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1 INTRODUCTION

The log-structured merge-tree (LSM-tree) [16, 18] is widely
used in modern NoSQL systems. Different from traditional
update-in-place structures, an LSM-tree first buffers all writes
in memory, which are subsequently flushed to disk when
memory is full. The on-disk components are usually orga-
nized into levels of exponentially increasing sizes, where a
smaller level is merged into the adjacent larger level when
it fills up. To bound the temporary disk space occupied by
merges, modern LSM-tree implementations often range par-
tition a disk component into many fixed-size SSTables.

Efficient memory management is critical for index struc-
tures to achieve high performance. Compared to update-in-
place systems, where all pages are managed within buffer
pools, LSM-trees have introduced additional memory walls.
First, the memory component region is isolated from the
disk buffer cache. Second, each LSM-tree manages its mem-
ory component independently. Since the optimal memory
allocation heavily depends on the workload, memory man-
agement must be workload-adaptive to maximize the system
efficiency. However, such adaptivity is non-trivial due to
several problems highlighted below. Existing LSM-tree im-
plementations, such as RocksDB [2] and AsterixDB [12],
instead use a static memory allocation scheme due to its
simplicity while sacrificing efficiency.

Problem 1: Memory Allocation Among Multiple LSM-
trees. An LSM-based storage system often contains multiple
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LSM-trees representing different datasets and secondary in-
dexes [14]. Each LSM-tree can have different write character-
istics, so it is important to allocate and deallocate their mem-
ory components properly to maximize system efficiency.

Problem 2: Managing Large Memory Components.
Most existing LSM-tree implementations use monolithic B*-
trees or skip-lists to manage their memory components; they
are flushed entirely when memory is full. With large memory,
it is desirable to flush memory components continuously to
minimize blocking and maximize memory utilization. More-
over, since write amplification is determined by the number
of on-disk levels [16], the on-disk structure may need to be
adjusted to reduce write amplification.

Problem 3: Memory Allocation Between Disk Buffer
Cache and Memory Components. Finally, the system must
decide how to allocate memory between memory compo-
nents and the disk buffer cache. This can be formulated as an
optimization problem. However, the challenge is to model the
workload characteristics accurately, especially when work-
loads are skewed, and to make sure that the system reacts
properly as the workload fluctuates.

In this paper, we present our ongoing project, which at-
tempts to break down the memory walls in LSM-based stor-
age systems. We present a general architecture that enables
adaptive memory management. We describe our solution for
Problems 1 and 2 and a formulation of Problem 3.

2 BACKGROUND AND RELATED WORK

The importance of efficient memory management has long
been recognized for database systems. Various buffer replace-
ment policies [7, 11, 17] have been proposed to minimize
disk I/Os. Some commercial DBMSs [3, 9, 19] have offered
functionalities to tune the memory allocation among differ-
ent memory regions. However, these efforts have all focused
on storage systems based on in-place updates, i.e., all buffer
pages are managed through buffer pools.

There have also been some efforts to optimize memory
management for LSM-trees. FloDB [5] presents a two-level
memory component structure to mask write latency under
large memory. However, FloDB still targets fixed-size mem-
ory components and does not optimize on-disk write amplifi-
cation. Accordion [6] introduces a multi-level memory com-
ponent structure with in-memory flushes and merges. One


https://doi.org/10.1145/3318464.3384399
https://doi.org/10.1145/3318464.3384399

Student Abstract

Mlola\ = Mmem+Mcache

1 1
1 1
E Memory Pool 1 £
i i Tuner ) &F
H o N ¥~s -~ H mem
E E Mcache
i ASM-tree 1 SM-tree SM-tree 1
n . \__\~~‘ i
El'\ (0=100) active R '
AR 1
1 \‘ 35-70) ([75-95) immutable -
1 1
 + (020) (440 G260) G2 74) (559 8099,
Memory Components disk flush Disk Buffer Cache

Figure 1: Memory Management Architecture

drawback is that memory components can be very large since
they are not range partitioned, resulting in high memory uti-
lization during large in-memory merges. Monkey [10] uses
analytical models to tune the memory allocation between
memory components and Bloom filters. However, Monkey
mainly considers the worst-case I/O cost, which can be very
different from real-world workloads due to skews [13].

3 ADAPTIVE MEMORY MANAGEMENT

Figure 1 depicts our proposed memory management archi-
tecture, where the overall memory budget M;,;4; is divided
between the memory component region M., and the disk
buffer cache M, 4cpe. It also performs adaptive memory man-
agement in the following manner.

The memory components of all LSM-trees are managed
through Figure 1’s shared memory pool. When an LSM-
tree has insufficient memory to store incoming writes, more
pages will be requested from the pool. When the memory
utilization exceeds a predefined threshold, an LSM-tree is
selected to flush its memory component to disk. To bound
the recovery time, flushes can also be triggered if the trans-
action log is too long. A write-heavy LSM-tree can come to
have a very large memory component, and flushing it all at
once may block incoming writes and cause write stalls [15].
This also reduces memory utilization since a large chunk of
memory will be freed at once. To address these problems, we
organize a memory component into a multi-level structure,
as shown in Figure 1, that can be seen as an in-memory LSM-
tree. The active SSTable is used to store incoming writes.
When the active SSTable is full, it is flushed as an immutable
in-memory SSTable, which can be subsequently merged as
well. On receiving a disk-flush request, the LSM-tree selects
an SSTable to flush to disk. Disk flushes are performed on
a continuous-basis and memory utilization thus stays high.
Due to space limitations, we omit further details of memory
component management.

Since the write amplification of an LSM-tree is determined
by the number of on-disk levels [16], the question of how
to adjust the on-disk structure to reduce write amplification
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remains. One obvious solution is to change the number of
on-disk levels as the memory component grows and shrinks.
However, this would add implementation complexity, and
the LSM-tree must be robust in case of workload fluctua-
tions. Instead, we propose a simple yet effective solution that
exploits the property that our flushed SSTables are range
partitioned. In the proposed solution, the number of on-disk
levels will be determined by the maximum size of the active
SSTable. When the memory component is small, this struc-
ture behaves like a classical LSM-tree. However, when the
memory component becomes larger, its flushed SSTables will
have smaller key ranges. It turns out that most SSTables at
the first few on-disk levels will then have non-overlapping
key ranges, which leads to better write and read performance
without impacting space utilization.

To break down the memory wall between memory com-
ponents and the disk buffer cache, we introduce a memory
tuner. Given a memory budget M;,;,;, its goal is to find an
optimal memory allocation My,e;, and Mcgcpe SO that the
weighted I/O cost w-I/Oyyrite +1-I/Oyeqq is minimized. The
weights w and r allow us to instantiate the objective function
for different use cases. For example, on hard disks, one can
set w = r since reads and writes are equally expensive, while
on SSDs one can make w larger to reduce write amplification.
We are still in the process of designing this memory tuner.

= 16000 20 §
&5 3
o 12000 15 €
e% =2
£ S 8000 10 E
2 2
E 4000 Write Throughput 5 g
0 —A—Write Amplification 0

128 256 512 1024 2048 4096

Memory Component Size (MB)

Figure 2: Preliminary Experimental Results

4 RESULTS AND CONTRIBUTIONS

We have implemented our proposed architecture (minus the
memory tuner) inside Apache AsterixDB [1, 4]. To evaluate
the effectiveness of our proposed solution for exploiting large
memory components, we conducted an experiment using
the YCSB benchmark [8] with 100GB dataset and uniform
updates. Figure 2 shows that larger memory components
increase the write throughput by reducing the write amplifi-
cation. This also reduces the total amount of disk writes and
improves the system efficiency.

Acknowledgment. I would like to thank my PhD advisor
Michael J. Carey for his support in this work. This work is
supported by NSF awards IIS-1838248 and CNS-1925610.



Student Abstract

REFERENCES

(1]
(2]

2019. AsterixDB. https://asterixdb.apache.org/.

2019. RocksDB. http://rocksdb.org/.

Sanjay Agrawal et al. 2005. Database tuning advisor for Microsoft SQL
Server 2005. In ACM SIGMOD. ACM, 930-932.

Sattam Alsubaiee et al. 2014. AsterixDB: A Scalable, Open Source
BDMS. PVLDB 7, 14 (2014), 1905-1916.

Oana Balmau et al. 2017. FloDB: Unlocking Memory in Persistent Key-
Value Stores. In European Conference on Computer Systems (EuroSys).
80-94.

Edward Bortnikov et al. 2018. Accordion: Better Memory Organization
for LSM Key-value Stores. PVLDB 11, 12 (2018), 1863-1875.

Hong Tai Chou and David J. DeWitt. 1986. An evaluation of buffer
management strategies for relational database systems. Algorithmica
1, 1 (01 Nov 1986), 311-336.

Brian F. Cooper et al. 2010. Benchmarking Cloud Serving Systems
with YCSB. In ACM SoCC. 143-154.

Benoit Dageville and Karl Dias. 24-31. Oracle’s Self-Tuning Architec-
ture and Solutions. IEEE Data Engineering Bulletin (24-31), 2006.

Niv Dayan et al. 2017. Monkey: Optimal Navigable Key-Value Store.
In ACM SIGMOD. 79-94.

2819

(1]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead
High Performance Buffer Management Replacement Algorithm. In
VLDB. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
439-450.

Taewoo Kim and et al. 2020. Robust and efficient memory management
in Apache AsterixDB. Software: Practice and Experience (2020). https:
//doi.org/10.1002/spe.2799

Hyeontaek Lim et al. 2016. Towards Accurate and Fast Evaluation of
Multi-Stage Log-structured Designs. In USENIX Conference on File and
Storage Technologies (FAST). 149-166.

Chen Luo and Michael J. Carey. 2019. Efficient Data Ingestion and
Query Processing for LSM-Based Storage Systems. PVLDB 12, 5 (2019),
531-543.

Chen Luo and Michael J. Carey. 2019. On Performance Stability in
LSM-based Storage Systems. PVLDB 13, 4 (2019), 449-462.

Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques:
a survey. The VLDB Journal 29, 1 (2020), 393-418.

Elizabeth J. O’'Neil et al. 1993. The LRU-K Page Replacement Algorithm
for Database Disk Buffering. SIGMOD Rec. 22, 2 (June 1993), 297-306.

Patrick O'Neil et al. 1996. The Log-structured Merge-tree (LSM-tree).
Acta Inf. 33, 4 (1996), 351-385.

Adam J. Storm et al. 2006. Adaptive Self-tuning Memory in DB2. In
VLDB (VLDB ’06). VLDB Endowment, 1081-1092.


https://asterixdb.apache.org/
http://rocksdb.org/
https://doi.org/10.1002/spe.2799
https://doi.org/10.1002/spe.2799

	1 Introduction
	2 Background and Related Work
	3 Adaptive Memory Management
	4 Results and Contributions
	References



