Characterization of CdMnTe Planar Nuclear Detectors Grown by Vertical Bridgman Technique

Stephen U. Egarievwe, *Member, IEEE*, Utpal N. Roy, Ezekiel O. Agbalagba, Keiandrea L. Dunning, Oghaghare K. Okobiah, Mordecai B. Israel, Mebougna L. Drabo, and Ralph B. James, *Fellow, IEEE*

Abstract—Cadmium manganese telluride (CdMnTe) crystals are expected to be homogenous in structure due to the segregation coefficient of Mn in CdTe, which is about 1.0. This could translate in the growth of large-volume CdMnTe crystals free of defects that currently limit X-ray and gamma-ray detection efficiencies. The present characterization experiments show results on CdMnTe planar detectors grown by the vertical Bridgman technique. The CdMnTe crystal used in the experiments was mostly free of tellurium inclusions and high-angle grain boundaries. We recorded an energy resolution of 9.2% FWHM for the 59.5-keV gamma-peak of 241Am for the planar detector. We also resolved peaks at energies below the 59.5-keV peak.

I. Introduction

The ability to operate at room temperature without cryogenic cooling is a major advantage for field-portable nuclear detection systems. The absence of cooling units translates to lower costs, portability, compact instruments, and ease of deployment in remote and wide-area applications. Commercially available room-temperature semiconductor nuclear detectors are often made with cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe or CZT). High-

Manuscript received December 13, 2019. This work was supported in part by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development, the DNN R&D (NA-22), the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under Award 2012-DN-077-ARI065-05, the National Science Foundation (NSF) HBCU-UP Program through award number 1818732, the NSF Louis Stokes Alliances for Minority Participation (LSAMP), and the U.S. Nuclear Regulatory Commission through awards NRC-27-10-514, NRC-HQ-84-16-G-0014 and 31310018M0035.

- S. U. Egarievwe is with the Nuclear Engineering and Radiological Science Center, and Department of Electrical Engineering and Computer Science, Alabama A&M University, Normal, AL 35762 USA (e-mail: stephen.egarievwe@aamu.edu).
- U. N. Roy is with the Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY 11973 USA (e-mail: nroy@bnl.gov).
- E. O. Agbalagba is with the Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria (e-mail: agbalagba.ezekiel@fupre.edu.ng).
- K. L. Dunning is with the Design Engineering Department, Turkey Point Nuclear Power Plant, Florida Power & Light Company, Homestead, FL 33035 USA (e-mail: keiandrea.dunning@fpl.com).
- O. K. Okobiah is with Frederick Douglass Academy II, 215 West 114th Street, New York, NY 10026 USA (e-mail: ookobiah@fda2.net).
- M. B. Israel is with the Nuclear Engineering and Radiological Science Center, and Department of Electrical Engineering and Computer Science, Alabama A&M University, Normal, AL 35762 USA
- M. L. Drabo is with the Department of Mechanical & Civil Engineering, and Construction Management, Alabama A&M University, Normal, AL 35762 USA (e-mail: mebougna.drabo@aamu.edu).
- R. B. James is with Science and Technology, Savannah River National Laboratory, Aiken, SC 29808 USA (e-mail: ralph.james@srnl.doe.gov).

resolution applications in gamma spectroscopy, medical imaging and astrophysics have employed CZT detectors [1]-[4]. However, CZT is prone to defects associated with Te inclusions, dislocations, sub-grain boundaries, and precipitates [5]–[8]. These defects degrade charge-carrier transport within the detector matrix, thus resulting in a lowering of the detector efficiency. The segregation coefficient of Mn in CdTe matrix is \sim 1.0 and that of Zn in CdTe is 1.35 [9]-[10]. Thus, cadmium manganese telluride (CdMnTe or CMT) grown by Bridgman technique is expected to have better crystal compositional uniformity. This could result in less Te inclusions, dislocations, and sub-grain boundaries, which in turn could lead to a higher yield of detector-grade crystals with less defects and an associated higher energy resolution for fabricated devices. CMT ingots with a larger detector-grade volume will also lower the cost of detectors.

We have conducted crystal-growth experimentation to systematically develop CMT [5], [11]-[17]. For this study we grew $Cd_{1-x}Mn_xTe$ with x = 5% [5]. The crystals were synthesized from 6N purity CdTe bought from 5N Plus, 99.998% pure Mn and 6N purity Te from Alfa Aesar. Conically tipped ampoules coated with carbon were used. In our first growth run we got a low-resistivity crystal on the order of 10⁵ Ω-cm containing Te inclusions with diameters of 2 to 28 µm, but very few grain boundaries [5], [13]. The Te inclusions and grain boundaries were greatly reduced in a second growth run, and a detector-grade CMT was obtained in the third growth [17]. The detector-grade CMT had a resistivity on the order of $10^{10} \Omega$ -cm and electron mobilitylifetime (μτ) products of 1.7 x 10⁻³ cm²/V. An energy resolution of 7.5% FWHM for the 662-keV peak of ¹³⁷Cs was obtained for a Frisch grid CMT detector at 2900 V [17]. In this paper, we present our recent results of the characterization of a CMT planar detector.

II. EXPERIMENT

The CMT sample was prepared as described in [19]. A 6.6 x 3.6 x 2.9 mm³ was cut from as-grown CMT ingot (grown by Bridgman technique) using a diamond impregnated wire. The wafer was mechanically polished on silicon-carbide abrasive papers, successively using 600-grit, 800-grit, 1000-grit, and 1200-grit papers. Fine polishing was accomplished by using alumina (Al₂O₃) powders. Sizes from 3.0 μm to 0.1 μm of Al₂O₃ were successively used to get mirror-shine surfaces. After drying the sample with compressed nitrogen gas, gold contacts were deposited on opposite sides of the wafer by pipetting drops of gold chloride solution on the surfaces.

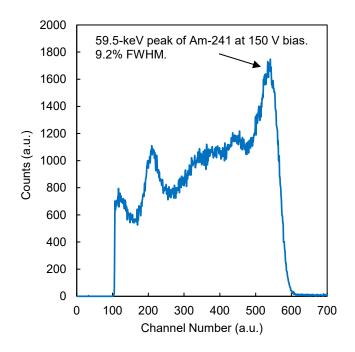


Fig. 1. Response of the CdMnTe planar detector to the 59.5-keV gamma line of ²⁴¹Am at a bias of 150 V. Energy resolution: 9.2% FWHM.

The tip of a felt paper was used to absorb excess gold chloride solution after it reacted with the wafer surface. A customized box made of aluminum and equipped with a Keithley Picoammeter/Voltage Source was used for the current-voltage (I-V) measurements.

The resolution of the CMT detector was measured by mounting it on a standard eV Products (now Kromek) sample holder made of brass. A sealed ²⁴¹Am source was placed on a beryllium window fitted in the sample holder. The signal generated by the detector was passed through a pre-amplifier and amplifier to a multichannel analyzer and computer.

III. RESULTS

A resistivity of 2.7 x 10^{10} Ω -cm was obtained for the CMT detector using the slope of the plot from the I-V measurements [19]. The response of the detector to a 241 Am radiation source is shown in Fig. 1. The detector resolution for the 59.5-keV gamma of 241 Am is 9.2% FWHM at 150 V bias. A 9.5% FWHM was obtained at 130 V bias [19]. The energy resolutions at different bias voltages are shown in Fig. 2. The optimum energy resolution for this CdMnTe detector was obtained at a bias of 150 V.

IV. SUMMARY

We presented recent results for a planar detector fabricated from a CMT ingot grown by the Bridgman technique. The development of the CMT took three systematic growth runs that initially focused on reducing Te inclusions, dislocations, and sub-grain boundary networks that often plague CdTe-based semiconductors. These problems and related defects were greatly reduced by the second growth run [5], [13]; and detector-grade CMT was obtained in the third growth run [17]. One of the reasons for the quick success is the compositional

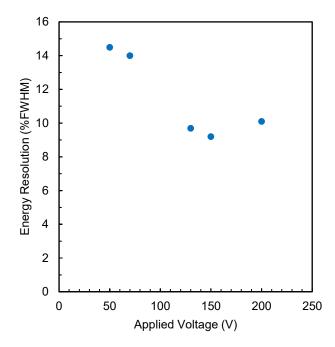


Fig. 2. Energy resolution of the CdMnTe planar detector for the 59.5-keV gamma line of ²⁴¹Am at different bias voltages.

uniformity exhibited by CdMnTe due to the segregation coefficient of Mn in CdTe matrix being ~ 1.0 . Crystal growth expertise and knowledge from studies on optimization of the ampoule carbon-coating in CZT [5], where the optimum coating was found to be 0.2 μ m, also contributed to our success. Future studies will focus on chemical passivation of CMT surfaces.

REFERENCES

- [1] S. Del Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini. "Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications," Sensors, vol. 9, no. 5, pp. 3491-3526, 2009.
- [2] Y. L. Liu, J. Q. Fu, Y. L. Li, Y. J. Li, X. M. Ma, and L. Zhang. "Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector," *Nuclear Science and Techniques*, vol. 29, no. 10, p. 145, 2018.
- [3] S. Wang, J. H. Guo, Y. Zhang, and W. Chen. "High-resolution pixelated CdZnTe detector prototype system for solar hard X-ray imager," *Nuclear Science and Techniques*, vol. 30, no. 3, p. 42, 2019.
- [4] C. Scheiber, and G. C. Giakos. "Medical applications of CdTe and CdZnTe detectors," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 458, no. 1-2, pp. 12-25, 2001.
- [5] S. U. Egarievwe, W. Chan, K. H. Kim, U. N. Roy, V. Sams, A. Hossain, A. Kassu, and R. B. James, "Carbon Coating and Defects in CdZnTe and CdMnTe Nuclear Detectors," *IEEE Transactions on Nuclear Science*, vol. 63, no. 1, pp. 236-245, 2016.
- [6] A. E. Bolotnikov, S. Babalola, G. S. Camarda, Y. Cui, S. U. Egarievwe, R. Hawrami, A. Hossain, G. Yang, and R. B. James. "Te inclusions in CZT detectors: New method for correcting their adverse effects," *IEEE Transactions on Nuclear Science*, vol. 57, no. 2, pp. 910-919, 2010.
- [7] N. Zhang, A. Yeckel, A. Burger, Y. Cui, K. G. Lynn, and J. J. Derby. "Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride," *Journal of Crystal Growth*, vol. 325, no. 1, pp. 10-19, 2011.
- [8] A. Hossain, A. E. Bolotnikov, G. S. Camarda, Y. Cui, G. Yang, K. H. Kim, R. Gul, L. Xu, and R. B. James. "Extended defects in CdZnTe crystals: Effects on device performance," *Journal of Crystal Growth*, vol. 312, no. 11, pp. 1795-1799, 2010.

- [9] A. Hossain, Y. Cui, A. E. Bolotnikov, G. S. Camarda, G. Yang, D. Kochanowska, M. Witkowska-Baran, A. Mycielski, and R. B. James. "Vanadium-doped cadmium manganese telluride (Cd_{1-x}Mn_xTe) crystals as x- and gamma-ray detectors," *Journal of Electronic Materials*, vol. 38, no. 8, pp. 1593-1599, 2009.
- [10] A. Tanaka, Y. Masa, S. Seto, and T. Kawasaki. "Zinc and selenium codoped CdTe substrates lattice matched to HgCdTe," *Journal of Crystal Growth*, vol. 94, no. 1, pp. 166-170, 1989.
- [11] S. U. Egarievwe, U. N. Roy, A. Hossain, and R. B. James. "Ampoule carbon coating and defects in CdMnTe crystals intended for applications in nuclear radiation detection." In 2014 IEEE Nuclear Science Symp. and Medical Imaging Conference (NSS/MIC), pp. 1-4. IEEE, 2014.
- [12] S. U. Egarievwe, D. K. Kithinji, J. O. Jow, A. A. Egarievwe, Z. M. Hales, R. D. Martin, W. Chan, G. Yang, G. S. Camarda, and R. B. James. "Temperature-gradient post-growth annealing of CdMnTe wafers for nuclear radiation detection applications." In 2014 IEEE Nuclear Science Symp. and Medical Imaging Conference (NSS/MIC), pp. 1-4. IEEE, 2014.
- [13] U. N. Roy, G. S. Camarda, Y. Cui, G. Gu, R. Gul, A. Hossain, G. Yang, S. U. Egarievwe, and R. B. James. "Growth and characterization of CdMnTe by the vertical Bridgman technique," Journal of Crystal Growth, vol. 437, pp. 53-58, 2016.
- [14] A. L. Adams, E. O. Agbalagba, J. O. Jow, J. G. Mwathi, A. A. Egarievwe, W. Chan, M. C. Dowdell, U. N. Roy, and S. U. Egarievwe, "Thermal Annealing of CdMnTe Material Being Developed for Nuclear

- Radiation Detection Applications," *IOSR Journal of Mechanical and Civil Engineering*, vol. 13, issue 4, ver. IV, pp. 1-5, 2016.
- [15] A. L. Adams, M. L. Drabo, S. U. Egarievwe, E. O. Agbalagba, J. O. Jow, A. A. Egarievwe, U. N. Roy, and R. B. James. "Batch annealing of CdMnTe wafers for nuclear detector applications," In 2016 IEEE Nuclear Science Symp., Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), pp. 1-3, IEEE, 2016.
- [16] S. U. Egarievwe, E. D. Lukosi, R. B. James, U. N. Roy, and J. J. Derby. "Advances in CdMnTe Nuclear Radiation Detectors Development." In 2018 IEEE Nuclear Science Symp. and Medical Imaging Conference Proceedings (NSS/MIC), pp. 1-3. IEEE, 2018.
- [17] U. N. Roy, O. K. Okobiah, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, S. U. Egarievwe, and R. B. James. "Growth and characterization of detector-grade CdMnTe by the vertical Bridgman technique," AIP Advances, vol. 8, no. 10, p. 105012, 2018.
- [18] U. N. Roy, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, O. K. Okobiah, S. U. Egarievwe, and R. B. James. "Growth of CdMnTe free of large Te inclusions using the vertical Bridgman technique," *Journal of Crystal Growth*, vol. 509, pp. 35-39, 2019.
- [19] S. U. Egarievwe, A. D. Banks, M. B. Israel, M. L. Drabo, K. L. Dunning, F. D. Johnson, V. J. Cook, S. M. Palmer, U. N. Roy, and R. B. James. "Design and Fabrication of a CdMnTe Nuclear Radiation Detection System." IEEE Southeast Conference, Huntsville, AL, USA, April 11–14, 2019.