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Abstract Virtually all of today’s Big Data systems are
passive in nature, responding to queries posted by their

users. Instead, we are working to shift Big Data plat-
forms from passive to active. In our view, a Big Active

Data (BAD) system should continuously and reliably

capture Big Data while enabling timely and automatic

delivery of relevant information to a large pool of in-

terested users, as well as supporting retrospective anal-

yses of historical information. While various scalable

streaming query engines have been created, their ac-
tive behavior is limited to a (relatively) small window
of the incoming data.

To this end we have created a BAD platform that
combines ideas and capabilities from both Big Data
and Active Data (e.g., Publish/Subscribe, Streaming

Engines). It supports complex subscriptions that con-

sider not only newly arrived items but also their rela-

tionships to past, stored data. Further, it can provide

actionable notifications by enriching the subscription

results with other useful data. Our platform extends
an existing open-source Big Data Management System,
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Apache AsterixDB, with an active toolkit. The toolkit

contains features to rapidly ingest semistructured data,

share execution pipelines among users, manage scaled

user data subscriptions, and actively monitor the state

of the data to produce individualized information for

each user.

This paper describes the features and design of our
current BAD data platform and demonstrates its ability

to scale without sacrificing query capabilities or result
individualization.

Keywords Big Data · Big Active Data · Active Data

1 Introduction

Work on Big Data management platforms has led to
map-reduce based frameworks that provide after-the-

fact Big Data analytics systems [4,11,69,75] as well as
NoSQL stores [5,8,9] that focus primarily on scalable
key-based record storage and fast retrieval for schema-
less data. There are also modern platforms that seek to

provide the benefits of both analytics and NoSQL [17,

19]. While these systems generally scale well, they re-

main mostly “passive” in nature, replying with answers

when a user poses a query.
With the ever-increasing amounts of data being gen-

erated daily by social, mobile, and web applications, as

well as the prevalence of the Internet of Things, it is

critical to shift from passive to “active” Big Data, over-

coming barriers in ingesting and analyzing this sea of

data and continuously delivering real time personalized

information to millions of users. Past work on active

databases [36,48,47,67,73] was never built to scale to

modern data sizes and arrival rates. Recently, various

systems have been built to actively analyze and dis-

tribute incoming data; these include Publish/Subscribe
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2.1 A BAD Application

Consider as an example existing emergency notification

services. One of the limitations of systems such as the

USGS ShakeCast [13] system is that their notifications

are blanket statements for everyone (e.g., everyone re-

ceives the same flood warning or Amber Alert message).
There is no individualization of messages to meet the
needs of specific users (e.g., adding information relevant

to the users’ specific locations or needs). Such systems

belong to the Pub/Sub system category, where users

just get messages for topics of interest.

In contrast, suppose a BAD system existed with the

three capabilities sketched in Section 1. Rather than a

user simply subscribing to emergency publications, now

a user could ask something like “when there is an emer-

gency near my child, and it is a flash flood, please no-

tify me, and provide me with the contact information
for the security on-duty at the school, as well as nearby
safety shelter locations.” Suddenly a user is not getting
a simple publication, but a rich set of data specifically

relevant to the user, including the enrichment of the

emergency information with security personnel sched-

ules, local shelter information, etc.

We will use a similar example for demonstration and

evaluation purposes for the bulk of this paper. Specif-

ically, we will build a hypothetical example applica-

tion that uses three data sources: UserLocations (with
records indicating the current location of each user),

Reports (containing a record for each emergency gener-
ated as emergencies occur), and Shelters (holding the

known locations of emergency shelters).

UserLocations and Reports will be continuously in-

gested into the data cluster, whereas Shelters will be
loaded once and can be thought of as mainly a static,

reference dataset (i.e., infrequently updated). We will

focus on users who want to know about emergencies

occurring near them in space and time, and provid-

ing those users with individualized shelter information

based on their locations. Note how the three user needs

described in Section 1 apply to this example. The emer-
gencies are only important to users if they are near the
known reported location of the user, and the provided
notifications are enriched with shelter information be-

fore delivery. The emergency reports data will continue

to grow over time and can be analyzed later to gain his-

torical insights to help with long-term emergency ser-

vice planning.

It should be noted that this example is intended

to serve as a simple (toy) example for illustrative pur-

poses. Real potential use cases are varied and many. In

addition to uses in emergency management, a few ex-

amples of possible applications include: (i) public safety,

where one could monitor social media for various forms

of concerning chatter near (or about) sensitive or public
areas, or by certain watched individuals, to try and pre-
empt mass shootings or other acts of terror; (ii) public
health, where one could monitor social media comments

and hospital reports to the CDC for patterns that could
provide early warnings of infectious disease outbreaks;
and (iii) business, where one might monitor a combi-

nation of customer service call records, other customer

data, social media activity, and related product data

for events that might forewarn a company about a po-

tential impending departure of a valued customer.

2.2 BAD Platform Prerequisites

A fully BAD Platform should take advantage of tech-

nologies and techniques that exist today for both Big

Data performance and Scalable Delivery of results.

Big Data performance: For functionality and scal-

ability, BAD should utilize the full capabilities of a

modern BDMS; specifically, such systems can offer:

1. A rich, declarative query language.

2. Rich data type support that includes numeric, tex-

tual, temporal, spatial and semi-structured data.

3. Capabilities for fast data ingestion.

4. A data-partition-aware query optimizer.

5. A dataflow execution engine for partitioned-parallel

execution of query plans.

Item (1) above, prevents BAD applications from be-

ing limited in query capability, while (2) and (3) allow

for the variety and velocity of modern Big Data, as well

as active spatial-temporal queries. (4) and (5) enable

the scaling of the data volume and optimizing of active

tasks to run in parallel across the BAD platform.

Scalable Delivery of results: Since a BAD data

cluster is useless unless it can rapidly process data and

its results actually reach its end users, a BAD platform

must also offer the full capabilities of a Publish/Sub-

scribe distributed network, including:

1. Geo-distributed brokers that can scale dynamically

to the demand of subscribers.
2. Dynamic heuristics for handling large influxes of

subscribers and results.

3. Caching mechanisms designed with subscriber con-

nectivity issues and commonality of interests in mind.

4. Enhancements for communicating with the under-

lying BAD data cluster efficiently.

5. Support for rapid ingestion of incoming events from
various data sources.

6. Low-latency requirements for delivery of results.
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3 Related Work

Our work draws on work and ideas from modern Big
Data platforms, early active database systems, and mod-

ern active platforms including both Publish/Subscribe
systems and Streaming Query systems.

3.1 Big Data Platforms

First-generation Big Data management efforts resulted
in various MapReduce-based [37] frameworks and lan-
guages, often layered on Hadoop [4] for long-running

data analytics; in key-value storage management tech-

nologies [23,27,38,41] that provide simple but high-

performance record management and access; and, in

various specialized systems tailored to tasks such as

scalable graph analysis [35,57,59,74] or data stream an-
alytics [15,24,40,43,44,60]. With the exception of data
streams (which limit query capabilities in order to scale),

these developments have been “passive” in nature –

meaning that query processing, updates, and/or data

analysis tasks have been scaled up to handle very large

volumes of data, but these tasks run only when explic-

itly requested.

Several recent Big Data projects, including Apache

Flink (Stratosphere) [3,30], Apache Spark [6,76], and

Apache AsterixDB [2,19], have made strides in moving

away from the tradition of the MapReduce paradigm,

moving instead towards new approaches based on alge-

braic runtime engines. Nevertheless, these approaches

maintain a mostly-passive approach. Data feed mecha-
nisms, such as those offered in AsterixDB [46,71], pro-

vide a step in the direction of becoming active, and we
have advanced and evolved them to become part of our
Active Toolkit.

Recent work using the lambda architecture [52] de-

sign pattern seeks to provide a Big Data back-end as
well as massive scale batch processing by combining a
storage solution with a large-scale data query process-

ing engine (typically triggered via batch jobs) in order
to continuously ingest and analyze data. Though such
solutions may fulfill some of the requirements for BAD,

they do so by “gluing” several systems together, and

they also focus on batch-queries for the sake of over-

all analytics, rather than on producing and delivering

individualized results to scalable numbers of users.

3.2 Active Data

The key foundations for active data (ECA rules, trig-

gers) were arguably laid by the HiPac Project [36].

Many other systems contributed to the work on ECA

rules, including TriggerMan [48], Ariel [47], Postgres

[67], and Starburst [73]. There are, however, two issues
when directly applying past active techniques on Big
Data. First, triggers and ECA rules can be seen as a

“procedural sledgehammer” for a system: when event

A happens, perform action B. We seek a more declara-

tive (optimizable) way of making Big Data active and

detecting complex events of interest. Second, to the best

of our knowledge, no one has scaled an implementation

of triggers or ECA rules to the degree required for Big

Data (in terms of either the number of rules or the

scaled out nature of the data itself).

Work on Materialized View Maintenance (e.g., [16,

34,63,65]) is also related to Active Data. Nevertheless,

materialized view implementations have generally been

designed to scale on the order of the the number of

tables. Being more of a database performance tuning

tool, the solutions developed in this area have not tried

to address the level of scale that we anticipate for the

number of simultaneous data subscriptions that should

be the target for a BAD platform.

3.3 Publish/Subscribe Systems

In Pub/Sub Systems the data arrives in the form of

publications, and these publications are of interest to

specific users. Pub/Sub systems seek to optimize the

problems of identifying the relevant publications and of

delivering those publications to users in a scalable way.
Early Pub/Sub systems were mostly topic-based (e.g.,
a user might be interested in sports or entertainment

as publication topics). Modern Pub/Sub systems [42,

49,56,62,66] provide a richer, content-based subscrip-

tion language, with predicates over the content of each

incoming publication. Our BAD platform goes beyond

this functionality in two ways: First, whether or not

newly arrived data is of interest to a user can be based

on not only its content, but on its relationships to other

data. Second, the resulting notification(s) can include

information drawn from other data as well.

There has been some work done to enable Pub/-

Sub systems to cache data in order to provide a richer

subscription language and result enrichment [50,64,72],

but this research has largely relied on limiting the size of

the cached data (e.g., by storing a window of recent his-

tory). This limitation prevents subscriptions from being

applied to Big Data as a whole.

3.4 Continuous Query Engines

The seminal work on Tapestry [45] first introduced Con-

tinuous Queries over append-only databases, including





6 Steven Jacobs et al.

CREATE DATAVERSE emergencyNotifications;
USE emergencyNotifications;

CREATE TYPE UserLocation AS {
location: circle,
userName: string,
timestamp: datetime

};
CREATE TYPE EmergencyReport AS {

reportId: uuid,
Etype: string,
location: circle,
timestamp: datetime

};
CREATE TYPE Contact AS {
contactName: string,
phone: int64,
address: string?

};
CREATE TYPE EmergencyShelter AS {

shelterName: string,
location: point,
contacts: {{ Contact }}?

};

CREATE DATASET UserLocations(UserLocation)

PRIMARY KEY userName;
CREATE DATASET Shelters(EmergencyShelter)

PRIMARY KEY shelterName;
CREATE DATASET Reports(EmergencyReport)

PRIMARY KEY reportId autogenerated;

CREATE INDEX location_time ON UserLocations(timestamp)

TYPE BTREE;
CREATE INDEX u_location ON UserLocations(location)

TYPE RTREE;
CREATE INDEX s_location ON Shelters(location)

TYPE RTREE;
CREATE INDEX report_time ON Reports(timestamp)

TYPE BTREE;

(a)

SELECT report, u.userName FROM

(SELECT VALUE r FROM Reports r

WHERE r.timestamp >

current_datetime() - day_time_duration(‘‘PT10S’’)
) report,
UserLocations u

WHERE spatial_intersect(report.location,u.location);

(b)

INSERT INTO Shelters (

{‘‘shelterName’’ : ‘‘swan’’ ,
‘‘location’’ : point(‘‘2437.34,1330.59’’) ,
‘‘contacts’’ : {{

{ ‘‘contactName’’ : ‘‘Jack Shepherd’’,
‘‘phone’’ : 4815162342 },

{ ‘‘contactName’’ : ‘‘John Locke’’,
‘‘phone’’ : 1234567890 }

}}}
);

(c)

Fig. 3: Examples of (a) ADM data types, datasets, and

indexes, (b) a SQL++ query, and (c) a SQL++ INSERT

statement

for our example application, as well as a SQL++ SELECT

query and a SQL++ INSERT statement. The query in

part (b) finds the emergencies that have been reported

in the last ten seconds and joins them spatially with

the locations of users, and part (c) shows how a new

shelter could be added.

When a request (e.g. the SELECT query in Figure

3b) is sent to AsterixDB, it is first parsed and opti-

mized into an algebraic parallel query plan. This plan
is then physically compiled into a Hyracks job, a di-

rected acyclic operator/connector graph (DAG), that

is distributed to the cluster to execute. A high-level

DAG will be seen in Figure 13.

4.1 Limitations of Passive BDMS

AsterixDB was architected with Big Data capabilities

in mind; however, it has some limitations from the per-

spective of the needs of an active framework. With the

exception of data feeds, every job performed is tied to
an explicit user interaction, from start to finish. Com-

pounding this problem is the fact that jobs in Aster-

ixDB are treated in isolation. Consider our use case

where users want to know about emergencies near them

as they occur. In passive AsterixDB, information is only

gained by directly requesting it (e.g., running a query

to check recent emergencies near the user’s current lo-
cation). If a user wanted to continuously check for new
information, the user would need to continuously re-

quest it (e.g., by sending a new request every 10 seconds

to check for new emergencies from the last 10 seconds).

This could be done in the following way:

1. The user sets up a cron job that runs every 10 sec-

onds and calls the AsterixDB REST API.

2. At each execution, the script sends a query to As-

terixDB.
3. AsterixDB treats this request as a new (never-before-

seen) job, which must be parsed, compiled, and op-

timized. Then it is distributed to the nodes of the

cluster.

4. The job for the query is finally executed.

5. AsterixDB performs job cleanup, including the re-

moval from all nodes of the information for the job.

6. Steps (2-5) are repeated ad infinitum.

This query model works well for a query that is run

once, but clearly becomes wasteful when a job is re-

peated, resulting in significant shortcomings:

1. The work for steps (3) and (5) is repeated every ten

seconds, even though it is exactly the same every

time.
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USE emergencyNotifications;

CREATE TYPE UserLocationFeedType AS {
location: circle,
userName: string

};
CREATE TYPE EmergencyReportFeedType AS {

Etype: string,
location: circle

};

CREATE FEED LocationFeed WITH

{
‘‘adapter-name’’ : ‘‘socket_adapter’’,
‘‘sockets’’ : ‘‘bad_cluster.edu:10009’’,
‘‘address-type’’ : ‘‘IP’’,
‘‘type-name’’ : ‘‘UserLocationFeedType’’,
‘‘format’’ : ‘‘adm’’

};
CREATE FEED ReportFeed WITH

{
‘‘adapter-name’’ : ‘‘socket_adapter’’,
‘‘sockets’’ : ‘‘bad_cluster.edu:10008’’,
‘‘address-type’’ : ‘‘IP’’,
‘‘type-name’’ : ‘‘EmergencyReportFeedType’’,
‘‘format’’ : ‘‘adm’’

};

Fig. 5: Create data feeds for the Reports and UserLoca-

tions

ing feeds for “BAD” applications, led us to add UPSERT

(i.e., insert if new, else replace) semantics as an option

as well. Incoming data may in some cases contain du-
plicates (e.g., the same Tweet arriving via an “at least
once” connection, or the same emergency report from

several agencies). In other cases, users may explictly in-

tend for the stream to contain updates, and they may

only want to keep the latest information (e.g., users’

current locations). UPSERT semantics are in fact the new

default for feeds.

In our example application, we assume that the data

being ingested into UserLocations and Reports are highly

dynamic, as the user locations are being updated and

reports are being generated frequently. Figure 5 depicts

feeds being created for both datasets. Both feeds in

this example expect data in ADM format. The default

create-feed statement creates a feed with UPSERT se-

mantics. The DDL demonstrates a socket adapter on a

designated host (e.g., “bad cluster.edu: 10008”). When
clients come, they can connect to these endpoints and

send their data directly.

Note that Figure 5 defines two additional datatypes,

“UserLocationFeedType” and “EmergencyReportFeed-

Type”, for our feeds. Incoming data from publishers is

not required to have a timestamp, thus the datatype

for the incoming data does not have a timestamp. For a

USE emergencyNotifications;
CREATE FUNCTION add_insert_time(record) {
object_merge({‘‘timestamp’’: current_datetime()}
, record)

};

/∗
Sample Incoming Record:

{‘‘Etype’’ : ‘‘storm’’,
‘‘location’’ : circle(‘‘846.5, 2589.4, 100.0’’)}
Sample Output Record:

{‘‘Etype’’ : ‘‘storm’’,
‘‘location’’ : circle(‘‘846.5, 2589.4, 100.0’’),
‘‘timestamp’’ : datetime(‘‘2018-08-27T10:10:05’’)}
∗/

Fig. 6: Create the “add insert time” function

USE emergencyNotifications;

CONNECT FEED LocationFeed TO DATASET UserLocations

APPLY FUNCTION add_insert_time;

CONNECT FEED ReportFeed TO DATASET Reports

APPLY FUNCTION add_insert_time;

START FEED LocationFeed;
START FEED ReportFeed;

Fig. 7: Connect the data feeds to both datasets with func-

tion

BAD application, however, the timestamp is an impor-

tant field as it will be used later for generating the emer-

gency notifications. To annotate the incoming data with

proper timestamps, we create a UDF and attach it to a

feed so that the incoming data is timestamped before it

reaches the dataset (BAD nodes should be synchronized
using NTP). We first create a function to add insert
time, as shown in Figure 6. This function utilizes the

built-in SQL++ functions “current datetime()” and “ob-

ject merge()” to add a new field with the current times-

tamp to an incoming record, thus converting a record of

the “EmergencyReportFeedType” into a record of the

actual datatype, “EmergencyReport.”

As the final step in setting up a data feed, we attach

the UDF to the feed pipeline, connect the feed to the

dataset, and start the feed. The DDL statements to

accomplish this are shown in Figure 7. All incoming

records for the UserLocations and Reports datasets will

now be annotated with an arrival timestamp that will

be used shortly in their associated data channels.





10 Steven Jacobs et al.

USE emergencyNotifications;

CREATE FUNCTION RecentEmergenciesNearUser(userName) {
SELECT report, shelters
FROM

(SELECT VALUE r FROM Reports r

WHERE r.timestamp > current_datetime() -

day_time_duration(‘‘PT10S”)) report,
UserLocations u,
(SELECT s.location FROM Shelters s WHERE

spatial_intersect(s.location,u.location)) shelters

WHERE u.userName = userName

AND spatial_intersect(report.location,u.location)
};

(a)

RecentEmergenciesNearUser(‘‘dharma1’’);

(b)

Fig. 10: DDL (a) for a function that finds recent emer-

gencies near a given user, and an example invocation (b)
of the function

ery user would explicitly poll the data cluster, at some

interval, to see whether something new has occurred

since the last poll. This would incur a steep penalty

since every instance of every poll would be seen and

compiled as a brand new query. We examine the per-
formance of such a passive approach in Section 8.

AsterixDB already provides an interface (functions)

for defining a passive parameterized query that polling

users could utilize. The move from passive to active

for users can be colloquialized as follows: “Rather than

calling this function myself to check for data, I would

like the function to call me when there is data of interest
to me.” Or, more succinctly, “You’ve got data!”

A repetitive data channel can be thought of as an
active, shared version of a function (in fact the chan-

nel DDL makes use of the existing SQL++ function
DDL) that utilizes an optimized deployed job to lever-
age shared interests but that produces individualized

results for many users at once based on their individual

parameters and sends notifications when new data is

produced.

We provide an SQL++ DDL extension for channels

that leverages AsterixDB parameterized function defi-

nitions. As an example, recall the query in Figure 3 that

joined recent emergency reports with the UserLocations

dataset. Suppose that we want to create a function that

will run a similar query on behalf of a single user. We
can see such a function in Figure 10(a). When a user
calls RecentEmergenciesNearUser(“dharma1”) in Fig-

ure 10(b), the variable “userName” will be replaced

with “dharma1” in the query, and then the query will

USE emergencyNotifications;

CREATE REPETITIVE CHANNEL EmergenciesNearMe USING

RecentEmergenciesNearUser@1 PERIOD duration(‘‘PT10S’’);

CREATE BROKER BADBrokerOne AT ‘‘BAD_broker_one.edu’’;

SUBSCRIBE TO EmergenciesNearMe(‘‘dharma1’’)
ON BADBrokerOne;
SUBSCRIBE TO EmergenciesNearMe(‘‘johnLocke’’)
ON BADBrokerOne;

Fig. 11: DDL to create a channel using the function Re-

centEmergenciesNearUser@1, DDL for creating a broker,

and DDL for creating a subscription to the channel

be treated normally. This provides a nice way to de-

scribe exactly the type of shared query that users of

our example application would want to run. Note that

the query in Figure 10(a) also enriches (personalizes)

the user’s results with nearby shelter information.

Figure 11 shows how a channel can be created based
on the function from Figure 10. Creating a repetitive

channel requires two parts: a function for the channel to

use and a time (repeat) period. Creating a channel will

compile the query contained in the function into a single

deployed job that then will be run repetitively based

on the period provided (in this case every 10 seconds).

Every time this deployed job is run it will produce a set

of individualized results for all of the data subscribers.

It is worth noting that a trade-off of sharing a sin-

gle channel execution is that users of the channel will

also share the period of the channel (in this example

10 seconds). It may be the case that some users would

desire the same sort of query behavior but with a differ-

ent rate of analysis and delivery (e.g., “send me the list

of emergencies every hour”). Rather than making the

performance match the user with the fastest demands,

and thereby performing work more often than neces-

sary for other users, multiple channels can be created
with different periods (e.g., a 10-second channel and a
1-hour channel) to enable more capabilities for users.
Of course this will also come with the cost of running

multiple channels in parallel.

In addition to the channel, Figure 11 also shows how

to create a broker as a recognized subscription endpoint

in BAD AsterixDB. In order to provide scalability, data

subscribers connect to the cluster through BAD bro-

kers, providing a one-to-many connection to BAD As-

terixDB (brokers are discussed in more detail in Section
6). When a data subscriber subsequently subscribes to
a channel, the broker acting on behalf of the subscriber
will provide: (i) the parameters relevant for that sub-

scriber (in this case the id of the user), and (ii) the name
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creation (not waiting until the next channel execution),

and events of interest occurring infrequently (not pro-

ducing results for several executions, and thereby po-

tentially wasting interim query processing resources).

In this direction we are currently researching the next

generation of channels, namely continuous channels, in-
spired by [45], which will execute on data changes rather

than relying on fixed execution periods.
It is interesting to note that when events are time-

driven and the channel functions are time-qualified (as

in our sample application), repetitive channels can pro-

vide a batch-y approximation to continuous channels,

as they only execute on and produce a small set of data

if the repeat interval is not too large.

5.4 Procedures

Procedures are another entity built on top of deployed

jobs to help maintain and provide tools for a BAD ap-
plication. For example, brokers might want to retrieve
lists of their current subscriptions to a given channel.

Rather than having each broker send such a request as a

new job each time, an application administrator could

create the first example procedure (CountBrokerSub-
scriptions) in Figure 14 that can then be used multiple

times by multiple brokers. This also shows how one can

provide a parameter to a procedure (in this case the

name of the broker of interest). The value of the pa-

rameter is then passed when “execute” is called. Recall

the execution pipeline in Figure 9. Roughly speaking,

procedures are like a time-based version of the stored

procedures found in the relational world.

In order to accomplish active objectives using pro-
cedures (addressing the limitations discussed in Sec-

tion 4.1), we have augmented the deployed job capa-

bilities by allowing users to specify an execution fre-

quency when running a deployed job (e.g., 24 hours),

thus allowing the creation of repetitive procedures. Here

the user will only make one explicit call. Subsequent

executions will then happen actively, with no user in-

teraction, every 24 hours. Conceptually this can be seen

as the simplest possible version of an active job. It can

be noted that repetitive procedures can perform at scale

many of the use-cases that triggers [36] were used for in

traditional database systems, including inserting corol-

lary information for newly inserted data and enforcing
integrity constraints (albeit with a latency).

Managing a channel results dataset provides a use-

case for such a repetitive procedure. The dataset can
be thought of as a log of results being continually ap-
pended. This data might (depending on the type of
application) be considered to be stale after some time

threshold. In our example application, where users are

USE emergencyNotifications;

CREATE PROCEDURE CountBrokerSubscriptions(brokerName) {
SELECT array_count(

(SELECT sub

FROM EmergenciesNearMeSubscriptions sub

WHERE sub.BrokerName = brokerName))

};

EXECUTE CountBrokerSubscriptions(‘‘BADBrokerOne’’);

CREATE PROCEDURE deleteStaleResults() {
DELETE result FROM EmergenciesNearMeResults

WHERE result.channelExecutionTime <

current_datetime() - day_time_duration(‘‘PT24H’’)
} PERIOD duration(‘‘PT24H’’);

EXECUTE deleteStaleResults();

CREATE PROCEDURE SubCountsForEmergenciesNearMe(){
INSERT INTO SubscriptionStatistics (

SELECT current_datetime() AS timestamp, b.BrokerName,
(SELECT VALUE array_count(

(SELECT sub

FROM EmergenciesNearMeSubscriptions sub

WHERE sub.BrokerName = b. BrokerName)))
AS subscriptions

FROM Metadata.‘Broker’ b)
} PERIOD duration(‘‘PT1H’’);

EXECUTE SubCountsForEmergenciesNearMe();

Fig. 14: DDL for creating and executing three procedures

(with the latter two being repetitive)

notified of emergencies on an ongoing basis, we might

only want to keep the old results in a broker-retrievable

form for one day.

An application administrator can easily set up a

procedure for cleaning up the results dataset using the

DDL and DML for the second procedure (deleteStaleRe-

sults) in Figure 14. The body of this procedure deletes

channel results that are more than 24 hours old. Note
that this procedure can be given an execution inter-

val (24 hours). The “execute” call to initiate the active
procedure will only need to be called once. The proce-
dure will then continue to repeat every 24 hours. There

are many other needs that procedures would be useful

for in our application as well. For example, procedures

could also be used to help evaluate broker utilization.

The third procedure in Figure 14 (SubCountsForEmer-
genciesNearMe) will query the subscription counts for

the EmergencyChannel for every broker, on an hourly

basis, and insert the results into a SubscriptionStatis-

tics dataset. Retrospective analytics can then be used

on this dataset to tune the broker network itself.

There are many ways that procedures could enhance

a BAD Platform, including: gathering statistics on the
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a system, one would have to spend a significant amount

of effort on configuring and orchestrating the different

components. Gluing components together in this way

involves disadvantages including the effort as well as

potential runtime overhead and functional limitations.

Limitations: We can categorize the limitations of the

gluing approach into three categories:

(1) Management Complexity. Different systems have
and utilize different data types and data representa-

tions in their runtimes. As data is transferred between
different components, it may need to be transformed
between different data types repeatedly. These transla-

tions may result in added overheads. For example, data

items are ingested in Kafka as JSON strings. Spark then

would parse these strings and cast the parsed result into

rows in data frames, which then would be processed and

persisted as documents in MongoDB. Eventually, data

has to be transformed into JSON strings again for the

AmazonSNS notifications. Further, a user would need

to configure and deploy each component separately and

then glue them together. Setting up the environment

and maintaining it requires significant user effort and

domain knowledge about its component. These addi-

tional management complexities are avoided when us-

ing the BAD platform’s unified model.

(2) Limited Functionality. The various components may

not offer all of the needed functionality. Assume that

we were to create Channel-like jobs in Spark. To cre-

ate the notifications, one would need to run a spatial

join between the report and user locations. However,
Spark Structured Streaming does not support spatial
joins over streams. This implies that a user would have

to modify their existing queries to use equi-joins (thus

limiting the application functionality). In contrast, in

the BAD system, the user can take their existing queries

and use them directly in channels. As another limita-

tion, Spark Streaming can only operate on a limited

suffix of a data stream (due to memory limitations).

As a result, if a user has not updated his/her location

recently, such a location may not be available for the

application.

(3) Integration Difficulty. Given the presence of mul-

tiple independent components, data exchange between

them in the glued system is inevitable and frequent. Al-

though different vendors have provided connectors for

bridging the gaps between them, users still would have
to construct configuration files or even “glue” programs
for shipping data from one component to the other. Be-

cause of this, the system as a whole loses the possibil-

ity of optimizing user queries across components. Data

stored in MongoDB would first be pulled (via a full

scan) into Spark for computation; Spark would then

not utilize efficient data structures such as indexes to

accelerate the data accesses in MongoDB. In the BAD

system, users can create channels by just using SQL++
statements and they have no need to write lower-level
programs. The channels can be optimized by the Aster-

ixDB query optimizer to seek their most efficient query

plans, and users can create indexes on datasets that

BAD can then utilize to improve their runtime perfor-

mance.

The above discussion summarizes why the BAD ap-

proach is unique and is not directly comparable with

any one alternative platform – the only functional al-

ternative is to construct a multi-system tangle. We fur-

ther note that if one were to avoid dealing with the glue

issues among multiple components, picking just one

component and heavily customizing it to meet the re-

maining BAD requirements, the task would be challeng-

ing (or even impossible) since each component provides

only a subset of the required desiderata. No one sys-

tem has the persistence, query power, and declarative-

ness of BAD. For example, using only Spark Stream-

ing, one would have to customize ingestion and result

delivery. Spark could persist data in HDFS, but with-
out database guarantees (updates, consistency, concur-
rency). Similarly, Kafka is not designed for storing data
and has limited querying capabilities. Amazon SNS is

a data routing service without complex computation

capabilities or storage.
Loosely speaking, the end goal of BAD is to reduce

the effort required to build big active data applications

in a manner not unlike the way that the onset of rela-

tional databases and SQL reduced the effort required to

build passive business applications – it should be possi-

ble to build applications declaratively, with a minimum

of programming effort.

8 Experimental Evaluation

We now proceed to examine how our initial implemen-
tation of a BAD system performs and scales. Our ob-

jective in this context is simply to take a first look at
the performance characteristics of the BAD approach
itself. (We leave the possibility of comparing BAD to a

wired-together glue competitor to future work.)

The separation of concerns between the data sub-

scribers, the brokers, and the data cluster allows us to
separate their performance evaluations. For example,

one could look at the end-to-end performance experi-
enced by users, the caching and user distribution per-
formance of brokers, or the data cluster itself. As this

paper is focused on the techniques and research of the

BAD data cluster, our experiments here focus on this

layer. Specifically, we look at three performance aspects

of the data cluster: ingesting scalable data, processing
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as completely isolated jobs. We can instead tackle the

task of scaling multiple channels together by recogniz-

ing common work (e.g., detecting recent emergencies)

and sharing this work between channels at the runtime

level. While we focus here on repetitive channels, they

are limited by the periodicity that they need to execute

at. As future work we plan to create continuous chan-

nels, channels that will execute based on data changes
as they happen rather than on fixed intervals.

We also believe that BAD is ready for a rich perfor-

mance benchmark. This paper has focused on the big

picture and initial results of BAD, and therefore is not

a comprehensive look at all performance optimization

possibilities. For example, based on our experimental

results, we have seen that the overhead of staging the
results on the data cluster can be a limiting factor for
performance in some cases. We are currently explor-

ing a push-based channel model where results are more

eagerly sent directly to brokers (rather than just notifi-

cations of results). We are also working on a comparison

of the BAD approach with a glue-based approach. Ex-

periments on a much larger cluster with higher-scale
workloads would also be an interesting future under-
taking.
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