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Abstract

Neural network architectures have been aug-

mented with differentiable stacks in order to

introduce a bias toward learning hierarchy-

sensitive regularities. It has, however, proven

difficult to assess the degree to which such a

bias is effective, as the operation of the differ-

entiable stack is not always interpretable. In

this paper, we attempt to detect the presence

of latent representations of hierarchical struc-

ture through an exploration of the unsuper-

vised learning of constituency structure. Using

a technique due to Shen et al. (2018a,b), we

extract syntactic trees from the pushing behav-

ior of stack RNNs trained on language model-

ing and classification objectives. We find that

our models produce parses that reflect natural

language syntactic constituencies, demonstrat-

ing that stack RNNs do indeed infer linguisti-

cally relevant hierarchical structure.

1 Introduction

Sequential models such as long short-term mem-

ory networks (LSTMs; Hochreiter and Schmidhu-

ber, 1997) have been proven capable of exhibit-

ing qualitative behavior that reflects a sensitivity to

regularities that are structurally conditioned, such

as subject–verb agreement (Linzen et al., 2016;

Gulordava et al., 2018). However, detailed anal-

ysis of such models has shown that this apparent

sensitivity to structure does not always generalize

to inputs with a high degree of syntactic complex-

ity (Marvin and Linzen, 2018). These observa-

tions suggest that sequential models may not in

fact be representing sentences in the kind of hier-

archically organized representations that we might

expect.

Stack-structured recurrent memory units (Joulin

and Mikolov, 2015; Grefenstette et al., 2015; Yo-
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gatama et al., 2018; and others) offer a possi-

ble method for explicitly biasing neural networks

to construct hierarchical representations and make

use of them in their computation. Since syntactic

structures can often be modeled in a context-free

manner (Chomsky, 1956, 1957), the correspon-

dence between pushdown automata and context-

free grammars (Chomsky, 1962) makes stacks a

natural data structure for the computation of hi-

erarchical relations. Recently, Hao et al. (2018)

have shown that stack-augmented RNNs (hence-

forth stack RNNs) have the ability to learn classi-

cal stack-based algorithms for computing context-

free transductions such as string reversal. How-

ever, they also find that such algorithms can be dif-

ficult for stack RNNs to learn. For many context-

free tasks such as parenthesis matching, the stack

RNN models they consider instead learn heuris-

tic “push-only” strategies that essentially reduce

the stack to unstructured recurrent memory. Thus,

even if stacks allow hierarchical regularities to

be expressed, the bias that stack RNNs introduce

does not guarantee that the networks will detect

them.

The current paper aims to move beyond the

work of Hao et al. (2018) in two ways. While that

work was based on artificially generated formal

languages, this paper considers the ability of stack

RNNs to succeed on tasks over natural language

data. Specifically, we train such networks on two

objectives: language modeling and the number

prediction task, a classification task proposed by

Linzen et al. (2016) to determine whether or not a

model can capture structure-sensitive grammatical

dependencies. Further, in addition to using visual-

izations of the pushing and popping actions of the

stack RNN to assess its hierarchical sensitivity, we

use a technique proposed by Shen et al. (2018a,b)

to assess the presence of implicitly-represented

hierarchically-organized structure through the task
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of unsupervised parsing. We extract syntactic con-

stituency trees from our models and find that they

produce parses that broadly reflect phrasal group-

ings of words in the input sentences, suggesting

that our models utilize the stack in a way that re-

flects the syntactic structures of input sentences.

This paper is organized as follows. Section 2

introduces the architecture of our stack models,

which extends the architecture of Grefenstette

et al. (2015) by allowing multiple items to be

pushed to, popped from, or read from the stack

at each computational step. Section 3 then de-

scribes our training procedure and reports results

on language modeling and agreement classifica-

tion. Section 4 investigates the behavior of the

stack RNNs trained on these tasks by visualiz-

ing their pushing behavior. Building on this, Sec-

tion 5 describes how we adapt Shen et al.’s (2018a;

2018b) unsupervised parsing algorithm to stack

RNNs and evaluates the degree to which the re-

sulting parses reveal structural representations in

stack RNNs. Section 6 discusses our observations,

and Section 7 concludes.

2 Network Architecture

In a stack RNN (Grefenstette et al., 2015; Hao

et al., 2018), a neural network adhering to a stan-

dard recurrent architecture, known as a controller,

is enhanced with a non-parameterized stack. At

each time step, the controller network receives an

input vector xt and a recurrent state vector ht−1

provided by the controller architecture, along with

a read vector rt−1 summarizing the top elements

on the stack. The controller interfaces with the

stack by computing continuous values that serve

as instructions for how the stack should be modi-

fied. These instructions consist of vt, a vector that

is pushed to the top of the stack; dt, a number rep-

resenting the strength of the newly pushed vector

vt; ut, the number of items to pop from the stack;

and rt, the number of items to read from the top of

the stack. The instructions 〈vt, ut, dt, rt〉 are pro-

duced by the controller as output and presented to

the stack. The stack then computes the next read

vector rt, which is given to the controller at the

next time step. This general architecture is por-

trayed in Figure 1. In the next two subsections,

we describe how the stack computes rt using the

instructions 〈vt, ut, dt, rt〉 and how the controller

computes the stack instructions.

Controller Stack

Vt−1, st−1xt,ht−1, rt−1

yt,ht rt,Vt, st

vt, ut, dt, rt

Figure 1: The neural stack architecture.

2.1 Stack Actions

A stack at time t consists of a sequence of vectors

〈Vt[1],Vt[2], . . . ,Vt[t]〉, organized into a matrix

Vt whose ith row is Vt[i]. By convention, Vt[t]
is the “top” element of the stack, while Vt[1] is

the “bottom” element. Each element Vt[i] of the

stack is associated with a strength st[i] ≥ 0. The

strength of a vector Vt[i] represents the degree to

which the vector is on the stack: a strength of 1
means that the vector is “fully” on the stack, while

a strength of 0 means that the vector has been

popped from the stack. The strengths are orga-

nized into a vector st = 〈st[1], st[2], . . . , st[t]〉.
At time t, the stack receives a set of instructions

〈vt, ut, dt, rt〉 and performs three operations: pop-

ping, pushing, and reading, in that order.

The popping operation is implemented by re-

ducing the strength of each item on the stack by

a number ut[i], ensuring that the strength of each

item can never fall below 0.

st[i] = ReLU (st−1[i]− ut[i])

The ut[i]s are computed as follows. The to-

tal amount of strength to be reduced is the pop

strength ut. Popping begins by attempting to re-

duce the strength st[t − 1] of the top item on

the stack by the full pop strength ut. Thus, as

shown below, ut[t − 1] = ut. For each i, if

st−1[i] < ut[i], then the ith item has been fully

popped from the stack, “consuming” a portion

of the pop strength of magnitude st−1[i]. The

strength of the next item is then reduced by an

amount ut[i − 1] given by the “remaining” pop

strength ut[i]− st−1[i].

ut[i] =
{

ut, i = t− 1

ReLU(ut[i+ 1]− st−1[i+ 1]), i < t− 1

The pushing operation simply places the vector

vt at the top of the stack with strength dt. Thus,
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Vt and st[t] are updated as follows.

st[t] = dt Vt[i] =

{

vt, i = t

Vt−1[i], i < t

Note that st[1], st[2], . . . , st[t − 1] have already

been updated during the popping step.

Finally, the reading operation produces a “sum-

mary” of the top of the stack by computing a

weighted sum of all the vectors on the stack.

rt =
t

∑

i=1

min (st[i], ρt[i]) ·Vt[i]

The weights ρt[i] are computed in a manner sim-

ilar to the ut[i]s. The sum should include the

top elements of the stack whose strengths add

up to the read strength rt. The weight ρt[t] as-

signed to the top item is initialized to the full

read strength rt, while the weights ρt[i] assigned

to lower items are based on the “remaining” read

strength ρt[i+1]−st[i+1] after strength has been

assigned to higher items.

ρt[i] =

{

rt, i = t

ReLU (ρt[i+ 1]− st[i+ 1]) i < t

2.2 Stack Interface

The architecture of Grefenstette et al. (2015) as-

sumes that the controller is a neural network of the

form

〈ot,ht〉 = C(xt,ht−1, rt−1)

where ht is its state at time t, xt is its input, rt
is the vector read from the stack at the previous

step, and ot is an output vector used to produce

the network output yt and the stack instructions

〈vt, ut, dt, rt〉.
The stack instructions 〈vt, ut, dt, rt〉 are com-

puted as follows. The read strength rt is fixed to

1. The other values are determined by passing ot
to specialized layers. The vectors yt and vt are

computed using a tanh layer, while the scalar val-

ues ut and dt are obtained from a sigmoid layer.

Thus, the push and pop strengths are constrained

to values between 0 and 1.

yt = softmax (Wyot + by)

vt = tanh (Wvot + bv)

ut = σ (Wuot + bu)

dt = σ
(

Wdot + bd

)

(1)

rt = 1

This paper departs from Grefenstette et al.’s ar-

chitecture by allowing for push, pop, and read

operations to be executed with variable strength

greater than 1. We achieve this by using an en-

hanced control interface inspired by Yogatama

et al.’s (2018) Multipop Adaptive Computation

Stack architecture. In that model, the controller

determines how much weight to pop from the

stack at each time step by computing a distribution

P[u] describing the probability of popping u units

from the stack. The next stack state V is computed

as a superposition of the possible stack states Vu

resulting from popping u units from the stack,

weighted by P[u]. Our model follows Yogatama

et al. in computing probability distributions over

possible values of ut, dt, and rt. However, instead

of superimposing stack states, which may hinder

interpretability, we simply set the value of each in-

struction to be the expected value of its associated

distribution. For a distribution vector p, define the

operator E[p] as follows:

E[p] =

k
∑

i=0

ip[i+ 1]

E[p] denotes the expected value of p if we treat it

as a distribution over {0, 1, . . . , k}. The maximum

value k is fixed in advance as a hyperparameter of

our model. The output yt and instructions vt, ut,

dt, and rt are then computed as follows:

yt = softmax (Wyot + by)

vt = tanh (Wvot + bv)

ut = E [softmax (Wuot + bu)]

dt = E

[

softmax
(

Wdot + bu
)]

rt = E [softmax (Wrot + br)]

The full architecture that we used for language

modeling and agreement classification is a con-

troller network which, at time t, reads the word xt

as well as the previous stack summary rt−1. These

vectors are passed through an LSTM layer to pro-

duce the vector ot. Then, instructions for the stack

are computed from ot according to the equations

above. Finally, these instructions are executed to

modify the stack state and produce the next stack

summary vector rt. In our experiments, the size

of the LSTM layer was 100, and the size of each

stack vector was 16.
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3 Model Training

This paper considers models trained on a language

modeling objective and a classification objective.

On each objective, we train several neural stack

models along with an LSTM baseline.1 This sec-

tion describes the procedure used to train our mod-

els and presents the perplexity and classification

values they attain on their training objectives.

3.1 Data and Training

Our models are trained using the Wikipedia cor-

pus, a subset of the English Wikipedia used by

Linzen et al. (2016) for their experiments. The

classification task we consider is the number pre-

diction task, proposed by Linzen et al. (2016) as

a diagnostic for assessing whether or not LSTMs

can infer grammatical dependencies sensitive to

syntactic structure. In this task, the network is

shown a sequence of words forming the beginning

of a sentence from the Wikipedia corpus. The

next word in the sentence is always a verb, and

the network must predict whether the verb is sin-

gular (SG) or plural (PL). For example, on input

The cats on the boat, the network must predict PL

to match cats. We train and evaluate our models

on the number prediction task using Linzen et al.’s

(2016) simple dependency dataset, which contains

141,948 training examples, 15,772 validation ex-

amples, and 1,419,491 testing examples.

We used a model with very few parameters and

basic setting of hyperparameters. The LSTM hid-

den state was fixed to a size of 100, while the

vectors placed on the stack had size 16. Includ-

ing the embedding layer, the Wikipedia model had

1,584,255 parameters. We used the Adam opti-

mizer (Kingma and Ba, 2015) with a learning rate

of 0.001. The language models were trained for

five epochs, while the agreement classifiers used

an early stopping criterion. In addition to the

LSTM baseline, for each task, we trained a stack

RNN in which ut is fixed to 1 and dt ranges from 0
to k = 4, as well as a stack RNN in which dt fixed

to 1 and ut ranges from 0 to k = 4. Addition-

ally, for the classification task we trained a stack

RNN in which ut ranges from 0 to k = 4 and dt is

computed as in Equation 1.

1Our code is available at https://github.com/

viking-sudo-rm/industrial-stacknns.

Stack Stack LSTM
(ut = 1) (dt = 1)

Perp 92.81 128.28 91.69
Agree 93.59 92.28 93.95

Table 1: Results for language models trained on the

Wikipedia dataset.

3.2 Evaluation

Our language models are evaluated according to

two metrics. Firstly, we reserve 10% of the

Wikipedia corpus for evaluating test perplexity of

the trained language models. Secondly, as a sim-

ple diagnostic of sensitivity to syntactic structure,

we evaluate the performance of our Wikipedia-

trained language models on number agreement

prediction (Linzen et al., 2016). Under this evalu-

ation regime, we use our language model to simu-

late the number prediction task and compute the

resulting classification accuracy. We do this by

presenting the model with an input for the number

prediction task and comparing the probabilities as-

signed to the verb that follows the input in the

Wikipedia corpus. For example, if The cats on the

boat purr appears in the Wikipedia corpus, then

we present The cats on the boat to the language

model and compare the probabilities assigned to

the singular and plural forms purrs and purr, re-

spectively. We consider the language model to

make a correct prediction if the form of the next

lexical item with the correct grammatical number

(SG or PL) is predicted with greater probability

than the alternative.

The number prediction classifiers we trained are

evaluated according to classification accuracy. For

each input sentence, we define the attractors of the

input to be the nouns intervening between the sub-

ject and the verb whose number is being classified.

For example, in the input The cat on the boat, cat

is the subject of the following verb, while boat is

an attractor. We compute the accuracy of our clas-

sifiers on the full testing set of the simple depen-

dency data set as well as subsets of the testing set

consisting of sentences with a fixed number of at-

tractors.

3.3 Training Results

Table 1 shows the quantitative results for our lan-

guage models. The stack RNN is comparable to

our LSTM baseline in terms of language mod-

eling perplexity and agreement prediction accu-

racy when ut is fixed to 1, though the latter per-
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appears at a higher level in the parse tree, and

is therefore syntactically distant from the current

word.

Algorithm 1 (Shen et al., 2018a,b)

1: procedure MAKETREE(X,d)

2: if X has at most one word then

3: return X

4: else

5: i← argmaxj dj

6: l← MAKETREE(X[: i−1],d[: i−1])
7: r ← MAKETREE(X[i+1 :],d[i+1 :])
8: if l and r are not empty then

9: return Tree[l,Tree[X[i], r]]
10: else if l is empty then

11: return Tree[X[i], r]
12: else

13: return Tree[l,X[i]]

Algorithm 1 shows our procedure for construct-

ing trees. The algorithm takes as input a sequence

of words arranged into a matrix X and a vector

d containing the syntactic distance between each

word and the previous word. Following Shen et al.

(2018a,b), we recursively split X into binary con-

stituents. At each recursion level, we greedily

choose the word with the highest syntactic dis-

tance as the split point. The final output is a binary

tree spanning the full sentence.

5.1 Evaluation

We compute F1 scores for the parses obtained

from our Wikipedia language models by compar-

ing against parses from Section 23 of the Penn

Treebank’s Wall Street Journal corpus (WSJ23,

Marcus et al., 1994). Since Algorithm 1 pro-

duces unlabeled binary trees, our evaluation uses

the gold standard of Htut et al. (2018), which

consists of unlabeled, binarized versions of the

WSJ23 trees. We also decapitalize the first word

of every sentence for compatibility with our train-

ing data.

As a baseline, we the F1 scores attained by our

models to those computed for purely right- and

left-branching trees. A right-branching parse is

equivalent to the output of Algorithm 1 on a se-

quence of equal syntactic distances. Thus, the dif-

ference between the right-branching F1 score and

our models’ scores is a measure of the amount

of syntactic information encoded by the push and

pop strength sequences. We also compare our

Model Parsing F1

Stack (ut = 1) 31.2
Stack (dt = 1) 16.0
Right Branching 13.1
Left Branching 7.3
Best PRPN-UP (Htut et al., 2018) 26.3
Best PRPN-LM (Htut et al., 2018) 37.4

Table 3: Unsupervised parsing performance evaluated

on the WSJ23 dataset, attained by our stack models

(top), the right- and left-branching baselines (middle),

and the PRPN models (bottom).

F1 scores to the results of Htut et al.’s (2018)

replication study for the parsing–reading–predict

network models (PRPN-LM and PRPN-UP), the

two syntactic-distance-based unsupervised parsers

originally proposed by Shen et al. (2018a).

5.2 Results

The F1 evaluation (see Table 3) shows that our

Wikipedia model with ut = 1 significantly out-

performs the baseline on the Penn Treebank, while

our model with dt = 1 performs slightly better

than the baseline. This is evidence that the types

of hierarchical structures produced by Algorithm 1

resemble expert-annotated constituency parses.

Our results do not exceed those of Htut et al.’s

(2018) replication study. It is worth noting that

our right- and left-branching baseline scores are

somewhat lower than theirs. This suggests that

differences in data processing or implementation

might make our evaluation more difficult. Regard-

less, we consider our results to still be somewhat

competitive, given that our language models were

trained on out-of-domain data with few parameters

and minimal hyperparameter tuning.

We provide example parses extracted from the

stack RNN language models with ut = 1 in Fig-

ure 5. Overall, our unsupervised parses tend to re-

semble the gold-standard parses with some differ-

ences. Periods in our parses systematically attach

lower in the structure in our extracted parses than

in the gold-standard trees. High attachment would

require a high syntactic distance (i.e., high push

strength) between the period and the remainder of

the sentence. However, the period inherently does

not have any subcategorization requirements, so it

induces a low push strength. In contrast, preposi-

tional phrases attach higher in our structures than

in the gold parses. This may be the result of

fixed subcategorization-associated push strengths

for prepositions that give rise to fairly high esti-
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Figure 5: Sample parses obtained from our stack RNN language model with ut = 1 (left), compared to Htut et al.’s

(2018) gold-standard parses (right).

mates of syntactic distance.

6 Discussion

Overall, our stack language models show no im-

provement over the LSTM baseline in terms of

perplexity and classification accuracy. Although

the ut = 1 language model is comparable to

the LSTM on these metrics, it ultimately achieves

worse scores than the baseline. However, we

have now seen that the pushing behavior of the

model reflects subcategorization properties of lex-

ical items that play an important role in determin-

ing their syntactic behavior, and that these proper-

ties allow reasonable parses to be extracted from

this model. These observations show that the ut =
1 model has learned to encode structural represen-

tations using the stack. Quantitatively, the impor-

tance of this structural information for the train-

ing objectives can be seen in Table 2, where the

stack at least partially alleviates the difficulty ex-

perienced by the LSTM classifier in handling syn-

tactically complex inputs.

While our stack language models do not ex-

ceed the LSTM baseline in terms of perplexity

and agreement accuracy, Yogatama et al. (2018)

find that their Multipop Adaptive Computation

Stack architecture substantially outperforms a bare

LSTM on these metrics. Compared to their mod-

els, we use fewer parameters and minimal hyper-

parameter tuning. Thus, it is possible that increas-

ing the number of parameters in our controller

may lead to similar increases in performance in

addition to the structural interpretability that we

have observed.

7 Conclusion

The results reported here point to the conclusion

that stack RNNs trained on corpora of natural lan-

guage text do in fact learn to encode sentences in

a hierarchically organized fashion. We show that

the sequence of stack operations used in the pro-

cessing of a sentence lets us uncover a syntactic

structure that matches standardly assigned struc-

ture reasonably well, even if the addition of the
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stack does not improve the stack RNN’s perfor-

mance over the LSTM baseline in terms of the lan-

guage modeling objective. We also find that using

the stack RNN to predict the grammatical num-

ber of a verb results in better hierarchical gener-

alizations in syntactically complex cases than is

possible with stackless models. Taken together,

these results suggest that the stack RNN model

yields comparable performance to other architec-

tures, while producing structural representations

that are easier to interpret and that show signs of

being linguistically natural.
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