b S

-, _ =, .

Chen Luo & Michael J. Ca

Sy
ANy
~
Q
WV
-
)
S
~
Q
-
)
S
\9)
v
S
=
%9
~

Author's personal copy

The VLDB Journal
https://doi.org/10.1007/s00778-019-00555-y

SPECIAL ISSUE PAPER

®

Check for
updates

LSM-based storage techniques: a survey

Chen Luo'® - Michael J. Carey'

Received: 20 December 2018 / Revised: 17 April 2019 / Accepted: 5 July 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Recently, the log-structured merge-tree (LSM-tree) has been widely adopted for use in the storage layer of modern NoSQL
systems. Because of this, there have been a large number of research efforts, from both the database community and the
operating systems community, that try to improve various aspects of LSM-trees. In this paper, we provide a survey of recent
research efforts on LSM-trees so that readers can learn the state of the art in LSM-based storage techniques. We provide a
general taxonomy to classify the literature of LSM-trees, survey the efforts in detail, and discuss their strengths and trade-offs.
We further survey several representative LSM-based open-source NoSQL systems and discuss some potential future research

directions resulting from the survey.

Keywords LSM-tree - NoSQL - Storage management - Indexing

1 Introduction

The log-structured merge-tree (LSM-tree) has been widely
adopted in the storage layers of modern NoSQL systems,
including BigTable [16], Dynamo [23], HBase [32], Cassan-
dra [14], LevelDB [40], RocksDB [57], and AsterixDB [4].
Different from traditional index structures that apply in-place
updates, the LSM-tree first buffers all writes in memory and
subsequently flushes them to disk and merges them using
sequential I/Os. This design brings a number of advantages,
including superior write performance, high space utiliza-
tion, tunability, and simplification of concurrency control
and recovery. These advantages have enabled LSM-trees to
serve a large variety of workloads. As reported by Face-
book [24], RocksDB, an LSM-based key-value store engine,
has been used for real-time data processing [18], graph
processing [19], stream processing [18], and OLTP work-
loads [46].

Due to the popularity of LSM-trees among modern data
stores, a large number of improvements on LSM-trees have
been proposed by the research community; these have come
from both the database and operating systems communi-
ties. In this paper, we survey these recent research efforts

B Chen Luo
cluo8@uci.edu

Michael J. Carey
mjcarey @ics.uci.edu

University of California, Irvine, Irvine, USA

Published online: 19 July 2019

on improving LSM-trees, ranging from key-value store set-
tings with a single LSM-tree to more general database
settings with secondary indexes. This paper aims to serve
as a guide to the state of the art in LSM-based storage
techniques for researchers, practitioners, and users. We first
provide a general taxonomy to classify the existing LSM-
tree improvements based on the specific aspects that they
attempt to optimize. We then present the various improve-
ments in detail and discuss their strengths and trade-offs. To
reflect how LSM-trees are being used in real systems, we
further survey five representative LSM-based open-source
NoSQL systems, including LevelDB [40], RocksDB [57],
HBase [32], Cassandra [14], and AsterixDB [3]. Finally, we
also identify several interesting future research directions as
the result of categorizing the existing LSM-tree improve-
ments.

The reminder of this paper is organized as follows.
Section 2 briefly reviews the history of LSM-trees and
presents the basics of today’s LSM-tree implementations.
Section 3 presents a taxonomy of the proposed LSM-tree
improvements and surveys the existing work using that
taxonomy. Section 4 surveys some representative LSM-
based NoSQL systems, focusing on their storage layers.
Section 5 reflects on the result of this survey, identify-
ing several outages and opportunities for future work on
LSM-based storage systems. Finally, Sect. 6 concludes the

paper.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00555-y&domain=pdf
http://orcid.org/0000-0002-2180-7749

Author's personal copy

C. Luo, M. J. Carey

Cr(K1,v4)
vy (k2,v2) (k3,v3) (k1,v1)(k2,v2)(k3,v3)
(a) In-place update structure (b) Out-of-place update structure

Fig. 1 Examples of in-place and out-of-place update structures: each
entry contains a key (denoted as “k”) and a value (denoted as “v”)

2 LSM-tree basics

In this section, we present the background of LSM-trees. We
first briefly review of the history of work on LSM-trees. We
then discuss in more detail the basic structure of LSM-trees
as used in today’s storage systems. We conclude this sec-
tion by presenting a cost analysis of writes, reads, and space
utilization of LSM-trees.

2.1 History of LSM-trees

In general, an index structure can choose one of two strategies
to handle updates, that is, in-place updates and out-of-place
updates. An in-place update structure, such as a BT -tree,
directly overwrites old records to store new updates. For
example in Fig. la, to update the value associated with
key k1 from vl to v4, the index entry (kl1, v1) is directly
modified to apply this update. These structures are often read-
optimized since only the most recent version of each record
is stored. However, this design sacrifices write performance,
as updates incur random I/Os. Moreover, index pages can be
fragmented by updates and deletes, thus reducing the space
utilization.

In contrast, an out-of-place update structure, such as an
LSM-tree, always stores updates into new locations instead
of overwriting old entries. For example in Fig. 1b, the update
(k1, v4) is stored into a new place instead of updating the old
entry (k1, v1) directly. This design improves write perfor-
mance since it can exploit sequential I/Os to handle writes.
It can also simplify the recovery process by not overwrit-
ing old data. However, the major problem of this design
is that read performance is sacrificed since a record may
be stored in any of multiple locations. Furthermore, these
structures generally require a separate data reorganization
process to improve storage and query efficiency continu-
ously.

The idea of sequential, out-of-place updates is not new;
it has been successfully applied to database systems since
the 1970s. Differential files [63], presented in 1976, were
an early example of an out-of-place update structure. In this
design, all updates are first applied to a differential file, which
is merged with the main file periodically. Later, in the 1980s,
the Postgres project [65] pioneered the idea of log-structured

@ Springer

writes
\ merge merge merge
—_— —_— ... I

memory disk

Fig.2 Original LSM-tree design

database storage. Postgres appended all writes into a sequen-
tial log, enabling fast recovery and “time-travel” queries.
It used a background process called the vacuum cleaner to
continuously garbage-collect obsolete records from the log.
Similar ideas have been adopted by the file system com-
munity to fully utilize disk write bandwidth, such as in the
log-structured file system (LFS) [60].

Prior to the LSM-tree, the approaches to log-structured
storage suffered from several key problems. First and fore-
most, storing data into append-only logs leads to low query
performance, as related records are scattered across the log.
Another problem is low space utilization due to obsolete
records that have not yet been removed. Even though var-
ious data reorganization processes were designed, there was
no principled cost model to analyze the trade-offs among the
write cost, read cost, and space utilization, which made early
log-structured storage hard to tune; data reorganization could
easily become a performance bottleneck [62].

The LSM-tree [S1], proposed in 1996, addressed these
problems by designing a merge process which is integrated
into the structure itself, providing high write performance
with bounded query performance and space utilization. The
original LSM-tree design contains a sequence of components
Co, Cq, ..., Cy,as shown in Fig. 2. Each component is struc-
tured as a B -tree. C resides in memory and serves incoming
writes, while all remaining components C1, . . ., Ci reside on
disk. When C; is full, a rolling merge process is triggered to
merge a range of leaf pages from C; into C;4 1. This design is
often referred to as the leveling merge policy [20,21] today.
However, as we shall see later, the originally proposed rolling
merge process is not used by today’s LSM-based storage
systems due to its implementation complexity. The original
paper on LSM-trees [51] further showed that under a sta-
ble workload, where the number of levels remains static,
write performance is optimized when the size ratios 7; =
|Ci+11/]1C;| between all adjacent components are the same.
This principle has impacted all subsequent implementations
and improvements of LSM-trees.

In parallel to the LSM-tree, Jagadish et al. [34] proposed
a similar structure with the stepped-merge policy to achieve
better write performance. It organizes the components into
levels, and when level L is full with 7" components, these
T components are merged together into a new component at
level L+-1. This policy becomes the tiering merge policy [20,
21] used in today’s LSM-tree implementations.

Author's personal copy

LSM-based storage techniques: a survey

2.2 Today’s LSM-trees
2.2.1 Basic structure

Today’s LSM-tree implementations still apply updates out-
of-place to reduce random I/Os. All incoming writes are
appended into a memory component. An insert or update
operation simply adds a new entry, while a delete oper-
ation adds an antimatter entry indicating that a key has
been deleted. However, today’s LSM-tree implementations
commonly exploit the immutability of disk components! to
simplify concurrency control and recovery. Multiple disk
components are merged” together into a new one with-
out modifying existing components. This is different from
the rolling merge process proposed by the original LSM-
tree [51].

Internally, an LSM-tree component can be implemented
using any index structure. Today’s LSM-tree implementa-
tions typically organize their memory components using a
concurrent data structure such as a skip list or a BT -tree,
while they organize their disk components using BT -trees or
sorted-string tables (SSTables). An SSTable contains a list
of data blocks and an index block; a data block stores key-
value pairs ordered by keys, and the index block stores the
key ranges of all data blocks.

A query over an LSM-tree has to search multiple com-
ponents to perform reconciliation, that is, to find the latest
version of each key. A point lookup query, which fetches the
value for a specific key, can simply search all components
one by one, from newest to oldest, and stop immediately
after the first match is found. A range query can search all
components at the same time, feeding the search results into
a priority queue to perform reconciliation.

As disk components accumulate over time, the query
performance of an LSM-tree tends to degrade since more
components must be examined. To address this, disk com-
ponents are gradually merged to reduce the total number of
components. Two types of merge policies are typically used
in practice [20,21]. As shown in Fig. 3, both policies orga-
nize disk components into logical levels (or tiers) and are
controlled by a size ratio 7. Each component is labeled with
its potential key range in the figure. In the leveling merge
policy (Fig. 3a), each level only maintains one component,
but the component at level L is T times larger than the com-
ponent at level L — 1. As a result, the component at level
L will be merged multiple times with incoming components
at level L — 1 until it fills up, and it will then be merged
into level L + 1. For example in the figure, the component
at level O is merged with the component at level 1, which
will result in a bigger component at level 1. In contrast, the

I Also referred to as runs in the literature.

2 Also referred to as compaction in the literature.

level 0
new component
evel 1 .
level 2 | 0-100 | 0-100)
Before Merge After Merge

(a) Leveling Merge Policy: one component per level

merge

level 0 S~

new component

. -

level 2 0-100) 0-100)

(0-100) (0-100)
Before Merge After Merge

(b) Tiering Merge Policy: up to T components per level

Fig.3 LSM-tree merge policies

tiering merge policy (Fig. 3b) maintains up to 7 components
per level. When level L is full, its T components are merged
together into a new component at level L + 1. In the fig-
ure, the two components at level 0 are merged together to
form a new component at level 1. It should be noted that if
level L is already the configured maximum level, then the
resulting component remains at level L. In practice, for a
stable workload where the volume of inserts equal the vol-
ume of deletes, the total number of levels remains static.3 In
general, the leveling merge policy optimizes for query per-
formance since there are fewer components to search in the
LSM-tree. The tiering merge policy is more write-optimized
since it reduces the merge frequency. We will discuss the
performance of these two merge policies further in Sect. 2.3.

2.2.2 Some well-known optimizations

There are two well-known optimizations that are used by
most LSM-tree implementations today.

Bloom filter A Bloom filter [12] is a space-efficient
probabilistic data structure designed to aid in answering set
membership queries. It supports two operations, i.e., insert-
ing a key and testing the membership of a given key. To insert
a key, it applies multiple hash functions to map the key into
multiple locations in a bit vector and sets the bits at these
locations to 1. To check the existence of a given key, the key
is again hashed to multiple locations. If all of the bits are
1, then the Bloom filter reports that the key probably exists.

3 Even for an append-mostly workload, the total number of levels will
grow extremely slowly since the maximum number of entries that an
LSM-tree can store increases exponentially with a factor of T as the
number of levels increases.

@ Springer

Author's personal copy

C. Luo, M. J. Carey

By design, the Bloom filter can report false positives but not
false negatives.

Bloom filters can be built on top of disk components to
greatly improve point lookup performance. To search a disk
component, a point lookup query can first check its Bloom
filter and then proceed to search its B*-tree only if its asso-
ciated Bloom filter reports a positive answer. Alternatively, a
Bloom filter can be built for each leaf page of a disk compo-
nent. In this design, a point lookup query can first search the
non-leaf pages of a BT -tree to locate the leaf page, where the
non-leaf pages are assumed to be small enough to be cached,
and then check the associated Bloom filter before fetching
the leaf page to reduce disk I/Os. Note that the false positives
reported by a Bloom filter do not impact the correctness of a
query, but a query may waste some 1/O searching for nonex-
istent keys. The false positive rate of a Bloom filter can be
computed as (1 — e—kn/myk where k is the number of hash
functions, n is the number of keys, and m is the total number of
bits [12]. Furthermore, the optimal number of hash functions
that minimizes the false positiverateis k = “:/n2.In practice,
most systems typically use 10 bits/key as a default config-
uration, which gives a 1% false positive rate. Since Bloom
filters are very small and can often be cached in memory, the
number of disk I/Os for point lookups is greatly reduced by
their use.

Partitioning Another commonly adopted optimization is
to range-partition the disk components of LSM-trees into
multiple (usually fixed-size) small partitions. To minimize
the potential confusion caused by different terminologies, we
use the term SS7Table to denote such a partition, following the
terminology from LevelDB [40]. This optimization has sev-
eral advantages. First, partitioning breaks a large component
merge operation into multiple smaller ones, bounding the
processing time of each merge operation as well as the tempo-
rary disk space needed to create new components. Moreover,
partitioning can optimize for workloads with sequentially
created keys or skewed updates by only merging components
with overlapping key ranges. For sequentially created keys,
essentially no merge is performed since there are no compo-
nents with overlapping key ranges. For skewed updates, the
merge frequency of the components with cold update ranges
can be greatly reduced. It should be noted that the original
LSM-tree [51] automatically takes advantage of partitioning
because of its rolling merges. However, due to the imple-
mentation complexity of its rolling merges, today’s LSM-tree
implementations typically opt for actual physical partitioning
rather than rolling merges.

An early proposal that applied partitioning to LSM-trees
is the partitioned exponential file (PE file) [35]. A PE file
contains multiple partitions, where each partition can be log-
ically viewed as a separate LSM-tree. A partition can be
further split into two partitions when it becomes too large.

@ Springer

0-100
level 0 () sSTable
(0-100] (C) Merging SSTable

level 1 (0-30 J(34-70] (71-99] () New SSTable
level 2 ((0-15] (16-32) (35-50] (51-70](72-95]

Before Merge
level 0 (0-100)
0-100

level 1
level 2 (10-10 J(11:19])(20-32)(35-50] (51-70](72-95]
After Merge

Fig.4 Partitioned leveling merge policy

However, this design enforces strict key range boundaries
among partitions, which reduces the flexibility of merges.

We now discuss the partitioning optimization used in
today’s LSM-tree implementations. It should be noted that
partitioning is orthogonal to merge policies; both leveling
and tiering (as well as other emerging merge policies) can be
adapted to support partitioning. To the best of our knowl-
edge, only the partitioned leveling policy has been fully
implemented by industrial LSM-based storage systems, such
as LevelDB [40] and RocksDB [57]. Some recent papers
[6,49,58,76,79] have proposed various forms of a partitioned
tiering merge policy to achieve better write performance.*

In the partitioned leveling merge policy, pioneered by
LevelDB [40], the disk component at each level is range-
partitioned into multiple fixed-size SSTables, as shown in
Fig. 4. Each SSTable is labeled with its key range in the
figure. Note that the disk components at level 0 are not par-
titioned since they are directly flushed from memory. This
design can also help the system to absorb write bursts since
it can tolerate multiple unpartitioned components at level 0.
To merge an SSTable from level L into level L + 1, all of its
overlapping SSTables at level L + 1 are selected, and these
SSTables are merged with it to produce new SSTables still at
level L + 1. For example, in the figure, the SSTable labeled
0-30 at level 1 is merged with the SSTables labeled 0—15 and
16-32 at level 2. This merge operation produces new SSTa-
bles labeled 0-10, 11-19, and 20-32 at level 2, and the old
SSTables will then be garbage-collected. Different policies
can be used to select which SSTable to merge next at each
level. For example, LevelDB uses a round-robin policy (to
minimize the total write cost).

The partitioning optimization can also be applied to the
tiering merge policy. However, one major issue in doing so is
that each level can contain multiple SSTables with overlap-
ping key ranges. These SSTables must be ordered properly

4 RocksDB supports a limited form of a partitioned tiering merge policy
to bound the maximum size of each SSTable due to its internal restric-
tions. However, the disk space may still be doubled temporarily during
large merges.

Author's personal copy

LSM-based storage techniques: a survey

() SSTable
level 0 () Merging SSTable
___________ (] New SSTable
0-31)ii(34-72)1i(74-100)} r—
level 1 030 (4-72) 75100 i____1 SSTable Group
level 2 ((0-13) {1632 11(35-50):(51-70):i(72-95)
cve 35-45 (75-95)
Before Merge
0-100
level 0 i(=ro0
34-72 }{(74-100
level 1 75-100
level 2 (o=12 }H(17-31)1(35-50)ii(51-70):i(72-95)
evel < iCo-13)ii(16-32)i(35-45) (75-95)

After Merge

Fig.5 Partitioned tiering with vertical grouping

based on their recency to ensure correctness. Two possi-
ble schemes can be used to organize the SSTables at each
level, namely vertical grouping and horizontal grouping. In
both schemes, the SSTables at each level are organized into
groups. The vertical grouping scheme groups SSTables with
overlapping key ranges together so that the groups have dis-
joint key ranges. Thus, it can be viewed as an extension of
partitioned leveling to support tiering. Alternatively, under
the horizontal grouping scheme, each logical disk compo-
nent, which is range-partitioned into a set of SSTables, serves
as a group directly. This allows a disk component to be
formed incrementally based on the unit of SSTables. We will
discuss these two schemes in detail below.

An example of the vertical grouping scheme is shown in
Fig. 5. In this scheme, SSTables with overlapping key ranges
are grouped together so that the groups have disjoint key
ranges. During a merge operation, all of the SSTables in a
group are merged together to produce the resulting SSTables
based on the key ranges of the overlapping groups at the next
level, which are then added to these overlapping groups. For
example in the figure, the SSTables labeled 0-30 and 0-31 at
level 1 are merged together to produce the SSTables labeled
0-12 and 17-31, which are then added to the overlapping
groups at level 2. Note the difference between the SSTables
before and after this merge operation. Before the merge oper-
ation, the SSTables labeled 0—30 and 0-31 have overlapping
key ranges and both must be examined together by a point
lookup query. However, after the merge operation, the SSTa-
bles labeled 0—12 and 17-31 have disjoint key ranges and
only one of them needs to be examined by a point lookup
query. It should also be noted that under this scheme SSTa-
bles are no longer fixed-size since they are produced based
on the key ranges of the overlapping groups at the next level.

Figure 6 shows an example of the horizontal grouping
scheme. In this scheme, each component, which is range-

() SSTable
! () Merging SSTable
q 1 N Tabl
vl 1 b BIRIIZA0] = (GO T
i Gs65)(ez99)
0-20 J(22-30 |
1evel D e ,
(C0-15 J(19-30 J(32-50 J(152-75) (80-100);
Before Merge
level 0 7
; 72-100)!
level 1 : 67-99).
{L0-20 J(22-30)(35-52.)(53-70) !
level 2

i(C0-15) (19-30)(32-50) ((52-75)(80-100):
After Merge

Fig.6 Partitioned tiering with horizontal grouping

partitioned into a set of fixed-size SSTables, serves as a
logical group directly. Each level L further maintains an
active group, which is also the first group, to receive new
SSTables merged from the previous level. This active group
can be viewed as a partial component being formed by merg-
ing the components at level L — 1 in the unpartitioned case. A
merge operation selects the SSTables with overlapping key
ranges from all of the groups at a level, and the resulting
SSTables are added to the active group at the next level. For
example in the figure, the SSTables labeled 35-70 and 35—
65 at level 1 are merged together, and the resulting SSTables
labeled 35-52 and 53-70 are added to the first group at level
2. However, although SSTables are fixed-size under the hor-
izontal grouping scheme, it is still possible that one SSTable
from a group may overlap a large number of SSTables in the
remaining groups.

2.2.3 Concurrency control and recovery

We now briefly discuss the concurrency control and recovery
techniques used by today’s LSM-tree implementations. For
concurrency control, an LSM-tree needs to handle concur-
rent reads and writes and to take care of concurrent flush and
merge operations. Ensuring correctness for concurrent reads
and writes is a general requirement for access methods in
a database system. Depending on the transactional isolation
requirement, today’s LSM-tree implementations either use
a locking scheme [3] or a multi-version scheme [14,32,57].
A multi-version scheme works well with an LSM-tree since
obsolete versions of a key can be naturally garbage-collected
during merges. Concurrent flush and merge operations, how-
ever, are unique to LSM-trees. These operations modify the
metadata of an LSM-tree, e.g., the list of active components.
Thus, accesses to the component metadata must be properly
synchronized. To prevent a component in use from being

@ Springer

Author's personal copy

C. Luo, M. J. Carey

deleted, each component can maintain a reference counter.
Before accessing the components of an LSM-tree, a query
can first obtain a snapshot of active components and incre-
ment their in-use counters.

Since all writes are first appended into memory, write-
ahead logging (WAL) can be performed to ensure their
durability. To simplify the recovery process, existing systems
typically employ a no-steal buffer management policy [33].
That is, a memory component can only be flushed when all
active write transactions have terminated. During recovery
for an LSM-tree, the transaction log is replayed to redo all
successful transactions, but no undo is needed due to the no-
steal policy. Meanwhile, the list of active disk components
must also be recovered in the event of a crash. For unpar-
titioned LSM-trees, this can be accomplished by adding a
pair of timestamps to each disk component that indicate the
range of timestamps of the stored entries. This timestamp
can be simply generated using local wall-clock time or a
monotonic sequence number. To reconstruct the component
list, the recovery process can simply find all components
with disjoint timestamps. In the event that multiple compo-
nents have overlapping timestamps, the component with the
largest timestamp range is chosen and the rest can simply be
deleted since they will have been merged to form the selected
component. For partitioned LSM-trees, this timestamp-based
approach does not work anymore since each component is
further range-partitioned. To address this, a typical approach,
used in LevelDB [40] and RocksDB [57], is to maintain a
separate metadata log to store all changes to the structural
metadata, such as adding or deleting SSTables. The state of
the LSM-tree structure can then be reconstructed by replay-
ing the metadata log during recovery.

2.3 Cost analysis

To help understand the performance trade-offs of LSM-trees,
we can turn to the cost analysis of writes, point lookups,
range queries, and space amplification presented in [20,21].
The cost of writes and queries is measured by counting the
number of disk I/Os per operation. This analysis considers
an unpartitioned LSM-tree and represents a worst-case cost.

Let the size ratio of a given LSM-tree be T, and suppose the
LSM-tree contains L levels. In practice, for a stable LSM-tree
where the volume of inserts equals the volume of deletes, L
remains static. Let B denote the page size, that is, the number
of entries that each data page can store, and let P denote
the number of pages of a memory component. As a result, a
memory component will contain at most B - P entries, and
leveli(i > 0) will containat most 7:+1. B. P entries. Given N
total entries, the largest level contains approximately N - TL+1
entries since it is 7' times larger than the previous level. Thus,
the number of levels for N entries can be approximated as

L = [logr (£5 - 7)1

@ Springer

The write cost, which is also referred to as write ampli-
fication in the literature, measures the amortized I/O cost of
inserting an entry into an LSM-tree. It should be noted that
this cost measures the overall I/O cost for this entry to be
merged into the largest level since inserting an entry into
memory does not incur any disk I/O. For leveling, a compo-
nent at each level will be merged T — 1 times until it fills
up and is pushed to the next level. For tiering, multiple com-
ponents at each level are merged only once and are pushed
to the next level directly. Since each disk page contains B
entries, the write cost for each entry will be O(T - %) for
leveling and 0(%) for tiering.

The I/O cost of a query depends on the number of com-
ponents in an LSM-tree. Without Bloom filters, the I/O cost
of a point lookup will be O (L) for leveling and O(T - L) for
tiering. However, Bloom filters can greatly improve the point
lookup cost. For a zero-result point lookup, i.e., for a search
for a nonexistent key, all disk I/Os are caused by Bloom fil-
ter false positives. Suppose all Bloom filters have M bits in
total and have the same false positive rate across all levels.
With N total keys, each Bloom filter has a false positive rate
of O(e_%) [12]. Thus, the I/O cost of a zero-result point
lookup will be O(L - e*%) for leveling and O(T - L - e*%)
for tiering. To search for an existing unique key, at least one
I/0 must be performed to fetch the entry. Given that in prac-
tice the Bloom filter false positive rate is much smaller than
1, the successful point lookup I/O cost for both leveling and
tiering will be O(1).

The I/O cost of a range query depends on the query selec-
tivity. Let s be the number of unique keys accessed by a
range query. A range query can be considered to be long if
% > 2 - L, otherwise it is short [20,21]. The distinction is
that the I/O cost of a long range query will be dominated
by the largest level since the largest level contains most of
the data. In contrast, the I/O cost of a short range query will
derive (almost) equally from all levels since the query must
issue one 1/0 to each disk component. Thus, the I/O cost of
a long range query will be O (%) for leveling and O(T -)
for tiering. For a short range query, the I/O cost will be O (L)
for leveling and O(T - L) for tiering.

Finally, let us examine the space amplification of an LSM-
tree, which is defined as the overall number of entries divided
by the number of unique entries.> For leveling, the worst case
occurs when all of the data at the first L — 1 levels, which
contain approximately % of the total data, are updates to
the entries at the largest level. Thus, the worst-case space
amplification for leveling is O(TT“). For tiering, the worst
case happens when all of the components at the largest level

5 The original analysis presented in [20,21] defines the space amplifica-
tion to be the overall number of obsolete entries divided by the number
of unique entries. We slightly modified the definition to ensure that the
space amplification is no less than 1.

Author's personal copy

LSM-based storage techniques: a survey

Table 1 Summary of cost complexity of LSM-trees

Merge policy Write Point lookup (zero-result/nonzero-result) Short range query Long range query Space amplification
Leveling or- % O(L-e~%)/0(1) o(L) o) o4
Tiering o0(%) O(T - L-e~%)/0(1) O(T - L) o - %) o(T)

contain exactly the same set of keys. As a result, the worst-
case space amplification for tiering will be O(T). In practice,
the space amplification is an important factor to consider
when deploying storage systems [24], as it directly impacts
the storage cost for a given workload.

The cost complexity of LSM-trees is summarized in
Table 1. Note how the size ratio 7' impacts the performance
of leveling and tiering differently. In general, leveling is
optimized for query performance and space utilization by
maintaining one component per level. However, components
must be merged more frequently, which will incur a higher
write cost by a factor of T'. In contrast, tiering is optimized
for write performance by maintaining up to 7 components
at each level. This, however, will decrease query perfor-
mance and worsen space utilization by a factor of 7. As
one can see, the LSM-tree is highly tunable. For example, by
changing the merge policy from leveling to tiering, one can
greatly improve write performance with only a small negative
impact on point lookup queries due to the Bloom filters. How-
ever, range queries and space utilization will be significantly
impacted. As we proceed to examine the recent literature on
improving LSM-trees, we will see that each makes certain
performance trade-offs. Actually, based on the RUM conjec-
ture [8], each access method has to make certain trade-offs
among the read cost (R), update cost (U), and memory or stor-
age cost (M). It will be important for the reader to keep in
mind the cost complexity described here to better understand
the trade-offs made by the proposed improvements.

3 LSM-tree improvements

In this section, we present a taxonomy for use in classifying
the existing research efforts on improving LSM-trees. We
then provide an in-depth survey of the LSM-tree literature
that follows the structure of the proposed taxonomy.

3.1 A taxonomy of LSM-tree improvements

Despite the popularity of LSM-trees in modern NoSQL
systems, the basic LSM-tree design suffers from various
drawbacks and insufficiencies. We now identify the major
issues of the basic LSM-tree design and further present a
taxonomy of LSM-tree improvements based on these draw-
backs.

Write amplification Even though LSM-trees can provide
much better write throughput than in-place update structures
such as BT-trees by reducing random 1/Os, the leveling merge
policy, which has been adopted by modern key-value stores
such as LevelDB [40] and RocksDB [57], still incurs rela-
tively high write amplification. High write amplification not
only limits the write performance of an LSM-tree but also
reduces the lifespan of SSDs due to frequent disk writes. A
large body of research has been conducted to reduce the write
amplification of LSM-trees.

Merge operations Merge operations are critical to the
performance of LSM-trees and must therefore be carefully
implemented. Moreover, merge operations can have negative
impacts on the system, including buffer cache misses after
merges and write stalls during large merges. Several improve-
ments have been proposed to optimize merge operations to
address these problems.

Hardware In order to maximize performance, LSM-trees
must be carefully implemented to fully utilize the under-
ling hardware platforms. The original LSM-tree has been
designed for hard disks, with the goal being reducing random
I/Os. In recent years, new hardware platforms have presented
new opportunities for database systems to achieve better per-
formance. A significant body of recent research has been
devoted to improving LSM-trees to fully exploit the under-
ling hardware platforms, including large memory, multi-core,
SSD/NVM, and native storage.

Special workloads In addition to hardware opportunities,
certain special workloads can also be considered to achieve
better performance in those use cases. In this case, the basic
LSM-tree implementation must be adapted and customized
to exploit the unique characteristics exhibited by these special
workloads.

Auto-tuning Based on the RUM conjecture [8], no access
method can be read-optimal, write-optimal, and space-
optimal at the same time. The tunability of LSM-trees is a
promising solution to achieve optimal trade-offs for a given
workload. However, LSM-trees can be hard to tune because
of too many tuning knobs, such as memory allocation, merge
policy, size ratio, etc. To address this issue, several auto-
tuning techniques have been proposed in the literature.

Secondary indexing A given LSM-tree only provides a
simple key-value interface. To support the efficient process-
ing of queries on non-key attributes, secondary indexes must
be maintained. One issue in this area is how to maintain a set

@ Springer

Author's personal copy

C. Luo, M. J. Carey

LSM-tree Improvements

Hardware

Write Amplification Merge Operations

Special Workloads

Auto Tuning Secondary Indexing

- Large Memory Parameter Tuning Bl Filt
Tiering Data Skew ' Write Stall oom Fuiter Statistics Collection
Caching . Temporal Index Structurc
Merge Skipping Multi-Core P Append-Mostly Distributed Indexing
Merge Performance Native Storage Semi-Sorted Data Placement

Fig.7 Taxonomy of LSM-tree improvements

of related secondary indexes efficiently with a small over-
head on write performance. Various LSM-based secondary
indexing structures and techniques have been designed and
evaluated as well.

Based on these major issues of the basic LSM-tree design,
we present a taxonomy of LSM-tree improvements, shown
in Fig. 7, to highlight the specific aspects that the existing
research efforts try to optimize. Given this taxonomy, Table 2
further classifies the LSM-tree improvements in terms of
each improvement’s primary and secondary concerns. With
this taxonomy and classification in hand, we now proceed to
examine each improvement in more depth.

3.2 Reducing write amplification

In this section, we review the improvements in the litera-
ture that aim to reduce the write amplification of LSM-trees.
Most of these improvements are based on tiering since it has
much better write performance than leveling. Other proposed
improvements have developed new techniques to perform
merge skipping or to exploit data skews.

3.2.1 Tiering

One way to optimize write amplification is to apply tiering
since it has much lower write amplification than leveling.
However, recall from Sect. 2.3 that this will lead to worse
query performance and space utilization. The improvements
in this category can all be viewed as some variants of the
partitioned tiering design with vertical or horizontal grouping
discussed in Sect. 2.2.2. Here we will mainly discuss the
modifications made by these improvements.

The WriteBuffer (WB) Tree [6] can be viewed as a vari-
ant of the partitioned tiering design with vertical grouping.
It has made the following modifications. First, it relies on
hash-partitioning to achieve workload balance so that each
SSTable group roughly stores the same amount of data. Fur-
thermore, it organizes SSTable groups into a BT -tree-like
structure to enable self-balancing to minimize the total num-
ber of levels. Specifically, each SSTable group is treated like
anode in a BT -tree. When a non-leaf node becomes full with
T SSTables, these T SSTables are merged together to form

@ Springer

Index Maintenance

new SSTables that are added into its child nodes. When a leaf
node becomes full with 7" SSTables, it is split into two leaf
nodes by merging all of its SSTables into two leaf nodes with
smaller key ranges so that each new node receives about 7" /2
SSTables.

The lightweight compaction tree (LWC-tree) [78,79]
adopts a similar partitioned tiering design with vertical
grouping. It further presents a method to achieve workload
balancing of SSTable groups. Recall that under the vertical
grouping scheme, SSTables are no longer strictly fixed-size
since they are produced based on the key ranges of the over-
lapping groups at the next level instead of based on their
sizes. In the LWC-tree, if a group contains too many entries,
it will shrink the key range of this group after the group has
been merged (now temporarily empty) and will widen the
key ranges of its sibling groups accordingly.

PebblesDB [58] also adopts a partitioned tiering design
with vertical grouping. The major difference is that it deter-
mines the key ranges of SSTable groups using the idea of
guards as inspired by the skip list [54]. Guards, which are
the key ranges of SSTable groups, are selected probabilis-
tically based on inserted keys to achieve workload balance.
Once a guard is selected, it is applied lazily during the next
merge. PebblesDB further performs parallel seeks of SSTa-
bles to improve range query performance.

dCompaction [52] introduces the concept of virtual SSTa-
bles and virtual merges to reduce the merge frequency. A
virtual merge operation produces a virtual SSTable that sim-
ply points to the input SSTables without performing actual
merges. However, since a virtual SSTable points to multiple
SSTables with overlapping ranges, query performance will
degrade. To address this, dCompaction introduces a thresh-
old based on the number of real SSTables to trigger actual
merges. It also lets queries trigger actual merges if a virtual
SSTable pointing to too many SSTables is encountered during
query processing. In general, dCompaction delays a merge
operation until multiple SSTables can be merged together,
and thus it can also be viewed as a variant of the tiering
merge policy.

As one can see, the four structures described above all
share a similar high-level design based on partitioned tiering
with vertical grouping. They mainly differ in how workload

Author's personal copy

LSM-based storage techniques: a survey

Table 2 Classification of existing LSM-tree improvements (& denotes primary category, A denotes secondary categories)

Publication Write amplification ~ Merge operations ~ Hardware = Special workloads ~ Auto-tuning Secondary indexing

WB-tree [6]
LWC-tree [78,79]
PebblesDB [58]
dCompaction [52]
Zhang et al. [82]
SifrDB [49]
Skip-tree [81]
TRIAD [10]
VT-tree [64]
Zhang et al. [84]
Ahmad et al. [2]
LSbM-tree [68,69]
bLSM [61]

FloDB [9] A
Accordion [13] A
cL.SM [30]
FD-tree [42]
FD+tree [71] A
MaSM [7]
WiscKey [44]
HashKV [15]
Kreon [53]
NoveLLSM [36]
LDS [48]
LOCS [74]
NoFTL-KV [73]
LHAM [50]
LSM-trie [76] A
SlimDB [59]
Mathieu et al. [47] A
Lim et al. [43]

Monkey [21,22]

Dostoevsky [20] A
Thonangi and Yang [70]
ElasticBF [83]

Mutant [80]

LSII [75]

Kim et al. [39]

Filter [5]

Qader et al. [56]
Diff-Index [66]

DELI [67],

Luo and Carey [45]
Ildar et al. [1]

Joseph et al. [25]

Zhu et al. [85]

Duan et al. [26]

> > > D> PP P P P P
P P 9 p P
L B IR BE B B BN O NE BE N N N
>

>
o P b P

>
PP PP P

LR B BN BE B R BE B BE BN

@ Springer

Author's personal copy

C. Luo, M. J. Carey

...... (] sSTable
level L :] merge () Merging SSTable
level L+1) () (|
@skip levels
(buffer]

level L+K

[J J

Fig. 8 Merge in skip-tree: entries from a lower level can be directly
pushed to the mutable buffer of a higher level

balancing of SSTable groups is performed. For example, the
WB-tree [6] relies on hashing, but doing so gives up the
ability of supporting range queries. The LWC-tree [78,79]
dynamically shrinks the key ranges of dense SSTable groups,
while PebblesDB [58] relies on probabilistically selected
guards. In contrast, dCompaction [52] offers no built-in sup-
port for workload balancing. It is not clear how skewed
SSTable groups would impact the performance of these
structures, and future research is needed to understand this
problem and evaluate these workload balancing strategies.

The partitioned tiering design with horizontal grouping
has been adopted by Zhang et al. [82] and SifrDB [49].
SifrDB also proposes an early-cleaning technique to reduce
disk space utilization during merges. During a merge opera-
tion, SifrDB incrementally activates newly produced SSTa-
bles and deactivates the old SSTables. SifrDB further exploits
I/O parallelism to speedup query performance by examining
multiple SSTables in parallel.

3.2.2 Merge skipping

The skip-tree [81] proposes a merge skipping idea to improve
write performance. The observation is that each entry must
be merged from level O down to the largest level. If some
entries can be directly pushed to a higher level by skipping
some level-by-level merges, then the total write cost will
be reduced. As shown in Fig. 8, during a merge at level L,
the skip-tree directly pushes some keys to a mutable buffer
at level L 4+ K so that some level-by-level merges can be
skipped. Meanwhile, the skipped entries in the mutable buffer
will be merged with the SSTables at level L 4+ K during sub-
sequent merges. To ensure correctness, a key from level L
can be pushed to level L 4 K only if this key does not appear
in any of the intermediate levels L+ 1, ..., L + K — 1. This
condition can be tested efficiently by checking the Bloom
filters of the intermediate levels. The skip-tree further per-
forms write-ahead logging to ensure durability of the entries
stored in the mutable buffer. To reduce the logging overhead,
the skip-tree only logs the key plus the ID of the original
SSTable and prevents an SSTable from being deleted if it is
referenced by any key in the buffer. Although merge skipping
is an interesting idea to reduce write amplification, it intro-

@ Springer

duces non-trivial implementation complexity to manage the
mutable buffers. Moreover, since merge skipping essentially
reduces some merges at the intermediate levels, it is not clear
how the skip-tree would compare against a well-tuned LSM-
tree by reducing the size ratio.

3.2.3 Exploiting data skew

TRIAD [10] reduces write amplification for skewed update
workloads where some hot keys are updated frequently. The
basic idea is to separate hot keys from cold keys in the mem-
ory component so that only cold keys are flushed to disk.
As a result, when hot keys are updated, old versions can be
discarded directly without writing them to disk. Even though
hot keys are not flushed to disk, they are periodically copied
to a new transaction log so that the old transaction log can be
reclaimed. TRIAD also reduces write amplification by delay-
ing merges at level O until level O contains multiple SSTables.
Finally, it presents an optimization that avoids creating new
disk components after flushes. Instead, the transaction log
itself is used as a disk component and an index structure is
built on top of it to improve lookup performance. However,
range query performance will still be negatively impacted
since entries are not sorted in the log.

3.2.4 Summary

Tiering has been widely used to improve the write perfor-
mance of LSM-trees, but this will decrease query perfor-
mance and space utilization, as discussed in Sect. 2.3. The
existing tiering-based improvements mainly differ in how
SSTables are managed, either by vertical grouping [6,52,58,
78,79] or horizontal grouping [49,82]. It is not clear how
these different grouping schemes impact system performance
and it would be useful as future work to study and evaluate
their impact. The skip-tree [81] and TRIAD [10] propose
several new ideas to improve write performance, ideas that
are orthogonal to tiering. However, these optimizations bring
non-trivial implementation complexity to real systems, such
as the mutable buffers introduced by the skip-tree and the use
of transaction logs as flushed components by TRIAD.

All of the improvements in this category, as well as
some improvements in the later sections, have claimed that
they can greatly improve the write performance of LSM-
trees, but their performance evaluations have often failed to
consider the tunability of LSM-trees. That is, these improve-
ments have mainly been evaluated against a default (untuned)
configuration of LevelDB or RocksDB, which use the lev-
eling merge policy with a size ratio of 10. It is not clear
how these improvements would compare against well-tuned
LSM-trees. To address this, one possible solution would be
to tune RocksDB to achieve a similar write throughput to
the proposed improvements by changing the size ratio or

Author's personal copy

LSM-based storage techniques: a survey

by adopting the tiering merge policy and then evaluating
how these improvements can improve query performance
and space amplification. Moreover, these improvements have
primarily focused on query performance; space amplification
has often been neglected. It would be a useful experimental
study to fully evaluate these improvements against well-
tuned baseline LSM-trees to evaluate their actual usefulness.
We also hope that this situation can be avoided in future
research by considering the tunability of LSM-trees when
evaluating the proposed improvements.

3.3 Optimizing merge operations

Next we review some existing work that improves the imple-
mentation of merge operations, including improving merge
performance, minimizing buffer cache misses, and eliminat-
ing write stalls.

3.3.1 Improving merge performance

The VT-tree [64] presents a stitching operation to improve
merge performance. The basic idea is that when merging
multiple SSTables, if the key range of a page from an input
SSTable does not overlap the key ranges of any pages from
other SSTables, then this page can be simply pointed to by
the resulting SSTable without reading and copying it again.
Even though stitching improves merge performance for cer-
tain workloads, it has a number of drawbacks. First, it can
cause fragmentation since pages are no longer continuously
stored on disk. To alleviate this problem, the VT-tree intro-
duces a stitching threshold K so that a stitching operation is
triggered only when there are at least K continuous pages
from an input SSTable. Moreover, since the keys in stitched
pages are not scanned during a merge operation, a Bloom
filter cannot be produced. To address this issue, the VT-tree
uses quotient filters [11] since multiple quotient filters can
be combined directly without accessing the original keys.

Zhang et al. [84] proposed a pipelined merge implemen-
tation to better utilize CPU and I/O parallelism to improve
merge performance. The key observation is that a merge oper-
ation contains multiple phases, including the read phase,
merge-sort phase, and write phase. The read phase reads
pages from input SSTables, which will then be merge-sorted
to produce new pages during the merge-sort phase. Finally,
the new pages will be written to disk during the write phase.
Thus, the read phase and write phase are I/O heavy while the
merge-sort phase is CPU heavy. To better utilize CPU and I/O
parallelism, the proposed approach pipelines the execution
of these three phases, as illustrated in Fig. 9. In this example,
after the first input page has been read, this approach contin-
ues reading the second input page (using disk) and the first
page can be merge-sorted (using CPU).

write
sort
read

page 2]

page 1 page 2
With Pipelining

page 1
No Pipelining

Fig.9 Pipelined merge example: multiple input pages can be processed
in a pipelined fashion

3.3.2 Reducing buffer cache misses

Merge operations can interfere with the caching behavior of
a system. After a new component is enabled, queries may
experience a large number of buffer cache misses since the
new component has not been cached yet. A simple write-
through cache maintenance policy cannot solve this problem.
If all of the pages of the new component were cached during
a merge operation, a lot of other working pages would be
evicted, which will again cause buffer cache misses.

Ahmad et al. [2] conducted an experimental study of the
impact of merge operations on system performance. They
found that merge operations consume a large number of
CPU and I/O resources and impose a high overhead on query
response times. To address this, this work proposed to offload
large merges to remote servers to minimize their impact.
After amerge operation is completed, a smart cache warm-up
algorithm is used to fetch the new component incrementally
to minimize buffer cache misses. The idea is to switch to the
new component incrementally, chunk by chunk, to smoothly
redirectincoming queries from the old components to the new
component. As a result, the burst of buffer cache misses is
decomposed into a large number of smaller ones, minimiz-
ing the negative impact of component switching on query
performance.

One limitation of the approach proposed by Ahmad et
al. [2] is that merge operations must be offloaded to separate
servers. The incremental warm-up algorithm alone was sub-
sequently found to be insufficient due to contention between
the newly produced pages and the existing hot pages [68,69].
To address this limitation, the log-structured buffered Merge-
tree (LSbM-tree) [68,69] proposes an alternative approach.
As illustrated in Fig. 10, after an SSTable at level L is merged
into level L + 1, the old SSTables at level L is appended to
a buffer associated with level L + 1 instead of being deleted
immediately. Note that there is no need to add old SSTables
at level L + 1 into the buffer, as the SSTables at L + 1 all
come from level L and the entries of these old SSTables will
have already been added to the buffer before. The buffered
SSTables are searched by queries as well to minimize buffer
cache misses, and they are deleted gradually based on their
access frequency. This approach does not incur any extra disk
I/O during a merge operation since it only delays the deletion
of the old SSTables. However, this approach is mainly effec-

@ Springer

Author's personal copy

C. Luo, M. J. Carey

() sSTable

O Merging SSTable
level 0 :] merge () Buffered SSTable
level 1) () (}----- [:] buffer

evel2(_JC_JC_JC _Jj—JC_)

Fig. 10 LSbM-tree: the merged component is added to a buffer of the
next level instead of being deleted immediately

tive for skewed workloads where only a small range of keys
are frequently accessed. It can introduce extra overhead for
queries accessing cold data that are not cached, especially for
range queries since they cannot benefit from Bloom filters.

3.3.3 Minimizing write stalls

Although the LSM-tree offers a much higher write through-
put compared to traditional B -trees, it often exhibits write
stalls and unpredictable write latencies since heavy oper-
ations such as flushes and merges run in the background.
bLSM [61] proposes a spring-and-gear merge scheduler to
minimize write stalls for the unpartitioned leveling merge
policy. Its basic idea is to tolerate an extra component at each
level so that merges at different levels can proceed in paral-
lel. Furthermore, the merge scheduler controls the progress
of merge operations to ensure that level L produces a new
component at level L 4 1 only after the previous merge oper-
ation at level L + 1 has completed. This eventually cascades
to limit the maximum write speed at the memory component
and eliminates large write stalls. However, bLSM itself has
several limitations. bLSM was only designed for the unpar-
titioned leveling merge policy. Moreover, it only bounds the
maximum latency of writing to memory components while
the queuing latency, which is often a major source of perfor-
mance variability, is ignored.

3.3.4 Summary

The improvements in this category optimize the implemen-
tation of merge operations in terms of performance, buffer
cache misses, and write stalls. To speedup merge operations,
the VT-tree [64] introduces the stitching operation that avoids
copying input pages if applicable. However, this may cause
fragmentation, which is undesirable for hard disks. More-
over, this optimization is incompatible with Bloom filters,
which are widely used in modern LSM-tree implementa-
tions. The pipelined merge implementation [84] improves
merge performance by exploiting CPU and I/O parallelism. It
should be noted that many LSM-based storage systems have
already implemented some form of pipelining by exploiting
disk read-ahead and write-behind.

Ahmed et al. [2] and the LSbM-tree [68,69] present two
alternative methods to alleviating buffer cache misses caused

@ Springer

by merges. However, both approaches appear to have cer-
tain limitations. The approach proposed by Ahmed et al. [2]
requires dedicated servers to perform merges, while the
LSbM-tree [68,69] delays the deletion of old components
that could negatively impact queries accessing cold data.
Write stalls are a unique problem of LSM-trees due to its
out-of-place update nature. bLSM [61] is the only effort that
attempts to address this problem. However, bLSM [61] only
bounds the maximum latency of writing to memory com-
ponents. The end-to-end write latency can still exhibit large
variances due to queuing. More efforts need to be done to
improve the performance stability of LSM-trees.

3.4 Hardware opportunities

We now review the LSM-tree improvements proposed for
different hardware platforms, including large memory, multi-
core, SSD/NVM, and native storage. A general paradigm of
these improvements is to modify the basic design of LSM-
trees to fully exploit the unique features provided by the target
hardware platform to achieve better performance.

3.4.1 Large memory

It is beneficial for LSM-trees to have large memory com-
ponents to reduce the total number of levels, as this will
improve both write performance and query performance.
However, managing large memory components brings sev-
eral new challenges. If a memory component is implemented
directly using on-heap data structures, large memory can
result in a large number of small objects that lead to sig-
nificant GC overheads. In contrast, if a memory component
is implemented using off-heap structures such as a concur-
rent BT -tree, large memory can still cause a higher search
cost (due to tree height) and cause more CPU cache misses
for writes, as a write must first search for its position in the
structure.

FloDB [9] presents a two-layer design to manage large
memory components. The top level is a small concurrent
hash table to support fast writes, and the bottom level is a
large skip list to support range queries efficiently. When the
hash table is full, its entries are efficiently migrated into the
skip listusing a batched algorithm. By limiting random writes
to a small memory area, this design significantly improves
the in-memory write throughput. To support range queries,
FloDB requires that a range query must wait for the hash
table to be drained so that the skip list alone can be searched
to answer the query. However, FloDB suffers from two major
problems. First, it is not efficient for workloads containing
both writes and range queries due to their contention. Second,
the skip list may have a large memory footprint and lead to
lower memory utilization.

Author's personal copy

LSM-based storage techniques: a survey

write

Fig. 11 Accordion’s multi-layer structure

To address the drawbacks of FloDB, Accordion [13] uses
a multi-layer approach to manage its large memory com-
ponents. In this design (Fig. 11), there is a small mutable
memory component in the top level to process writes. When
the mutable memory component is full, instead of being
flushed to disk, it is simply flushed into a (more compact)
immutable memory component via an in-memory flush oper-
ation. Similarly, such immutable memory components can be
merged via in-memory merge operations to improve query
performance and reclaim space occupied by obsolete entries.
Note that in-memory flush and merge operations do not
involve any disk I/O, which reduces the overall disk I/O cost
by leveraging large memory.

3.4.2 Multi-core

cLSM [30] optimizes for multi-core machines and presents
new concurrency control algorithms for various LSM-tree
operations. It organizes LSM components into a concurrent
linked list to minimize blocking caused by synchronization.
Flush and merge operations are carefully designed so that
they only result in atomic modifications to the linked list
that will never block queries. When a memory component
becomes full, a new memory component is allocated while
the old one will be flushed. To avoid writers inserting into
the old memory component, a writer acquires a shared lock
before modifications and the flush thread acquires an exclu-
sive lock before flushes. cLSM also supports snapshot scans
via multi-versioning and atomic read—modify—write opera-
tions using an optimistic concurrency control approach that
exploits the fact that all writes, and thus all conflicts, involve
the memory component.

3.4.3 SSD/NVM

Different from traditional hard disks, which only support effi-
cient sequential I/Os, new storage devices such as solid-state
drives (SSDs) and non-volatile memories (NVMs) support
efficient random I/Os as well. NVMs further provide efficient
byte-addressable random accesses with persistence guaran-
tees.

D Page

i Index Entry

i
Level 1 | 1114127 | 51181192 | [+~ Fence Pointer

o o i h
1i15!21'27!33!42'51i55§76|81i85§98

Level 2

Fig. 12 Example FD-tree structure

The FD-tree [42] uses a similar design to LSM-trees to
reduce random writes on SSDs. One major difference is that
the FD-tree exploits fractional cascading [17] to improve
query performance instead of Bloom filters. For the com-
ponent at each level, the FD-tree additionally stores fence
pointers that point to each page at the next level. For example
in Fig. 12, the pages at level 2 are pointed at by fence pointers
with keys 1, 27, 51, 81 at level 1. After performing a binary
search at level 0, a query can follow these fence pointers
to traverse all of the levels. However, this design introduces
additional complexity to merges. When the component at
level L is merged into level L + 1, all of the previous levels
0 to L — 1 must be merged as well to rebuild the fence point-
ers. Moreover, a point lookup still needs to perform disk I/Os
when searching for nonexistent keys, which can be mostly
avoided by using Bloom filters. For these reasons, modern
LSM-tree implementations prefer Bloom filters rather than
fractional cascading.®

The FD+tree [71] improves the merge process of the FD-
tree [42]. In the FD-tree, when a merge happens from level O
to level L, new components at levels O to L must be created,
which will temporarily double the disk space. To address
this, during a merge operation, the FD+tree incrementally
activates the new components and reclaims pages from the
old components that are not used by any active queries.

MaSM (materialized sort-merge) [7] is designed for sup-
porting efficient updates for data warehousing workloads by
exploiting SSDs. MaSM first buffers all updates into an SSD.
It uses the tiering merge policy to merge intermediate com-
ponents with low write amplification. The updates are then
merged back to the base data, which resides in the hard disk.
MaSM can be viewed as a simplified form of the lazy-leveling
merge policy proposed by Dostoevsky [20], as we will see
later in this survey. Moreover, since MaSM mainly targets
long range queries to support data warehousing workloads,
the overhead introduced by intermediate components stored
in SSDs is negligible compared to the cost of accessing the
base data. This enables MaSM to only incur a small overhead
on queries with concurrent updates.

6 RocksDB [57] supports a limited form of fractional cascading by
maintaining the set of overlapping SSTables at the adjacent next level
for each SSTable. These pointers are used to narrow down the search
range when locating specific SSTables during point lookups.

@ Springer

Author's personal copy

C. Luo, M. J. Carey

. . insert .
@ vahdatiz _efl Er S _»1SM-Tree key, location rite

- N append
I/ garbage collection ~ “~~______ key, value
' (3) remove log tail (2) append valid entfies ~f- <
\ L
‘<| tail | Append-only Log r‘*

Fig. 13 WiscKey stores values into an append-only log to reduce the
write amplification of the LSM-tree

Since SSDs support efficient random reads, separating val-
ues from keys becomes a viable solution to improve the
write performance of LSM-trees. This approach was first
implemented by WiscKey [44] and subsequently adopted by
HashKV [15] and SifrDB [49]. As shown in Fig. 13, Wis-
cKey [44] stores key-value pairs into an append-only log and
the LSM-tree simply serves as a primary index that maps
each key to its location in the log. While this can greatly
reduce the write cost by only merging keys, range query per-
formance will be significantly impacted because values are
not sorted anymore. Moreover, the value log must be garbage-
collected efficiently to reclaim the storage space. In WiscKey,
garbage collection is performed in three steps. First, WiscKey
scans the log tail and validates each entry by performing point
lookups against the LSM-tree to find out whether the loca-
tion of each key has changed or not. Second, valid entries,
whose locations have not changed, are then appended to the
log and their locations are updated in the LSM-tree as well.
Finally, the log tail is truncated to reclaim the storage space.
However, this garbage collection process has been shown to
be a new performance bottleneck [15] due to its expensive
random point lookups.

HashKV [15] introduces a more efficient approach to
garbage-collect obsolete values. The basic idea is to hash-
partition the value log into multiple partitions based on keys
and to garbage-collect each partition independently. In order
to garbage-collect a partition, HashKV performs a group-
by operation on the keys to find the latest value for each
key. Valid key-value pairs are added to a new log and their
locations are then updated in the LSM-tree. HashKV further
stores cold entries separately so that they can be garbage-
collected less frequently.

Kreon [53] exploits memory-mapped /O to reduce CPU
overhead by avoiding unnecessary data copying. It imple-
ments a customized memory-mapped I/O manager in the
Linux kernel to control cache replacement and to enable blind
writes. To improve range query performance, Kreon reorga-
nizes data during query processing by storing the accessed
key-value pairs together in a new place.

NoveLSM [36] is an implementation of LSM-trees on
NVMs. NoveLSM adds an NVM-based memory compo-
nent to serve writes when the DRAM memory component
is full so that writes can still proceed without being stalled.

@ Springer

It further optimizes the write performance of the NVM
memory component by skipping logging since NVM itself
provides persistence. Finally, it exploits I/O parallelism
to search multiple levels concurrently to reduce lookup
latency.

3.4.4 Native storage

Finally, the last line of work in this category attempts to per-
form native management of storage devices, such as HDDs
and SSDs, to optimize the performance of LSM-tree imple-
mentations.

The LSM-tree-based direct storage system (LDS) [48]
bypasses the file system to better exploit the sequential and
aggregated I/O patterns exhibited by LSM-trees. The on-
disk layout of LDS contains three parts: chunks, a version
log, and a backup log. Chunks store the disk components of
the LSM-tree. The version log stores the metadata changes
of the LSM-tree after each flush and merge. For exam-
ple, a version log record can record the obsolete chunks
and the new chunks resulting from a merge. The ver-
sion log is regularly checkpointed to aggregate all changes
so that the log can be truncated. Finally, the backup log
provides durability for in-memory writes by write-ahead log-
ging.

LOCS [74] is an implementation of the LSM-tree on
open-channel SSDs. Open-channel SSDs expose internal
I/O parallelism via an interface called channels, where each
channel functions independently as a logical disk device.
This allows applications to flexibly schedule disk writes
to leverage the available I/O parallelism, but disk reads
must be served by the same channel where the data is
stored. To exploit this feature, LOCS dispatches disk writes
due to flushes and merges to all channels using a least-
weighted-queue-length policy to balance the total amount
of work allocated to each channel. To further improve the
I/O parallelism for partitioned LSM-trees, LOCS places
SSTables from different levels with similar key ranges into
different channels so that these SSTables can be read in par-
allel.

NoFTL-KV [73] proposes to extract the flash translation
layer (FTL) from the storage device into the key-value store to
gain direct control over the storage device. Traditionally, the
FTL translates the logical block address to the physical block
address to implement wear leveling, which improves the
lifespan of SSDs by distributing writes evenly to all blocks.
NoFTL-KV argues for a number of advantages of extract-
ing FTL, such as pushing tasks down to the storage device,
performing more efficient data placement to exploit I/O par-
allelism, and integrating the garbage collection process of
the storage device with the merge process of LSM-trees to
reduce write amplification.

Author's personal copy

LSM-based storage techniques: a survey

3.4.5 Summary

In this subsection, we have reviewed the LSM-tree improve-
ments exploiting hardware platforms, including large mem-
ory [9,13], multi-core [30], SSD/NVM [7,15,36,42,44,53,
71], and native storage [48,73,74]. To manage large mem-
ory components, both FloDB [9] and Accordion [13] take a
multi-layer approach to limit random writes to a small mem-
ory area. The difference is that FloDB [9] only uses two
layers, while Accordion [13] uses multiple layers to provide
better concurrency and memory utilization. For multi-core
machines, cLSM [30] presents a set of new concurrency con-
trol algorithms to improve concurrency.

A general theme of the improvements for SSD/NVM is
to exploit the high random read throughput while reduc-
ing the write amplification of LSM-trees to improve the
lifespan of these storage devices. The FD-tree [42] and its
successor FD+tree [71] propose to use fractional cascad-
ing [17] to improve point lookup performance so that only
one random I/O is needed for searching each component.
However, today’s implementations generally prefer Bloom
filters since unnecessary I/Os can be mostly avoided by
point lookups. Separating keys from values [15,44,53] can
significantly improve the write performance of LSM-trees
since only keys are merged. However, this leads to lower
query performance and space utilization. Meanwhile, values
must be garbage-collected separately to reclaim disk space,
which is similar to the traditional log-structured file sys-
tem design [60]. Finally, some recent work has proposed
to perform native management of storage devices, includ-
ing HDDs [48] and SSDs [73,74], which can often bring
large performance gains by exploiting the sequential and non-
overwriting I/O patterns exhibited by LSM-trees.

3.5 Handling special workloads

We now review some existing LSM-tree improvements that
target special workloads to achieve better performance. The
considered special workloads include temporal data, small
data, semi-sorted data, and append-mostly data.

The log-structured history access method (LHAM) [50]
improves the original LSM-tree to more efficiently support
temporal workloads. The key improvement made by LHAM
is to attach a range of timestamps to each component to facil-
itate the processing of temporal queries by pruning irrelevant
components. It further guarantees that the timestamp ranges
of components are disjoint from one another. This is accom-
plished by modifying the rolling merge process to always
merge the records with the oldest timestamps from a compo-
nent C; into Cjy1.

The LSM-trie [76] is an LSM-based hash index for man-
aging alarge number of key-value pairs where each key-value
pair is small. It proposes a number of optimizations to reduce

() SSTable

level 0

- \ —- - intniiing [_-----\l - (et e hningY
i il i i i)i i il)
h i " " " n "

level 1)i)i)i)i)i))i)
\ A) Al AN LAY n AN

Fig. 14 The LSM-trie uses the prefix of hash values to manage SSTa-
bles. In this example, each level uses three bits to perform partitioning

the metadata overhead. The LSM-trie adopts a partitioned
tiering design to reduce write amplification. Instead of stor-
ing the key ranges of each SSTable directly, the LSM-trie
organizes its SSTables using the prefix of their hash values
to reduce the metadata overhead, as shown in Fig. 14. The
LSM-trie further eliminates the index page, instead assign-
ing key-value pairs into fixed-size buckets based on their hash
values. Overflow key-value pairs are assigned to underflow
buckets and this information is recorded in a migration meta-
data table. The LSM-trie also builds a Bloom filter for each
bucket. Since there are multiple SSTables in each group at
a level, the LSM-trie clusters all Bloom filters of the same
logical bucket of these SSTables together so that they can be
fetched using a single I/O by a point lookup query. In gen-
eral, the LSM-trie is mainly effective when the number of
key-value pairs is so large that even the metadata, e.g., index
pages and Bloom filters, cannot be totally cached. However,
the LSM-trie only supports point lookups since its optimiza-
tions heavily depend on hashing.

SlimDB [59] targets semi-sorted data in which each key
contains a prefix X and a suffix y. It supports normal point
lookups, given both the prefix and the suffix, as well as
retrieving all the key-value pairs sharing the same prefix key
x. To reduce write amplification, SIimDB adopts a hybrid
structure with tiering on the lower levels and leveling on
the higher levels. SlimDB further uses multi-level cuckoo
filters [28] to improve point lookup performance for levels
that use the tiering merge policy. At each level, a multi-level
cuckoo filter maps each key to the ID of the SSTable where the
latest version of the key is stored so that only one filter check
is needed by a point lookup. To reduce the metadata over-
head of SSTables, SlimDB uses a multi-level index structure
as follows: It first maps each prefix key into a list of pages
that contain this prefix key so that the key-value pairs can
be retrieved efficiently given a prefix key. It then stores the
range of suffix keys for each page to efficiently support point
lookup queries based on both prefix and suffix keys.

Mathieu et al. [47] proposed two new merge policies opti-
mized for append-mostly workloads with a bounded number
of components. One problem of both leveling and tiering is
that the number of levels depends on the total number of
entries. Thus, with an append-mostly workload, where the
amount of data keeps increasing, the total number of levels

@ Springer

Author's personal copy

C. Luo, M. J. Carey

will be unbounded in order to achieve the write cost described
in Sect. 2.3. To address this, this work studied the theoretical
lower bound of the write cost of an online merge policy for
an append-mostly workload given at most K components. It
further proposed two merge policies, MinLatency and Bino-
mial, to achieve this lower bound.

The four improvements presented here each target a spe-
cialized workload. It should be noted that their optimizations
may be useless or even inapplicable for general purpose
workloads. For example, the LSM-trie [76] only supports
point lookups, while SIimDB [59] only supports a limited
form of range queries by fetching all values for a prefix key.
The adoption of these optimizations should be chosen care-
fully based on the given workload.

3.6 Auto-tuning

We now review some research efforts to develop auto-tuning
techniques for the LSM-tree to reduce the tuning burden
for the end user. Some techniques perform co-tuning of all
parameters to find an optimal design, while others focus on
some specific aspect such as merge policies, Bloom filters,
or data placement.

3.6.1 Parameter tuning

Lim et al. [43] presented an analytical model that incorpo-
rates the key distribution to improve the cost estimation of
LSM-tree operations and further used this model to tune the
parameters of LSM-trees. The key insight is that the con-
ventional worse-case analysis (Sect. 2.3) fails to take the
key distribution into consideration. If a key is found to be
deleted or updated during an early merge, it will not par-
ticipate in future merges and thus its overall write cost will
be reduced. The proposed model assumes a priori knowl-
edge of the key distribution using a probability mass function
fx (k) that measures the probability that a specific key & is
written by a write request. Given p total write requests, the
number of unique keys is estimated using its expectation as
Unique(p) = N —) cx (1 = fx(k))?, where N is the
total number of unique keys and K is the total key space.
Based on this formula, the total write cost for p writes can be
computed by summing up the cost of all flushes and merges,
except that duplicates keys, if any, are excluded from future
merges. Finally, the cost model is used to find the optimal
system parameters by minimizing the total write cost.
Monkey [21,22] co-tunes the merge policy, size ratio, and
memory allocation between memory components and Bloom
filters to find an optimal LSM-tree design for a given work-
load. The first contribution of Monkey is to show that the
usual Bloom filter memory allocation scheme, which allo-
cates the same number of bits per key for all Bloom filters,
results in sub-optimal performance. The intuition is that the

@ Springer

T components at the last level, which contain most of the
data, consume most of the Bloom filter memory but their
Bloom filters can only save at most 7" disk I/Os for a point
lookup. To minimize the overall false positive rates across
all of the Bloom filters, Monkey analytically shows that
more bits should be allocated to the components at the lower
levels so that the Bloom filter false positive rates will be
exponentially increasing. Under this scheme, the I/O cost of
zero-result point lookup queries will be dominated by the
last level, and the new I/O cost becomes O(e_%) for level-
ingand O(T -e™ %) for tiering. Monkey then finds an optimal
LSM-tree design by maximizing the overall throughput using
a cost model similar to the one in Sect. 2.3 considering the
workload’s mix of the various operations.

3.6.2 Tuning merge policies

Dostoevsky [20] shows that the existing merge policies, that
is, tiering and leveling, are sub-optimal for certain work-
loads. The intuition is that for leveling, the cost of zero-result
point lookups, long range queries, and space amplification
are dominated by the largest level, but the write cost derives
equally from all of the levels. To address this, Dostoevsky
introduces a lazy-leveling merge policy that performs tiering
at the lower levels but leveling at the largest level. Lazy lev-
eling has much better write cost than leveling, but has similar
point lookup cost, long range query cost, and space amplifi-
cation to leveling. It only has a worse short range query cost
than leveling since the number of components is increased.
Dostoevsky also proposes a hybrid policy that has at most Z
components in the largest level and at most K components at
each of the smaller levels, where Z and K are tunable. It then
finds an optimal LSM-tree design for a given workload using
a similar method as Monkey [21]. It is worth noting that the
performance evaluation of Dostoevsky [20] is very thorough;
it was performed against well-tuned LSM-trees to show that
Dostoevsky strictly dominates the existing LSM-tree designs
under certain workloads.

Thonangi and Yang [70] formally studied the impact of
partitioning on the write cost of LSM-trees. This work first
proposed a ChooseBest policy that always selects an SSTable
with the fewest overlapping SSTables at the next level to
merge to bound the worst-case merge cost. Although the
ChooseBest policy outperforms the unpartitioned merge pol-
icy in terms of the overall write cost, there are certain periods
when the unpartitioned merge policy has a lower write cost
since the current level becomes empty after a full merge,
which reduces the future merge cost. To exploit this advan-
tage of full merges, this work further proposed a mixed merge
policy that selectively performs full merges or partitioned
merges based on the relative size between adjacent levels and

Author's personal copy

LSM-based storage techniques: a survey

that dynamically learns these size thresholds to minimize the
overall write cost for a given workload.

3.6.3 Dynamic bloom filter memory allocation

All of the existing LSM-tree implementations, even Mon-
key [21], adopt a static scheme to manage Bloom filter
memory allocation. That is, once the Bloom filter is created
for a component, its false positive rate remains unchanged.
Instead, ElasticBF [83] dynamically adjusts the Bloom fil-
ter false positive rates based on the data hotness and access
frequency to optimize read performance. Given a budget
of k Bloom filter bits per key, ElasticBF constructs mul-
tiple smaller Bloom filters with ki, ---,k, bits so that
ki +---+ k, = k. When all of these Bloom filters are
used together, they provide the same false positive rate as the
original monolithic Bloom filter. ElasticBF then dynamically
activates and deactivates these Bloom filters based on the
access frequency to minimize the total amount of extra I/O.
Their experiments reveal that ElasticBF is mainly effective
when the overall Bloom filter memory is very limited, such
as only 4 bits per key on average. In this case, the disk I/Os
caused by the Bloom filter false positives will be dominant.
When memory is relatively large and can accommodate more
bits per key, such as 10, the benefit of ElasticBF becomes lim-
ited since the number of disk I/Os caused by false positives
is much smaller than the number of actual disk I/Os to locate
the keys.

3.6.4 Optimizing data placement

Mutant [80] optimizes the data placement of the LSM-tree on
cloud storage. Cloud vendors often provide a variety of stor-
age options with different performance characteristics and
monetary costs. Given a monetary budget, it can be impor-
tant to place SSTables on different storage devices properly
to maximize system performance. Mutant solves this prob-
lem by monitoring the access frequency of each SSTable and
finding a subset of SSTables to be placed in fast storage so
that the total number of accesses to fast storage is maximized
while the number of selected SSTables is bounded. This opti-
mization problem is equivalent to a 0/1 knapsack problem,
which is N/P hard, and can be approximated using a greedy
algorithm.

3.6.5 Summary

The techniques presented in this category aim at automat-
ically tuning LSM-trees for given workloads. Both Lim et
al. [43] and Monkey [21,22] attempt to find optimal designs
for LSM-trees to maximize system performance. However,
these two techniques are complimentary to each other. Lim et
al. [43] uses a novel analytical model to improve the cost esti-

mation but only focuses on tuning the maximum level sizes
of the leveling merge policy. In contrast, Monkey [21,22],
as well as its follow-up work Dostoevsky [20], co-tunes all
parameters of LSM-trees to find an optimal design but only
optimize for the worst-case 1/O cost. It would be useful to
combine these two techniques together to enable more accu-
rate performance tuning and prediction.

Dostoevsky [20] extends the design space of LSM-trees
with a new merge policy by combining leveling and tiering.
This is very useful for certain workloads that require effi-
cient writes, point lookups, and long range queries with less
emphasis on short range queries. Thonangi and Yang [70]
proposed to combine full merges with partitioned merges to
achieve better write performance. Other tuning techniques
focus on some aspects of the LSM-tree implementation, such
as tuning Bloom filters by ElasticBF [83] and optimizing data
placement by Mutant [80].

3.7 Secondary indexing

So far, we have discussed LSM-tree improvements in a key-
value store setting that only contains a single LSM-tree.
Now we discuss LSM-based secondary indexing techniques
to support efficient query processing, including index struc-
tures, index maintenance, statistics collection, and distributed
indexing.

Before we present these research efforts in detail, we
first discuss some basic concepts for LSM-based secondary
indexing techniques. In general, an LSM-based storage sys-
tem will contain a primary index with multiple secondary
indexes. The primary index stores the record values indexed
by their primary keys. Each secondary index stores the cor-
responding primary keys for each secondary key using either
a composite key approach or a key list approach. In the com-
posite key approach, the index key of a secondary index is
the composition of the secondary key and the primary key. In
the key list approach, a secondary index associates a list of
primary keys with each secondary key. Either way, to process
a query using a secondary index, the secondary index is first
searched to return a list of matching primary keys, and those
are then used to fetch the records from the primary index if
needed. An example of LSM-based secondary indexing is
shown in Fig. 15. The example user dataset has three fields,
namely Id, Name, and Age, where Id is the primary key. The
primary index stores full records indexed by Id, while the
two secondary indexes store secondary keys, i.e., Name and
Age, and their corresponding Ids.

3.7.1 Index structures
The log-structured inverted index (LSII) [75] is an index

structure designed for exact real-time keyword search on
microblogs. A query g searches for the top K microblogs

@ Springer

Author's personal copy

C. Luo, M. J. Carey

User(ld, Name, Age)

Primary Index [(103, Charlie, 30)] [((11%12’ %13%6’2255))]

Name Index [(Charlie, 103)] [((1?31(1)({)6,110021))]

Age Index [(30, 103)] [823 183]
Memory Disk

Fig. 15 Example LSM-based secondary indexes

with the highest scores, which are computed as the weighted
sum of significance, freshness, and relevance. To support
efficient query processing, each keyword in a disk compo-
nent stores three inverted lists of primary keys in descending
order of significance, freshness, and frequency, respectively.
Storing three inverted lists enables queries to be processed
efficiently via the threshold algorithm [27], which stops query
evaluation once the upper bound of the scores of the unseen
microblogs is lower than the current top K answers. However,
only one inverted list is stored in the memory component
since documents in the memory component often have high
freshness and most of them will be accessed by queries.
Moreover, storing multiple inverted lists would significantly
increase the memory component’s write cost.

Kim et al. [39] conducted an experimental study of LSM-
based spatial index structures for geo-tagged data, including
LSM-tree versions of the R-tree [31], Dynamic Hilbert
B*-tree (DHB-tree) [41], Dynamic Hilbert Value B*-tree
(DHVB-tree) [41], Static Hilbert BT -tree (SHB-tree) [29],
and Spatial Inverted File (SIF) [37]. An R-tree is a bal-
anced search tree that stores multi-dimensional spatial data
using their minimum bounding rectangles. DHB-trees and
DHVB-trees store spatial points directly into B -trees using
space-filling curves. SHB-trees and SIFs exploit a grid-based
approach by statically decomposing a two-dimensional space
into a multi-level grid hierarchy. For each spatial object, the
IDs of its overlapping cells are stored. The difference between
these two structures is that an SHB-tree stores the pairs of
cell IDs and primary keys in a B*-tree, while a SIF stores
a list of primary keys for each cell ID in an inverted index.
The key conclusion of this study is that there is no clear
winner among these index structures, but the LSM-based R-
tree performs reasonably well for both ingestion and query
workloads without requiring too much tuning. It also handles
both point and non-point data well. Moreover, for non-index-
only queries, the final primary key lookup step is generally
dominant since it often requires a separate disk I/O for each
primary key. This further diminished the differences between
these spatial indexing methods.

Filters [5] augment each component of the primary and
secondary indexes with a filter to enable data pruning based
on a filter key during query processing. A filter stores the

@ Springer

[T1, T4] [T1, T2] Filter
upsert (k1, v4, T4) - 474, T4) (k1, vI, TI)
(k3, v3, T3) k2, v2, T2)
Memory Disk

Fig. 16 Filter update example: the dataset contains three fields, a pri-
mary key (k), a value (v), and a creation time (7') that is also the filter
key

minimum and maximum values of the chosen filter key for
the entries in a component. Thus, a component can be pruned
by a query if the search condition is disjoint with the mini-
mum and maximum values of its filter. Though a filter can
be built on arbitrary fields, it is really only effective for
time-correlated fields since components are naturally par-
titioned based on time and are likely to have disjoint filter
ranges. Note that some special care is needed to maintain
filters when a key is updated or deleted. In this case, the fil-
ter of the memory component must be maintained based on
both the old record and the new record so that future queries
will not miss new updates. Consider the example in Fig. 16,
which depicts a filtered primary LSM-tree. After upserting
the new record (kl1, v4, T4), the filter of the memory com-
ponent becomes [T1, T4] so that future queries will properly
see that the old record (kl1, v1, T1) in the disk component
has been deleted. Otherwise, if the filter of the memory com-
ponent were only maintained based on the new value T4,
which would be [T3, T4], a query with search condition T
< T2 would erroneously prune the memory component and
thus actually see the deleted record (k1, v1, T1).

Qadaretal. [56] conducted an experimental study of LSM-
based secondary indexing techniques including filters and
secondary indexes. For filters, they evaluated component-
level range filters and Bloom filters on secondary keys. For
secondary indexes, they evaluated two secondary indexing
schemes based on composite keys and key lists. Depending
on how the secondary index is maintained, the key list scheme
can be further classified as being either eager or lazy. The
eager key list scheme always reads the previous list to create
afull new list with the new entry added and inserts the new list
into the memory component. The lazy key list scheme simply
maintains multiple partial lists at each component. The exper-
imental results suggest that the eager inverted list scheme
incurs a large overhead on data ingestion because of the point
lookups and high write amplification. When the query selec-
tivity becomes larger, that is, when the result set contains
more entries, the performance difference between the lazy
key list scheme and the composite key scheme diminishes,
as the final point lookup step becomes dominant. Finally,
filters were found to be very effective with small storage
overhead for time-correlated workloads. However, the study
did not consider cleaning up secondary indexes in the case
of updates, which means that secondary indexes could return
obsolete primary keys.

Author's personal copy

LSM-based storage techniques: a survey

3.7.2 Index maintenance

A key challenge of maintaining LSM-based secondary
indexes is handling updates. For a primary LSM-tree, an
update can blindly add the new entry (with the identical key)
into the memory component so that the old entry is automat-
ically deleted. However, this mechanism does not work for
a secondary index since a secondary key value can change
during an update. Extra work must be performed to clean up
obsolete entries from secondary indexes during updates.

Diff-Index [66] presents four index maintenance schemes
for LSM-based secondary indexes, namely sync-full, sync-
insert, async-simple, and async-session. During an update,
two steps must be performed to update a secondary index,
namely inserting the new entry and cleaning up the old entry.
Inserting the new entry is very efficient for LSM-trees, but
cleaning up the old entry is generally expensive since it
requires a point lookup to fetch the old record. Sync-full
performs these two steps synchronously during the ingestion
time. It optimizes for query performance since secondary
indexes are always up to date, but incurs a high overhead dur-
ing data ingestion because of the point lookups. Sync-insert
only inserts new data into secondary indexes, while cleaning
up obsolete entries lazily by queries. Async-simple performs
index maintenance asynchronously but guarantees its even-
tual execution by appending updates into an asynchronous
update queue. Finally, async-session enhances async-simple
with session consistency for applications by storing new
updates temporarily into a local cache on the client-side.

Deferred lightweight indexing (DELI) [67] enhances the
sync-insert update scheme of Diff-Index [66] with a new
method to cleanup secondary indexes by scanning the pri-
mary index components. Specifically, when multiple records
with identical keys are encountered when scanning primary
index components, the obsolete records are used to produce
antimatter entries to clean up the secondary indexes. Note
that this procedure can be naturally integrated with the merge
process of the primary index to reduce the extra overhead.
Meanwhile, since secondary indexes are not always up to
date, queries must always validate search results by fetching
records from the primary index. Because of this, DELI can-
not support index-only queries efficiently since point lookups
must be performed for validation.

Luo and Carey [45] presented several techniques for the
efficient exploitation and maintenance of LSM-based auxil-
iary structures, including secondary indexes and filters. They
first conducted an experimental study to evaluate the effec-
tiveness of various point lookup optimizations, including
a newly proposed batched lookup algorithm that accesses
components sequentially for a batch of keys, stateful BT -
tree search cursors, and blocked bloom filters [55]. They
found that the batched lookup algorithm is the most effec-
tive optimization for reducing random I/Os, while the other

two are mainly effective for non-selective queries at further
reducing the in-memory search cost. To maintain auxiliary
structures efficiently, two strategies were further proposed.
The key insight is to maintain and exploit a primary key index,
which only stores primary keys plus timestamps, to reduce
disk I/Os. A validation strategy was proposed to maintain
secondary indexes lazily in the background, eliminating the
synchronous point lookup overhead. Queries must validate
the primary keys returned by secondary indexes either by
fetching records directly from the primary index or by search-
ing the primary key index to ensure that the returned primary
keys still have the latest timestamps. Secondary indexes are
cleaned up efficiently in the background using the primary
key index to avoid accessing full records; the basic idea for
cleanup is to search the primary key index to validate whether
each secondary index entry still has the latest timestamp, as
in query validation. Compared to DELI [67], the validation
strategy [45] significantly reduces the I/O cost for cleaning
up secondary indexes since only the primary key index is
accessed. A mutable-bitmap strategy was also introduced to
efficiently maintain a primary index with filters. It attaches a
mutable bitmap to each disk component so that old records
can be directly marked as deleted, thereby avoiding the need
to maintain filters based on old records.

3.7.3 Statistics collection

Absalyamov et al. [1] proposed a lightweight statistics col-
lection framework for LSM-based systems. The basic idea
is to integrate the task of statistics collection into the flush
and merge operations to minimize the statistics maintenance
overhead. During flush and merge operations, statistical syn-
opses, such as histograms and wavelets, are created on the
fly and are sent back to the system catalog. Due to the multi-
component nature of LSM-trees, the system catalog stores
multiple statistics for a dataset. To reduce the overhead during
query optimization, mergeable statistics, such as equi-width
histograms, are merged beforehand. For statistics that are not
mergeable, multiple synopses are kept to improve the accu-
racy of cardinality estimation.

3.7.4 Distributed indexing

Joseph et al. [25] described two basic implementations of
distributed secondary indexes on top of HBase [32], namely
global secondary indexes and local secondary indexes, based
on the two common approaches to indexing data in a parallel
database. A global secondary index is implemented as a sepa-
rate table that stores secondary keys plus their corresponding
primary keys, and it is maintained using co-processors pro-
vided by HBase (similar to database triggers). This approach
is easy to implement, but incurs a higher communication cost
during data ingestion since a secondary index partition may

@ Springer

Author's personal copy

C. Luo, M. J. Carey

be stored at a separate node from the primary index parti-
tion. A local secondary index avoids the communication cost
during data ingestion by colocating each secondary index
partition together with the corresponding primary index par-
tition. However, the downside for HBase is that this approach
has to be implemented from scratch. Moreover, all partitions
of alocal secondary index must be searched, eve n for highly
selective queries, since a local secondary index is partitioned
by primary (not secondary) keys.

Zhu et al. [85] introduced an efficient approach for loading
global secondary indexes using three steps: First, the primary
index at each partition is scanned and sorted to create a local
secondary index. Meanwhile, the statistics of the secondary
key are collected to facilitate the next step. Second, based on
the collected statistics from the first stage, the index entries of
the secondary index will be range-partitioned and these parti-
tions will be assigned to physical nodes. Finally, based on the
assigned secondary key range, each node fetches secondary
keys and their primary keys from all other nodes, which can
be done efficiently by scanning the local secondary index
built in the first stage.

Duan et al. [26] proposed a lazy maintenance approach
for materialized views on distributed LSM-trees. The basic
idea is to append new updates into a delta list of the material-
ized view to reduce the overhead during data ingestion. The
changes in the delta list are then applied to the materialized
view lazily, during query processing.

3.7.5 Summary

The techniques in this category all focus on improving LSM-
trees in database settings with secondary indexes and other
auxiliary structures. Several LSM-based secondary index-
ing structures have been proposed, including LSM-based
inverted indexes [75], spatial indexes [39], and filters [5].
These structures would be helpful to optimize certain query
workloads. In terms of efficiently maintaining secondary
indexes, a common approach is to defer the maintenance
of secondary indexes so that expensive point lookups can
be avoided during the ingestion time. The proposed tech-
niques mainly differ in how secondary indexes are cleaned
up in the background, either by queries [66], scanning the
primary index [67], or exploiting a primary key index [45].
Since the optimality of these methods may be workload
dependent, it would be useful as future work to design adap-
tive maintenance mechanisms to maximize performance.
Absalyamov et al. [1] proposed a statistics collection frame-
work, which is a step toward cost-based query optimization
on LSM-based systems. Finally, several distributed indexing
techniques [25,26,85] have also been presented. It should be
noted that these techniques are not specific to LSM-trees, but
we have included them here for completeness.

@ Springer

3.8 Discussion of overall trade-offs

Based on the RUM conjecture [8], no access method can
be read-optimal, write-optimal, and space-optimal at the
same time. As we have seen in this survey, many LSM-tree
improvements that optimize for certain workload or sys-
tem aspects will generally make trade-offs. To conclude this
section, we provide a qualitative analysis and summary of
the trade-offs made by those research efforts that seek to
optimize various aspects of LSM-trees. We will consider
the leveling merge policy as the baseline for this discus-
sion.

The performance trade-offs of the various LSM-tree
improvements are summarized in Table 3. As one can see,
most of these improvements try to improve the write perfor-
mance of the leveling merge policy since it has relatively
high write amplification. A common approach taken by
existing improvements is to apply the tiering merge pol-
icy [6,49,52,58,76,78,79,82], but this will negatively impact
query performance and space utilization. Moreover, tiering
has a larger negative impact on range queries than point
lookups since range queries cannot benefit from Bloom fil-
ters.

Other proposed improvements, such as the skip-tree [81],
TRIAD [10], and the VT-tree [64], propose several new ideas
to improve the write performance of LSM-trees. However,
in addition to extra overhead on query performance and
space utilization, these optimizations may bring non-trivial
implementation complexity to real systems. For example,
the skip-tree introduces mutable buffers to store skipped
keys, which contradicts the immutability of disk components.
TRIAD proposes to use transaction logs as disk components
to eliminate flushes, which is again highly non-trivial since
transaction logs usually have very different storage formats
and operation interfaces from disk components. Moreover,
a common practice is to store transaction logs on a dedi-
cated disk to minimize the negative impacts caused by log
forces. The stitching operation proposed by the VT-tree [64]
can cause fragmentation and is incompatible with Bloom fil-
ters.

The LSM-trie [76] and SlimDB [59] give up some
query capabilities to improve performance. The LSM-trie
exploits hashing to improve both read and write perfor-
mance, but range queries cannot be supported. SlimDB only
supports a limited form of range queries based on a com-
mon prefix key. These improvements would be desirable
for certain workloads where complete range queries are not
needed.

Separating keys from values [15,44,53] can drastically
improve the write performance of LSM-trees since only
keys are merged. However, a major problem is that range
queries will be significantly impacted because values are not
sorted anymore. Even though this problem can be mitigated

Author's personal copy

LSM-based storage techniques: a survey

Table3 Summary of trade-offs made by LSM-tree improvements (1 denotes increasing, | denotes decreasing, — denotes unaffected, and x denotes

unsupported)

Publication Write Point lookup ~ Shortrange Longrange Space Remark

WB-tree [6] M 1 s NS s Tiering

LWC-tree [78,79] M 3 W W N Tiering

PebblesDB [58] ™M 1 N W W Tiering

dCompaction [52] 11 1 s NS s Tiering

Zhang et al. [82] M 3 N NS N Tiering

SifrDB [49] ™~ l W W W Tiering

Skip-tree [81] 4 3 N N - Mutable skip buffers

TRIAD [10] 4 3 N ¥ - Separate cold entries from hot entries; delay merges at
level 0; use logs as flushed components

VT-tree [64] 1 - ¥ 4 N Stitching merge

MaSM [7] M N W J N Lazy leveling

WiscKey [44] M N Wl W4 Wl KV separation

HashKYV [15] M 1 Wi NN Wi KV separation

Kreon [53] M 1 Wi W Wi KV separation

LSM-trie [76] M 4 X X s Tiering + hashing

SlimDB [59] ™M 0 /% $Ix J Only support range queries for each key prefix group

Lim et al. [43] 4 — — - — Exploit data redundancy

Monkey [21,22] — 4 — — — Better Bloom filter memory allocation

Dostoevsky [20] M 3 N 1 N Lazy leveling

by exploiting the I/O parallelism of SSDs [15,44], this still
leads to lower disk efficiency especially when values are rel-
atively small. Moreover, storing values separately leads to
lower space utilization since values are not garbage-collected
during merges. A separate garbage collection process must
be designed to reclaim disk space occupied by obsolete val-
ues.

Given that trade-offs are inevitable, it is valuable to
explore the design space of LSM-trees so that one can make
better or optimal trade-offs. For example, Lim et al. [43]
exploits data redundancy to tune the maximum sizes for
each level to optimize write performance. This has lit-
tle or no impact on other performance metrics since the
number of levels remains the same. Another example is
Monkey [21,22], which unifies the design space of LSM-
trees in terms of merge policies, size ratios, and memory
allocation between memory components and Bloom fil-
ters. It further identifies a better memory allocation scheme
for Bloom filters that improves point lookup performance
without any negative impact on other metrics. Finally, Dos-
toevsky [20] extends the design space of LSM-trees with
a new lazy-leveling merge policy. By performing tiering
at lower levels while leveling at the largest level, lazy
leveling achieves similar write throughput to tiering but
only has slightly worse point lookup performance, long
range query performance, and space utilization than level-
ing.

4 Representative LSM-based systems

Having discussed LSM-trees and their improvements in
detail, we now survey five representative LSM-based open-
source NoSQL systems, namely LevelDB [40], RocksDB
[57], Cassandra [14], HBase [32], and AsterixDB [3]. We
will focus on their storage layers.

4.1 LevelDB

LevelDB [40] is an LSM-based key-value store that was
open-sourced by Google in 2011. It supports a simple key-
value interface including puts, gets, and scans. LevelDB
is not a full-fledged data management system, but rather
an embedded storage engine intended to power higher-
level applications. The major contribution of LevelDB was
that it pioneered the design and implementation of the
partitioned leveling merge policy, which was described in
Sect. 2.2.1. This design has impacted many subsequent LSM-
tree improvements and implementations, as we have seen in
this survey. Since we have already described partitioned lev-
eling in Sect. 2.2.1, we omit further discussions here.

4.2 RocksDB

RocksDB [57] was initially a fork of LevelDB created by
Facebook in 2012. Since then, RocksDB has added a large

@ Springer

Author's personal copy

C. Luo, M. J. Carey

number of new features. Due to its high performance and
flexibility, RocksDB has successfully been used in various
systems [24] both inside and outside of Facebook. Accord-
ing to Facebook, a major motivation of for their adoption of
LSM-based storage was its good space utilization [24]. With
the default size ratio of 10, RocksDB’s leveling implemen-
tation has about 90% percent of the total data at the largest
level, ensuring that at most 10% of the total storage space can
be wasted for storing obsolete entries. As mentioned earlier,
this outperforms traditional B-tree-based storage engines,
where pages are typically 2/3 full on average due to frag-
mentation [77]. Here we discuss various improvements made
by RocksDB, including its improvements to merge policies,
merge operations, and new functionality.

RocksDB’s LSM-tree implementation remains based on
the partitioned leveling design, but with some improvements.
Since SSTables at level O are not partitioned, merging an
SSTable from level O to level 1 generally causes rewrites
of all SSTables at level 1, which often makes level O the
performance bottleneck. To partially address this problem,
RocksDB optionally merges SSTables at level O using the
tiering merge policy. This elastic design allows RocksDB
to better absorb write bursts without degrading query per-
formance too much. RocksDB further supports a dynamic
level size scheme to bound the space amplification. The
issue is that the ideal leveling space amplification 0(%)
is achieved only when the last level reaches the maximum
size, which may not always happen in practice. To address
this, RocksDB dynamically adjusts the maximum capaci-
ties of all of the lower levels depending on the current size
of the last level, thereby ensuring that the space amplifica-
tion is always O(%). In addition to a round-robin policy
to select the SSTables to be merged, which is used in Lev-
elDB, RocksDB supports two additional policies—namely
cold-first and delete-first. The cold-first policy selects cold
SSTables to merge to optimize for skewed workloads. It
ensures that hot SSTables that are updated frequently will
remain in the lower levels to reduce their total write cost.
The delete-first policy selects SSTables with a large number
of antimatter entries to quickly reclaim the disk space occu-
pied by the deleted entries. Finally, RocksDB supports an API
called the merge filter’ that allows users to provide custom
logic to garbage-collect obsolete entries during merges effi-
ciently. During a merge, RocksDB invokes the user-provided
merge filter with each key-value pair and only adds those
key-value pairs that are not filtered to the resulting SSTables.

Besides the partitioned leveling merge policy, RocksDB
supports other merge policies such as tiering and FIFO. In
RocksDB, as well as other systems, the actual tiering merge

7 Tt is called the compaction filter in RocksDB since RocksDB prefers
the term compaction to merge. We use the term merge here to minimize
the potential for terminology confusion.

@ Springer

policy slightly differs from the one described in this paper
(and elsewhere in the literature). RocksDB’s tiering merge
policy is controlled by two parameters, namely, the number
of components to merge (K) and the size ratio (T). It works
by examining components from oldest to newest, and for
each component C;, it checks whether the total size of the K-
1 younger components C;_1, C;_», ..., Ci_g is larger than
T times the size of C;. If so, the policy merges all of these
components together; otherwise, it proceeds to check the next
younger component. RocksDB performs limited partitioning
for its tiering merge policy, similar to the horizontal grouping
design (Sect. 2.2.2), to bound the maximum size of SSTables.
The motivation is that the maximum page size is limited to
4GB, but the index page of a huge component (stored as a
single SSTable) could exceed this size limit. However, during
large merges the disk space may still be temporarily doubled
since RocksDB treats each SSTable group as a whole and
only deletes old SSTables when the merge operation is fully
completed. In the FIFO merge policy, components are not
merged at all, but old components will be deleted based on a
specified lifetime.

In LSM-based storage, merge operations typically con-
sume a lot of CPU and disk resources that can negatively
impact query performance. Moreover, the timing of merges
is generally unpredictable, as it directly depends on the write
rate. To alleviate this issue, RocksDB supports rate limiting
to control the disk write speed of merge operations based on
the leaky bucket mechanism [72]. The basic idea is to main-
tain a “bucket” that stores a number of tokens controlled by
a token refill speed. All flush and merge operations must
request a certain number of tokens before performing each
write. Thus, the disk write speed of flush and merge opera-
tions will be bounded by the specified token refill speed.

Finally, RocksDB supports a new operation called read—
modify—write. In practice, many applications typically update
existing values by reading them first. To support this opera-
tion efficiently, RocksDB allows users to write delta records
directly into memory, thereby avoiding reading the original
record. Delta records are then combined with base records
during query processing and merges based on the user-
provided combination logic. If applicable, RocksDB further
combines multiple delta records together during merges to
improve subsequent query performance.

4.3 HBase

Apache HBase [32] is a distributed data storage system in the
Hadoop ecosystem; it was modeled after Google’s Bigtable
design [16]. HBase is based on a master-slave architecture. It
partitions (either hash or range) a dataset into a set of regions,
where each region is managed by an LSM-tree. HBase sup-
ports dynamic region splitting and merging to elastically

Author's personal copy

LSM-based storage techniques: a survey

manage system resources based on the given workload. Here
we focus on the storage engine of HBase.

HBase’s LSM-tree implementation is generally based on
the basic tiering merge policy. It supports some variations
of the tiering merge policy as well, such as the exploring
merge policy and the date-tiered merge policy. The explor-
ing merge policy checks all mergeable component sequences
and selects the one with the smallest write cost. This merge
policy is more robust than the basic tiering merge policy,
especially when components have irregular sizes due to load-
ing and deletions. Thus, it is used as the default merge policy
in HBase. The date-tiered merge policy is designed for man-
aging time-series data. It merges components based on their
time ranges, instead of their sizes, so that components will
be time-range-partitioned. This enables efficient processing
of temporal queries.

Recently, HBase has introduced a new feature, called
stripping, to partition a large region to improve merge effi-
ciency. The idea is to partition the key space so that each
partition, which contains a list of components, is merged
independently. This is similar to the design proposed by PE
files [35], but is different from the partitioned tiering merge
policy described in Sect. 2.2.1.

HBase does not support secondary indexes natively. How-
ever, a secondary index can be implemented as a separate
table that stores secondary keys plus their primary keys using
co-processors, as described in [25].

4.4 Cassandra

Apache Cassandra [14] is an open-source distributed data
storage system modeled after both Amazon’s Dynamo [23]
and Google’s BigTable [16]. Cassandra relies on a decentral-
ized architecture to eliminate the possibility of a single point
of failure. Each data partition in Cassandra is powered by an
LSM-based storage engine.

Cassandra supports a similar set of merge policies to
RocksDB and HBase, including the (unpartitioned) tiering
merge policy, the partitioned leveling merge policy, and the
date-tiered merge policy. Moreover, Cassandra supports local
secondary indexes to facilitate query processing. To avoid the
high-point lookup overhead, secondary indexes are main-
tained lazily, similar to DELI [67]. During an update, if the
old record is found in the memory component, then it is used
to clean up secondary indexes directly. Otherwise, secondary
indexes are cleaned up lazily when merging the primary index
components.

4.5 AsterixDB

Apache AsterixDB [3] is an open-source Big Data Manage-
ment System (BDMS) that aims to manage massive amounts

of semi-structured (e.g., JSON) data efficiently. Here we
focus on the storage management aspect of AsterixDB [4].

AsterixDB uses a shared-nothing parallel database style
architecture. The records of each dataset are hash-partitioned
based on their primary keys across multiple nodes. Each
partition of a dataset is managed by an LSM-based storage
engine, with a primary index, a primary key index, and mul-
tiple local secondary indexes. AsterixDB uses a record-level
transaction model to ensure that all of the indexes are kept
consistent within each partition. The primary index stores
records indexed by primary keys, and the primary key index
stores primary keys only. The primary key index is built to
support COUNT(*) style queries efficiently as well as various
index maintenance operations [45] since it is much smaller
than the primary index.

Secondary indexes use the composition of the secondary
key and the primary key as their index keys. AsterixDB sup-
ports LSM-based BT -trees, R-trees, and inverted indexes
using a generic LSM-ification framework that can convert
an in-place index into an LSM-based index. For LSM-based
R-trees, a linear order, such as a Hilbert curve for point
data and a Z-order curve for non-point data, is used to sort
the entries in disk components, while in the memory com-
ponent, deleted keys are recorded in a separate B -tree to
avoid multi-path traversals during deletes. AsterixDB also
supports LSM-based inverted indexes to efficiently process
full-text queries and similarity queries [38]. By default, each
LSM index’s components are merged independently using
a tiering-like merge policy. AsterixDB also supports a cor-
related merge policy that synchronizes the merges of all of
a dataset’s indexes together to improve query performance
with filters. The basic idea of this policy is to delegate merge
scheduling to the primary index. When a sequence of primary
index components are merged, all corresponding components
from other indexes will be merged as well.

5 Future research directions

Categorizing and summarizing the existing LSM-tree
improvements in the literature reveal several interesting
outages and opportunities for future work on LSM-based
storage. We now briefly discuss some future research direc-
tions suggested by the results of this survey.

Thorough performance evaluation As mentioned
before, the tunability of LSM-trees has not been adequately
considered in many of the research efforts to date. Work on
improvements has typically been evaluated against a default
(untuned) configuration of LevelDB or RocksDB. It is not
clear how the improvements would compare against a well-
tuned baseline LSM-tree for a given workload. Moreover,
many of the improvement proposals have primarily evaluated
their impact on query performance, with space utilization

@ Springer

Author's personal copy

C. Luo, M. J. Carey

often being neglected. This situation can be addressed in
future research by more carefully considering the tunabil-
ity of LSM-trees.

Partitioned tiering structure Tiering has been used by
many LSM-tree improvements to reduce the write ampli-
fication of LSM-trees. In Sect. 2.2.1, we have identified
two possible partitioned tiering schemes, namely horizon-
tal grouping and vertical grouping, that cover virtually
all of the tiering-related LSM-tree improvements proposed
recently. However, the performance characteristics and trade-
offs of these two schemes are not yet clear. In general,
vertical grouping permits more freedom when selecting
SSTables to merge, while horizontal grouping ensures that
SSTables are fixed-size. It would be useful as future work
to systematically evaluate these two schemes and possi-
bly design new schemes that combine the advantages of
both.

Hybrid merge policy Until recently, most LSM-tree
improvements have assumed a homogeneous merge policy
of either leveling or tiering at all of the levels of an LSM-tree.
However, this has been shown to be sub-optimal for certain
workloads [20]. A hybrid merge policy of leveling and tier-
ing can provide much better write performance than leveling
with minimal impact on point lookups, long range queries,
and space amplification. As a future direction, it would be
interesting to design and implement LSM-trees with hybrid
merge policies and revisit some of the key questions raised
by this design choice.

Minimizing performance variance In practice, perfor-
mance variance is as important a performance metric as
absolute throughput. Unfortunately, LSM-trees often exhibit
large performance variances because they decouple the in-
memory writes from expensive background I/Os. As we have
seen in this survey, bLSM [61] is the only attempt to min-
imize write stalls exhibited by LSM-trees. However, bLSM
itself still has several limitations. It was designed just for the
unpartitioned leveling merge policy, and it only minimizes
long write latencies caused by write stalls instead of the vari-
ance of the overall ingestion throughput. As future work, it
would be very useful to design mechanisms to minimize the
performance variance of LSM-trees.

Toward database storage engines Finally, most of
the existing LSM-tree improvements have focused rather
narrowly on a key-value store setting involving a single
LSM-tree. As LSM-trees are gradually becoming widely
used inside DBMS storage engines, new query process-
ing and data ingestion techniques should be developed for
this more general (multi-index) setting. Possible examples
include adaptive maintenance of auxiliary structures to facil-
itate query processing, LSM-aware query optimization, and
co-planning of LSM-tree maintenance tasks with query exe-
cution.

@ Springer

6 Conclusion

Recently, LSM-trees have become increasingly popular in
modern NoSQL systems due to advantages such as supe-
rior write performance, high space utilization, immutability
of on-disk data, and tunability. These factors have enabled
LSM-trees to be widely adopted and deployed to serve a
variety of workloads.

In this paper, we have surveyed the recent research efforts,
including efforts from both the database community and the
systems community, to improve LSM-trees. We presented
a general taxonomy to classify existing LSM-tree improve-
ments based on the specific aspects that they aim to optimize,
and we discussed the improvements in detail based on the
proposed taxonomy. We also reviewed several representative
LSM-based open-source NoSQL systems, and we identified
some interesting future research directions. We hope that this
survey will serve as a useful guide to the state of the art in
LSM-based storage techniques for researchers, practitioners,
and users.

Acknowledgements We would like to thank Mark Callaghan, Manos
Athanassoulis, and the anonymous reviewers for their valuable com-
ments and feedback. This work was supported by NSF awards CNS-
1305430, 1IS-1447720, and IIS-1838248 along with industrial support
from Amazon, Google, and Microsoft and support from The Donald
Bren Foundation (via a Bren Chair) of UC Irvine.

References

1. Absalyamoyv, L., et al.: Lightweight cardinality estimation in LSM-
based systems. In: ACM SIGMOD, pp. 841-855 (2018)

2. Ahmad, M.Y., Kemme, B.: Compaction management in distributed
key-value datastores. PVLDB 8(8), 850-861 (2015)

3. Alsubaiee, S., et al.: AsterixDB: a scalable, open source BDMS.
PVLDB 7(14), 1905-1916 (2014)

4. Alsubaiee, S., et al.: Storage management in AsterixDB. PVLDB
7(10), 841-852 (2014)

5. Alsubaiee, S., et al.: LSM-based storage and indexing: an old idea
with timely benefits. In: International ACM SIGMOD Workshop
on Managing and Mining Enriched Geo-spatial Data (GeoRich),
pp 1-6 (2015)

6. Amur, H., et al.: Design of a write-optimized data store. Tech. rep,
Georgia Institute of Technology (2013)

7. Athanassoulis, M., et al.: MaSM: efficient online updates in data
warehouses. In: ACM SIGMOD, pp. 865-876. ACM (2011)

8. Athanassoulis, M., et al.: Designing access methods: the RUM
conjecture. In: EDBT, vol. 2016, pp. 461-466 (2016)

9. Balmau, O., et al.: FloDB: unlocking memory in persistent key-
value stores. In: European Conference on Computer Systems
(EuroSys), pp. 80-94 (2017)

10. Balmau, O., et al.: TRIAD: creating synergies between memory,
disk and log in log structured key-value stores. In: USENIX Annual
Technical Conference (ATC), pp. 363-375 (2017)

11. Bender, M.A., etal.: Don’t thrash: how to cache your hash on flash.
PVLDB 5(11), 1627-1637 (2012)

12. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. CACM 13(7), 422-426 (1970)

Author's personal copy

LSM-based storage techniques: a survey

13.

14.
15.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.
41.

Bortnikov, E., et al.: Accordion: better memory organization for
LSM key-value stores. PVLDB 11(12), 1863-1875 (2018)
Cassandra. http://cassandra.apache.org/

Chan, H.H.W,, et al.: HashKV: enabling efficient updates in KV
storage via hashing. In: USENIX Annual Technical Conference
(ATC), pp. 1007-1019 (2018)

Chang, F., et al.: Bigtable: a distributed storage system for struc-
tured data. ACM TOCS 26(2), 4:1-4:26 (2008)

Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structur-
ing technique. Algorithmica 1(1), 133-162 (1986)

. Chen, G.J., et al.: Realtime data processing at Facebook. In: ACM

SIGMOD, pp. 1087-1098 (2016)

Dragon: A distributed graph query engine. https://code.fb.com/
data-infrastructure/dragon-a-distributed- graph-query-engine/
Dayan, N., Idreos, S.: Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superflu-
ous merging. In: ACM SIGMOD, pp. 505-520 (2018)

Dayan, N, et al.: Monkey: optimal navigable key-value store. In:
ACM SIGMOD, pp. 79-94 (2017)

Dayan, N., et al.: Optimal Bloom filters and adaptive merging for
LSM-trees. ACM TODS 43(4), 16:1-16:48 (2018)

DeCandia, G., et al.: Dynamo: Amazon’y highly available key-
value store. In: ACM SOSP, pp. 205-220 (2007)

Dong, S., et al.: Optimizing space amplification in RocksDB. In:
CIDR, vol. 3, p. 3 (2017)

D’silva, J.V,, et al.: Secondary indexing techniques for key-value
stores: two rings to rule them all. In: International Workshop On
Design, Optimization, Languages and Analytical Processing of Big
Data (DOLAP) (2017)

Duan, H., et al.: Incremental materialized view maintenance on
distributed log-structured merge-tree. In: DASFAA, pp. 682-700
(2018)

Fagin, R., et al.: Optimal aggregation algorithms for middleware.
In: ACM PODS, pp. 102-113 (2001)

Fan, B., et al.: Cuckoo filter: practically better than bloom. In:
International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), pp. 75-88 (2014)

Fang, Y., et al.: Spatial indexing in Microsoft SQL Server 2008. In:
ACM SIGMOD, pp. 1207-1216 (2008)

Golan-Gueta, G., et al.: Scaling concurrent log-structured data
stores. In: European Conference on Computer Systems (EuroSys),
pp- 32:1-32:14 (2015)

Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: ACM SIGMOD, pp. 47-57 (1984)

HBase. https://hbase.apache.org/

Haerder, T., Reuter, A.: Principles of transaction-oriented database
recovery. ACM CSUR 15(4), 287-317 (1983)

Jagadish, H.V,, et al.: Incremental organization for data recording
and warehousing. In: VLDB, pp. 16-25 (1997)

Jermaine, C., et al.: The partitioned exponential file for database
storage management. VLDBJ 16(4), 417-437 (2007)

Kannan, S., et al.: Redesigning LSMs for nonvolatile memory with
NoveLSM. In: USENIX Annual Technical Conference (ATC), pp.
993-1005 (2018)

Khodaei, A., et al.: Hybrid indexing and seamless ranking of spatial
and textual features of web documents. In: Database and Expert
Systems Applications (DEXA), pp. 450—466 (2010)

Kim, T., et al.: Supporting similarity queries in Apache AsterixDB.
In: EDBT, pp. 528-539 (2018)

Kim, Y., et al.: A comparative study of log-structured merge-tree-
based spatial indexes for big data. In: ICDE, pp. 147-150 (2017)
LevelDB. http://leveldb.org/

Lawder, J.: The application of space-filling curves to the storage
and retrieval of multi-dimensional data. Ph.D. thesis, PhD Thesis,
University of London, UK (2000)

42.

43.

44,

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Li, Y., et al.: Tree indexing on solid state drives. PVLDB 3(1-2),
1195-1206 (2010)

Lim, H., et al.: Towards accurate and fast evaluation of multi-stage
log-structured designs. In: USENIX Conference on File and Stor-
age Technologies (FAST), pp. 149-166 (2016)

Lu, L., et al.: WiscKey: separating keys from values in SSD-
conscious storage. In: USENIX Conference on File and Storage
Technologies (FAST), pp. 133-148 (2016)

Luo, C., Carey, M.J.: Efficient data ingestion and query processing
for LSM-based storage systems. PVLDB 12(5), 531-543 (2019)
MyRocks. http://myrocks.io/

Mathieu, C., et al.: Bigtable merge compaction.
arXiv:1407.3008 (2014)

Mei, F, et al.: LSM-tree managed storage for large-scale key-value
store. In: ACM SoCC, pp. 142-156 (2017)

Mei, E., et al.: SifrDB: a unified solution for write-optimized key-
value stores in large datacenter. In: ACM SoCC, pp. 477-489
(2018)

Muth, P, et al.: The LHAM log-structured history data access
method. VLDBIJ 8(3), 199-221 (2000)

O’Neil, P, et al.: The log-structured merge-tree (LSM-tree). Acta
Inf. 33(4), 351-385 (1996)

Pan, EF,, et al.: dCompaction: speeding up compaction of the LSM-
tree via delayed compaction. J. Comput. Sci. Technol. 32(1), 41-54
(2017)

Papagiannis, A., et al.: An efficient memory-mapped key-value
store for flash storage. In: ACM SoCC, pp. 490-502 (2018)
Pugh, W.: Skip lists: a probabilistic alternative to balanced trees.
CACM 33(6), 668-676 (1990)

Putze, F,, et al.: Cache-, hash-, and space-efficient bloom filters. J.
Exp. Algorithmics 14, 4:4.4-4:4.18 (2010)

Qader, M.A., et al.: A comparative study of secondary indexing
techniques in LSM-based NoSQL databases. In: ACM SIGMOD,
pp. 551-566 (2018)

RocksDB. http://rocksdb.org/

Raju, P, et al.: PebblesDB: building key-value stores using frag-
mented log-structured merge trees. In: ACM SOSP, pp. 497-514
(2017)

Ren, K., et al.: SlimDB: a space-efficient key-value storage engine
for semi-sorted data. PVLDB 10(13), 2037-2048 (2017)
Rosenblum, M., Ousterhout, J.K.: The design and implementation
of a log-structured file system. ACM TOCS 10(1), 26-52 (1992)
Sears, R., Ramakrishnan, R.: bLSM: a general purpose log struc-
tured merge tree. In: ACM SIGMOD, pp. 217-228 (2012)
Seltzer, M.L.: File system performance and transaction support.
Tech. rep., PhD Thesis, Department of Electrical Engineering and
Computer Sciences, University of California Berkeley (1992)
Severance, D.G., Lohman, G.M.: Differential files: their appli-
cation to the maintenance of large databases. ACM TODS 1(3),
256-267 (1976)

Shetty, P.J., etal.: Building workload-independent storage with VT-
trees. In: USENIX Conference on File and Storage Technologies
(FAST), pp. 17-30 (2013)

Stonebraker, M.: The design of the Postgres storage system. In:
VLDB, pp. 289-300 (1987)

Tan, W., et al.: Diff-index: differentiated index in distributed log-
structured data stores. In: EDBT, pp. 700-711 (2014)

Tang, Y., et al.: Deferred lightweight indexing for log-structured
key-value stores. In: International Symposium in Cluster, Cloud,
and Grid Computing (CCGrid), pp. 11-20 (2015)

Teng, D., et al.: LSbM-tree: Re-enabling buffer caching in data
management for mixed reads and writes. In: IEEE International
Conference on Distributed Computing Systems (ICDCS), pp. 68—
79 (2017)

CoRR

@ Springer

http://cassandra.apache.org/
https://code.fb.com/data-infrastructure/dragon-a-distributed-graph-query-engine/
https://code.fb.com/data-infrastructure/dragon-a-distributed-graph-query-engine/
https://hbase.apache.org/
http://leveldb.org/
http://myrocks.io/
http://arxiv.org/abs/1407.3008
http://rocksdb.org/

Author's personal copy

C. Luo, M. J. Carey

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

Teng, D., et al.: A low-cost disk solution enabling LSM-tree to
achieve high performance for mixed read/write workloads. ACM
TOS 14(2), 15:1-15:26 (2018)

Thonangi, R., Yang, J.: On log-structured merge for solid-state
drives. In: ICDE, pp. 683-694 (2017)

Thonangi, R., et al.: A practical concurrent index for solid-state
drives. In: ACM CIKM, pp. 1332-1341 (2012)

Turner, J.: New directions in communications (or which way to the
information age?). IEEE Commun. Mag. 24(10), 8—15 (1986)
Vingon, T., et al.: NoFTL-KV: Tackling write-amplification on K'V-
stores with native storage management. In: EDBT, pp. 457460
(2018)

Wang, P, et al.: An efficient design and implementation of LSM-
tree based key-value store on open-channel SSD. In: European
Conference on Computer Systems (EuroSys), pp. 16:1-16:14
(2014)

Wu, L., etal.: LSII: An indexing structure for exact real-time search
on microblogs. In: ICDE, pp. 482493 (2013)

Wu, X, et al.: LSM-trie: an LSM-tree-based ultra-large key-value
store for small data. In: USENIX Annual Technical Conference
(ATC), pp. 71-82 (2015)

Yao, A.C.C.: On random 2-3 trees. Acta Inf. 9(2), 159-170 (1978)
Yao, T., et al.: Building efficient key-value stores via a lightweight
compaction tree. ACM TOS 13(4), 29:1-29:28 (2017)

Yao, T., et al.: A light-weight compaction tree to reduce 1/O
amplification toward efficient key-value stores. In: International
Conference on Massive Storage Systems and Technology (MSST)
(2017)

@ Springer

80.

81.

82.

83.

84.

85.

Yoon, H., et al.: Mutant: Balancing storage cost and latency in
LSM-tree data stores. In: ACM SoCC, pp. 162-173 (2018)

Yue, Y., et al.: Building an efficient put-intensive key-value store
with skip-tree. IEEE Trans. Parallel Distrib. Syst. 28(4), 961-973
(2017)

Zhang, W, et al.: Improving write performance of LSMT-based
key-value store. In: International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 553-560 (2016)

Zhang, Y., et al.: ElasticBF: Fine-grained and elastic bloom filter
towards efficient read for LSM-tree-based KV stores. In: USENIX
‘Workshop on Hot Topics in Storage and File Systems (HotStorage)
(2018)

Zhang, Z., et al.: Pipelined compaction for the LSM-tree. In:
IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pp. 777-786 (2014)

Zhu, Y., et al.: An efficient bulk loading approach of secondary
index in distributed log-structured data stores. In: DASFAA, pp.
87-102 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	LSM-based storage techniques: a survey
	Abstract
	1 Introduction
	2 LSM-tree basics
	2.1 History of LSM-trees
	2.2 Today's LSM-trees
	2.2.1 Basic structure
	2.2.2 Some well-known optimizations
	2.2.3 Concurrency control and recovery

	2.3 Cost analysis

	3 LSM-tree improvements
	3.1 A taxonomy of LSM-tree improvements
	3.2 Reducing write amplification
	3.2.1 Tiering
	3.2.2 Merge skipping
	3.2.3 Exploiting data skew
	3.2.4 Summary

	3.3 Optimizing merge operations
	3.3.1 Improving merge performance
	3.3.2 Reducing buffer cache misses
	3.3.3 Minimizing write stalls
	3.3.4 Summary

	3.4 Hardware opportunities
	3.4.1 Large memory
	3.4.2 Multi-core
	3.4.3 SSD/NVM
	3.4.4 Native storage
	3.4.5 Summary

	3.5 Handling special workloads
	3.6 Auto-tuning
	3.6.1 Parameter tuning
	3.6.2 Tuning merge policies
	3.6.3 Dynamic bloom filter memory allocation
	3.6.4 Optimizing data placement
	3.6.5 Summary

	3.7 Secondary indexing
	3.7.1 Index structures
	3.7.2 Index maintenance
	3.7.3 Statistics collection
	3.7.4 Distributed indexing
	3.7.5 Summary

	3.8 Discussion of overall trade-offs

	4 Representative LSM-based systems
	4.1 LevelDB
	4.2 RocksDB
	4.3 HBase
	4.4 Cassandra
	4.5 AsterixDB

	5 Future research directions
	6 Conclusion
	Acknowledgements
	References

