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Problem and Motivation

As one of the most common and expensive database
management system operators, join plays an important
role in the query response time and/or throughput of the
system. Although the processing and performance
evaluation of multi-join queries has been the topic of
research for the past decades [8, 12, 13], the complexity
and multi-dimensional nature of the problem makes it an
unsolved problem for the database community. Our work
studies the performance of different classes of query
plans, memory distributions for join operators, intra-
query concurrency under different assumptions of
memory availability, and storage devices such as HDD and
SSD. This provides the foundation for understanding basic
“join physics”, which is useful for designing a resource-
based query scheduler for concurrent workloads. We use
AsterixDB [1] utilizing both HDD and SSD, to re-evaluate
the results of one of the early impactful studies from the
1990s [12] that was originally done using a simulator for
the Gamma database system [4].

Background and Related Work

Each operator of a DBMS is made of one or more activities
(e.g., build and probe activities in hybrid hash join),
possibly with some blocking dependencies which can be
used to transform a query to groups of co-schedulable
activities (stages). Each query can be transformed into
different shapes of query plans. Query plan shapes are
typically classified as Right Deep Trees (RDT), Left Deep
Trees (LDT), and Bushy Trees (BT). In an RDT, n-1 relations
are used for build activities and one relation will drive the
probe activity of all joins in a pipelined fashion. RDTs
exploit the highest level of concurrency by running all of
the build activities concurrently in one stage (Figure 1b).
However, a LDT is a more sequential plan. In an LDT, each
stage contains at most one build and one probe activity; the
probe phase of join m is the input to the build phase of join
m+1 (Figure 1a). Bushy Trees are a hybrid version and are
not studied in this work due to their large search space.
Schneider & Dewitt [12] studied the performance trade-
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dashed area represents one stage.
offs of LDT and RDT using a simulator made for the
Gamma database system. They showed that in the case of
having sufficient memory, RDTs will outperform LDTs
due to higher concurrency, while in the case of
insufficient memory, LDTs have a lower response time
due to lower intermediate result writes, as memory in
each stage is only divided at most among two joins. Other
types of query plans such as Segmented RDT [3] and
ZigZag Tree [15] were proposed and showed
improvements over the vanilla RDT by providing more
flexibility for plan query generation, better response time,
and lower amount of I/O.

Approach and Novelty

For a scientific approach, it is important to reproduce the
results of prior studies before proceeding with more
complex cases. Accordingly, we decided to first re-evaluate
the results of a key study done by Schneider & Dewitt [12]
in 1990 in which they studied the performance of multi-join
queries in shared-nothing clusters. They used a simulator
made for the Gamma database system on HDD and we re-
evaluate their result using AsterixDB utilizing both SSD and
modern HDD as the storage device. Similar to [12], we
report the results of experiments on two classes of query
plans, LDT and RDT, under two cases of memory
availability: 1) Unlimited Memory 2) Limited Memory. We
use a single node machine with one partition of 1GB
uniformly distributed data. Accordingly, join selectivity and
result size of each join is fixed over the query. In the limited
memory case, we study two variations of memory
distribution for RDTs: The original Right Deep Tree (RDT)
and the Static Right Deep Tree (StatRDT). In the RDT case,
the allocated memory will be divided equally among the
join operators. In StatRDT, the memory is assigned to the
join operators in a bottom-up fashion at compile time,
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hence statically, until memory is not
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increasing the number of joins and we
compare the response times of LDT, RDT,
and SeqRDT query plans. The (a) figures show simulation
results from [12] and (b)/(c) show our AsterixDB HDD/SDD
results. As shown in Figure 2b, RDT has a higher response
time than LDT. This is due to high number of random I/Os
and arm-related disk contention in HDD. SeqRDT, which is
a sequential version of RDT, shows more than 2.5 times
better response time in comparison to RDT due to more
sequential I/O and lower disk contention. In Figure 2c, RDT
uses the higher intra-query concurrency at the absence of
arm-related disk contention in SSD and is faster than any
sequential query plan. A comparison of Figures 2b and 2c
clearly shows the importance of the underlying storage
type on query performance. We also compared the results
for the Gamma database system simulation [12] (Figure 2a)
with our results from AsterixDB. Figure 2c matches with 2a
in terms of RDT being faster than LDT, but 2a was done on
the Gamma simulator for HDD and 2c was done on
AsterixDB utilizing SSD. The observed behavior shows that
Gamma simulator was not simulating the disk contention
behavior accordingly. In Gamma (Figure 2a), CPU becomes
more heavily utilized than disk, which confirms the lack of
proper disk contention simulation. Figure 2a and 2b report
different results for HDD. In Figure 2b, the arm-related disk
contention is detrimental to the performance of RDT but for
Gamma (Figure 2a) a better response times for RDT is
reported due to higher concurrency. This shows that
Gamma simulator was unable to simulate HDDs in full
detail.

Limited Memory Experiment. In this experiment, we run
a query with 8 joins and vary the amount of the available
memory as a fraction of the total memory needed for RDT
to perform all 8 joins without spilling. By doing this
experiment on AsterixDB with HDD (Figure 3b), the less-
concurrent query plans have lower response times due to
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Figure 3 - Limited Memory Experiment
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lower arm-related disk contention. Figure 3¢ shows that for
SSD with very limited memory, variations of RDT have
higher response times since memory is divided between all
join operators (Figure 1b), which causes more spilling to
disk and more random I/O. However, in LDT the memory is
divided between at most two join operators (Figure 1a),
which leads to less disk I/O. In the case of more available
memory, RDT takes advantage of higher concurrency and
with the absence of arm-related disk contention can run
faster than LDT. In Figure 3a (Gamma), RDT shows a better
response time in the case of high available memory due to
high concurrency; however, Figure 2b shows that the
impact of disk contention in HDD is so significant that the
less-concurrent plans with lower amount of I/O will be
better options for HDD. The results of AsterixDB with SSD
(Figure 3c) are again more matching with the Gamma (3a).
In conclusion, with HDD, sequential plans have better
response times due to lower disk contention while with
SSD the higher concurrency leads to better response times
in the absence of arm-related disk contention. These results
show the importance of the underlying storage device in
choosing the query plan. They show that re-evaluation of
the previous studies is necessary so often due to
improvements in the underlying hardware. We saw also
that simulators, while are helpful and important tools for
understanding systems’ behavior, they can produce
incorrect results if not verified against real systems
carefully.
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