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Abstract-Cadmium manganese telluride (CdMnTe) crystals
are expected to be homogenous in structure due to the
segregation coefficient of Mn in CdTe, which is about 1.0. This
could translate in the growth of large-volume CdMnTe crystals
free of defects that currently limit X-ray and gamma-ray
detection efficiencies. The present characterization experiments
show results on CdMnTe planar detectors grown by the vertical
Bridgman technique. The CdMnTe crystal used in the
experiments was mostly free of tellurium inclusions and high-
angle grain boundaries. We recorded an energy resolution of
9.2% FWHM for the 59.5-keV gamma-peak of 241Am for the
planar detector. We also resolved peaks at energies below the
59.5-keV peak.

I. INTRODUCTION

THE ability to operate at room temperature without
cryogenic cooling is a major advantage for field-portable
nuclear detection systems. The absence of cooling units
translates to lower costs, portability, compact instruments, and
ease of deployment in remote and wide-area applications.
Commercially available room-temperature semiconductor
nuclear detectors are often made with cadmium telluride
(CdTe) and cadmium zinc telluride (CdZnTe or CZT). High-
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resolution applications in gamma spectroscopy, medical
imaging and astrophysics have employed CZT detectors [1]—
[4]. However, CZT is prone to defects associated with Te
inclusions, dislocations, sub-grain boundaries, and precipitates
[5T-[8]. These defects degrade charge-carrier transport within
the detector matrix, thus resulting in a lowering of the detector
efficiency. The segregation coefficient of Mn in CdTe matrix
is ~1.0 and that of Zn in CdTe is 1.35 [9]-[10]. Thus, cadmium
manganese telluride (CdMnTe or CMT) grown by Bridgman
technique is expected to have better crystal compositional
uniformity. This could result in less Te inclusions,
dislocations, and sub-grain boundaries, which in turn could
lead to a higher yield of detector-grade crystals with less
defects and an associated higher energy resolution for
fabricated devices. CMT ingots with a larger detector-grade
volume will also lower the cost of detectors.

We have conducted crystal-growth experimentation to
systematically develop CMT [5], [11]-[17]. For this study we
grew CdiMn,Te with x = 5% [5]. The crystals were
synthesized from 6N purity CdTe bought from 5N Plus,
99.9998% pure Mn and 6N purity Te from Alfa Aesar.
Conically tipped ampoules coated with carbon were used. In
our first growth run we got a low-resistivity crystal on the
order of 103 Q-cm containing Te inclusions with diameters of
2 to 28 um, but very few grain boundaries [5], [13]. The Te
inclusions and grain boundaries were greatly reduced in a
second growth run, and a detector-grade CMT was obtained in
the third growth [17]. The detector-grade CMT had a
resistivity on the order of 10° Q-cm and electron mobility-
lifetime (pt) products of 1.7 x 10° c¢cm?V. An energy
resolution of 7.5% FWHM for the 662-keV peak of '¥’Cs was
obtained for a Frisch grid CMT detector at 2900 V [17]. In
this paper, we present our recent results of the characterization
of a CMT planar detector.

II. EXPERIMENT

The CMT sample was prepared as described in [19]. A 6.6 x
3.6 x 2.9 mm?® was cut from as-grown CMT ingot (grown by
Bridgman technique) using a diamond impregnated wire. The
wafer was mechanically polished on silicon-carbide abrasive
papers, successively using 600-grit, 800-grit, 1000-grit, and
1200-grit papers. Fine polishing was accomplished by using
alumina (ALOs3) powders. Sizes from 3.0 pm to 0.1 pm of
AlO; were successively used to get mirror-shine surfaces.
After drying the sample with compressed nitrogen gas, gold
contacts were deposited on opposite sides of the wafer by
pipetting drops of gold chloride solution on the surfaces.
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Fig. 1. Response of the CdMnTe planar detector to the 59.5-keV gamma
line of 2! Am at a bias of 150 V. Energy resolution: 9.2% FWHM.

The tip of a felt paper was used to absorb excess gold
chloride solution after it reacted with the wafer surface. A
customized box made of aluminum and equipped with a
Keithley Picoammeter/Voltage Source was used for the
current-voltage (I-V) measurements.

The resolution of the CMT detector was measured by
mounting it on a standard eV Products (now Kromek) sample
holder made of brass. A sealed ?*! Am source was placed on a
beryllium window fitted in the sample holder. The signal
generated by the detector was passed through a pre-amplifier
and amplifier to a multichannel analyzer and computer.

III. RESULTS

A resistivity of 2.7 x 10'° Q-cm was obtained for the CMT
detector using the slope of the plot from the I-V measurements
[19]. The response of the detector to a *' Am radiation source
is shown in Fig. 1. The detector resolution for the 59.5-keV
gamma of **'Am is 9.2% FWHM at 150 V bias. A 9.5%
FWHM was obtained at 130 V bias [19]. The energy
resolutions at different bias voltages are shown in Fig. 2. The
optimum energy resolution for this CdMnTe detector was
obtained at a bias of 150 V.

IV. SUMMARY

We presented recent results for a planar detector fabricated
from a CMT ingot grown by the Bridgman technique. The
development of the CMT took three systematic growth runs
that initially focused on reducing Te inclusions, dislocations,
and sub-grain boundary networks that often plague CdTe-
based semiconductors. These problems and related defects
were greatly reduced by the second growth run [5], [13]; and
detector-grade CMT was obtained in the third growth run [17].
One of the reasons for the quick success is the compositional
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Fig. 2. Energy resolution of the CdMnTe planar detector for the 59.5-keV
gamma line of >' Am at different bias voltages.

uniformity exhibited by CdMnTe due to the segregation
coefficient of Mn in CdTe matrix being ~1.0. Crystal growth
expertise and knowledge from studies on optimization of the
ampoule carbon-coating in CZT [5], where the optimum
coating was found to be 0.2 pm, also contributed to our
success. Future studies will focus on chemical passivation of
CMT surfaces.
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