Student Abstract

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Breaking Down Memory Walls in
LSM-based Storage Systems

Chen Luo

cluo8@uci.edu
University of California, Irvine

ACM Reference Format:

Chen Luo. 2020. Breaking Down Memory Walls in LSM-based Stor-
age Systems. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’20), June 14—
19, 2020, Portland, OR, USA. ACM, Portland, OR, USA, 3 pages.
https://doi.org/10.1145/3318464.3384399

1 INTRODUCTION

The log-structured merge-tree (LSM-tree) [16, 18] is widely
used in modern NoSQL systems. Different from traditional
update-in-place structures, an LSM-tree first buffers all writes
in memory, which are subsequently flushed to disk when
memory is full. The on-disk components are usually orga-
nized into levels of exponentially increasing sizes, where a
smaller level is merged into the adjacent larger level when
it fills up. To bound the temporary disk space occupied by
merges, modern LSM-tree implementations often range par-
tition a disk component into many fixed-size SSTables.

Efficient memory management is critical for index struc-
tures to achieve high performance. Compared to update-in-
place systems, where all pages are managed within buffer
pools, LSM-trees have introduced additional memory walls.
First, the memory component region is isolated from the
disk buffer cache. Second, each LSM-tree manages its mem-
ory component independently. Since the optimal memory
allocation heavily depends on the workload, memory man-
agement must be workload-adaptive to maximize the system
efficiency. However, such adaptivity is non-trivial due to
several problems highlighted below. Existing LSM-tree im-
plementations, such as RocksDB [2] and AsterixDB [12],
instead use a static memory allocation scheme due to its
simplicity while sacrificing efficiency.

Problem 1: Memory Allocation Among Multiple LSM-
trees. An LSM-based storage system often contains multiple

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3384399

2817

LSM-trees representing different datasets and secondary in-
dexes [14]. Each LSM-tree can have different write character-
istics, so it is important to allocate and deallocate their mem-
ory components properly to maximize system efficiency.

Problem 2: Managing Large Memory Components.
Most existing LSM-tree implementations use monolithic B*-
trees or skip-lists to manage their memory components; they
are flushed entirely when memory is full. With large memory,
it is desirable to flush memory components continuously to
minimize blocking and maximize memory utilization. More-
over, since write amplification is determined by the number
of on-disk levels [16], the on-disk structure may need to be
adjusted to reduce write amplification.

Problem 3: Memory Allocation Between Disk Buffer
Cache and Memory Components. Finally, the system must
decide how to allocate memory between memory compo-
nents and the disk buffer cache. This can be formulated as an
optimization problem. However, the challenge is to model the
workload characteristics accurately, especially when work-
loads are skewed, and to make sure that the system reacts
properly as the workload fluctuates.

In this paper, we present our ongoing project, which at-
tempts to break down the memory walls in LSM-based stor-
age systems. We present a general architecture that enables
adaptive memory management. We describe our solution for
Problems 1 and 2 and a formulation of Problem 3.

2 BACKGROUND AND RELATED WORK

The importance of efficient memory management has long
been recognized for database systems. Various buffer replace-
ment policies [7, 11, 17] have been proposed to minimize
disk I/Os. Some commercial DBMSs [3, 9, 19] have offered
functionalities to tune the memory allocation among differ-
ent memory regions. However, these efforts have all focused
on storage systems based on in-place updates, i.e., all buffer
pages are managed through buffer pools.

There have also been some efforts to optimize memory
management for LSM-trees. FloDB [5] presents a two-level
memory component structure to mask write latency under
large memory. However, FloDB still targets fixed-size mem-
ory components and does not optimize on-disk write amplifi-
cation. Accordion [6] introduces a multi-level memory com-
ponent structure with in-memory flushes and merges. One

https://doi.org/10.1145/3318464.3384399
https://doi.org/10.1145/3318464.3384399

Student Abstract

Mlola\ = Mmem+Mcache

1 1
1 1
E Memory Pool 1 £
i i Tuner) &F
H o N ¥~s -~ H mem
E E Mcache
i ASM-tree 1 SM-tree SM-tree 1
n . __\~~‘ i
El'\ (0=100) active R '
AR 1
1 \‘ 35-70) ([75-95) immutable -
1 1
 + (020) (440 G260) G2 74) (559 8099,
Memory Components disk flush Disk Buffer Cache

Figure 1: Memory Management Architecture

drawback is that memory components can be very large since
they are not range partitioned, resulting in high memory uti-
lization during large in-memory merges. Monkey [10] uses
analytical models to tune the memory allocation between
memory components and Bloom filters. However, Monkey
mainly considers the worst-case I/O cost, which can be very
different from real-world workloads due to skews [13].

3 ADAPTIVE MEMORY MANAGEMENT

Figure 1 depicts our proposed memory management archi-
tecture, where the overall memory budget M;,;4; is divided
between the memory component region M., and the disk
buffer cache M, 4cpe. It also performs adaptive memory man-
agement in the following manner.

The memory components of all LSM-trees are managed
through Figure 1’s shared memory pool. When an LSM-
tree has insufficient memory to store incoming writes, more
pages will be requested from the pool. When the memory
utilization exceeds a predefined threshold, an LSM-tree is
selected to flush its memory component to disk. To bound
the recovery time, flushes can also be triggered if the trans-
action log is too long. A write-heavy LSM-tree can come to
have a very large memory component, and flushing it all at
once may block incoming writes and cause write stalls [15].
This also reduces memory utilization since a large chunk of
memory will be freed at once. To address these problems, we
organize a memory component into a multi-level structure,
as shown in Figure 1, that can be seen as an in-memory LSM-
tree. The active SSTable is used to store incoming writes.
When the active SSTable is full, it is flushed as an immutable
in-memory SSTable, which can be subsequently merged as
well. On receiving a disk-flush request, the LSM-tree selects
an SSTable to flush to disk. Disk flushes are performed on
a continuous-basis and memory utilization thus stays high.
Due to space limitations, we omit further details of memory
component management.

Since the write amplification of an LSM-tree is determined
by the number of on-disk levels [16], the question of how
to adjust the on-disk structure to reduce write amplification

2818

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

remains. One obvious solution is to change the number of
on-disk levels as the memory component grows and shrinks.
However, this would add implementation complexity, and
the LSM-tree must be robust in case of workload fluctua-
tions. Instead, we propose a simple yet effective solution that
exploits the property that our flushed SSTables are range
partitioned. In the proposed solution, the number of on-disk
levels will be determined by the maximum size of the active
SSTable. When the memory component is small, this struc-
ture behaves like a classical LSM-tree. However, when the
memory component becomes larger, its flushed SSTables will
have smaller key ranges. It turns out that most SSTables at
the first few on-disk levels will then have non-overlapping
key ranges, which leads to better write and read performance
without impacting space utilization.

To break down the memory wall between memory com-
ponents and the disk buffer cache, we introduce a memory
tuner. Given a memory budget M;,;,;, its goal is to find an
optimal memory allocation My,e;, and Mcgcpe SO that the
weighted I/O cost w-I/Oyyrite +1-I/Oyeqq is minimized. The
weights w and r allow us to instantiate the objective function
for different use cases. For example, on hard disks, one can
set w = r since reads and writes are equally expensive, while
on SSDs one can make w larger to reduce write amplification.
We are still in the process of designing this memory tuner.

= 16000 20 §
&5 3
o 12000 15 €
e% =2
£ S 8000 10 E
2 2
E 4000 Write Throughput 5 g
0 —A—Write Amplification 0

128 256 512 1024 2048 4096

Memory Component Size (MB)

Figure 2: Preliminary Experimental Results

4 RESULTS AND CONTRIBUTIONS

We have implemented our proposed architecture (minus the
memory tuner) inside Apache AsterixDB [1, 4]. To evaluate
the effectiveness of our proposed solution for exploiting large
memory components, we conducted an experiment using
the YCSB benchmark [8] with 100GB dataset and uniform
updates. Figure 2 shows that larger memory components
increase the write throughput by reducing the write amplifi-
cation. This also reduces the total amount of disk writes and
improves the system efficiency.

Acknowledgment. I would like to thank my PhD advisor
Michael J. Carey for his support in this work. This work is
supported by NSF awards IIS-1838248 and CNS-1925610.

Student Abstract

REFERENCES

(1]
(2]

2019. AsterixDB. https://asterixdb.apache.org/.

2019. RocksDB. http://rocksdb.org/.

Sanjay Agrawal et al. 2005. Database tuning advisor for Microsoft SQL
Server 2005. In ACM SIGMOD. ACM, 930-932.

Sattam Alsubaiee et al. 2014. AsterixDB: A Scalable, Open Source
BDMS. PVLDB 7, 14 (2014), 1905-1916.

Oana Balmau et al. 2017. FloDB: Unlocking Memory in Persistent Key-
Value Stores. In European Conference on Computer Systems (EuroSys).
80-94.

Edward Bortnikov et al. 2018. Accordion: Better Memory Organization
for LSM Key-value Stores. PVLDB 11, 12 (2018), 1863-1875.

Hong Tai Chou and David J. DeWitt. 1986. An evaluation of buffer
management strategies for relational database systems. Algorithmica
1, 1 (01 Nov 1986), 311-336.

Brian F. Cooper et al. 2010. Benchmarking Cloud Serving Systems
with YCSB. In ACM SoCC. 143-154.

Benoit Dageville and Karl Dias. 24-31. Oracle’s Self-Tuning Architec-
ture and Solutions. IEEE Data Engineering Bulletin (24-31), 2006.

Niv Dayan et al. 2017. Monkey: Optimal Navigable Key-Value Store.
In ACM SIGMOD. 79-94.

2819

(1]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead
High Performance Buffer Management Replacement Algorithm. In
VLDB. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
439-450.

Taewoo Kim and et al. 2020. Robust and efficient memory management
in Apache AsterixDB. Software: Practice and Experience (2020). https:
//doi.org/10.1002/spe.2799

Hyeontaek Lim et al. 2016. Towards Accurate and Fast Evaluation of
Multi-Stage Log-structured Designs. In USENIX Conference on File and
Storage Technologies (FAST). 149-166.

Chen Luo and Michael J. Carey. 2019. Efficient Data Ingestion and
Query Processing for LSM-Based Storage Systems. PVLDB 12, 5 (2019),
531-543.

Chen Luo and Michael J. Carey. 2019. On Performance Stability in
LSM-based Storage Systems. PVLDB 13, 4 (2019), 449-462.

Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques:
a survey. The VLDB Journal 29, 1 (2020), 393-418.

Elizabeth J. O’'Neil et al. 1993. The LRU-K Page Replacement Algorithm
for Database Disk Buffering. SIGMOD Rec. 22, 2 (June 1993), 297-306.

Patrick O'Neil et al. 1996. The Log-structured Merge-tree (LSM-tree).
Acta Inf. 33, 4 (1996), 351-385.

Adam J. Storm et al. 2006. Adaptive Self-tuning Memory in DB2. In
VLDB (VLDB ’06). VLDB Endowment, 1081-1092.

https://asterixdb.apache.org/
http://rocksdb.org/
https://doi.org/10.1002/spe.2799
https://doi.org/10.1002/spe.2799

	1 Introduction
	2 Background and Related Work
	3 Adaptive Memory Management
	4 Results and Contributions
	References

