.49E-08 

Maximal number 
of steps for each 
integration point 
in time 

1000 1000 Solver-determined 
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1. Transparent Methods 
 
The theoretical foundation of the Design Space formalism was laid back in the 70’s (Savageau, 

1969; Savageau, 1971a; Savageau, 1971b; Savageau, 1979). This early work introduced the 
concept of S-systems and their mathematical characterization regarding dynamic stability of 

steady states, logarithmic gains for signal amplification, and parameter sensitivities for local 
robustness. Recently, these concepts were integrated to describe a generic approach to the 

construction of the Design Space, a structured parameter space in which qualitatively distinct 
biochemical phenotypes can be identified, counted and located (Savageau et al., 2009). Linking 

regions of the parameter space with biochemical phenotypes has allowed the elucidation of 
design principles and the introduction of a radically new phenotype-centric modeling strategy 

(Lomnitz and Savageau, 2016; Valderrama-Gómez and Savageau, 2018). Over the last decade, 

two computational implementations of the Design Space formalism have been developed. Rick 
Fasani first introduced the Design Space Toolbox for MATLAB (DST1), a formal software 

implementation automating key steps of this methodology. Fasani’s contribution included an 
elegant mathematical description of the Design Space and a detailed explanation of its 

construction (Fasani and Savageau, 2010). Later, Jason Lomnitz introduced the Design Space 
Toolbox V2 (DST2) (Lomnitz and Savageau, 2016). DST2 consisted of a collection of tools 

comprised of a stand-alone library, written in the C language, that implements its own symbolic 
algebra engine and leverages open-source compiled libraries for linear algebra and linear 

optimization (via the GLPK library). By using multi-threaded concurrent algorithms to speed up 
calculations, DST2 took advantage of the parallelizable nature of the Design Space approach by 

analyzing each biochemical phenotype of the system independently.   

Here, we show how various computational tools are integrated to create DST3. We go on to 
explain how Docker images and containers can be used to access DST3 on virtually any operating 

system. Then, we briefly describe two components of DST3 that can be used to access the 
computational capabilities of DST3: its user interface and its Python module. Refer to Ipython-

notebooks contained in the Docker image under /Tutorials/Tutorial_DST3 for a detailed 
description of the user interface.  

 
 
 
 
 



 

 
1.1 Design Space Toolbox v.3.0 
 

Innovations contained in DST3 aim at improving three key aspects of the software: utility, 

usability and portability. By further developing the C library of DST3 to allow for the automatic 
identification and mathematical characterization of various types of singularities, we increased the 

scope of systems that can be analyzed by DST3, thus improving its utility. By enhancing stability 
and functionality of the IPython-based user interface of DST3, we increased software usability for 

users with limited programming knowledge. For advanced users, we generated a python module 
that runs on python 3.7.3 and can be integrated into customized programs. Due to its various 

external software dependencies, DST2 suffered from a limited portability. We address this issue 
by distributing DST3 via Docker. This effectively renders Docker the only software dependency 

necessary to run DST3 and guarantees portability across major operating systems.  

 
1.1.1 Technology overview 

 
Three main components make up DST3: A C library, a Python package and a user interface 

(Fig. S1). All three components are interconnected, with the C library being the computational 
engine that performs most of the numerical analyses. The Python package was designed to 

provide high-level access to the C library, making further software development simpler and 
faster. The user interface was built using IPython widgets and accesses the C library through the 

Python module.  
 

Four steps are required to install and access all components of DST3: 

 
1. Install Docker on your operating system. Refer to 

https://savageaulab.wordpress.com/installing-docker/ for instructions.  
2. Download the latest DST3 image by typing the following command in a Terminal or Prompt 

Window: 
docker pull savageau/dst3 

This will download the latest stable version of DST3 running on Python 2.7.3, for which a 

user interface is available. For advanced users, a Docker image of DST3 running on 
Python 3.7.3 (only the Python module is available) can be downloaded instead by typing: 
docker pull savageau/dst3:python3 



 

3. Start a Docker container to access DST3 by typing the following command in a Terminal 

or Prompt window: 
docker run -d -p 8888:8888 savageau/dst3 

That command will create a container without read and write privileges in the host 

computer. Files created within the container will be lost after the container is stopped. In 
order to grant read and write privileges, the following command should be used instead: 
docker run -d -p 8888:8888 --mount 

type=bind,source=/Users,target=/Documents/host savageau/dst3  

Windows users should use: 
docker run -d -p 8888:8888 --mount 

type=bind,source=//c/Users,target=/Documents/host savageau/dst3  

4. Access DST3 by opening the following address on any internet browser: 
http://localhost:8888/ 

 

Windows users can refer to further the instructions contained in the webpage: 
https://savageaulab.wordpress.com/docker-image-for-the-design-space-toolbox-v3/ 

 

1.1.2 DST3 User Interface 
 

DST3 comes with an updated and more stable Ipython-based user interface. Fig. S2 presents 

a hierarchical overview of the different menus available. The gray box represents the initial menu, 
from which the functionality of DST3 can be accessed. The About menu (Fig. S6A) provides 

general information about the software, including its version, developers and an option to report 
bugs. Syntax rules for equations are also contained in this menu. Analyses supported by DST3 

can be accessed from the Main Menu (Fig. S6B). Results, in the form of figures and tables, are 
managed by the Figures (Fig. S8A) and Tables menus (Fig. S8B), respectively. The System tab 

(Fig. S7) contains general information about the specific set of differential equations subject to 
analysis. It includes the name of the system, the total number of potential cases and its system 

signature.  
 

Action tabs contained in Main Menu include the following: 

 
Phenotypic Repertoire: This window allows the user to list and filter biochemical phenotypes 

– cases – according to their validity, case signature, log-gain values, number of eigenvalues with 



 

positive real part and volume (Fig. S6B). The resulting phenotypic repertoire can be exported to 

a .xlsx file or saved into the Tables menu if desired.   

 

Analyze Case: This tab creates the full analysis of a case referenced by its case number or 
case signature (Fig. S9A). This analysis includes the S-system equations that mathematically 

define the case, conditions that need to be fulfilled for its validity, its steady state solution – if it 

exists – and boundary constraints. For cases with a steady state solution, logarithmic gains for 
dependent variables with respect to independent variables and parameters are calculated and 

reported. For valid cases, a bounding box for the corresponding high-dimensional polytope is also 
provided. Additionally, it is possible to estimate a set of parameter values located within this high-

dimensional polytope through linear programming. Global tolerances can be calculated from that 
nominal parameter set or from any other parameter set within the polytope by calculating 

respective lower and upper bounds for each parameter. The Analyze Case window also provides 
eigenvalues for the respective S-system. Note that individual tables generated by the Analyze 

Case tab can be saved into the Tables menu.   
 

Case Intersections: For a given set of cases, this tab indicates if there is a region in 

parameter space where the cases overlap (Fig. S9B). If this region exist, global tolerances are 
reported for a parameter set located within the intersecting polytope.  

 
Co-localizations: For a given set of cases and so-called slice variables, this tab indicates if 

regions of validity for each case exist within the given slice (Fig. S9C). If the co-localization is 
valid, global tolerances are reported. Additionally, Design Space plots can be generated to 

visualize the co-localization of the cases.  
 

Create Plot: This window allows the generation of multiple plots, which are useful in 
characterizing the Design Space and its predictions for stability, steady state concentrations, 

fluxes, etc. (Fig. S10). Environmentally determined independent variables and genetically 

determined parameters are typically plotted on the x- and y-axes, and the selected phenotypic 
characteristics are plotted as a heat map on the z-axis.  Even though an explorative 

characterization of the Design Space is possible via the interactive Design Space plot, 
functionalities contained in the Create Plot window are more effective when used to characterize 

a specific region of interest in the parameter space. This region can be usually found by combining 



 

functionalities of the Phenotypic Repertoire and Analyze Case windows. Plots generated by 

this window can be saved in the menu Figures. 
 

Full System: This window allows the characterization of the temporal response of the original 
set of differential equations under study (Full System), as well as the analysis of its stability 

properties (Time Course, Titration and Trajectory Plots). This characterization is useful to assess 
the accuracy of predictions made using the S-system approximations (Fig. S11). Analysis of 

systems of differential algebraic equations (DAE) is performed through the python package 
Assimulo (Andersson et al., 2015), while systems of ordinary differential equations (ODE) are 

numerically solved by the ODEINT solver of the Python package Scipy. Refer to Table S7 for 
further details. Results generated by this window can be saved in the menu Figures or exported 

to .xlsx files for further analysis.   

 
1.1.3 DST3 Python Module 
 

The capability of the DST3 C library to identify special phenotypes can be enabled by 
changing default values of arguments passed to classes Equations and DesignSpace. Both 

classes are contained in the DST3 Python Package dspace and play a central role in generating 

Python objects involved in any computational Design Space analysis, as shown in Fig. S3. The 
input to the class Equations consists of a machine-readable string representation of the system 

of equations describing the dynamics of the network. A string representation that can be parsed 

by the computational engine of DST3 should be compliant with following syntax rules: 
 

1. Each equation has to be explicitly stated as: 
a. A differential equation, where the "." operator denotes the derivative with respect 

to time. 
b. An algebraic constraint, where the left-hand side is either a variable or a 

mathematical expression. Auxiliary variables associated with the constraint must 
be explicitly defined (unless the left-hand side is the auxiliary variable). Algebraic 

constraints can be used to represent conservation relationships. In that case, they 

should be placed after regular algebraic constraints. Additionally, they should 
follow the form dictated by Eq. S21. When using the Python module, associated 

auxiliary variables should be explicitly declared as ‘Xci’, with . This i = 1,...,ncr



 

definition is not necessary when using the DST3 user interface. In any case, 

variable names ‘Xci’, with  are reserved for the computational engine 

and should not be contained in the system of equations defined by the user.       
2. Multiplication is represented by the "*" operator.  

3. Powers are represented by the "^" operator.  
4. Architectural constraints are defined as inequalities, where both sides of the inequality are 

products of power-laws. 

 
In order to exemplify the generation of valid machine-readable string representations and the 

usage of the DST3 Python module, we calculate valid cases for three different synthetic 
biochemical systems, each one exhibiting a different type of singularity. For each system, five 

lines of Python code are presented and discussed. Computational steps involve in each case: 
 

1. Importing the DST3 python module dspace, 

2. Defining a string representation for the system,  
3. Generating an Equations object, 

4. Generating a DesignSpace object, 

5. Generating a list of valid cases.  

 
Cycles 
 
The synthetic network under analysis is described by Eqs. S1-S3. Generating a string 
representation of this system is straightforward and results in a list of three strings, one for each 

differential equation, as shown in line 2 of the snippet below.  
 
1 import dspace 

 
2 eqs_str = ['X1. = a11 + 2*b31*X3 - b11*X1 - 2*b12*(X1^2)', 

           'X2. = b12*(X1^2) - b23*X2 - b22*X2', 
           'X3. = a31 + b23*X2 - b31*X3 - b33*X3'] 
 

3 equations = dspace.Equations(eqs_str) 
 

4 ds = dspace.DesignSpace(equations, resolve_cycles=True)  
 

5 ds.valid_cases() 
 

i = 1,...,ncr



 

[out] ['1','2','3','4','5','6','7','8','10','12','13','14','15','16','
17','18','21','22','26','27_1','27_2','27_3','27_4','27_5', 
'27_6','29','30'] 
 

 
Since the system does not contain any auxiliary variable, the object eq_string is passed as the 

sole positional argument to the class dspace.Equations() to generate the Equations object, 

which is stored in the variable equations. In order to identify and resolve the cycle encoded 

within this system, the key argument resolve_cycles is set to True and passed along with the 

equations object to the class dspace.DesignSpace() to generate a DesignSpace object 

which is stored in the variable ds. A list of valid cases is generated through the method 

valid_cases() of the ds object. Note that cases 27_1, 27_2,…, 27_6 result from resolving 

the cyclical case 27 (refer to Table S1).   
 
Conservations 
 
As discussed before, the system described by Eqs. S22-S25. contains a conservation constraint 

among its constituent pools, as defined by Eq. S25. According to the DST3 syntax rules, this 
conservation relationship can be explicitly defined as an algebraic constraint and should be placed 

in the last position of the string representation of the system (see line 2 of the snippet below). 

Since the Python module is being used to analyze this system, an associated auxiliary variable 
needs to be explicitly defined, as shown in line 3.  

 
1 import dspace 

 
2 eqs_str = ['X1. = a11*X3 – b11*X1', 

           'X2. = b11*X1 – b21*X2', 
           'X3. = b21*X2 – a11*X3', 
           '0 = CR1 - X1 - X2 - X3 '] 
 

3 equations = dspace.Equations(eqs_str, 
                             auxiliary_variables=['Xc1']) 
 

4 ds = dspace.DesignSpace(eq, resolve_conservations=True,  
                        number_conservations=1) 

5 ds.valid_cases() 
 

[out] ['1', '2', '3'] 
 



 

The computational engine of DST3 is informed about the conservation constraint by using two 

key arguments: number_conservations=1 and resolve_conservations=True. Valid 

cases can be printed by means of the method valid_cases() of the ds object.  

 

Metabolic Imbalances 
 
The last example consists of a system containing one differential equation and one algebraic 
constraint, as defined by Eqs. S26-S27. For certain parameter values, this system has the 

potential to exhibit a blow-up for variable . The class dspace.Equations is informed about 

the algebraic constraint contained in the string representation by using the key argument 
auxiliary_variables=['D']. Similarly, the DST3 computational engine is configured to 

check for blow-ups by using the key argument resolve_instability=True, as shown in the 

snippet below: 
 
1 import dspace 

 
2 eqs_str = ['X1. = Vo - Vm*(D^-1)*K^(-1)*X1', 

           '0 = 1 + (K^-1)*X1 - D '] 
 

3 equations = dspace.Equations(eqs_str, 
                             auxiliary_variables=['D']) 
 

4 ds = dspace.DesignSpace(equations, resolve_instability=True) 

5 ds.valid_cases() 
 

[out] ['1', '2.1'] 
 
Valid cases can be customarily printed using the method valid_cases() of the ds object. Note that 
the case identifier 2.1 refers to the sub-case 2.1 of Table S3.  

 
1.2 Data and Code Availability 

The Docker images used by DST3 are freely available at 

https://hub.docker.com/r/savageau/dst3 

1.3 Additional Resources 
 

A tutorial is available as various IPython notebooks within the DST3 docker image under 

/Tutorials/Tutorial_DST3 

X1



 

 
2. Strategies for Treating Three Types of Singularities 
 
2.1 Cycles are resolved by considering global dominance equations.  
 

We start by setting up Eqs. S1 to S3 to describe the change in time for the concentration of 

each chemical species shown in Fig. 1A in the main text. Mass action kinetics are used to 
generate rate laws describing the flux through each reaction of the network. The resulting 

expressions are then combined by means of Kirchhoff’s node law to generate balance equations 
for each metabolite in the network. 

 

      (S1) 

      (S2) 

.      (S3) 

 
The Design Space formalism can be applied to decompose this set of equations into different 

cases, each having a unique set of dominant terms and being valid within a specific region in 

parameter space. Eqs. S4 – S6 represent one of those cases, which is defined by the case 
signature [22 11 21] and the case number 27. 

 

        (S4) 

        (S5) 

.        (S6) 

 
Necessary conditions for these terms to be dominant are described by Eqs. S7 – S11: 

 

          (S7) 

dX1
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=α11 + 2β31X3 − β11X1 − 2β12X1
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          (S8) 

          (S9) 

          (S10) 

 .         (S11) 

 
It should be noted that the notation used in the computational algorithms differs from the 

conventional notation in the main text, where parameters (b-vector) and independent variables  (

vector) are separate, since both are treated here as independent variables ( vector).  The b-

vector, which conventionally represented ratios of parameters, is now used to represent only 

stoichiometry values. This facilitates the computational matrix operations.   
By setting the left-hand side of Eqs. S4-S6 to zero, taking logarithms and rearranging, one 

obtains Eq. S12, which exhibits the form of Eq. 8 in the main text: 

 

 ,   (S12) 

 

with  and .  

Throught this Supplemental Material, vectors  and  are defined as in the first version of the 

Design Space Toolbox (DST1, Fasani and Savageau, 2010). Visual inspection of the matrix  

reveals the presence of a linear dependency among its rows: 

. This causes matrix  to be rank deficient [ ] and prevents the computation of a 

unique solution for .  In this case, , where  

refers to the rank of the augmented matrix that results from concatenating the matrix  and the 

vector  (Strang, 2005), and the system of algebraic equations has the potential to contain 

a single or multiple cycles (Fig. S4).  Its solution(s) can be found by applying the Design Space 
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formalism to an extended set of equations. The modification of the system consists in adding a 

so-called global dominance equation, which describes a mass balance around each cycle present 
in the system. The following steps are involved in generating the extended set of equations: 

1. Identify set(s) of cyclical variables  by computing the null space of matrix . Cyclical 

variables are characterized by non-zero row entries in the null space matrix. Note that the 

number of cycles contained in  is defined by the number of columns of the null space: 

. For the specific case being analyzed one obtains: 

, meaning that the system contains one single cycle, with the 

set of cyclical variables .  

2. Set up a global dominance equation for each cycle. This equation is a mathematical 
representation of a mass balance around a given cycle in steady state. In the case of the 

network considered in Fig. 1A, the global dominance equation will be a function of fluxes 

entering and leaving the control volume delimited by the blue rectangle in Fig. 1B, i.e, 

fluxes governed by rate constants  and . Global dominance equations 

are constructed by weighting those fluxes using coefficients obtained from the null space 

of matrix . In this specific case one obtains: , which yields 

the following global dominance equation: . 

3. Generate extended sub-system by introducing the global dominance equation(s). Eqs. 

S13-S16 along with the conditions defined by Eqs. S7-S11 define the extended sub-
system that should be used to resolve the cyclical case generated by Eqs. S4-S6.  
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.     (S16) 

 
DST3 implements steps 1 to 3 in a recursive fashion to resolve multiple and nested cycles. Once 

the extended sub-system has been set up, the Design Space formalism can be applied to identify 

valid sub-cases resolving the cyclical case. Table S1 shows S-system equations for each one of 
the six valid sub-cases generated from the extended system. Note the special form of these 

equations. S-systems originating from a dominance analysis on the global dominance equation 
(Eq. S16) are used to replace the differential equation for the pool with the dominant efflux. For 

instance, the expression , which is obtained when the first positive and first negative 

term in Eq. S16 are dominant, is used to replace the differential equation for  (refer to sub-

case 27_1 in Table S1). Additionally, this expression is scaled to match the stoichiometric 

coefficient of the negative term in the Full System (i.e., the original set of equations). Consider for 

instance the expression , which is obtained when the first positive and third negative 

term of Eq. S16 are dominant. Since the original stoichiometric coefficient of the negative term is 

1 (see Eq. S3), the scaled expression  is used to construct sub-case 27_3 of Table 

S1.  

 
2.2 Conserved moieties are handled by considering the total size of conserved pools.  
 

Consider the simple system in Fig. 1C in the main text with three components linked by a 
conservation relationship. Mass balance equations can be set up for each metabolite using the 

rate laws shown in Fig. 1C: 

         (S17) 

         (S18) 

.         (S19) 

 
Balance Eqs. S17-S19 can be compactly expressed in matrix form to yield Eq. S20: 
 

,          (S20) 
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with  being the stoichiometric matrix and  a vector of rate laws describing the flux through 

each reaction. The number of conservations  within the system is given by: 

, which equals 1 for the system under consideration. 

Conservation relationships can be mathematically described as linear dependencies among 
metabolite pools. They can be expressed in matrix form as:  

 
.       (S21) 

 
 is a vector of independent variables and  expresses the total pool size of each 

conservation.  represents a vector of concentration pools. Applying Eq. S21 to the system 

defined by Eqs. S17-S19 yields: . DST3 is able to handle biochemical 

systems with single or multiple conservation relationships. For the system depicted in Fig. 1C, 
Eqs. S22-S25 represents an appropriate set of equations that can be analyzed by DST3 given 

the conservation relationship provided:  
 

        (S22) 

        (S23) 

        (S24) 

       (S25) 
 

The analysis of this system using the Design Space formalism involves the usual generation of 
cases by picking dominant terms for each of the equations. To handle the singularity generated 

by the conservation encoded in the system, DST3 eliminates the differential equation(s) 

corresponding to the dominant negative term of each conservation relationship. This generates 

cases with S-systems that are deficient in  differential equations. Table S2 contains three 

cases that result from applying the Design Space formalism to the system defined by Eqs S22-
S25. Note that each case is defined by only two differential equations and one algebraic 

constraint. In order to capture this special way of constructing the S-system equations, the indices 

of the differential equation being deleted are set to zero in the case signature. Case 3 for instance, 
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in which the differential equation for pool  is missing, has a case signature of [11 11 00 13] to 

reflect this fact. 
Note the similarity between the system topology of the cyclical case 27 (Fig. 1B) and the 

conserved system of this section (Fig. 1C). In both instances, metabolites ,  and  

interact in a cyclical fashion to introduce a linear dependency among their pools that renders their 

 matrix singular. For cyclical cases (e.g. case 27), this dependency is eliminated by means of 

a global dominance equation, which represents a mass balance around the cycle. This strategy 

cannot be applied for conserved moieties, because they are not synthesized, degraded or 
exchanged with the environment (Haraldsdóttir and Fleming, 2016). From a mass balance 

perspective, this implies that fluxes entering or leaving the conservation do not exist, as 
exemplified in Fig. 1D. The singularity is thus eliminated by replacing the differential equation for 

one of the metabolites involved in the conservation by an algebraic constraint that contains an 

additional independent parameter ( ). 

 
2.3 Metabolic Imbalances are treated by considering knife-edge conditions 
 

Given the system shown in Fig. 1E and described by Eqs. 11-12 in the main text, consider the 

equations for case 2 with signature [11 21]: 

 

       (S26) 

 ,        (S27) 
 
and its associated dominance condition: 
 

.          (S28) 
 
Substituting the algebraic constraint (Eq. S27) into the differential equation for  (Eq. S26) yields 

the following dynamical system: 

 

.        (S29) 
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= v0 −VM



 

Setting the left-hand side of this equation to zero, taking logarithms of both sides and rearranging 

in matrix notation analogously to Eq. 8 in the main text results in: 
 

,        (S30) 

 

with  and . Since , where 

 refers to the rank of the augmented matrix that results from concatenating 

the matrix  and the vector  (Strang, 2005), the system does not have a steady state 

solution but has rather the potential to contain a metabolic imbalance (Fig. S4). Indeed, Eq. S29 

only provides a consistency condition for the concentration   to remain unchanged over time: 

. We will refer to this kind of constraint as a knife-edge condition. In general, we are 

interested in the behavior of the system when knife-edge conditions are not satisfied, i.e., 

. Violating the knife-edge condition in a specific direction implies an extreme value for :  

or . The validity of either situation is assessed by checking the validity of the associated 

dominance conditions, as shown in Table S3. Taken together, these results indicate that for the 

system shown in Fig. 1E, the concentration of the pool  will steadily increase over time, i.e., it 

will blow up if variables fulfill the conditions  and .  

To introduce further concepts required to establish a general framework for the treatment of 

cases for which , consider the system described by Eqs. S31-

S32: 

         (S31) 

,        (S32) 

 

which when rearranged and expressed in matrix notation to resemble the form of Eq. 8 in the 
main text yields: 

0⎡⎣ ⎤⎦ yD = 0⎡⎣ ⎤⎦ − 1 −1⎡
⎣

⎤
⎦ yI

yD = log X1⎡⎣ ⎤⎦ yI
T = logv0 logVM

⎡
⎣

⎤
⎦ rank(AD | B − AI yI ) = rows(AD )

rank(AD | B − AI yI )

AD B − AI yI

X1

0 = v0 −VM

v0 ≠VM

X1 X1 → ∞

X1 → 0

X1

KM
−1X1 >1 v0VM

−1 >1

rank(AD | B − AI yI ) = rows(AD )

dX1

dt
=α1 −α 2

dX2

dt
=α 2 − X1



 

 

,      (S33) 

 

with  and . Since the matrix  is singular and 

, the system does not have a valid steady state solution. It 

rather has the potential to exhibit a metabolic imbalance. The structure of the matrix  indicates 

the existence of two knife-edge conditions, which give rise to four sub-cases, as shown in Table 

S4. In general, the number of subcases to be tested equals , with  the number of knife 

edges present in the system.  Out of four possible sub-cases, only sub-case 2 and sub-case 3 

are valid because of the way in which they violate both knife-edge conditions is consistent. The 

fact that the matrix  has one degree of freedom, , implies a 

relationship between the two knife edge conditions. Indeed, violating the knife-edge condition 

 in either direction sets an extreme value for . This in turn dictates the way in which the 

second knife edge  will be violated, thus setting an extreme value for . Since the 

structure of the matrix  prevents  from being calculated via matrix operations, after an 

extreme value for  has been set we opt for testing the validity of each possible sub-system via 

linear programming.  
 

More generally, three steps are involved in resolving cases for which 

: 

 

1. Merge auxiliary variables into differential equations to obtain dynamical systems without 
algebraic constraints.  

2. Identify the number and identity of knife-edge conditions as a function of the degrees of 

freedom ( ) of matrix  and the number of zeros in its diagonal ( ): 

0 0
−1 0

⎛
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⎞

⎠⎟
yD =

0
0

⎛

⎝⎜
⎞

⎠⎟
− 1 −1

0 1
⎛

⎝⎜
⎞

⎠⎟
yI

yD
T = log X1 log X2

⎡
⎣

⎤
⎦ yI

T = logα1 logα 2
⎡
⎣

⎤
⎦ AD

rank(AD | B − AI yI ) = rows(AD ) = 2

AD

2nknife nknife

AD row(AD )− rank(AD ) = 2−1= 1

α1 =α 2 X1

α 2 = X1 X2

AD X2

X1

rank(AD ) < rank(AD | B − AI yI )

nfreedom AD nzeros



 

a. If  is equal to , then  and knife edge conditions 

correspond to balance equations for pools with a zero entry in the diagonal of   

b. If  < , then  and knife edge conditions correspond to 

balance equations for pools with a zero entry in the diagonal  

c. If  > , then  and knife edge conditions correspond to 

balance equations for  randomly selected pools.  

3. Construct and test the validity of  different linear programs, each violating knife edge 
conditions in a unique way. Note that the test for validity should include dominance 

conditions associated with the case under analysis. 

 
3. Analysis of a Biochemical System Exhibiting Multiple Singularities 
 
3.1 Differential Equations for the Biochemical System 

 
Transcription factor: 
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Transcriptional unit: 
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Enzymatic reactions: 
 

  (S42) 

 

    (S43) 

  (S44) 

Pathway flux: 
 

       (S45) 

 
3.2 GMA Equations for the Biochemical System 
 

Equations S34 to S45 can be recast into their GMA form to yield 10 differential equations, 6 

algebraic constraints and 1 conservation relationship as shown in Eqs. S46 to S62. Note that the 
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terms  and  were omitted from the differential equation for the pool  (Eq. S53). 

This is because in a biological context, these fluxes will never be dominant fluxes defining the 

dynamics of the pool . 

 

Differential equations: 
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Algebraic constraints: 
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Conservation relationship 

 

.         (S62) 

 

The cooperativity (Hill number) for transcription factor binding is represented by the kinetic 

orders n and p.  The combination of transcriptional repression and activation requires the 

constraints: . The  and  parameters are rate constants for synthesis and 

degradation processes, respectively. The  and  parameters used in the metabolic 

pathway represent turnover numbers and Michaelis constants, respectively. Auxiliary variables 

 to  replace the denominators in the biochemical kinetic expressions during the process of 

recasting the original ODE system into the equivalent GMA system. Refer to Tables S5 and S6 

for the biological context of symbols used in Eqs. S46 to S62. The 17 equations (Eqs. S46-S62) 
contain a total of 30 parameters (Table S6). As shown in the main text, no previous knowledge 

(other than the constraints noted above) for any of these parameter values is required by DST3 
to characterize the dynamical behavior of the system and identify a robust operating point for the 

system.  
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