2002.09755v2 [cs.DB] 24 May 2020

arxiv

Noname manuscript No.
(will be inserted by the editor)

BAD to the Bone
Big Active Data at its Core

Steven Jacobs - Xikui Wang - Michael J. Carey - Vassilis J. Tsotras -

Md Yusuf Sarwar Uddin

Received: 23 July 2018 / Accepted: 27 April 2020

Abstract Virtually all of today’s Big Data systems are
passive in nature, responding to queries posted by their
users. Instead, we are working to shift Big Data plat-
forms from passive to active. In our view, a Big Active
Data (BAD) system should continuously and reliably
capture Big Data while enabling timely and automatic
delivery of relevant information to a large pool of in-
terested users, as well as supporting retrospective anal-
yses of historical information. While various scalable
streaming query engines have been created, their ac-
tive behavior is limited to a (relatively) small window
of the incoming data.

To this end we have created a BAD platform that
combines ideas and capabilities from both Big Data
and Active Data (e.g., Publish/Subscribe, Streaming
Engines). It supports complex subscriptions that con-
sider not only newly arrived items but also their rela-
tionships to past, stored data. Further, it can provide
actionable notifications by enriching the subscription
results with other useful data. Our platform extends
an existing open-source Big Data Management System,

Steven Jacobs
Univ. of California, Riverside
E-mail: sjaco002@ucr.edu

Xikui Wang
Univ. of California, Irvine
E-mail: xikuiw@Quci.edu

Michael J. Carey
Univ. of California, Irvine
E-mail: mjcarey@ics.uci.edu

Vassilis J. Tsotras
Univ. of California, Riverside
E-mail: tsotras@cs.ucr.edu

Md Yusuf Sarwar Uddin
Univ. of Missouri-Kansas City
E-mail: muddin@umkc.edu

Apache AsterixDB, with an active toolkit. The toolkit
contains features to rapidly ingest semistructured data,
share execution pipelines among users, manage scaled
user data subscriptions, and actively monitor the state
of the data to produce individualized information for
each user.

This paper describes the features and design of our
current BAD data platform and demonstrates its ability
to scale without sacrificing query capabilities or result
individualization.

Keywords Big Data - Big Active Data - Active Data

1 Introduction

Work on Big Data management platforms has led to
map-reduce based frameworks that provide after-the-
fact Big Data analytics systems [4,11,69,75] as well as
NoSQL stores [5,8,9] that focus primarily on scalable
key-based record storage and fast retrieval for schema-
less data. There are also modern platforms that seek to
provide the benefits of both analytics and NoSQL [17,
19]. While these systems generally scale well, they re-
main mostly “passive” in nature, replying with answers
when a user poses a query.

With the ever-increasing amounts of data being gen-
erated daily by social, mobile, and web applications, as
well as the prevalence of the Internet of Things, it is
critical to shift from passive to “active” Big Data, over-
coming barriers in ingesting and analyzing this sea of
data and continuously delivering real time personalized
information to millions of users. Past work on active
databases [36,48,47,67,73] was never built to scale to
modern data sizes and arrival rates. Recently, various
systems have been built to actively analyze and dis-
tribute incoming data; these include Publish/Subscribe

Steven Jacobs et al.

systems [42,49,61,62,66,77] and Streaming Query en-
gines [3,32,33,45,55]. However, these approaches have
achieved a compromise by accepting functional con-
straints in order to scale (e.g, limiting queries to a re-
cent window of data, or supporting a specific class of
queries).

In contrast, we advocate for Big Active Data, an
approach that aims to leverage modern Big Data Man-
agement in order to scale without giving up on data
or query capabilities, and in particular to address the
following BAD desiderata:

(D1) Incoming data items might not be important in iso-

lation, but in their relationships to other items in
the data as a whole. Subscriptions need to consider
data in context, not just newly arrived items’ con-
tent.

(D2) Important information for users is likely to be miss-
ing in the incoming data items, yet it may exist
elsewhere in the data as a whole. The results de-
livered to users must be able to be enriched with
other existing data in order to provide actionable
notifications that are individualized per user.
(D3) In addition to on-the-fly processing, later queries
and analyses over the collected data may yield im-
portant insights. Thus, retrospective Big Data
analytics must also be supported.

To build a Big Active Data (BAD) platform, we
have leveraged the benefits of Apache AsterixDB, a
modern Big Data Management System (BDMS) [2,19]
(namely, its scalability, declarative query language, flex-
ible data model, and support for parallel data analyt-
ics), as well as borrowing key ideas underlying the active
capabilities offered by existing Pub/Sub and streaming
query systems.

A complete BAD platform will fully utilize and in-
tegrate all layers of the platform with all three goals in
mind. In contrast, some related systems have been pro-
posed or implemented (e.g., [22]) which seek to “glue”
together separate existing platforms that accomplish
different parts of these goals. Such systems (as seen
through experimentation, e.g., [46]) will suffer the dis-
advantages of (1) introducing complexity of communi-
cation and processing between systems that aren’t built
specifically to work in unison and (2) missing on poten-
tial performance gains by treating individual compo-
nents (e.g., a permanent storage layer) as black boxes to
communicate with. Creating a BAD platform presents
the challenge of implementing the platform completely,
but gives great gains in utilizing all layers with knowl-
edge of the overall BAD vision.

The rest of the paper is organized as follows: Section
2 gives a high level overview of the objectives, capabil-

ities, and needs of a BAD platform, and it introduces
an example BAD application that we will examine for
the bulk of the paper. In Section 3 we discuss related
work and the shortcomings of existing systems, which
fall short in either capabilities or performance (or both)
with respect to our BAD platform requirements. Since
we aim to build a BAD system starting from an existing
passive BDMS (namely AsterixDB), Section 4 details
the advantages offered by AsterixDB but also its short-
comings with respect to our active requirements. In Sec-
tion 5 we introduce our Active Toolkit, which can be
used to create a BAD platform. Section 6 delves into the
three communication layers of BAD, used to maintain
subscriber interests, discover complex data states of in-
terest, and distribute this information to subscribers
efficiently. In Section 7 we briefly step aside to con-
sider how one might build a BAD application today,
in the absence of BAD, by combining multiple existing
systems. In Section 8 we take a first look at BAD’s per-
formance characteristics using a synthetic workload in-
spired by our example application. We also briefly look
at how the same application might be built using ex-
isting passive Big Data technology (e.g., triggers) and
the shortcomings of such an implementation. Finally,
Section 9 concludes the paper and describes our future
plans.

2 A BAD overview

()
Data Subscribers. l l
L

Broker Network

L Data Publishers
) ()
FJ A \ BAD
Data Cluster

N W o8 o s
mmm m - --Emereencvshekers .

UserLocations

- - - - I:l * [I EmergencyReports |<—
mum I N W Tweets

[* * * I W NewsRss
Discover Events/Produce Results

Distribute Results

Fig. 1: Big Active Data — System Overview.

Figure 1 provides a 10,000 foot overview of our BAD
Platform. Outside of the platform, and the reason for its
existence, are its data sources (Data Publishers) and its
end users (Data Subscribers). Within the system itself,
its components provide two broad areas of functional-
ity — Big Data monitoring and management (handled
by the BAD Data Cluster) and user notification man-
agement and distribution (handled by the BAD Broker
Network).

BAD to the Bone

2.1 A BAD Application

Consider as an example existing emergency notification
services. One of the limitations of systems such as the
USGS ShakeCast [13] system is that their notifications
are blanket statements for everyone (e.g., everyone re-
ceives the same flood warning or Amber Alert message).
There is no individualization of messages to meet the
needs of specific users (e.g., adding information relevant
to the users’ specific locations or needs). Such systems
belong to the Pub/Sub system category, where users
just get messages for topics of interest.

In contrast, suppose a BAD system existed with the
three capabilities sketched in Section 1. Rather than a
user simply subscribing to emergency publications, now
a user could ask something like “when there is an emer-
gency near my child, and it is a flash flood, please no-
tify me, and provide me with the contact information
for the security on-duty at the school, as well as nearby
safety shelter locations.” Suddenly a user is not getting
a simple publication, but a rich set of data specifically
relevant to the user, including the enrichment of the
emergency information with security personnel sched-
ules, local shelter information, etc.

We will use a similar example for demonstration and
evaluation purposes for the bulk of this paper. Specif-
ically, we will build a hypothetical example applica-
tion that uses three data sources: UserLocations (with
records indicating the current location of each user),
Reports (containing a record for each emergency gener-
ated as emergencies occur), and Shelters (holding the
known locations of emergency shelters).

UserLocations and Reports will be continuously in-
gested into the data cluster, whereas Shelters will be
loaded once and can be thought of as mainly a static,
reference dataset (i.e., infrequently updated). We will
focus on users who want to know about emergencies
occurring near them in space and time, and provid-
ing those users with individualized shelter information
based on their locations. Note how the three user needs
described in Section 1 apply to this example. The emer-
gencies are only important to users if they are near the
known reported location of the user, and the provided
notifications are enriched with shelter information be-
fore delivery. The emergency reports data will continue
to grow over time and can be analyzed later to gain his-
torical insights to help with long-term emergency ser-
vice planning.

It should be noted that this example is intended
to serve as a simple (toy) example for illustrative pur-
poses. Real potential use cases are varied and many. In
addition to uses in emergency management, a few ex-
amples of possible applications include: (i) public safety,

where one could monitor social media for various forms
of concerning chatter near (or about) sensitive or public
areas, or by certain watched individuals, to try and pre-
empt mass shootings or other acts of terror; (ii) public
health, where one could monitor social media comments
and hospital reports to the CDC for patterns that could
provide early warnings of infectious disease outbreaks;
and (iii) business, where one might monitor a combi-
nation of customer service call records, other customer
data, social media activity, and related product data
for events that might forewarn a company about a po-
tential impending departure of a valued customer.

2.2 BAD Platform Prerequisites

A fully BAD Platform should take advantage of tech-
nologies and techniques that exist today for both Big
Data performance and Scalable Delivery of results.
Big Data performance: For functionality and scal-
ability, BAD should utilize the full capabilities of a
modern BDMS; specifically, such systems can offer:

1. A rich, declarative query language.

2. Rich data type support that includes numeric, tex-
tual, temporal, spatial and semi-structured data.

3. Capabilities for fast data ingestion.

A data-partition-aware query optimizer.

5. A dataflow execution engine for partitioned-parallel
execution of query plans.

e

TItem (1) above, prevents BAD applications from be-
ing limited in query capability, while (2) and (3) allow
for the variety and velocity of modern Big Data, as well
as active spatial-temporal queries. (4) and (5) enable
the scaling of the data volume and optimizing of active
tasks to run in parallel across the BAD platform.

Scalable Delivery of results: Since a BAD data
cluster is useless unless it can rapidly process data and
its results actually reach its end users, a BAD platform
must also offer the full capabilities of a Publish/Sub-
scribe distributed network, including:

1. Geo-distributed brokers that can scale dynamically
to the demand of subscribers.

2. Dynamic heuristics for handling large influxes of
subscribers and results.

3. Caching mechanisms designed with subscriber con-
nectivity issues and commonality of interests in mind.

4. Enhancements for communicating with the under-
lying BAD data cluster efficiently.

5. Support for rapid ingestion of incoming events from
various data sources.

6. Low-latency requirements for delivery of results.

Steven Jacobs et al.

3 Related Work

Our work draws on work and ideas from modern Big
Data platforms, early active database systems, and mod-
ern active platforms including both Publish/Subscribe
systems and Streaming Query systems.

3.1 Big Data Platforms

First-generation Big Data management efforts resulted
in various MapReduce-based [37] frameworks and lan-
guages, often layered on Hadoop [4] for long-running
data analytics; in key-value storage management tech-
nologies [23,27,38,41] that provide simple but high-
performance record management and access; and, in
various specialized systems tailored to tasks such as
scalable graph analysis [35,57,59,74] or data stream an-
alytics [15,24,40,43,44,60]. With the exception of data
streams (which limit query capabilities in order to scale),
these developments have been “passive” in nature —
meaning that query processing, updates, and/or data
analysis tasks have been scaled up to handle very large
volumes of data, but these tasks run only when explic-
itly requested.

Several recent Big Data projects, including Apache
Flink (Stratosphere) [3,30], Apache Spark [6,76], and
Apache AsterixDB [2,19], have made strides in moving
away from the tradition of the MapReduce paradigm,
moving instead towards new approaches based on alge-
braic runtime engines. Nevertheless, these approaches
maintain a mostly-passive approach. Data feed mecha-
nisms, such as those offered in AsterixDB [46,71], pro-
vide a step in the direction of becoming active, and we
have advanced and evolved them to become part of our
Active Toolkit.

Recent work using the lambda architecture [52] de-
sign pattern seeks to provide a Big Data back-end as
well as massive scale batch processing by combining a
storage solution with a large-scale data query process-
ing engine (typically triggered via batch jobs) in order
to continuously ingest and analyze data. Though such
solutions may fulfill some of the requirements for BAD,
they do so by “gluing” several systems together, and
they also focus on batch-queries for the sake of over-
all analytics, rather than on producing and delivering
individualized results to scalable numbers of users.

3.2 Active Data

The key foundations for active data (ECA rules, trig-
gers) were arguably laid by the HiPac Project [36].
Many other systems contributed to the work on ECA

rules, including TriggerMan [48], Ariel [47], Postgres
[67], and Starburst [73]. There are, however, two issues
when directly applying past active techniques on Big
Data. First, triggers and ECA rules can be seen as a
“procedural sledgehammer” for a system: when event
A happens, perform action B. We seek a more declara-
tive (optimizable) way of making Big Data active and
detecting complex events of interest. Second, to the best
of our knowledge, no one has scaled an implementation
of triggers or ECA rules to the degree required for Big
Data (in terms of either the number of rules or the
scaled out nature of the data itself).

Work on Materialized View Maintenance (e.g., [16,
34,63,65]) is also related to Active Data. Nevertheless,
materialized view implementations have generally been
designed to scale on the order of the the number of
tables. Being more of a database performance tuning
tool, the solutions developed in this area have not tried
to address the level of scale that we anticipate for the
number of simultaneous data subscriptions that should
be the target for a BAD platform.

3.3 Publish/Subscribe Systems

In Pub/Sub Systems the data arrives in the form of
publications, and these publications are of interest to
specific users. Pub/Sub systems seek to optimize the
problems of identifying the relevant publications and of
delivering those publications to users in a scalable way.
Early Pub/Sub systems were mostly topic-based (e.g.,
a user might be interested in sports or entertainment
as publication topics). Modern Pub/Sub systems [42,
49,56,62,66] provide a richer, content-based subscrip-
tion language, with predicates over the content of each
incoming publication. Our BAD platform goes beyond
this functionality in two ways: First, whether or not
newly arrived data is of interest to a user can be based
on not only its content, but on its relationships to other
data. Second, the resulting notification(s) can include
information drawn from other data as well.

There has been some work done to enable Pub/-
Sub systems to cache data in order to provide a richer
subscription language and result enrichment [50,64,72],
but this research has largely relied on limiting the size of
the cached data (e.g., by storing a window of recent his-
tory). This limitation prevents subscriptions from being
applied to Big Data as a whole.

3.4 Continuous Query Engines

The seminal work on Tapestry [45] first introduced Con-
tinuous Queries over append-only databases, including

BAD to the Bone

a definition of monotonic queries. Most subsequent re-
search has focused on queries over streaming data (e.g.,
STREAM |[21], Borealis [14], Aurora [15], TelegraphCQ
[31], and PIPES [53]). These systems are typically im-
plemented internally by building specialized data flows
(“boxes and arrows”) to process query results as new
data streams transiently through the system. Related
to both Pub/Sub and streaming data, the Distributed
Reactive Programming model [25] which some systems
are starting to adopt seeks to create event-driven ap-
plications that coordinate and react to multiple events
in order to produce state or event outputs.

Recently, more advanced algebraic streaming query
engines (e.g., Storm, Flink, and Spark Streaming) [33]
have been produced, which provide robust Big Data
scale processing of incoming data, but they are still de-
signed to work on incoming flows or windows, not pro-
viding a means of permanent Big Data storage. Struc-
tured Streaming on Spark [22] provides improvements
for such systems, introducing a more user-friendly declar-
ative API as well as providing the ability to join streams
with static data sources. However, even at their best,
streaming query systems are not designed to offer a
subscription model for delivering individual results to
a scalable number of users, instead outputting the re-
sults of a large job to a single log or database. As a
result, they don’t provide individualization or enrich-
ment of results or a scaled user-based online delivery
mechanism. Essentially, they provide analytic capabili-
ties but without the storage or result delivery features
needed for a complete BAD platform.

Data-centric approaches The most closely related
work to BAD has been on supporting continuous queries
via a data-centric approach, i.e., finding ways to treat
user queries as “just data” rather than as unique data
flows. To this end, NiagaraCQ [32] performed a live
analysis of standing queries to detect “group signa-
tures,” which are groups of queries that perform a selec-
tion over the same attribute and that differ only by the
constant of interest (e.g., age=19 vs. age=25). Given
these group signatures, it created a dataset of the con-
stants used and incrementally joined this dataset with
incoming data to produce results for multiple users via
a single data join. The growing field of Spatial Alarms
[26,55,68] serves to issue alerts to users based on ob-
jects that meet spatial predicates. Spatial predicates
are directly stored as objects (data) in an R-Tree, and
incoming updates are then checked against all of the
standing queries by simply performing a spatial join
with this R-Tree.

The technical approach taken by NiagaraCQ and
Spatial Alarms of treating continuous queries as data
is one of the main inspirations for our own subscrip-

tion scaling work. Both systems had limitations that
we seek to relax in our work. NiagaraCQ was designed
to operate using a very limited query language designed
for XML data. Spatial Alarms focused on one special
use case (where the queries are locations) rather than
on the problem as a whole. We build on these ideas for
the more general world of Big Data, e.g., with horizon-
tally partitioned data and a more fully expressive query
language.

4 Passive BDMS

Our aim here is to start with a passive BDMS, in this
case AsterixDB, and then show how to transform it
into a BAD system. We start with an introduction to
some of the advantages that we inherit from AsterixDB
as well as the limitations of a passive BDMS. This will
serve as a preamble to creating our Active Toolkit (Sec-
tion 5).

| Load client I l SQL++ client | l Feed client I
___ e
Ty — ii'z::; |6_ \ASte”x@é

0000000 8000

Fig. 2: The architecture of passive AsterixDB

Apache AsterixDB (see Figure 2) is a full-featured
BDMS that supports all of the prerequisites listed in
Section 2.2. The underlying runtime engine for execut-
ing its queries, written in SQL++, is the Hyracks data-
parallel platform [29]. Queries are compiled and opti-
mized via the Algebricks extensible algebraic parallel
query planning and optimization framework [28]. As-
terixDB has fully developed support for rich Big Data
types, including GeoJSON and other advanced spatial
types, which fits well with the location-oriented appli-
cations we are considering [18]. Another feature of As-
terixDB that makes it particularly suitable for becom-
ing active is the provision of data feeds built on top of
LSM (Log-Structured Merge) tree storage technology,
allowing for fast data ingestion [20,46,58,71].

Figure 3 illustrates by example the AsterixDB data
model (ADM) and language; part (a) shows the data
type, dataset, and index definitions that could be used

Steven Jacobs et al.

CREATE DATAVERSE emergencyNotifications;
USE emergencyNotifications;

CREATE TYPE UserLocation AS {
location: circle,
userName: string,
timestamp: datetime

,
CREATE TYPE EmergencyReport AS {
reportId: uuid,
Etype: string,
location: circle,
timestamp: datetime

)
CREATE TYPE Contact AS {
contactName: string,
phone: int64,
address: string?
h
CREATE TYPE EmergencyShelter AS {
shelterName: string,
location: point,
contacts: {{ Contact }}?

s

CREATE DATASET UserLocations(UserLocation)
PRIMARY KEY userName;

CREATE DATASET Shelters(EmergencyShelter)
PRIMARY KEY shelterName;

CREATE DATASET Reports(EmergencyReport)
PRIMARY KEY reportId autogenerated,

CREATE INDEX location_time ON UserLocations(timestamp)
TYPE BTREE;

CREATE INDEX u_location ON UserLocations(location)
TYPE RTREE;

CREATE INDEX s_location ON Shelters(location)
TYPE RTREE;

CREATE INDEX report_time ON Reports(timestamp)
TYPE BTREE;

(a)

SELECT report, u.userName FROM
(SELECT VALUE r FROM Reports r
WHERE r.timestamp >
current_datetime() - day_time_duration(‘‘PT10S’")
) report,
UserLocations u
WHERE spatial_intersect(report.location,u.location);

(b)

INSERT INTO Shelters (
{“shelterName’” : ‘“‘swan’ ,
“location” : point(‘‘2437.34,1330.59”) ,
‘“‘contacts” : {{
{ “contactName” : ‘‘Jack Shepherd”,
‘‘phone” : 4815162342 },
{ “contactName” : ‘‘John Locke”’,
‘“‘phone” : 1234567890 }
1381
);
(©)

Fig. 3: Examples of (a) ADM data types, datasets, and
indexes, (b) a SQL++ query, and (¢) a SQL++ INSERT

statement

for our example application, as well as a SQL++ SELECT
query and a SQL++ INSERT statement. The query in
part (b) finds the emergencies that have been reported
in the last ten seconds and joins them spatially with
the locations of users, and part (c¢) shows how a new
shelter could be added.

When a request (e.g. the SELECT query in Figure
3b) is sent to AsterixDB, it is first parsed and opti-
mized into an algebraic parallel query plan. This plan
is then physically compiled into a Hyracks job, a di-
rected acyclic operator/connector graph (DAG), that
is distributed to the cluster to execute. A high-level
DAG will be seen in Figure 13.

4.1 Limitations of Passive BDMS

AsterixDB was architected with Big Data capabilities
in mind; however, it has some limitations from the per-
spective of the needs of an active framework. With the
exception of data feeds, every job performed is tied to
an explicit user interaction, from start to finish. Com-
pounding this problem is the fact that jobs in Aster-
ixDB are treated in isolation. Consider our use case
where users want to know about emergencies near them
as they occur. In passive AsterixDB, information is only
gained by directly requesting it (e.g., running a query
to check recent emergencies near the user’s current lo-
cation). If a user wanted to continuously check for new
information, the user would need to continuously re-
quest it (e.g., by sending a new request every 10 seconds
to check for new emergencies from the last 10 seconds).
This could be done in the following way:

1. The user sets up a cron job that runs every 10 sec-
onds and calls the AsterixDB REST API.

2. At each execution, the script sends a query to As-
terixDB.

3. AsterixDB treats this request as a new (never-before-
seen) job, which must be parsed, compiled, and op-
timized. Then it is distributed to the nodes of the
cluster.

4. The job for the query is finally executed.

5. AsterixDB performs job cleanup, including the re-
moval from all nodes of the information for the job.

6. Steps (2-5) are repeated ad infinitum.

This query model works well for a query that is run
once, but clearly becomes wasteful when a job is re-
peated, resulting in significant shortcomings:

1. The work for steps (3) and (5) is repeated every ten
seconds, even though it is exactly the same every
time.

BAD to the Bone

2. Every execution of the job requires explicit trigger-
ing by an outside source (the cron job in step (2)).
3. Both (1) and (2) are multiplied by the number of
users who are performing the same task in parallel.

5 The Active Toolkit

To overcome the above limitations we created an Active
Toolkit for AsterixDB. It contains four tools needed to
build a BAD framework, namely:

1. Data feeds to rapidly ingest application data. A data
feed represents the flow of scalable rapid data into
one or more datasets.

2. Deployed jobs that can perform arbitrary SQL-++
tasks. They get compiled and distributed once and
used multiple times.

3. Data channels to actively process data with respect
to subscriber interests. A single channel is compiled
once and shared by a scalable number of users yet
produces individualized staged results.

4. Procedures to use deployed jobs to perform other ac-
tive management processes regularly and efficiently.

Returning to Figure 1, these four tools realize the
vision of a BAD Platform. The Data Feeds enable large
numbers of Data Publishers to provide rapid data to
the BAD Platform. Deployed Jobs and Procedures en-
able Data Managers to maintain and monitor the BAD
Platform. Most importantly, Data Channels provide the
mechanism for taking the data as a whole and produc-
ing enriched individualized results for Data Subscribers,
which the Broker Network can then deliver.

5.1 Data Feeds

Since data in an active environment is being generated
rapidly, it would not be efficient to insert records one
by one through a typical DDL statement. Alternatively,
bulk data loading is useful when there is a large collec-
tion of new data sitting on the disk waiting to be im-
ported, but for data incoming as a continuous stream,
we need a different mechanism. Data feeds [46] were ini-
tially introduced as a new feature in AsterixDB to per-
sist continuous data streams into AsterixDB datasets.
Starting from there, we have made a series of updates
to data feeds in order to make them even more effective
for BAD scenarios.

In [46], we introduced the notions of a “primary
feed”, which gets data from an external data source,
and “secondary feeds” that can be derived from an-
other feed. In addition, either/both could have an asso-
ciated user-defined function (UDF). Data feeds enable

users to attach UDF's onto the feed pipeline so that the
incoming data can be annotated (if needed) before be-
ing stored. A user could use that architecture to build
a rich “cascade network” that routes data to different
destinations for particular purposes.

While that initial architecture introduced a lot of
flexibility for building feed dataflow networks, it also
brought extra overheads related to persisting the data
and additional complexities in maintaining the dataflow
network. In a BAD application, the timeliness of data
and the robustness of the network outweigh the user-
level flexibility of defining a complex feed network. To
meet the BAD requirements, we have redesigned the
feed dataflow in a more succinct yet equally powerful ar-
chitecture (in terms of the set of addressable use cases),
as depicted in Figure 4.

Dataset A

Dataset B

e
Dataset C

Dataset D

Fig. 4: The updated feed dataflow

Replicator

In the updated architecture, we have removed the
previous cascade network and instead branch out sub-
dataflows earlier with a “replicator”. The sub-dataflows
are isolated from one other so that the data movement
in each sub-dataflow can proceed without interfering
with the others. The UDF's attached to each path are
evaluated separately as well.

A feed (on the far left in Figure 4) internally con-
sists of an adapter and a parser. The adapter gets data
from an external data source, and the parser translates
the incoming data into ADM objects. Feeds were in-
troduced with Socket, File, RSS, and Twitter adapters
as well as JSON, ADM, Delimited Data, and Tweet
parsers to handle common use cases. In building the
BAD platform, we soon realized the need for adding
many more adapters and parsers in order to handle a
larger selection of data sources and formats. To address
this issue we created a pluggable adapter and parser
framework so that users can add their own parsers and
adapters and use them just like the native ones.

In [46], data feeds provided INSERT semantics since
they were initially intended to be continuously-running
sources of new data. Later experiences, including us-

Steven Jacobs et al.

USE emergencyNotifications;

CREATE TYPE UserLocationFeedType AS {
location: circle,
userName: string

ks

CREATE TYPE EmergencyReportFeedType AS {
Etype: string,
location: circle

s

CREATE FEED LocationFeed WITH

{

‘‘adapter-name’’ : ‘‘socket_adapter’’,
“sockets’” : ‘“bad_cluster.edu:10009”,
‘‘address-type”’ : “IP”,
‘“‘type-name’’ : ‘‘UserLocationFeedType’’,
“format’ : ‘“‘adm”

g

CREATE FEED ReportFeed WITH

{

‘‘adapter-name’’ : ‘‘socket_adapter’’,
“sockets’” : ‘“‘bad_cluster.edu:10008",
‘‘address-type” : “IP”,

‘“‘type-name’’ : ‘‘EmergencyReportFeedType”,
“format’ : ‘“‘adm”

s

Fig. 5: Create data feeds for the Reports and UserLoca-
tions

ing feeds for “BAD” applications, led us to add UPSERT
(i.e., insert if new, else replace) semantics as an option
as well. Incoming data may in some cases contain du-
plicates (e.g., the same Tweet arriving via an “at least
once” connection, or the same emergency report from
several agencies). In other cases, users may explictly in-
tend for the stream to contain updates, and they may
only want to keep the latest information (e.g., users’
current locations). UPSERT semantics are in fact the new
default for feeds.

In our example application, we assume that the data
being ingested into UserLocations and Reports are highly
dynamic, as the user locations are being updated and
reports are being generated frequently. Figure 5 depicts
feeds being created for both datasets. Both feeds in
this example expect data in ADM format. The default
create-feed statement creates a feed with UPSERT se-
mantics. The DDL demonstrates a socket adapter on a
designated host (e.g., “bad_cluster.edu: 10008”). When
clients come, they can connect to these endpoints and
send their data directly.

Note that Figure 5 defines two additional datatypes,
“UserLocationFeed Type” and “EmergencyReportFeed-
Type”, for our feeds. Incoming data from publishers is
not required to have a timestamp, thus the datatype
for the incoming data does not have a timestamp. For a

USE emergencyNotifications;
CREATE FUNCTION add_insert_time(record) {
object_merge({‘‘timestamp’’: current_datetime()}

, record)
b
/%
Sample Incoming Record:
{“Etype” : ‘“‘storm”,
“location’ : circle(‘‘846.5, 2589.4, 100.0") }
Sample Output Record:
{“Etype” : “storm”,
“location’ : circle(‘‘846.5, 2589.4, 100.0"),

‘“timestamp”’ : datetime(‘‘2018-08-27T10:10:05”)}

*/

Fig. 6: Create the “add_insert_time” function

USE emergencyNotifications;

CONNECT FEED LocationFeed TO DATASET UserLocations
APPLY FUNCTION add_insert_time;

CONNECT FEED ReportFeed TO DATASET Reports
APPLY FUNCTION add_insert_time;

START FEED LocationFeed;
START FEED ReportFeed;

Fig. 7: Connect the data feeds to both datasets with func-
tion

BAD application, however, the timestamp is an impor-
tant field as it will be used later for generating the emer-
gency notifications. To annotate the incoming data with
proper timestamps, we create a UDF and attach it to a
feed so that the incoming data is timestamped before it
reaches the dataset (BAD nodes should be synchronized
using NTP). We first create a function to add insert
time, as shown in Figure 6. This function utilizes the
built-in SQL++ functions “current_datetime()” and “ob-
ject_merge()” to add a new field with the current times-
tamp to an incoming record, thus converting a record of
the “EmergencyReportFeedType” into a record of the
actual datatype, “EmergencyReport.”

As the final step in setting up a data feed, we attach
the UDF to the feed pipeline, connect the feed to the
dataset, and start the feed. The DDL statements to
accomplish this are shown in Figure 7. All incoming
records for the UserLocations and Reports datasets will
now be annotated with an arrival timestamp that will
be used shortly in their associated data channels.

BAD to the Bone

5.2 Deployed Jobs

The overhead of parsing, compiling, optimizing, and
distributing a job (e.g., an “INSERT” or “QUERY”
execution pipeline) can be especially time-consuming
for small jobs. For example, fetching a single record by
primary key in AsterixDB currently takes around 20
milliseconds regardless of the size of the data cluster.
This is because the process of parsing, compiling, opti-
mizing, and distributing a job incurs a penalty of 10-20
milliseconds before the job even starts executing. This
is “noise” for longer-running Big Data analytics queries,
but for small jobs this process can become dominant.

We created an extendable class of jobs called de-
ployed jobs to address this overhead. A deployed job is a
new first-class citizen in the runtime of AsterixDB that
is created once but can be run many times. Deployed
jobs are roughly similar in function to the prepared
query facilities found in many conventional relational
database systems. Deployed jobs can be created for the
following types of SQL++ tasks: DELETE, INSERT, and
SELECT (query).

User Cluster Controller
A B
I Create Deployed Job: Parse

DeleteDataByPrimaryKey(X) { s Compile
delete from Y where Y.id = X; Rewrite
}

C /

Distribute Job:

DeleteDataByPrimaryKey(X)

Stored Job Specifications:

DeleteOldDataFromResults()
DeleteDataByPrimaryKey(X)

Node Controllers

Fig. 8: Deploying a Job

When a deployed job is created (see Figure 8), the
SQL++ syntax for the job is provided (see step A).
This is then parsed, compiled, and optimized once to
produce a job specification (B). The resulting job spec
is then distributed (C) and cached at each node (D).

When executing a deployed job (Figure 9), it is sim-
ply referenced by name (E). The cluster controller sends
an “execute” command (F) to the nodes, which then
execute the job (G) using the stored job spec.

Note that the deployed job in Figures 8 and 9 has a
parameter representing the primary key of the record to
be deleted. This parameterization is another enhance-
ment that makes deployed jobs more robust. There are

User Cluster Controller

E
. Execute Deployed Job:
DeleteDataByPrimaryKey(108) ===

F

Execute Job:
DeleteDataByPrimaryKey(108)

/1 N\
4 4

DeleteDataByPrimaryKey(108)
Node Controllers

Fig. 9: Executing a Deployed Job

cases where different users may want to run a simi-
lar job that differs by only some set of parameters (in
this case the id of the record). To support this, we im-
plemented parameterized deployed jobs. The parameter
values are passed to the node controller for the given
job execution by the cluster controller. At runtime, an
added operator in the job’s ongoing plan fetches the
value for a given parameter. At job cleanup, the stored
parameter values are removed for the job. Allowing
users to share parameterized jobs will be examined fur-
ther in the channels and the procedures.

A deployed job is one limited special case of an ac-
tive job. More generally, a BAD platform should be able
to support a scalable number of users (through a sim-
ple interface) who subscribe to data of interest to them.
This implies actively processing data as it changes, stor-
ing new results as they are found, and delivering them
to the data subscribers. We achieve this through the
next feature of the Active Toolkit: repetitive data chan-
nels.

5.3 Channels
5.8.1 Channels for users

We introduce the notion of a channel as a new, scal-
able mechanism that allows users to subscribe to data.
A channel is a shared deployed active job that pro-
duces individualized data for subscribing users. In order
to scale, a channel is implemented as a parameterized
query with each user specifying their individual param-
eter values of interest.

Consider our example application, where users want
to be notified when emergencies occur that intersect
with their current locations. A natural implementation
using passive AsterixDB would be through polling. Ev-

10

Steven Jacobs et al.

USE emergencyNotifications;

CREATE FUNCTION RecentEmergenciesNearUser (userName) {
SELECT report, shelters
FROM
(SELECT VALUE r FROM Reports r
WHERE r.timestamp > current_datetime() -
day_time_duration(‘‘PT10S”)) report,
UserLocations u,
(SELECT s.location FROM Shelters s WHERE
spatial_intersect(s.location,u.location)) shelters
WHERE u.userName = userName
AND spatial_intersect(report.location,u.location)

s (a)

RecentEmergenciesNearUser (‘‘dharmal’’);

(b)

Fig. 10: DDL (a) for a function that finds recent emer-
gencies near a given user, and an example invocation (b)

of the function

ery user would explicitly poll the data cluster, at some
interval, to see whether something new has occurred
since the last poll. This would incur a steep penalty
since every instance of every poll would be seen and
compiled as a brand new query. We examine the per-
formance of such a passive approach in Section 8.

AsterixDB already provides an interface (functions)
for defining a passive parameterized query that polling
users could utilize. The move from passive to active
for users can be colloquialized as follows: “Rather than
calling this function myself to check for data, I would
like the function to call me when there is data of interest
to me.” Or, more succinctly, “You've got data!”

A repetitive data channel can be thought of as an
active, shared version of a function (in fact the chan-
nel DDL makes use of the existing SQL++ function
DDL) that utilizes an optimized deployed job to lever-
age shared interests but that produces individualized
results for many users at once based on their individual
parameters and sends notifications when new data is
produced.

We provide an SQL++ DDL extension for channels
that leverages AsterixDB parameterized function defi-
nitions. As an example, recall the query in Figure 3 that
joined recent emergency reports with the UserLocations
dataset. Suppose that we want to create a function that
will run a similar query on behalf of a single user. We
can see such a function in Figure 10(a). When a user
calls RecentEmergenciesNearUser(“dharmal”) in Fig-
ure 10(b), the variable “userName” will be replaced
with “dharmal” in the query, and then the query will

USE emergencyNotifications;

CREATE REPETITIVE CHANNEL EmergenciesNearMe USING
RecentEmergenciesNearUser@1l PERIOD duration(‘‘PT10S8");

CREATE BROKER BADBrokerOne AT ‘‘BAD_broker_one.edu’’;

SUBSCRIBE TO EmergenciesNearMe (‘‘dharmal’’)
ON BADBrokerOne;

SUBSCRIBE TO EmergenciesNearMe (‘‘johnLocke’”)
ON BADBrokerOne;

Fig. 11: DDL to create a channel using the function Re-
centEmergenciesNearUser@1, DDL for creating a broker,
and DDL for creating a subscription to the channel

be treated normally. This provides a nice way to de-
scribe exactly the type of shared query that users of
our example application would want to run. Note that
the query in Figure 10(a) also enriches (personalizes)
the user’s results with nearby shelter information.

Figure 11 shows how a channel can be created based
on the function from Figure 10. Creating a repetitive
channel requires two parts: a function for the channel to
use and a time (repeat) period. Creating a channel will
compile the query contained in the function into a single
deployed job that then will be run repetitively based
on the period provided (in this case every 10 seconds).
Every time this deployed job is run it will produce a set
of individualized results for all of the data subscribers.

It is worth noting that a trade-off of sharing a sin-
gle channel execution is that users of the channel will
also share the period of the channel (in this example
10 seconds). It may be the case that some users would
desire the same sort of query behavior but with a differ-
ent rate of analysis and delivery (e.g., “send me the list
of emergencies every hour”). Rather than making the
performance match the user with the fastest demands,
and thereby performing work more often than neces-
sary for other users, multiple channels can be created
with different periods (e.g., a 10-second channel and a
1-hour channel) to enable more capabilities for users.
Of course this will also come with the cost of running
multiple channels in parallel.

In addition to the channel, Figure 11 also shows how
to create a broker as a recognized subscription endpoint
in BAD AsterixDB. In order to provide scalability, data
subscribers connect to the cluster through BAD bro-
kers, providing a one-to-many connection to BAD As-
terixDB (brokers are discussed in more detail in Section
6). When a data subscriber subsequently subscribes to
a channel, the broker acting on behalf of the subscriber
will provide: (i) the parameters relevant for that sub-
scriber (in this case the id of the user), and (ii) the name

BAD to the Bone

11

of the broker making the request (in this case BAD-
BrokerOne). Once a subscription has been created, the
subscriber will begin to receive results for emergencies
near her changing location over time.

Subscriptions

subscriptionld
27ea79fd-8009-4937- Broker1 "johnLocke"
9a5a-6eacécObblaa
5b957e9a-17b5-4651-
8a28-ec778dbé7afé
bé34ae17-6b60-4ald
b716-d080ala76b07

17¢130b5-bd 9f-4539-
abcb-3ee5d9c893de

Broker2 "dharmal"

Broker1 "MREcho"

Broker3 "henryGale"

Results
subscriptionld deliveryTime Jresat _____________________|
27ea79fd-8009-4937- 2015-11-25 15:10:00 {"Etype":"flood", "location": circle("2719.47,967.5
9a5a-6eacécObblaa 1000.0"), "shelters": [{ "location: point("2872.98,
957.52") }, { "location": point("2913.07,954.89") }
T}

17¢130b5-bd 9f-4539-
abcb-3ee5d9c893de

2015-11-25 15:10:00 {"Etype": "fire", "location":
circle("2208.19,2559.09 500.0"), "shelters": [{
"location": point("2023.99,2505.02") }]...}

2015-11-25 15:10:00 {"Etype": "flood", "location":
circle("2830.75,1332.91 1000.0"), "shelters": [{
"location": point("2594.22,1078.11") }, { "location":
point("2567.07,1104.86") ..}

{"Etype": "fire", "location": circle("2123.42,1297.09
500.0"), "shelters": [{ "location":
point("2594.22,1078.11") }, { "location”:
point("2567.07,1104.86") } ...}

5b957e9a-17b5-4651-
8a28-ec778dbé7afé

5b957e9a-17b5-4651-
8a28-ec778dbé7afé

2015-11-25 15:10:00

Fig. 12: The subscription and results tables for the
EmergenciesNearMe channel

5.3.2 Channels under the hood

We now discuss in detail how BAD AsterixDB creates
and manages data channel work flows under the hood
using an EmergenciesNearMe channel as an example.
When this channel is created, two new internal datasets
will be created: EmergenciesNearMeSubscriptions and
EmergenciesNearMeResults. The subscriptions dataset
contains one record for each subscription that has been
created. This includes three important pieces of infor-
mation: (a) an automatically generated id for the sub-
scription, (b) the name of the broker servicing the sub-
scriber of the subscription, and (c¢) the channel param-
eter values for the subscription. The results dataset is
where the result records for the channel will be stored
(including their subscription ids). An example of these
tables appears in Figure 12. Although these tables will
start out empty, they are depicted with data to illus-
trate how their data could look over time. There are
four subscriptions shown, along with results produced
for some of these subscriptions.

Once these two tables have been created, the chan-
nel will be compiled, optimized, and distributed to the
node controllers. Rather than running the function sep-
arately for each subscription, a join is created between
the function body and the EmergenciesNearMeSubscrip-
tions dataset on the parameter values. The results pro-

duced are inserted into the EmergenciesNearMeResults
dataset. This job is then optimized into a plan DAG by
AsterixDB’s rule-based job optimizer (see Figure 13)
that includes the following steps:

1. Join the Subscriptions and UserLocations datasets
to find the locations of the subscribers.

2. Utilize the time index of Reports to fetch only the
recent Reports (last ten seconds, from the function
query).

3. Perform a spatial join between the results of steps
(1) and (2).

4. Enhance the result with the nearby shelters (also
spatially joined).

5. Insert the results into the results table.

6. Send the brokers notifications that new results have
been created.

Subscriptions Shelters

\ 1. Join subscription
parameters with
user ids
UserLocations / \3' Join user locations
locations with /
/ report locations

4. Join the results
with shelter

2. Get only the

Reports s reports from the
last ten seconds

Results
5. Insert the
results into the
Results table

6. Send
Notification of
results to brokers

Fig. 13: The deployed job for executing the channel
EmergenciesNearMe

It is important to note the advantages of this ap-
proach over a passive polling method. If users were
polling individually, each poll request would produce
an individual job very similar to Figure 13, but with
the Subscriptions table being replaced by a single input
value (the id of the user making the request) and with
the results being delivered directly back to that user.
In contrast, the deployed channel job executes once ev-
ery ten seconds (the period of the channel) on behalf
of all subscribers, potentially produces new results, and
requires no intervention from the users. Section 6 dis-
cusses in more detail how the results (and the subscrip-
tions) are communicated from the data cluster to each
subscriber (and vise-versa).

5.8.8 The Case for Continuous Channels

Repetitive channels have the limitation that they rely
on some fixed time interval to execute (e.g., ten sec-
onds). While this is fine if data is produced and desired
at a specific rate, it cannot handle two extreme but
common cases: users wanting data at the moment of its

12

Steven Jacobs et al.

creation (not waiting until the next channel execution),
and events of interest occurring infrequently (not pro-
ducing results for several executions, and thereby po-
tentially wasting interim query processing resources).
In this direction we are currently researching the next
generation of channels, namely continuous channels, in-
spired by [45], which will execute on data changes rather
than relying on fixed execution periods.

It is interesting to note that when events are time-
driven and the channel functions are time-qualified (as
in our sample application), repetitive channels can pro-
vide a batch-y approximation to continuous channels,
as they only execute on and produce a small set of data
if the repeat interval is not too large.

5.4 Procedures

Procedures are another entity built on top of deployed
jobs to help maintain and provide tools for a BAD ap-
plication. For example, brokers might want to retrieve
lists of their current subscriptions to a given channel.
Rather than having each broker send such a request as a
new job each time, an application administrator could
create the first example procedure (CountBrokerSub-
scriptions) in Figure 14 that can then be used multiple
times by multiple brokers. This also shows how one can
provide a parameter to a procedure (in this case the
name of the broker of interest). The value of the pa-
rameter is then passed when “execute” is called. Recall
the execution pipeline in Figure 9. Roughly speaking,
procedures are like a time-based version of the stored
procedures found in the relational world.

In order to accomplish active objectives using pro-
cedures (addressing the limitations discussed in Sec-
tion 4.1), we have augmented the deployed job capa-
bilities by allowing users to specify an execution fre-
quency when running a deployed job (e.g., 24 hours),
thus allowing the creation of repetitive procedures. Here
the user will only make one explicit call. Subsequent
executions will then happen actively, with no user in-
teraction, every 24 hours. Conceptually this can be seen
as the simplest possible version of an active job. It can
be noted that repetitive procedures can perform at scale
many of the use-cases that triggers [36] were used for in
traditional database systems, including inserting corol-
lary information for newly inserted data and enforcing
integrity constraints (albeit with a latency).

Managing a channel results dataset provides a use-
case for such a repetitive procedure. The dataset can
be thought of as a log of results being continually ap-
pended. This data might (depending on the type of
application) be considered to be stale after some time
threshold. In our example application, where users are

USE emergencyNotifications;

CREATE PROCEDURE CountBrokerSubscriptions(brokerName) {
SELECT array_count (
(SELECT sub
FROM EmergenciesNearMeSubscriptions sub
WHERE sub.BrokerName = brokerName))

};
EXECUTE CountBrokerSubscriptions(‘‘BADBrokerQOne’’);

CREATE PROCEDURE deleteStaleResults() {
DELETE result FROM EmergenciesNearMeResults
WHERE result.channelExecutionTime <
current_datetime() - day_time_duration(‘‘PT24H”")
} PERIOD duration(‘‘PT24H");

EXECUTE deleteStaleResults();

CREATE PROCEDURE SubCountsForEmergenciesNearMe () {
INSERT INTO SubscriptionStatistics (
SELECT current_datetime() AS timestamp, b.BrokerName,
(SELECT VALUE array_count(
(SELECT sub
FROM EmergenciesNearMeSubscriptions sub
WHERE sub.BrokerName = b. BrokerName)))
AS subscriptions
FROM Metadata.‘Broker’ b)
} PERIOD duration(‘‘PT1H");

EXECUTE SubCountsForEmergenciesNearMe();

Fig. 14: DDL for creating and executing three procedures
(with the latter two being repetitive)

notified of emergencies on an ongoing basis, we might
only want to keep the old results in a broker-retrievable
form for one day.

An application administrator can easily set up a
procedure for cleaning up the results dataset using the
DDL and DML for the second procedure (deleteStale Re-
sults) in Figure 14. The body of this procedure deletes
channel results that are more than 24 hours old. Note
that this procedure can be given an execution inter-
val (24 hours). The “execute” call to initiate the active
procedure will only need to be called once. The proce-
dure will then continue to repeat every 24 hours. There
are many other needs that procedures would be useful
for in our application as well. For example, procedures
could also be used to help evaluate broker utilization.
The third procedure in Figure 14 (SubCountsForEmer-
genciesNearMe) will query the subscription counts for
the EmergencyChannel for every broker, on an hourly
basis, and insert the results into a SubscriptionStatis-
tics dataset. Retrospective analytics can then be used
on this dataset to tune the broker network itself.

There are many ways that procedures could enhance
a BAD Platform, including: gathering statistics on the

BAD to the Bone

13

types of emergencies that are frequently producing re-
sults, finding the average number of results produced
per execution, etc.

The table in Figure 15 summarizes the abilities and
differences of the tools in the Active Toolkit. Data Chan-
nels and Procedures are both extended implementa-
tions of deployed jobs.

Compiled | CanRun Used For | Allows Users To | Produces
Only Once | Continuously | Ingesting | Share One Individualized
Rapid Data | Execution Results
' ' ' '

Deployed X
Jobs
Data X X X X
Channels
Procedures X When
Repetitive

Fig. 15: Comparison of Active Toolkit tools

5.5 Users of the Active Toolkit

The term “user” could loosely apply to three differ-
ent types of users in our example application, namely,
Application Administrators, Data Publishers and Data
Subscribers.

5.5.1 Application Administrators

An Application Administrator builds applications
using the BAD framework. They have direct access to
the data cluster for hosting datasets and data feeds.
They have knowledge of: (1) Database Administration
for the data stored in the Data Cluster for their appli-
cations, and, (2) the common interests of their “users”
(eventual Data Subscribers). Based on user interests,
an Application Administrator will create and manage
parameterized channels that can be subscribed to in the
application.

In our example scenario, the Application Admin-
istrator is who will create the emergencyNotifications
dataverse. She will then create the three datasets: Re-
ports (the continuously ingested reports), UserLocations
(the current location of each “user” (subscriber) of the
application), and Shelters (the relatively static meta-
data for shelter information, initially bulk loaded with
all known shelters by the administrator).

The Application Administrator will then proceed to
make this a BAD application by creating the data feeds
for both Reports and UserLocations (DDLs shown in

Figure 5), and by creating the subscribe-able repetitive
channels for the application (via the DDL shown in Fig-
ure 11). Lastly, she can create the relevant Procedures
to help with the active management of the application
(shown in Figure 14).

5.5.2 Data Publishers

Data Publishers provide data in the form of streams
of incoming records. These streams enter the Data Clus-
ter directly via data feeds. In a typical use case, the data
publishers will be exteral services that are known/trusted
by the Application Administrators (such as news sites,
social media data streams, or government agencies) and
the incoming data will be broadly relevant to a given
BAD application (e.g., emergency reports or weather
broadcasts).

In our example scenario, the Application Admin-
istrator will provide the Emergency Report publisher
with the cluster endpoint for sending reports to the
ReportFeed, and the publisher will then send its reports
to this endpoint (e.g., “bad_data_cluster.edu:10008”).

5.5.8 Data Subscribers

The third category is Data Subscribers. They con-
nect to BAD applications and subscribe to one or more
of their channels. They are never given direct access to
the data cluster, but instead perform all of their tasks
via a nearby BAD Broker. This separation of the sub-
scribers from the cluster provides several advantages.
Rather than dealing with result data requests per sub-
scriber, the cluster instead receives aggregated requests
from brokers on behalf of many subscribers at once,
and in the same way the cluster sends aggregate notifi-
cations to the brokers, rather than communicating with
every subscriber. This limits the per-user impact on the
cluster, freeing more resources for BAD tasks. In addi-
tion, this layered approach separates concerns, allowing
brokers to focus on problems of result caching and com-
munication issues with the subscriber, while the cluster
deals with the data creation itself. A subscription can be
created for a specific channel and indicates the specific
parameters of individual interest to a subscriber. Each
subscription will be registered in the BAD data cluster
with a subscription id. After its creation, the broker for
a subscription will begin to receive new results from the
channel that the given subscriber has subscribed to.
There are cases where a data subscriber may also
serve as a data publisher. As an example, an applica-
tion such as ours may want to allow users to provide
(publish) their locations to the application (e.g., to en-
able subscriptions involving those locations). For such

14

Steven Jacobs et al.

cases, an API is provided for a data feed that passes
data from the subscribers through the brokers to the
data cluster.

In our example application, users will want to sub-
scribe to the EmergenciesNearMe channel, so they will
allow the application to have access to their current
locations. The application will send this data via the
brokers to the LocationFeed. Users can then subscribe
to the channel (their associated brokers will do so as
shown in Figure 11), at which point they will start re-
ceiving relevant results.

5.6 A BAD Recap

In this section, we presented the implementation of
an active toolkit for AsterixDB that meets the BAD
desiderata proposed in Section 1.

Our main contributions in building the active toolkit
can be summarized as follows:

— We redesigned AsterixDB’s data feeds, leading to
a more succinct feed architecture that branches out
sub-dataflows with a “replicator”. This allows data
feeds to feed multiple datasets concurrently while
maintaining high throughput. In addition, we intro-
duced UPSERT semantics for data feeds involving “at
least once” data sources; these are now the default
semantics for feeds.

— Inspired by prepared queries, we added deployed
jobs into AsterixDB as the building block for repet-
itive channels and procedures. In addition to pre-
compiling jobs to avoid per-query parsing, optimiza-
tion, and job generation costs, we go further, de-
ployng and caching the resulting compiled jobs on
each node and invoking them with parameters to
further reduce the per-job initiation cost.

— We introduced and implemented channels, a new
mechanism that allows data subscribers to specify
their data interests using parameters without hav-
ing to write independent queries. Channels, which
are defined functionally by application developers
and built on top of deployed jobs, actively deliver
(“push”) data of interest to subscribers instead of
having them poll for data (“pull”) as in a passive
data management system.

— We also introduced active procedures that enable
administrators to easily manage the data life-cycle(s)
in BAD applications by specifying data maintenance
jobs to be executed on a pre-specified periodic basis.
This periodic activation differentiates BAD proce-
dures from the stored procedures typically found in
the relational world.

With the active toolkit, application developers
and application administrators can easily create and
manage BAD applications to provide customized data
notification and delivery services for data publishers
and data subscribers using DDL statements based
on a rich declarative query language. As we will dis-
cuss in Section 7, such a declarative and systematic
solution saves administrators from the additional effort
of gluing multiple systems together and orchestrating
them to provide equivalent BAD functionalities. Addi-
tionally, with the optimizations employed in the BAD
framework (efficient data ingestion, deployed jobs, etc.),
BAD applications can provide such customized notifi-
cation services efficiently at scale.

6 BAD Layers

- = . I
SEJBSGRIBERS Notifications .-~ Ve Tl d
\ — 3 - K "‘\\
. L Subsmphms.f \ & becriots
== __;7—77 ! I] 1 \ Subscriptions
- . Subscriptions :‘ ‘s‘i A
& : : e s 1
. A —— S w S T~ s
“--o.--" Netifications>~ _ >, = ———— T S —— H
‘ : P .‘ = BROKER . Notifications :
/! b “-.__ NETWORK __--~
L o0 1 Publications Bt b

:, DATA CLUSTER

. PUBLISHERS .-

Fig. 16: Communication in the BAD system

As shown in Figure 16, there are three layers of com-
munication for a BAD application. This provides a sep-
aration of concerns and allows each layer to perform
tasks that are optimal for such a layer. Specifically, the
Broker network is focused on efficiently handling both
subscription communication and result delivery. Since
the Broker network is structurally similar to a Pub/Sub
Broker network, it can utilize state-of-the-art Pub/Sub
scaling techniques and heuristics. On the other hand,
the Data Cluster layer is built directly on a state-of-the-
art Big Data Platform, and it can therefore capitalize
on its capabilities (e.g., the distributed query engine).
These details are discussed in further depth below.

6.1 Subscriber Network

A user joining the application will first communicate
with a Broker Coordination Service (BCS), which will
assign a broker to communicate through. The BCS com-
municates with the brokers, and may change user as-
signments based on the loads of brokers and locations
of users. If a broker fails, the user can also communi-
cate with the BCS to receive a new broker assignment.

BAD to the Bone

15

The Application Administrator can decide to what level
the users will be aware of the underlying channels and
communications. For example, whether they are choos-
ing from a list of channels to subscribe to or simply
registering interests using a higher-level interface.

Data Subscriber Broker
Subscribe to EmergencyChannel (“ dharmal”) =) [0

—

Update location (“dharmal”, point(“2683,480"));) ~|Me.

l Update location (“dharmal”, point(“2690,485")); mmm)
4= Push Notification (“New Results Available!”)

Get Results TS |

Unsubscribe from EmergencyChannel) [

Fig. 17: Communications between a subscriber’s device
and a broker

The communications between a subscriber’s device
and a broker are as follows:

1. The user’s application will send a subscribe request
to the broker (and will get back a subscription id
that represents that subscription).

2. In the background, the application will continue to
send the broker location updates.

3. When there are new results, the broker will send a
push notification to the application.

4. The application will send a get results request to
retrieve these results from the broker (including the
subscription id).

5. When a subscriber is no longer interested in a chan-
nel, the device can send an unsubscribe request to
the broker.

The interactions made by the user will ultimately
be translated into requests made to the broker from the
subscriber’s device application. Figure 17 illustrates the
types of communication between a broker and a sub-
scriber’s (“dharmal”) device. There are five main inter-
actions that will occur between the broker and a sub-
scriber to the EmergenciesNearMe channel. The reason
for using a pull-based architecture is to allow the device
application to be intermittently connected and to use
its own heuristics (including network connection, bat-
tery power, etc.,) to determine when and how to fetch
results. In addition, the application may use heuristics
to tell the broker how it wants to be able to get results
(e.g., if T have been disconnected for a long time, just
give me the newest result), which the broker can use to
manage result caching.

The end subscriber does not need to be aware of the
data cluster at all, or of how the channels and locations
are being maintained. This separation of concerns is
repeated in the broker-to-data-cluster interaction.

6.2 Broker Network

The broker network is comprised of a scalable number
of nodes, each designed to provide a one-to-many con-
nection between the data cluster and the end user data
subscribers. The broker network can capitalize on cur-
rent Pub/Sub research for heuristics on subscriber dis-
tribution, subscription management, and result caching
and delivery (as noted in Section 2.2). Such techniques
are examined in [70] and lie outside the scope of this
paper. Below we focus on the communication layer be-
tween a broker and the data cluster.

Cluster Controller

Subscribe to EmergencyChannel (“dharmal”) =
on BrokerOne;

LocationFeed (“dharma1”, point(“2683.3,480.84")); =)

Broker

Notification(“subscriptionlds”:[
@ “27ea79fd-8009-4937-9a5a-6eac6cObblaa”,
“17c130b5-bd9f-4539-a6ch-3ee5d9c893de”])
Query Results dataset
Unsubscribe from EmergencyChannel
(“27ea79fd-8009-4937-9a5a-6eac6cObblaa”)

Fig. 18: Communications between a broker and the data
cluster

Requests made by an end data subscriber are han-
dled (directly or indirectly) by requests made by the
broker to the data cluster controller, using the follow-
ing operations:

1. The broker sends a subscribe request on behalf of a
user (again, getting back a subscription id).

2. The broker sends newly reported user locations di-
rectly to the LocationFeed data feed.

3. When the channel executes, the cluster sends a no-
tification to the broker if there are new results, in-
cluding the subscription ids for which there are new
results.

4. The broker can run queries on the Results dataset
to retrieve results.

5. The broker can unsubscribe on behalf of a user.

It is up to the broker to determine when and how
to query the Results dataset based on the needs and
availability of its users. In the simplest case, the broker
can simply request results individually when they are
requested by the user. The broker could fetch all of its
users results every time it gets a notification, so these
results would be cached for when users request them. A
broker could also opt to only request and cache results
for users who ask for results often, and hold off on other
results [70].

As an optimization, a broker could also share sub-
scriptions among its users. For example, if there were

16

Steven Jacobs et al.

a channel to find emergencies of a certain type in a
certain city, there might be several users subscribing to
tornadoes in San Francisco. Rather than creating a new
subscription per user, the broker could share a single
subscription on the cluster for these users but provide
end user subscribers with individual ids to communi-
cate their requests to the broker (which will use the
shared subscription on the cluster).

6.3 Data Cluster

At the bottom of the Active Toolkit’s software stack,
the data cluster has the advantage of treating every-
thing as “just data”. Static and dynamic datasets, sub-
scription data, result data, and user data all end up as
scalable, distributed data that can capitalize on Aster-
ixDB as a performant Big Data platform. This includes
the ability to utilize AsterixDB’s rich query capabilities
for later ad hoc historical data analyses. The abstract
notions of subscribe and unsubscribe are translated at
this level into simple cases of INSERT and DELETE. The
application administrator can also build indexes on the
datasets involved in the query, including the Subscrip-
tions and Results datasets themselves. Temporal in-
dexes can help with fetching recent data. The execution
of the channel then becomes an optimized, scalable Big
Data join.

7 Pretending to be BAD

To further showcase the advantages of building a BAD
system, in this section we describe an alternative ap-
proach that attempts to address all the BAD desiderata
(namely D1, D2 and D3 described in Section 1), by glu-
ing together existing off-the-shelf component systems
(with minimum customization).

To identify such components, consider again the emer-
gency example application used throughout the paper.
On the input side, we have the emergency reports and
the user location updates, which are events that, de-
pending on the application, can demonstrate high ar-
rival rates and need to be efficiently ingested by the
system. One could thus utilize an ingestion engine that
is able to support such fast incoming data, e.g. Apache
Kafka [54].

On the output side, in order to deliver incoming
data to subscribed users, one could utilize a notification
delivery servicee like Amazon’s Simple Notification Ser-
vice (SNS) [1]. Amazon SNS enables notification deliv-
ery to a massive number of users and allows notification
filtering based on a notification’s content.

USE emergencyNotifications;

SELECT report.Etype AS Emergency_Type,
count (report) AS Frequency,
avg(spatial_area(report.location)) AS Avg_Scope
FROM Reports report
WHERE report.timestamp >
current_datetime() - duration(‘‘P1Y”)
GROUP BY report.Etype;

Fig. 19: An analysis of emergencies in the last year

A/
~

- amazon
‘.‘ SNS

g kafka Spaﬁzz Streaming

HEHA

. mongo

Fig. 20: A ‘pretending to be BAD’ example

Note that, in the BAD context, notifications’ rele-
vance to users do not consider just the content of the in-
coming data items, but also their relationships to other
data (D1). Moreover, notifications sent to subscribers
may need to be enriched (e.g., with shelter information)
to provide actionable data (D2). Amazon SNS alone is
thus not sufficient to support the D1 and D2 desider-
ata. The complete solution requires a system that also
supports complex computations on large scale data in a
timely manner; an example processing engine would be
a streaming query processor like Apache Spark Struc-
tured Streaming [22].

Last but not least, ingested data (e.g., reports) can
be used a posteriori for revealing useful insights, for
example finding the frequencies and scopes of emergen-
cies reported in the last year (see Figure 19). To sup-
port such retrospective Big Data analytics (D3), we also
need to persist the incoming data into a DBMS, e.g.,
MongoDB. Additionally, the large set of user subscrip-
tions can also be persisted in this DBMS to remember
them and efficiently support changes to them.

Figure 20 depicts an example of gluing all these four
components together (namely the ingestion tool, the
streaming engine, the data warehouse, and the notifi-
cation service). While the figure handpicks a popular
choice per component, there are many other choices
one would have to consider and examine. For exam-
ple, instead of AmazonSNS, one could consider Fire-
base Cloud Messaging, or Microsoft Notification Hubs,
or even low-level customized web socket services. Fur-
ther, some choices (e.g. Kafka) may be used to substi-
tute for multiple components (e.g. as an ingestion tool
and a streaming engine), increasing the number of pos-
sible glueable combinations. Nevertheless, to build such

BAD to the Bone

17

a system, one would have to spend a significant amount
of effort on configuring and orchestrating the different
components. Gluing components together in this way
involves disadvantages including the effort as well as
potential runtime overhead and functional limitations.

Limitations: We can categorize the limitations of the
gluing approach into three categories:

(1) Management Complezxity. Different systems have
and utilize different data types and data representa-
tions in their runtimes. As data is transferred between
different components, it may need to be transformed
between different data types repeatedly. These transla-
tions may result in added overheads. For example, data
items are ingested in Kafka as JSON strings. Spark then
would parse these strings and cast the parsed result into
rows in data frames, which then would be processed and
persisted as documents in MongoDB. Eventually, data
has to be transformed into JSON strings again for the
AmazonSNS notifications. Further, a user would need
to configure and deploy each component separately and
then glue them together. Setting up the environment
and maintaining it requires significant user effort and
domain knowledge about its component. These addi-
tional management complexities are avoided when us-
ing the BAD platform’s unified model.

(2) Limited Functionality. The various components may
not offer all of the needed functionality. Assume that
we were to create Channel-like jobs in Spark. To cre-
ate the notifications, one would need to run a spatial
join between the report and user locations. However,
Spark Structured Streaming does not support spatial
joins over streams. This implies that a user would have
to modify their existing queries to use equi-joins (thus
limiting the application functionality). In contrast, in
the BAD system, the user can take their existing queries
and use them directly in channels. As another limita-
tion, Spark Streaming can only operate on a limited
suffix of a data stream (due to memory limitations).
As a result, if a user has not updated his/her location
recently, such a location may not be available for the
application.

(8) Integration Difficulty. Given the presence of mul-
tiple independent components, data exchange between
them in the glued system is inevitable and frequent. Al-
though different vendors have provided connectors for
bridging the gaps between them, users still would have
to construct configuration files or even “glue” programs
for shipping data from one component to the other. Be-
cause of this, the system as a whole loses the possibil-
ity of optimizing user queries across components. Data
stored in MongoDB would first be pulled (via a full
scan) into Spark for computation; Spark would then
not utilize efficient data structures such as indexes to

accelerate the data accesses in MongoDB. In the BAD
system, users can create channels by just using SQL++
statements and they have no need to write lower-level
programs. The channels can be optimized by the Aster-
ixDB query optimizer to seek their most efficient query
plans, and users can create indexes on datasets that
BAD can then utilize to improve their runtime perfor-
mance.

The above discussion summarizes why the BAD ap-
proach is unique and is not directly comparable with
any one alternative platform — the only functional al-
ternative is to construct a multi-system tangle. We fur-
ther note that if one were to avoid dealing with the glue
issues among multiple components, picking just one
component and heavily customizing it to meet the re-
maining BAD requirements, the task would be challeng-
ing (or even impossible) since each component provides
only a subset of the required desiderata. No one sys-
tem has the persistence, query power, and declarative-
ness of BAD. For example, using only Spark Stream-
ing, one would have to customize ingestion and result
delivery. Spark could persist data in HDFS, but with-
out database guarantees (updates, consistency, concur-
rency). Similarly, Kafka is not designed for storing data
and has limited querying capabilities. Amazon SNS is
a data routing service without complex computation
capabilities or storage.

Loosely speaking, the end goal of BAD is to reduce
the effort required to build big active data applications
in a manner not unlike the way that the onset of rela-
tional databases and SQL reduced the effort required to
build passive business applications — it should be possi-
ble to build applications declaratively, with a minimum
of programming effort.

8 Experimental Evaluation

We now proceed to examine how our initial implemen-
tation of a BAD system performs and scales. Our ob-
jective in this context is simply to take a first look at
the performance characteristics of the BAD approach
itself. (We leave the possibility of comparing BAD to a
wired-together glue competitor to future work.)

The separation of concerns between the data sub-
scribers, the brokers, and the data cluster allows us to
separate their performance evaluations. For example,
one could look at the end-to-end performance experi-
enced by users, the caching and user distribution per-
formance of brokers, or the data cluster itself. As this
paper is focused on the techniques and research of the
BAD data cluster, our experiments here focus on this
layer. Specifically, we look at three performance aspects
of the data cluster: ingesting scalable data, processing

18

Steven Jacobs et al.

channel jobs for a scalable number of users, and deliv-
ery of results to the brokers. We see this as a critical
factor of the performance overall, as all other aspects
of performance will depend on it. Since users are just
“data” from the data cluster perspective, we can es-
sentially remove the end users from the performance
picture and treat the brokers as the “clients” of the
BAD data cluster.

8.1 Experimental Setup

For our experiments, we used the example application
that has been discussed throughout this paper, includ-
ing its data model, datasets, feeds, and the repetitive
EmergenciesNearMe channel with period of 10 seconds
(Figure 11). It is important to note that the choice of 10
seconds is not important in and of itself. Rather than
fixing the window size and varying the arrival rates of
data, we could fix the arrival rates and vary the window
size to do a similar evaluation. The definitions of data
types, data feeds, channel, and broker were shown in
Figures 3, 5, 7, 10, and 11 respectively.

In order to model the realistic movement of people
in the real world, we used the the Opportunistic Net-
work Environment (ONE) simulator [10,51,39] to sim-
ulate users’ movement in our experiments. The ONE
simulator allows for maps to be built representing real
cities, including map graphs of pedestrian paths, roads,
tram routes, etc., and for creating classes of “hosts”
that represents cars, pedestrians, and commuters by
providing movement models and graphs for each class,
thereby simulating a realistic flow of human movement
within that city. The publicly available ONE simulator
comes with a pre-built simulation of the city Helsinki,
including the actual roads and metro routes. We used
this city in our following experiments.

Due to the complexity of modeling massive user
movement directly in the ONE simulator, we let the
ONE simulator generate data for small groups of users,
and then we merged them together for our experiments
depending on the number of users that we needed. In
each group, there were 30 users, which includes 10 pedes-
trians, five cars, and 15 metro commuters. The metro
commuters were evenly assigned to three different metro
routes, five commuters for each route. The moving users
reported their location every 10 seconds in our simu-
lated world where there were emergencies happening at
the same time. Our goal was to see how many users we
can support with our system in the given emergencies-
near-me application.

The emergencies were generated using the ONE sim-
ulator as well. We created a group of ten emergency

creators and allowed them to traverse rapidly and ran-
domly around the map. There were four potential emer-
gency types: floods (with a radius of about 1/8th of the
city and a probability of 50%), fires (with a radius of
about 1/16th of the city and a probability of 30%),
storms (with a radius of about 1/4th of the city and a
probability of 10%), and car crashes (with a radius of
about 1/100th of the city and a probability of 10%).
Also, we randomly generated a set of statically located
shelters in Helsinki. A distribution of the 200 shelters
is shown in Figure 21.

L G s s 2Bos 5162
543
5156 576 383101
5184 5189

£32 528 i1

sz 5120 ypg
26 530
£ 875@2
SE i) 8 an s
%‘5 o sfE el E 2
. 3557 esl6 51852337
51 5113 151&6;5. 2516 sng 513@57 59 s18
| ~ o
A a7 ;;bzt@“ﬂg;;“““%‘ws sTL
556 . sapagdii a3
Lol j&_ﬁ?s" SSQS%%%QQQG 3107 53
;l&ﬁ&@ﬁ:ﬁﬁ?&zqis 5209 o35 5125, SIS,
EE) iy
882075180, . 8159 GEEr3 1003
'S?f’éasﬁ glﬁzéfﬁg 5158 *"s88
OIS 2 $36530

53 % % P 5163
540
p S0 5@}‘31 sE
S5 3
7 $175 5104 sSHEY

sy 5204

5148
5203 555?”4

s9p21

5132 168

Fig. 21: Distribution of 200 shelters in Helsinki

With this emergency-heavy scenario setup, which
one might characterize as “Hell”-sinki, we ran the ONE
simulator with the described configurations, exported
the data, and converted them into AsterixDB data model
(ADM) files, so we could repeatedly replay the emergencies-
near-me scenario by reloading the generated data. In
each experiment, we loaded the shelter data into the
Shelters dataset and then fed the users’ locations and
emergencies through the “LocationFeed’ and “Report-
Feed’ into the UserLocations and Reports datasets re-
spectively.

8.2 Data

To start with a non-empty state, we pre-loaded the Re-
ports dataset with a history of over 2 million reports.
Since we created an index on the “report_time” at-
tribute, the size of the report dataset would not harm
the overall performance of the channel execution, but
we pre-loaded so as to show this held true. The Shel-
ters dataset was pre-loaded with 200 shelters scattered
across Hellsinki.

BAD to the Bone

19

In our experimental application, there were two pa-
rameters that could be changed: the arrival rates of new
reports, and the number of users. We assumed all of our
users were subscribed to the channels, thus the sub-
scriptions dataset had the same size as the UsersLoca-
tions dataset. A new emergency report coming into the
system through the “ReportFeed” was automatically
assigned a UUID as its primary key and then stored
in the Reports dataset. A user sent his/her location up-
date every 10 seconds through the “LocationFeed”, and
this location was then upserted into the UsersLocations
dataset. We only kept the latest location of each user
in our system.

Figure 22 shows a snapshot in time of “Hellsinki”.
Here we show the locations of 1000 users along with the
locations of four emergencies that occurred. The dense
areas of users are commuters on the city’s tram routes.

R w 9R4ES4177
N

weAgg2ss | L P
6283 <3552,

c323 F183 Gy RIRBRPT £288 oy

PE1zp T2
wachfddhnasd?

241
»ig02
€307

Fig. 22: A BAD moment in “Hellsinki”

8.3 Experimental Setup

In order to show the advantages of using the BAD sys-
tem, we designed another approach that supports the
same scenario using only the passive AsterixDB. In this
approach, the broker would need to send explicit re-
quests to AsterixDB on behalf of every user. We created
a “polling” program that reads users’ location updates
and issues the query shown in Figure 23 to obtain the
the nearby emergencies and shelters within the same
time interval as the repetitive channel (10 seconds). The
“polling program” maintained a queue to receive the
incoming users’ location updates, and there are one or
more “poller” threads that take the location updates
from the queue and query AsterixDB for the requested
information. We will further investigate how the num-

USE emergencyNotifications;

SELECT r, shelters
FROM Reports r,
(SELECT s.location FROM Shelters s
WHERE spatial_intersect(s.location7
circle(*‘2437.3,1330.5 100.0”))) shelters
WHERE r.timestamp > current_datetime() -
day_time_duration(”PT10S”)

AND spatial_intersect(r.location, point(‘‘2437.3,1330.5”));

Fig. 23: The polling query for a single user (at location
“2437.3,1330.5")

ber of “poller” threads affects the performance later in
Figure 34. For clarity we will refer to BAD AsterixDB
as the active mode and to vanilla AsterixDB as the
passive mode.

In the active (i.e., BAD) mode, we loaded the Shel-
ters and Reports datasets with the shelters data and
the prepared 2 million history reports first. Then, we
created the EmergencyNearMe channel and loaded the
subscription data. Lastly, we started feeding data into
the UserLocations and Reports datasets with a specified
number of users and report rates. Our experiments mea-
sured how well the channel was able to scale in terms of
the number of supportable users, i.e., how many users
and how much data it could handle within the desired
inter-results period of 10 seconds. After that, the sys-
tem would be in a “overloaded” situation since it would
fail to operate within the specified interval of the chan-
nel. We ran the experiment multiple times to search for
the maximum supportable users given a certain rate of
reports.

To instrument the active experiment, we recorded
the time (¢%) of the channel (‘Channel Execution Time’,
i.e., the time to produce results), and the time (t}) that
the broker spent on fetching the new results on behalf
of users after receiving a notification (‘Result Fetching
Time’) in all n invocations throughout the channel life-
time, where 0 < ¢ < n. Notice that both the Channel
Execution Time and the Result Fetching Time need to
be within the 10-second period for a channel to work in
a stable state. The criterion that the channel can sup-
port a given number users and a certain report rate is
max?zl(max(té,t’})) < 10.

In the passive (i.e., user polling) mode, we initial-
ized the Shelters and Reports datasets in the same way
using the prepared shelter and reports data and then
started feeding only the Reports dataset. After that, we
started the poller program that reads users’ location
updates and polls the requested emergencies and shel-
ters for each user location one-by-one using the query
in Figure 23. For a given number of users, the poller

20

Steven Jacobs et al.

program has to be able to consume all location updates
from all users in each 10-second interval, otherwise it
too would be in an overloaded state. We measured how
many users the poller program can serve given a certain
report rate in the 10-second window.

8.4 Hardware Configurations

Our experiments were conducted on a six node cluster
consists of Inter NUC (BOXNUCSITRYH). Each node
had an i7-5557U CPU processor (4 cores per machine),
16 Gigabytes of RAM, and a 1 TB hard drive. The
nodes were connected with a Gigabit Ethernet switch.
For the active mode, we deployed the BAD system on
four nodes where one node hosted the Cluster Con-
troller (CC), which accepts and compiles user queries
and schedules query evaluation over the cluster. The
other three nodes hosted Node Controllers (NC), which
receive complied query plans from the CC, compute
according to the plan, and store the data. Each NC
contained one data partition. The broker and the data
feeding programs which sent reports and location up-
dates ran on the other two nodes separately. For the
passive mode, we deployed the AsterixDB cluster us-
ing the same configuration as BAD, and the poller and
reports feeding programs ran on the other two nodes.

8.5 Feeds vs. Manual Inserts

We used active data feeds for ingestion of both Re-
ports and UserLocations. Data feeds are an important
contributer of data for scalable channels, as they pro-
vide the mechanism used by the BAD platform to in-
gest data at scale. To illustrate the advantages of using
data feeds for rapid data ingestion, we compared the in-
gestion performances of using data feeds versus issuing
insert statements. We also evaluated against the insert
performance of Postgres as another baseline. For data
feeds, we set up an external program that fed data con-
tinuously. For passive AsterixDB and Postgres, we also
set up an external program that inserted new data by
repeatedly issuing insert statements. We measured the
number of ingested data records during a 10 minutes
experiment to show their performance differences. The
experimental resutls are plotted in Figure 24. Note that
the number of ingested records is on logarithmic scale.

As we can see, the data feeds maintained very high
ingestion performance during the experiment. Both pas-
sive AsterixDB and Postgres, issuing insert statements,
had much lower ingestion performance. Data received
by data feeds is parsed and fed to the ingestion pipeline

100000000
10000000
1000000
100000
10000
1000
100

10

1

i

—Data Feeds

Total Records Ingested
(Log Scale)

—Insertion on AsterixDB
Insertion on Postgres

© O O O © © © ©
S 0 N O O § 0
I = N N N ™M

© O O © O ©
O ¥ 0 &N O O
S & n n O

360

Time (Seconds)

Fig. 24: Feeds vs. Manual Inserts

which can then be persisted into the storage system di-
rectly. This allowed the incoming data to be efficiently
consumed by the system. For the passive insertion case
on both AsterixDB and Postgres, however, each insert
statement has to be handled by the query compiler sep-
arately and executed as an independent job. This in-
creased the per-record insertion cost, which led to their
lower performance.

8.6 Channels vs. Polling

In real scenarios, the published reports may have dif-
ferent degrees of intersection with the subscribed users.
This intersection rate will affect the overall performance
of both the BAD and polling approaches (channel exe-
cution time and result fetching time in the active mode,
and query evaluation time in the passive mode). In or-
der to explore how different intersection rates of reports
and subscribed users affected performance, we designed
four scenarios and compared the performance of each
under the active (BAD) mode and passive (polling)
modes respectively. The scenarios are as follows:

— Case 1: A large percentage of subscribers intersect
with emergencies, and a large percentage of the emer-
gencies intersect with subscribers.

— Case 2: A large percentage of subscribers intersect
with emergencies, but a small percentage of the emer-
gencies intersect with those subscribers.

— Case 3: A small percentage of subscribers intersect
with emergencies, while a large percentage of the
emergencies intersect with those subscribers.

— Case 4: A small percentage of subscribers intersect
with emergencies, and a small percentage of the
emergencies intersect with those subscribers.

In order to demonstrate these scenarios, we created
two additional cities outside of Hellsinki: Tartarusinki,
where lots of emergencies happen but (fortunately) no

BAD to the Bone

21

one resides, and Elysinki, where lots of people reside
but (also fortunately) no emergencies ever happen. The
added cities each also have 200 shelters. In all cases,
we did our breaking-point analysis, which showed how
many subscribers the system can serve within the 10-
second window for a given arrival rate of reports.

8.6.1 Case 1 - “Hellsinki” Alone

For Case 1, we assumed that Helsinki was the only city
(as in Figure 22). All emergencies took place there, and
all subscribers resided there. As the number of incom-
ing emergencies per second increased, Helsinki gradu-
ally became more and more of an apocalyptic “Hell”-
sinki.

We present the experimental results in Figure 25.
The x-axis represents the rate of reports. The y-axis
shows the maximum number of subscribers that can
be served while staying within the 10-second delivery
deadline. Note that both the x and y axes are on a log-
arithmic scale due to the large performance differences
observed.

-e-BAD

#=-1 Poller
2 Pollers

-4 Pollers

oo 16384

Supportable Subscribers (Lo,

1 4 16 64 256 1024 4096
Incoming reports per second (Log Scale)

Fig. 25: Case 1 - “Hellsinki” Alone

In the passive mode, the polling performance is af-
fected by not only the execution cost of computing
the results but also the compilation cost in processing
the polling queries. When AsterixDB receives a polling
query, it compiles and optimizes that query into a job
specification on the CC node and sends that specifica-
tion to the NC nodes for execution. When the report
arrival rate is low, the pollers’ performance is mainly
bounded by the available resources on the CC node
for compiling the polling queries, so the pollers’ perfor-
mance is relatively stable on the left side of the graph
(i.e., for smaller report rates). As the report arrival rate
increases, the high execution cost of each polling query
causes fewer queries to be completed during the given
time window, so the execution cost becomes the main

performance impactor. As a result, the pollers’ perfor-
mance drops when the report arrival rate is very high.
Increasing the number of pollers improves the perfor-
mance (but within a limit); we will further discuss this
in Section 8.6.5.

The active mode starts with a drastically higher
number of supportable subscribers that gradually de-
creases as the rate of reports increases. The decrease is
because the computational load for the channel query
execution grows when there are more reports being gen-
erated during its execution window (10 seconds in this
case). The active mode outperforms or (at worst) matches
the one poller passive mode. It is strikingly better for
lower incoming report rates, where it outperforms the
one poller passive mode by supporting up to two orders
of magnitude more subscribers. The passive mode with
multiple pollers outperforms the active mode only for
much higher rates (many hundreds of incoming emer-
gency reports/sec). We will further analyze the perfor-
mance of the BAD system versus the passive mode in
Section 8.6.5.

8.6.2 Case 2 - Hellsinki and Tartarusinki

If we add Tartarusinki to our map and have 90% of all
of the emergencies occur there, all of our subscribers
will potentially receive notifications, but most of the
emergencies that occur “worldwide” will not contribute
to those notifications. Figure 26 shows this scenario.

Fig. 26: Hellsinki (Left) next to Tartarusinki (Right)

As we can see from the results shown in Figure 27,
the active mode starts with a much higher number of
supportable subscribers compared with Case 1. This
is because in Case 2 there are many less notifications
generated given the same number of subscribers and
rate of reports. In the passive mode, the primary bot-
tleneck is still the query compilation cost on the CC
node. Thus, the passive mode’s performance in Case 2
is similar to that in Case 1, and it remains relatively
stable for smaller report rates. As the report rate in-
creases, the passive performance starts to decrease due
to a larger workload introduced by more reports in the
channel execution window. Note that in Case 2, the

22

Steven Jacobs et al.

BAD system’s performance superiority with respect to
the passive mode with multiple pollers extends further
to the right; as before the active mode outperforms the
one poller passive case, except for very high report rates
where the two approaches behave similarly.

262144
o -e-BAD
2131072
I8 -=-1 Poller
v 65536
® 35768 2 Pollers
= -*-4 Pollers
= 16384
§ 8192
G 4096
w
2 2048
E 1024
s 512
t 256 —
o
2 128 .\
a 64

1 4 16 64 256 1024 4096

Incoming reports per second (Log Scale)

Fig. 27: Case 2 - Hellsinki and Tartarusinki

8.6.3 Case 3 - Hellsinki and FElysinki

If instead we add Elysinki as the second city, all of the
emergencies will be in Hellsinki. Since only 10% of the
subscribers are in Hellsinki now, most subscribers will
not receive emergency notifications. Figure 28 shows
this scenario.

Fig. 28: Elysinki (Left) next to Hellsinki (Right)

Figure 29 shows the related performance results. Al-
though the subscribers outside of Hellsinki are involved
in the channel computation, there are no results pro-
duced for them. Thus, the active mode starts with a
much higher number of supportable subscribers com-
pared with Case 1. Note that the general performance
trend of Case 3 resembles the performance in Case 2.
This is expected as we reduced 90% of the “effective”
reports in Case 2 by moving them to Tartarusinki, and
we reduced 90% of the “effective” users in Case 3 by
moving them to Elysinki. The number of produced re-
sults in both cases are roughly the same, which leads
to similar performance. This is also supported by the

results in Section 8.7 which presents the channel exe-
cution times and result sizes for all cases. As before,
the passive mode performance remains stable when the
rate of reports is low and starts to drop when it further
increases.

262144

o -e-BAD
3 131072 -=-1 Poller
v 65536
® 15768 2 Pollers
= -4 Pollers
o 16384
§ 8192
G 4096
2
< 2048
o 1024
= 512
£ 256 X
[=]
g 128 \.
a 64
1 4 16 64 256 1024 4096

Incoming reports per second (Log Scale)

Fig. 29: Case 3 - Hellsinki and Elysinki

8.6.4 Case 4 - All three cities

Lastly, we simulate a world where 90% of the emer-
gencies occur in Tartarusinki while 90% of the sub-
scribers reside in Elysinki, and an unlucky few remain
in Hellsinki. In this case emergency notifications will
exist for only 10% of both emergencies and subscribers.
Figure 30 depicts this scenario.

Fig. 30: Elysinki(Left), Hellsinki(Center), and Tar-
tarusinki(Right)

As shown in Figure 31, the active mode outperforms
the one and two pollers passive mode even when we
scale the disaster rate to thousands of emergencies per
second. Different from Cases 2 and 3, the performance
of the active mode does not drop as much as we increase
the rate of reports from one to four. This is because of
the low intersection rate of the “effective” reports and
users, which causes very few results to be generated
when the report rate is relatively low. After we further
increase the report rate, performance starts to drop as
before.

The performance of the passive mode is similar to
the previous cases. It remains stable for smaller report

BAD to the Bone

23

rates and starts to drop at very high report rates. When
considering all four scenarios, the main difference in the
passive mode is that for Case 1, the performance dete-
rioration starts at much lower report rates (around 64
reports/sec). This is because for Case 1, even a rela-
tively small report rate produces large computational
workload (due to the large number of intersections be-
tween reports and users).

262144

2131072 ~*-BAD

-=-1Poller
2 Pollers
¢4 Pollers

(<))
[
w
w
(<))

32768
16384
8192
4096
2048
1024
512
256
128 ~a
64
1 4 16 64 256 1024 4096

Incoming reports per second (Log Scale)

Supportable Subscribers (Log Sc

Fig. 31: Case 4 - All three cities

8.6.5 Discussion

The previous graphs all used logarithmic scales. Fig-
ure 32 shows a portion of the performance graph from
Case 4 (Figure 31) using a linear scale to better convey
the large performance difference between the active and
passive modes. The performance of the active mode for
all four cases is summarized for comparative purposes
in Figure 33. Case 1 represents the most ‘apocalyptic’
scenario where all events and all subscribers have the
potential to intersect. Thus, the number of supported
subscribers is the lowest. Cases 2 and 3 each have only
a fraction of Case 1’s “effective” data (10% reports in
Case 2 and 10% users in Case 3), so their performance
is better than in Case 1, and the performance of Cases
2 and 3 is very similar. In Case 4, there are three cities,
which increased the number of shelters (we used 200
shelters per city, so Cases 2 and 3 had 400 shelters each,
while Case 4 had 600). Thus, the starting point of Case
4’s performance (1 report per second) is slightly lower
than Cases 2 and 3 due to the additional computational
cost from joining with more shelters. The performance
of Case 4 drops slower than Case 2 and Case 3 while
the report rate increases, since in Case 4 there are fewer
results generated (there are fewer intersections as most
users and most reports are moved to different cities).
For low to moderate report rates, the BAD system
is much better than the passive mode in all four cases.

This shows the advantage of batch processing and de-
ployed jobs used in the BAD system, as opposed to
repeatedly issuing the polling queries using poller pro-
grams in the passive mode. When the report rate be-
comes very high, the performance of both the BAD and
passive mode start to decline due to the increased work-
load. In particular, the gap between the BAD system
and the passive mode with one poller narrows and their
performance eventually converges. This is because the
BAD executes one channel query in each time window,
and the one poller program makes one request for a user
at a time. In both cases, there is only one query/job be-
ing executed concurrently. The resources allocated for
evaluating the channel/polling query in both cases (the
BAD and one poller) are roughly the same.

Increasing the number of pollers allowed multiple
queries to run concurrently, thus resulting in better
performance, using however more of the system’s re-
sources than the BAD channel query that runs repeat-
edly. The performance gains will be limited by the addi-
tional query compilation cost. To show this limitation,
we conducted an experiment (using the Case 1 scenario)
where we varied the number of pollers and measured
the performance in terms of supportable subscribers.
The results are shown in Figure 34, for different report
rates. As can be seen, the passive mode can only be im-
proved to a limited extent by adding more pollers; for
all examined report rates, the performance soon flattens
after 16 pollers. Furthermore, the maximum number of
supportable subscribers achieved decreases as the re-
port rate increases. For the lower report rates (1 and
32 reports/sec) the main bottleneck is the compilation
cost of the polling queries. For the higher report rates
(128 and 1024 reports/sec) the performance is affected
by the compilation cost as well as the increased com-
putational cost introduced by having more reports.

It should be noted that the very high report rates in
our experiments were used so as to identify the limits
of the BAD system, rather than representing a realistic
scenario. High rates with thousands or even hundreds of
emergencies per second would create a practically un-
usable amount of data for each subscriber. A subscriber
would be expected to read hundreds or thousands of re-
sults during one execution (every 10 seconds). In more
‘realistic’ scenarios, where subscribers might each get
one or a few notifications during an execution, the BAD
system performs orders of magnitude better than the
passive mode.

8.7 Diving into the BAD Performance Details

In this section, we look a bit more deeply at the perfor-
mance details of the channel execution in different cases

24

Steven Jacobs et al.

250 -e-BAD
-=-1 Poller
» —-200 2 Pollers
g T -4 Pollers
= [}
3 3150
3E
AT
% % 100
£ wv
5 <
§§ 50
w2
0 des— ¢
0 50 100 150
Incoming reports per second (Linear Scale)
Fig. 32: Case 4 on a linear scale
250
il -e-Casel
- -m-Case 2
28 200
o Case 3
23 >-Case 4
< 2150
aF
99
£ 3 100
5 <
g2
a5 50
0 % —x
1 4 16 64 256 1024 4096

Incoming reports per second (Log Scale)

Fig. 33: Active performance in the four cases

2500

2000

1500

1000

wu
=}
S

Supportable Subscribers (Linear Scale)

1 4 16 64 256
Number of Passive Poller Threads (Log Scale)

-o-1report / second -®-32 reports / second 128 reports / second -¢1024 reports / second

Fig. 34: Supportable Subscriber gains as the number of
polling threads is increased (Using Case 1)

to investigate the factors impacting the performance of
the BAD system. To do so, we fixed the number of sub-
scribers at 900, the window size was again 10 seconds
and we used three report rates, namely 4, 16 and 64
reports/sec. We report the channel execution time, the
broker result fetching time, and the result size (number
of records) averaged over 30 executions. The results are
shown in Figure 35.

The channel execution time, result fetching time,
and result count all increase as the report rate increases.
This is because there are more reports contributing to

the channel query evaluation. In all three settings, the
channel execution time of Case 1 is higher than Cases 2
and 3, which are slightly higher than Case 4. The reason
is that in Case 1, there is a higher probability that
a user’s location intersects with an emergency report.
This in turn leads to a higher result size and thus a
higher result fetching time. In Case 2, we moved 90%
of the reports to another city, and in Case 3, we moved
90% of the users to another city. Both cases reduced
the size of the data participating in result generation by
the same factor of 0.9. Thus, we see similar execution
times in both cases, and their result size and result
fetching times are roughly the same as well. In Cases 2
and 3, as we moved most of the reports or the users to
a different city, both the evaluation time and result size
become smaller than Case 1. In Case 4, there is only
a small fraction of users and emergency reports that
could intersect, so the channel execution time, result
fetching time and result size are the smallest.

8.8 BAD vs. Postgres

In discussing BAD with various audiences, we have found
“what about triggers?” to be a frequently-asked ques-
tion. As a result, to explore the challenges of handling
the emergencies-near-me use case without a system like
BAD, but with a single system — i.e., without resorting
to gluing multiple systems together — we also attempted
to achieve the same goals using a DBMS that supports
triggers. We chose Postgres [67] for this exercise due to
its popularity and long-standing support for triggers.
Since Postgres is a single node DBMS! we could only
compare its performance against a single node deploy-
ment of BAD.

Recall that the emergencies-near-me scenario has
two tables (datasets) being updated actively, UserLoca-
tions and Reports. Data changes in either table could
generate new notifications for corresponding subscribers,
e.g., a user walks into an emergency event or a new
emergency event happens near a subscribed user. In or-
der to capture both cases, we created one trigger on
each of these Postgres tables. In response to an up-
date/insert on UserLocations, the corresponding trigger
finds intersecting reports that happened in the past 10
seconds, joins them with the Shelters table, and inserts
the result (i.e., a new notification) into the Results ta-
ble. The trigger on Reports works in a similar way for
each new report insertion into that table.

L There is a distributed variant of Postgres — from Green-
plum — that provided database triggers in an earlier version.
However, triggers have been removed in the current version
due to their unreliable behavior in a distributed setting [12].

BAD to the Bone

25

1000000 1000000
mCasel mCase2 mCase3 mCased mCasel

100000 100000
10000 10000

1000

1]

.

Channel Execution Result Fetching Time Result Count

Time (milliseconds) (milliseconds) Time (milliseconds)

(a) 900 users with 4 reports / second

Case2 mCase3 mCase4 mCasel

Channel Execution Result Fetching Time
(milliseconds)

(b) 900 users with 16 reports / second

1000000
Case2 mCase3 mCased

100000

10000

=
1)
3

=

1000 1000
100 100
-1l i e - I ° [
1 1 1

Result Count Channel Execution Result Fetching Time Result Count

Time (milliseconds) (milliseconds)

(¢) 900 users with 64 reports / second

Fig. 35: Channel statistics with different rates of reports in all four cases

Special care is needed to avoid duplicate results.
Consider the following scenario. Assume that the last
known location of a user is reported at time ty. If an
emergency that happens at time ¢; (where t; > tp) in-
tersects with this user’s location, the Reports trigger
will produce a new result. Soon after, at time to (where
to — t1 < 10) that user sends a new location update
which also intersects with the same emergency. The
UserLocations trigger will produce a (duplicate) result
with the same emergency and user id. Such duplication
will increase the result size and lead to the users receiv-
ing redundant notifications. To avoid this we defined
the Results primary key as < user_name, report_id >
and set the triggers to upsert data into this table.

In this experiment, we created two client programs
that feed separately the UserLocations and Reports ta-
bles by issuing upsert and insert statements respec-
tively. The client for UserLocations upserts user loca-
tions every 10 seconds. The client for the Reports table
inserts new reports at a specified rate (as needed by the
experiment). Unlike the BAD data feeds, both clients
could be slowed down due to expensive trigger calls and
the overall system load. We consider the trigger-based
approach as being overloaded if any of the clients fails to
upsert/insert data at the specified rate. For the exper-
iment, we also set up an external broker program that
pulls recent results from the system every 10 seconds.

For comparison purposes, we also implemented a
passive mode with one poller thread using Postgres.
Similar to the trigger implementation, we also created
the Reports table and set up an external client program
that sends new reports at a specified rate. Instead of re-
lying on triggers to generate results and having a broker
program to fetch them, we set up a poller program that
polls the nearby emergencies and shelters on behalf of
each user. This poller works in the same way as the
passive mode of AsterixDB in Section 8.6. Similarly to
the trigger approach, both the Reports client and the
poller program could be slowed by the system load. We
consider the one poller implementation as able to sup-
port a certain amount of users and rate of reports if

both the Reports client and the poller program can up-
date/query data at the specified rate.

We deployed the single node BAD system with both
CC and NC on the same node. We created the same
datatypes, datasets, and channels from Section 8.6. Note
that while Postgres cannot be scaled to multiple nodes,
the BAD system’s performance can be improved by
scaling in a larger cluster. For comparison purposes,
we also added experimental results based on running
BAD on 4 nodes (one CC and three NCs).

The experimental results of the comparison (in loga-
rithmic scale) are shown in Figure 36; the scenario used
was Case 4. In the figure “Postgres Triggers” and “Post-
gres Poller” denote the triggers and single-poller imple-
mentations on Postgres respectively. Similarly, “BAD
on 1 node” and “BAD on 4 nodes” correspond to the
single- and four- node deployments of BAD. Both the
“Postgres Triggers” and “Postgres Poller” start with
relatively stable performance. “Postgres Triggers” starts
declining as the rate of reports gets higher because more
incoming reports make the computation in both trig-
gers more expensive. As the report rate increases fur-
ther (above 32 reports/sec for the “Postgres Triggers”
and 64 reports/sec for the “Postgres Poller”), the Re-
ports clients in the Postgres-based implementations fail
to add new data at the specified rate.

In contrast to Postgres, “BAD on 1 node” starts
with a much higher number of supportable users. Ben-
efiting from the data feeds and channel mechanisms,
BAD is able to consume rapid incoming data and pro-
duce results, even when the report arrival rate is very
high. Further improvements can be achieved by scaling.
(See “BAD on 4 nodes” and remember the log scale.)

We finally note that in the “Postgres Triggers” case,
we have to create triggers for each of the “active” tables
that participates in the computation. This adds extra
complexity for application development (managing du-
plicate results, etc.) However, in BAD, a single channel
can access many datasets and compute complex results
on their data. The BAD system not only provides bet-
ter performance compared with the traditional trigger

26

Steven Jacobs et al.

implementation, but it also reduces the effort involved
in building BAD applications.

-e-BAD on 1 Node
-*-Postgres Triggers
Postgres Poller
-+-BAD on 4 Nodes

1000000

100000

10000

1000 x—x*\
100

10

Supportable Subscribers (Log Scale)

1
1 4 16 64 256 1024 4096
Incoming reports per second (Log Scale)

Fig. 36: Emergencies-near-me on Postgres vs. BAD

8.9 Cluster Scaling Experiments

Speed-up: In order to show how the channel execu-
tion time can scale with the cluster size, we performed
additional experiments on a 20-node cluster with Dual-
Core AMD Opteron Processor 2212 2.0GHz. Each ma-
chine had 8 GB of memory and dual 1 TB 7200 RPM
SATA disks. Recall that a BAD cluster consists of one
CC node and one or more NC nodes. The number of
NC nodes determines the computational power of the
cluster when executing jobs (including the channel ex-
ecution). We conducted this experiment using Case 1,
but extended the channel execution window and query
(as well as the update rate of users’ locations) to 20
seconds. We tested three different scenarios: 4140 users
with 16 reports/sec, 2160 users with 32 reports/sec, and
1020 users with 64 reports/sec. The number of users set-
ting was determined by finding the maximum number
of supportable users on the cluster with two NC Nodes
for the given report rate.

We measured the channel execution time on 4 dif-
ferent scales (2 NC nodes, 4 NC nodes, 8 NC nodes, and
16 NC nodes). The other configurations remained the
same as Section 8.6. We show the speed-up performance
against the number of NC nodes in Figure 37. All re-
sults are reported with 95% confidence. As expected,
the channel execution time decreases as we introduce
more nodes, showing good speed-up performance.

Scale-up: We also measured the scale-up perfor-
mance by increasing the report rates in proportion to
the cluster size using Case 1. We tested with 900 users
and three different report rates per NC node (160 re-
ports/sec/node, 320 reports/sec/node, and 640 report-
s/sec/node) on 4 different scales (2 NC nodes, 4 NC

18000
16000

14000
3 12000
§ 10000
2 8000 1 I
E 6000
4000
2000 . .
0

16 reports / second
H 2 NC Nodes 4NCNodes m8NCNodes m16NCNodes

Channel Execution Time

32 reports / second 64 reports / second

Fig. 37: Channel speed-up for different cluster sizes

nodes, 8 NC nodes, and 16 NC nodes). In order to better
highlight large scales of data and cluster utilization we
used a 600 second channel execution window. The other
configurations remained the same as in Section 8.6. The
results are shown in Figure 38. All results are reported
with 95% confidence. As we increased the cluster size
and report rate together, the channel execution time
maintained relative stability and only grew slightly due
to the increased execution overhead of a larger cluster.
This shows that the BAD system can scale well for use
cases with larger workloads.

600000
500000

400000

300000
200000
_
. mmEN

160 reports / second /NCNode 320 reports / second /NC Node 640 reports / second / NC Node

Channel Execution Time
(milliseconds)

W2 NC Nodes 4 NC Nodes m 8 NC Nodes W 16 NC Nodes

Fig. 38: Channel scale-up for different cluster sizes

9 Conclusions and Future work

We have introduced a new paradigm for big data, namely
Big Active Data, that merges Big Data Management
with active capabilities. We have implemented a BAD
system prototype using a modern Big Data Platform
(AsterixDB), and we showed how it can outperform
passive Big Data by an order (or two) of magnitude
in many practical scenarios. BAD can consider data in
context and enrich results in ways unavailable to other
active platforms, in addition to allowing for retrospec-
tive Big Data analytics. Our code (> 20,000 LOC) is
available as an open-source Apache project [7].

From this point, BAD can be improved in a myriad
of ways. For example, this paper only scratched the sur-
face of the research for Broker to User communication
and scalability. In addition, we currently treat channels

BAD to the Bone

27

as completely isolated jobs. We can instead tackle the
task of scaling multiple channels together by recogniz-
ing common work (e.g., detecting recent emergencies)
and sharing this work between channels at the runtime
level. While we focus here on repetitive channels, they
are limited by the periodicity that they need to execute
at. As future work we plan to create continuous chan-
nels, channels that will execute based on data changes
as they happen rather than on fixed intervals.

We also believe that BAD is ready for a rich perfor-
mance benchmark. This paper has focused on the big
picture and initial results of BAD, and therefore is not
a comprehensive look at all performance optimization
possibilities. For example, based on our experimental
results, we have seen that the overhead of staging the
results on the data cluster can be a limiting factor for
performance in some cases. We are currently explor-
ing a push-based channel model where results are more
eagerly sent directly to brokers (rather than just notifi-
cations of results). We are also working on a comparison
of the BAD approach with a glue-based approach. Ex-
periments on a much larger cluster with higher-scale
workloads would also be an interesting future under-
taking.

Acknowledgements This research was partially supported
by NSF grants 11S-1447826, 11S-1447720, 11S-1838222, IIS-
1838248, CNS-1924694 and CNS-1925610.

References

Amazon SNS. https://aws.amazon.com/sns/.
Apache AsterixDB. https://asterixdb.apache.org.
Apache Flink. https://flink.apache.org.

Apache Hadoop. http://hadoop.apache.org.
Apache HBase. http://hbase.apache.org/.

Apache Spark. http://spark.apache.org.

I N ol

Couchbase. http://wuw.couchbase.com/.

9. MongoDB. http://www.mongodb.org/.
10. ONE Simulator. https://akeranen.github.io/the-one/.
11. Pig Website. http://hadoop.apache.org/pig.

12. Pivotal Greenplum. https://gpdb.docs.pivotal.io/4300/

pdf/GPDB43RefGuide.pdf.

13. United States geological survey, Shakecast, 2014.
earthquake.usgs.gov/research/software/shakecast/.

14. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the borealis stream processing
engine. In CIDR 2005, Second Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2005, Online Proceedings, pages 277-289.
www.cidrdb.org, 2005.

15. D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Aurora: a new model and architecture for data
stream management. VLDB J., 12(2):120-139, 2003.

BAD project. https://github.com/apache/asterixdb-bad.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

. E. Bainomugisha,

P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava,
and R. Ramakrishnan. Asynchronous view maintenance
for VLSD databases. In U. Cetintemel, S. B. Zdonik,
D. Kossmann, and N. Tatbul, editors, Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2009, Providence, Rhode Island,
USA, June 29 - July 2, 2009, pages 179-192. ACM, 2009.
A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag,
F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinlander, M. J.
Sax, S. Schelter, M. Hoger, K. Tzoumas, and D. Warneke.
The stratosphere platform for big data analytics. VLDB
J., 23(6):939-964, 2014.

W. Y. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li,
H. Ramampiaro, P. Sinthong, and X. Wang. End-to-end
machine learning with Apache AsterixDB. In S. Schel-
ter, S. Seufert, and A. Kumar, editors, Proceedings of
the Second Workshop on Data Management for End-To-
End Machine Learning, DEEM@QSIGMOD 2018, Hous-
ton, TX, USA, June 15, 2018, pages 6:1-6:10. ACM,
2018.

S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R.
Borkar, Y. Bu, M. J. Carey, I. Cetindil, M. Cheelangi,
K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tso-
tras, R. Vernica, J. Wen, and T. Westmann. AsterixDB:
A scalable, open source BDMS. PVLDB, 7(14):1905—
1916, 2014.

S. Alsubaiee, A. Behm, V. R. Borkar, Z. Heilbron,
Y. Kim, M. J. Carey, M. Dreseler, and C. Li. Stor-
age management in AsterixDB. PVLDB, 7(10):841-852,
2014.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Mot-
wani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma,
and J. Widom. STREAM: the stanford stream data man-
ager. IEEE Data Eng. Bull., 26(1):19-26, 2003.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu,
R. Xin, A. Ghodsi, I. Stoica, and M. Zaharia. Structured
Streaming: A declarative API for real-time applications
in apache Spark. In G. Das, C. M. Jermaine, and P. A.
Bernstein, editors, Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Confer-
ence 2018, Houston, TX, USA, June 10-15, 2018, pages
601-613. ACM, 2018.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In P. G. Harrison, M. F. Arlitt, and G. Casale, ed-
itors, ACM SIGMETRICS/PERFORMANCE Joint In-
ternational Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, London, United
Kingdom, June 11-15, 2012, pages 53—-64. ACM, 2012.
S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109-120, 2001.

A. L. Carreton, T. V. Cutsem,
S. Mostinckx, and W. D. Meuter. A survey on reactive
programming. ACM Comput. Surv., 45(4):52:1-52:34,
2013.

B. Bamba, L. Liu, P. S. Yu, G. Zhang, and M. Doo.
Scalable processing of spatial alarms. In P. Sadayappan,
M. Parashar, R. Badrinath, and V. K. Prasanna, editors,
High Performance Computing - HiPC 2008, 15th Inter-
national Conference, Bangalore, India, December 17-20,
2008. Proceedings, volume 5374 of Lecture Notes in Com-
puter Science, pages 232—244. Springer, 2008.

D. Borkar, R. Mayuram, G. Sangudi, and M. J. Carey.
Have your data and query it too: From key-value caching
to big data management. In F. Ozcan, G. Koutrika, and

28

Steven Jacobs et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. Madden, editors, Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Confer-
ence 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 239-251. ACM, 2016.

V. R. Borkar, Y. Bu, E. P. C. Jr., N. Onose, T. West-
mann, P. Pirzadeh, M. J. Carey, and V. J. Tsotras. Al-
gebricks: a data model-agnostic compiler backend for big
data languages. In S. Ghandeharizadeh, S. Barahmand,
M. Balazinska, and M. J. Freedman, editors, Proceed-
ings of the Sizth ACM Symposium on Cloud Computing,
SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29,
2015, pages 422-433. ACM, 2015.

V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible foun-
dation for data-intensive computing. In S. Abiteboul,
K. Bohm, C. Koch, and K. Tan, editors, Proceedings of
the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany,
pages 1151-1162. IEEE Computer Society, 2011.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache FlinkT™: Stream
and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28-38, 2015.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphcq: Continuous dataflow processing for an uncertain
world. In CIDR 2003, First Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA,
January 5-8, 2003, Online Proceedings. www.cidrdb.org,
2003.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia-
garacq: A scalable continuous query system for internet
databases. In W. Chen, J. F. Naughton, and P. A. Bern-
stein, editors, Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May
16-18, 2000, Dallas, Texas, USA, pages 379-390. ACM,
2000.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. Peng,
and P. Poulosky. Benchmarking streaming computation
engines: Storm, Flink and Spark Streaming. In 2016
IEEE International Parallel and Distributed Process-
ing Symposium Workshops, IPDPS Workshops 2016,
Chicago, IL, USA, May 23-27, 2016, pages 1789-1792.
IEEE Computer Society, 2016.

R. Chirkova and J. Yang. Materialized views. Founda-
tions and Trends in Databases, 4(4):295-405, 2012.

B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Key-
word search on external memory data graphs. PVLDB,
1(1):1189-1204, 2008.

U. Dayal, B. T. Blaustein, A. P. Buchmann, U. S.
Chakravarthy, M. Hsu, R. Ledin, D. R. McCarthy,
A. Rosenthal, S. K. Sarin, M. J. Carey, M. Livny,
and R. Jauhari. The HiPAC project: Combining ac-
tive databases and timing constraints. SIGMOD Rec.,
17(1):51-70, 1988.

J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In E. A. Brewer and P. Chen,
editors, 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, Califor-
nia, USA, December 6-8, 2004, pages 137-150. USENIX
Association, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. In T. C. Bressoud and M. F.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Kaashoek, editors, Proceedings of the 21st ACM Sym-
postum on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17,
2007, pages 205—220. ACM, 2007.

M. S. Desta, E. Hyytid, A. Kerdnen, T. Karkkainen, and
J. Ott. Evaluating (geo) content sharing with the ONE
simulator. In S. E. Nikoletseas and A. C. Rumin, editors,
MobiWac’13, Proceedings of the 11th ACM International
Symposium on Mobility Management and Wireless Ac-
cess, Barcelona, Spain, November 3-8, 2013, pages 37—
40. ACM, 2013.)

N. Dindar, B. Giig, P. Lau, A. Ozal, M. Soner, and
N. Tatbul. Dejavu: declarative pattern matching over
live and archived streams of events. In U. Cetintemel,
S. B. Zdonik, D. Kossmann, and N. Tatbul, editors, Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence,
Rhode Island, USA, June 29 - July 2, 2009, pages 1023—
1026. ACM, 2009.

R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: a dis-
tributed, searchable key-value store. In L. Eggert, J. Ott,
V. N. Padmanabhan, and G. Varghese, editors, ACM
SIGCOMM 2012 Conference, SIGCOMM ’12, Helsinki,
Finland - August 13 - 17, 2012, pages 25-36. ACM, 2012.
P. T. Eugster, P. Felber, R. Guerraoui, and A. Kermar-
rec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114-131, 2003.

B. Gedik, H. Andrade, K. Wu, P. S. Yu, and M. Doo.
SPADE: the system s declarative stream processing en-
gine. In J. T. Wang, editor, Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-
12, 2008, pages 1123-1134. ACM, 2008.

L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling
updates in a real-time stream warehouse. In Y. E. Ioan-
nidis, D. L. Lee, and R. T. Ng, editors, Proceedings of
the 25th International Conference on Data Engineering,
ICDE 2009, March 29 2009 - April 2 2009, Shanghas,
China, pages 1207-1210. IEEE Computer Society, 2009.
D. Goldberg, D. A. Nichols, B. M. Oki, and D. B. Terry.
Using collaborative filtering to weave an information
tapestry. Commun. ACM, 35(12):61-70, 1992.

R. Grover and M. J. Carey. Data ingestion in AsterixDB.
In G. Alonso, F. Geerts, L. Popa, P. Barceld, J. Teubner,
M. Ugarte, J. V. den Bussche, and J. Paredaens, edi-
tors, Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015, Brussels,
Belgium, March 23-27, 2015, pages 605-616. OpenPro-
ceedings.org, 2015.

E. N. Hanson. The design and implementation of the
ariel active database rule system. IEEE Trans. Knowl.
Data Eng., 8(1):157-172, 1996.

E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park, and A. Ver-
non. Scalable trigger processing. In M. Kitsuregawa,
M. P. Papazoglou, and C. Pu, editors, Proceedings of
the 15th International Conference on Data Engineering,
Sydney, Australia, March 23-26, 1999, pages 266—275.
IEEE Computer Society, 1999.

H. Jafarpour, B. Hore, S. Mehrotra, and N. Venkata-
subramanian. Subscription subsumption evaluation for
content-based publish/subscribe systems. In V. Issarny
and R. E. Schantz, editors, Middleware 2008, ACM/I-
FIP/USENIX 9th International Middleware Conference,
Leuven, Belgium, December 1-5, 2008, Proceedings, vol-
ume 5346 of Lecture Notes in Computer Science, pages
62—-81. Springer, 2008.

BAD to the Bone

29

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Y. Jin and R. E. Strom. Relational subscription middle-
ware for internet-scale publish-subscribe. In H. Jacobsen,
editor, Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems, DEBS 2003, Sunday,
June 8th, 2003, San Diego, California, USA (in conjunc-
tion with SIGMOD/PODS). ACM, 2003.

A. Kerénen, J. Ott, and T. Kéarkkiinen. The ONE sim-
ulator for DTN protocol evaluation. In O. Dalle, G. A.
Wainer, L. F. Perrone, and G. Stea, editors, Proceedings
of the 2nd International Conference on Simulation Tools
and Techniques for Communications, Networks and Sys-
tems, SimuTools 2009, Rome, Italy, March 2-6, 2009,
page 55. ICST/ACM, 2009.

M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S.
Baveja. Lambda architecture for cost-effective batch and
speed big data processing. In 2015 IEEE International
Conference on Big Data, Big Data 2015, Santa Clara,
CA, USA, October 29 - November 1, 2015, pages 2785—
2792. IEEE Computer Society, 2015.

J. Kramer and B. Seeger. PIPES - A public infrastruc-
ture for processing and exploring streams. In G. Weikum,
A. C. Koénig, and S. DeBloch, editors, Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, Paris, France, June 13-18, 2004, pages
925-926. ACM, 2004.

J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the
NetDB, volume 11, pages 1-7, 2011.

K. Lee, L. Liu, B. Palanisamy, and E. Yigitoglu. Road
network-aware spatial alarms. IEEE Trans. Mob. Com-
put., 15(1):188-201, 2016.

M. Li, F. Ye, M. Kim, H. Chen, and H. Lei. A scalable
and elastic publish/subscribe service. In 25th IEEE In-
ternational Symposium on Parallel and Distributed Pro-
cessing, IPDPS 2011, Anchorage, Alaska, USA, 16-20
May, 2011 - Conference Proceedings, pages 1254-1265.
IEEE, 2011.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A framework
for machine learning in the cloud. PVLDB, 5(8):716-727,
2012.

C. Luo and M. J. Carey. Efficient data ingestion
and query processing for LSM-based storage systems.
PVLDB, 12(5):531-543, 2019.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In A. K. Elmagarmid
and D. Agrawal, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010, pages 135-146. ACM, 2010.

A. Markowetz, Y. Yang, and D. Papadias. Keyword
search on relational data streams. In C. Y. Chan, B. C.
Ooi, and A. Zhou, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
Beijing, China, June 12-14, 2007, pages 605-616. ACM,
2007.

T. Milo, T. Zur, and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clustering. In
C. Y. Chan, B. C. Ooi, and A. Zhou, editors, Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, Betijing, China, June 12-14, 2007,
pages 749-760. ACM, 2007.

M. M. Moro, P. Bakalov, and V. J. Tsotras. Early pro-
file pruning on xml-aware publish/subscribe systems. In
C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

V. Ganti, C. Kanne, W. Klas, and E. J. Neuhold, ed-
itors, Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Aus-
tria, September 23-27, 2007, pages 866—-877. ACM, 2007.
M. Nikolic, M. Elseidy, and C. Koch. LINVIEW: incre-
mental view maintenance for complex analytical queries.
In C. E. Dyreson, F. Li, and M. T. Ozsu, editors, Inter-
national Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 253—
264. ACM, 2014.

M. A. Qader and V. Hristidis. DualDB: An efficient
LSM-based publish/subscribe storage system. In Pro-
ceedings of the 29th International Conference on Scien-
tific and Statistical Database Management, Chicago, IL,
USA, June 27-29, 2017, pages 24:1-24:6. ACM, 2017.
D. Quass and J. Widom. On-line warehouse view main-
tenance. In J. Peckham, editor, SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Man-
agement of Data, May 13-15, 1997, Tucson, Arizona,
USA, pages 393—404. ACM Press, 1997.

S. Saigaonkar, M. Rao, and S. Mantha. Publish subscribe
system based on ontology and XML filtering. In 2011
3rd International Conference on Computer Research and
Development, volume 1, pages 154-158. IEEE, 2011.

M. Stonebraker and L. A. Rowe. The design of post-
gres. In C. Zaniolo, editor, Proceedings of the 1986 ACM
SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 28-30, 1986, pages
340-355. ACM Press, 1986.

G. S. Thakur, B. L. Bhaduri, J. O. Piburn, K. M. Sims,
R. N. Stewart, and M. L. Urban. Planetsense: a real-time
streaming and spatio-temporal analytics platform for
gathering geo-spatial intelligence from open source data.
In J. Bao, C. Sengstock, M. E. Ali, Y. Huang, M. Gertz,
M. Renz, and J. Sankaranarayanan, editors, Proceedings
of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, Bellevue,
WA, USA, November 3-6, 2015, pages 11:1-11:4. ACM,
2015.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive
- A warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626-1629, 20009.

M. Y. S. Uddin and N. Venkatasubramanian. Edge
caching for enriched notifications delivery in big active
data. In 38th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2018, Vienna, Aus-
tria, July 2-6, 2018, pages 696-705. IEEE Computer So-
ciety, 2018.

X. Wang and M. J. Carey. An IDEA: an ingestion
framework for data enrichment in AsterixDB. PVLDB,
12(11):1485-1498, 2019.

X. Wang, W. Zhang, Y. Zhang, X. Lin, and Z. Huang.
Top-k spatial-keyword publish/subscribe over sliding
window. VLDB J., 26(3):301-326, 2017.

J. Widom, R. Cochrane, and B. G. Lindsay. Implement-
ing set-oriented production rules as an extension to star-
burst. In G. M. Lohman, A. Sernadas, and R. Camps,
editors, 17th International Conference on Very Large
Data Bases, September 3-6, 1991, Barcelona, Catalonia,
Spain, Proceedings, pages 275—285. Morgan Kaufmann,
1991.

D. Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng.
Big graph analytics systems. In F. Ozcan, G. Koutrika,
and S. Madden, editors, Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD

30

Steven Jacobs et al.

75.

76.

7.

Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 2241-2243. ACM, 2016.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In S. D. Gribble
and D. Katabi, editors, Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2012, San Jose, CA, USA, April 25-
27, 2012, pages 15—28. USENIX Association, 2012.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.
Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Sto-
ica. Apache Spark: a unified engine for big data process-
ing. Commun. ACM, 59(11):56-65, 2016.

Y. Zhao, K. Kim, and N. Venkatasubramanian. DY-
NATOPS: a dynamic topic-based publish/subscribe ar-
chitecture. In S. Chakravarthy, S. D. Urban, P. R. Piet-
zuch, and E. A. Rundensteiner, editors, The 7th ACM In-
ternational Conference on Distributed Fvent-Based Sys-
tems, DEBS ’13, Arlington, TX, USA - June 29 - July
03, 2013, pages 75-86. ACM, 2013.

	1 Introduction
	2 A BAD overview
	3 Related Work
	4 Passive BDMS
	5 The Active Toolkit
	6 BAD Layers
	7 Pretending to be BAD
	8 Experimental Evaluation
	9 Conclusions and Future work

