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Problem and Motivation 
As one of the most common and expensive database 
management system operators, join plays an important 
role in the query response time and/or throughput of the 
system. Although the processing and performance 
evaluation of multi-join queries has been the topic of 
research for the past decades [8, 12, 13], the complexity 
and multi-dimensional nature of the problem makes it an 
unsolved problem for the database community. Our work 
studies the performance of different classes of query 
plans, memory distributions for join operators, intra-
query concurrency under different assumptions of 
memory availability, and storage devices such as HDD and 
SSD. This provides the foundation for understanding basic 
“join physics”, which is useful for designing a resource-
based query scheduler for concurrent workloads. We use 
AsterixDB [1] utilizing both HDD and SSD, to re-evaluate 
the results of one of the early impactful studies from the 
1990s [12] that was originally done using a simulator for 
the Gamma database system [4]. 

Background and Related Work 
Each operator of a DBMS is made of one or more activities 
(e.g., build and probe activities in hybrid hash join), 
possibly with some blocking dependencies which can be 
used to transform a query to groups of co-schedulable 
activities (stages). Each query can be transformed into 
different shapes of query plans. Query plan shapes are 
typically classified as Right Deep Trees (RDT), Left Deep 
Trees (LDT), and Bushy Trees (BT). In an RDT, n-1 relations 
are used for build activities and one relation will drive the 
probe activity of all joins in a pipelined fashion. RDTs 
exploit the highest level of concurrency by running all of 
the build activities concurrently in one stage (Figure 1b). 
However, a LDT is a more sequential plan. In an LDT, each 
stage contains at most one build and one probe activity; the 
probe phase of join m is the input to the build phase of join 
m+1 (Figure 1a). Bushy Trees are a hybrid version and are 
not studied in this work due to their large search space.  
Schneider & Dewitt [12] studied the performance trade-

offs of LDT and RDT using a simulator made for the 
Gamma database system.  They showed that in the case of 
having sufficient memory, RDTs will outperform LDTs 
due to higher concurrency, while in the case of 
insufficient memory, LDTs have a lower response time 
due to lower intermediate result writes, as memory in 
each stage is only divided at most among two joins. Other 
types of query plans such as Segmented RDT [3] and 
ZigZag Tree [15] were proposed and showed 
improvements over the vanilla RDT by providing more 
flexibility for plan query generation, better response time, 
and lower amount of I/O. 

Approach and Novelty 
For a scientific approach, it is important to reproduce the 
results of prior studies before proceeding with more 
complex cases. Accordingly, we decided to first re-evaluate 
the results of a key study done by Schneider & Dewitt [12] 
in 1990 in which they studied the performance of multi-join 
queries in shared-nothing clusters. They used a simulator 
made for the Gamma database system on HDD and we re-
evaluate their result using AsterixDB utilizing both SSD and 
modern HDD as the storage device. Similar to [12], we 
report the results of experiments on two classes of query 
plans, LDT and RDT, under two cases of memory 
availability: 1) Unlimited Memory 2) Limited Memory. We 
use a single node machine with one partition of 1GB 
uniformly distributed data. Accordingly, join selectivity and 
result size of each join is fixed over the query. In the limited 
memory case, we study two variations of memory 
distribution for RDTs: The original Right Deep Tree (RDT) 
and the Static Right Deep Tree (StatRDT). In the RDT case, 
the allocated memory will be divided equally among the 
join operators. In StatRDT, the memory is assigned to the 
join operators in a bottom-up fashion at compile time, 
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Figure 1-(a) Left Deep Tree, (b) Right Deep Tree. Each 
dashed area represents one stage. 
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Figure 2 - Unlimited Memory Experiment 

hence statically, until memory is not 
sufficient and one of the joins spills. In this 
case, StatRDT materializes the 
intermediate results of the query right 
before the spilling join operator, i.e. breaks 
the tree. We have also expanded the 
Gamma experiments by adding the notion 
of inter-stage dependency to control the 
concurrency of activities inside each stage. 
We introduced another variation of RDTs 
called Sequential RDT (SeqRDT) in which 
the build activities run one after another 
to utilize sequential I/O. 

Results and Contributions  
Unlimited Memory Experiment. In this 
experiment, enough memory is available 
to keep all joins in memory with no 
spilling to disk. Following [12], we 
increase the query complexity by 
increasing the number of joins and we 
compare the response times of LDT, RDT, 
and SeqRDT query plans. The (a) figures show simulation 
results from [12] and (b)/(c) show our AsterixDB HDD/SDD 
results. As shown in Figure 2b, RDT has a higher response 
time than LDT. This is due to high number of random I/Os 
and arm-related disk contention in HDD. SeqRDT, which is 
a sequential version of RDT, shows more than 2.5 times 
better response time in comparison to RDT due to more 
sequential I/O and lower disk contention. In Figure 2c, RDT 
uses the higher intra-query concurrency at the absence of 
arm-related disk contention in SSD and is faster than any 
sequential query plan. A comparison of Figures 2b and 2c 
clearly shows the importance of the underlying storage 
type on query performance. We also compared the results 
for the Gamma database system simulation [12] (Figure 2a) 
with our results from AsterixDB. Figure 2c matches with 2a 
in terms of RDT being faster than LDT, but 2a was done on 
the Gamma simulator for HDD and 2c was done on 
AsterixDB utilizing SSD.  The observed behavior shows that 
Gamma simulator was not simulating the disk contention 
behavior accordingly. In Gamma (Figure 2a), CPU becomes 
more heavily utilized than disk, which confirms the lack of 
proper disk contention simulation. Figure 2a and 2b report 
different results for HDD. In Figure 2b, the arm-related disk 
contention is detrimental to the performance of RDT but for 
Gamma (Figure 2a) a better response times for RDT is 
reported due to higher concurrency. This shows that 
Gamma simulator was unable to simulate HDDs in full 
detail. 
Limited Memory Experiment. In this experiment, we run 
a query with 8 joins and vary the amount of the available 
memory as a fraction of the total memory needed for RDT 
to perform all 8 joins without spilling. By doing this 
experiment on AsterixDB with HDD (Figure 3b), the less-
concurrent query plans have lower response times due to 

lower arm-related disk contention. Figure 3c shows that for 
SSD with very limited memory, variations of RDT have 
higher response times since memory is divided between all 
join operators (Figure 1b), which causes more spilling to 
disk and more random I/O. However, in LDT the memory is 
divided between at most two join operators (Figure 1a), 
which leads to less disk I/O. In the case of more available 
memory, RDT takes advantage of higher concurrency and 
with the absence of arm-related disk contention can run 
faster than LDT. In Figure 3a (Gamma), RDT shows a better 
response time in the case of high available memory due to 
high concurrency; however, Figure 2b shows that the 
impact of disk contention in HDD is so significant that the 
less-concurrent plans with lower amount of I/O will be 
better options for HDD. The results of AsterixDB with SSD 
(Figure 3c) are again more matching with the Gamma (3a). 
In conclusion, with HDD, sequential plans have better 
response times due to lower disk contention while with 
SSD the higher concurrency leads to better response times 
in the absence of arm-related disk contention. These results 
show the importance of the underlying storage device in 
choosing the query plan. They show that re-evaluation of 
the previous studies is necessary so often due to 
improvements in the underlying hardware. We saw also 
that simulators, while are helpful and important tools for 
understanding systems’ behavior, they can produce 
incorrect results if not verified against real systems 
carefully. 
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