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Abstract

In this work, model-based methods are employed along with machine learning techniques
to classify sediments in oceanic environments based on the geoacoustic properties of a two-
layer seabed. Two different scenarios are investigated. First, a simple low-frequency case is
set up, where the acoustic field is modeled with normal modes. Four different hypotheses are
made for seafloor sediment possibilities and these are explored using both various machine
learning techniques and a simple matched-field approach. For most noise levels, the latter has
an inferior performance to the machine learning methods. Second, the high-frequency model
of the scattering from a rough, two-layer seafloor is considered. Again, four different sediment
possibilities are classified with machine learning. For higher accuracy, 1D Convolutional Neural
Networks are employed. In both cases we see that the machine learning methods, both in simple
and more complex formulations, lead to effective sediment characterization. Our results assess
the robustness to noise and model misspecification of different classifiers.

1 Introduction

Sonar classification of the ocean floor relies on the quality of the acoustic images and the data-
processing tools used for interpretation. The pixel resolution in sonar images depends on a number
of factors, including the instrument range, geometry, and operating frequency. Due to the multiple
sophisticated scattering processes, there is no simple way to interpret each pixel of a sonar image
in terms of seafloor parameters such as sediment type, roughness, and layer structure. Well-known
approaches such as matched-field processing [1, 2], image-processing based techniques [3, 4, 5], and
recently, machine learning algorithms, are successful in known environments for which ground-truth
datasets are available [6, 7, 8].

Knowledge of the propagation medium is of paramount importance in source detection, local-
ization, and identification in the ocean. The field of geoacoustic inversion deals with modeling and
techniques for obtaining knowledge about the ocean sediments with which the propagating sound
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has interacted to facilitate the tasks mentioned above. Extensive research and significant advances
have been made through the years in estimating sediment parameters using the full field or select
features.

Matched-field inversion (MFI) is a popular approach for inverting for (estimating) geoacoustic
properties using measurements of the acoustic field at a number of receiving phones. It stems
from matched field processing (MFP) [13], originally designed for source localization, which was
extended to invert for environmental parameters with the first effort presented in [14]. Estimates
are obtained by comparing measured acoustic fields to replica-predicted fields computed with sound
propagation models for numerous values of the unknown parameters. The values that provide the
best match between replicas and data according to a preselected criterion are considered to be
the desired estimates. MFI initially required significant computation entailing searches in multi-
dimensional domains. Global optimization approaches have facilitated the inversion making the
process less onerous [15, 16, 17, 18, 19, 20].

Backscattering strength data have also been used for sediment characterization [21, 22, 23,
24, 25, 26] with a variety of methods using backscatter models and statistical techniques. These
approaches facilitated inversion both for seafloor roughness and sediment geoacoustic properties.

In the late ’90s and early 2000s, feed-forward neural networks gained attention in the field of
ocean acoustics because of the ability to overcome issues faced by traditional methods, such as
error estimation and time-consuming global or local searches in the parameter space [27, 28, 29].
In these problem settings, neural networks provided efficient, nonlinear approximators of inverse
functions.

One drawback of neural networks (and many modern deep learning approaches) is the large
amount of training data needed to ensure accurate, reliable performance. Some of the earlier works
overcome this using synthetic training data and real test data [30]. Over the last 15 years, feature-
based machine learning techniques have also been developed for problems such as target detection
and recognition, source localization, and seabed classification [31, 32, 33]. While the corresponding
processors can be fully trained with smaller data sets, they require a manual, often tedious, feature
extraction process.

Convolutional neural networks (CNNs) offer an alternative approach in which features are in-
stead learned by the network. The neural network can be viewed as a composition of functions,
called layers, and the training process consists of determining weights in each layer using batches
of labeled data and stochastic optimization. Different layers are used for different purposes; for
example, convolutional layers contain filters that are convolved with small patches of the previous
layer to capture local features, and max pooling layers downsample the input by taking the maxi-
mum over a patch. Layers in a CNN are connected via an entry-wise nonlinear activation function.
The most common activation function is ReLU(x) = max(x, 0). Modern CNN architectures can
contain many layers and connections between them that form acyclic graphs. The complexity and
depth of the architecture can capture features and interdependencies of high-dimensional data on
a wide range of scales.

The use of CNNs in acoustics is now a very active and rich area of research [34]. Although
some studies can be performed using smaller training data sets, [35, 36, 37, 38], most deep learning
approaches must develop techniques for accomodating the lack of real sonar data. This can be
done by, for example, using a pretrained CNN (trained using optical images) [40, 41], applying
image processing techniques for data augmentation [31, 42, 43, 44], or training with synthetic
data generated by a physics-based forward solver [30, 45, 46, 39]. Large sonar images can also be
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decomposed into many “patches” [37, 47, 48] that form training datasets. Our modeling, described
next, is based on a combination of these patch-based techniques for data and physical modeling.

To increase the performance and applicability of current machine learning algorithms, the main
challenge is overcoming the lack of large training datasets. In this paper, we demonstrate the
potential of physics-based forward modeling to generate training data for seafloor classification
problems. The advantages of physics-based modeling for these problems include the ability to
accurately label data and fully explore the possible seafloor parameter space. This enhances the
training of machine learning models, as well as the evaluation of the reliability and validity of the
outcomes.

There are two main contributions of our work aimed at better understanding the limits of
modern techniques applied to scenarios with complex physics and limited observational data. The
first is physics-based training, in which training datasets are designed using numerical simulations
of representative segments of the seafloor domain. At lower frequencies, these template domains are
characterized by sound speed, attenuation, and layer thickness. At higher frequencies, finite element
modeling (FEM) can incorporate additional small-scale features such as the roughness of the water-
sediment interface. The second contribution is a set of machine learning experiments for classifying
the top sediment in a two-layer seafloor. In the low-frequency case, these results are compared with
known techniques and indicate that machine learning tools provide higher classification accuracy.
At high frequencies, deep learning offers a significant improvement in performance over shallow
machine learning tools. To our knowledge, this is the first work that attempts material classification
from synthetic backscatter generated with FEM-based simulations.

2 Inverse wave problems in ocean acoustics

Normal Modes Template Domain

Source

Hydrophones

z = 0 m

z = 111 m

z = 116 m

Water domain

Top sediment layer

Bottom sediment layer

(a) (b)

Figure 1: (a) Sound propagation in an oceanic waveguide. (b) Simulated pressure field measure-
ments for four top sediments (pressure is in µPa, simulations are produced with KRAKEN[50]).

For the present work, we model the ocean as a range-independent waveguide with homogeneous
water and two sediment layers (see Figures 1 and 3). For ocean bottoms with low shear speeds, a
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fluid assumption is generally appropriate [10, 11, 12]. Therefore we treat the sediment layer as a
fluid, and model time-harmonic acoustic pressure waves at range x and depth z as solutions p(x, z)
to the Helmholtz equation,

ρ∇ ·
(

1

ρ
∇p
)

+
ω2

c2
p+ iαωp = s, (1)

where ω represents the angular frequency and the spatially varying functions ρ, c, and α, represent
the density, sound speed, and attenuation, respectively, of the medium. In seawater, attenuation is
negligible at low and intermediate frequencies and it is reasonable to set α = 0. The source s and
boundary conditions depend on factors, such as incident angle and distance to the seafloor, that
are determined by the instrument and environment. Coupling conditions on the water-sediment
and sediment-sediment interfaces enforce continuity of the pressure and normal displacement along
the fluid-sediment and sediment-sediment interfaces.

The mathematical formulation of the inverse problem is to determine a vector of true parameters
m∗ ∈ M using a finite set of observables Y ∈ Cn, where C is the set of complex numbers. Here,
M is a finite-dimensional space of unknown parameters, for example, source location, bathymetry,
water column sound speed, and geoacoustic and geometric properties of the sediment layer (density,
compressional and shear wave speeds, etc.). In sonar imaging, the observational data is often a
set of pressure or backscatter measurements Y = (p(xk, zk))

n
k=1 recorded at n receiver locations

(xk, zk). The forward operator F : M → Cn describes the wave propagation process relating the
observables to the model parameters.

The inverse problem of determining m∗ given Y ≈ F(m∗) is usually difficult and ill-posed; a
number of different seafloor environments can produce similar measurements, and that similarity
can be further complicated in the presence of noise. While full waveform inversion (FWI), a
standard tool in seismic imaging, achieves success by matching the data with simulations of the
foward model, there is no universal technique for solving (1) at frequencies of interest in sonar
imaging. Factors such as the source-receiver geometry, frequency and bandwidth, and boundary
conditions must be taken into account in formulating a solution technique. Often, a combination of
analytic and numerical methods are implemented based on the environmental complexity, desired
resolution, and availability of labeled ground truth data. Here we focus on two solution techniques,
normal mode propagation in simple geometries and finite element modeling of the scattering process
in a more complicated environment having a rough water-sediment interface. In this work, normal
mode propagation was used to model the waveguide for acoustic wavelengths on the order of meters,
and finite element modeling was used for acoustic wavelengths on the order of centimeters.

3 Seafloor characterization with pressure fields at vertical line ar-
rays

3.1 Problem setup

We consider the scenario of Figure 1, where a source transmits a continuous wave (CW) signal
at frequency ω = 2πf0. In this setting ω is the normal modes operating frequency and f0 = 400
Hz. black A point source located at range xs = 0 and depth zs determines the source term
s(x, z) = − δ(x)δ(z−zs)

2πx . The pressure field at a depth z and a distance x from the source can be
seen as the solution of the Helmholtz equation (1). Here, we assume that the density is constant
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within the water layer and each sediment layer. Also, the environment is assumed to be range
independent. The solution operator for the Helmholtz equation corresponds to F of Section 2.

Assuming that source and receiver location, bottom depth, water column sound speed, and
sediment thickness are known, we can invert for sediment sound speed c and attenuation α via MFI
(for the experiments that we consider the field is not sensitive to density, for which we cannot reliably
invert). An inner product between the normalized pressure field (solution of Eq. 1) computed for
different c and α values and the received acoustic field can be calculated. Those values that
maximize the inner product are the parameter estimates.

In this work, we are interested in classification rather than parameter estimation. As will be
discussed later, MFI can still be employed towards this task, but, here, we are mostly interested
in investigating the potential of machine learning in sediment classification. Recently, a sensitivity
analysis was performed on parameters in a two-layer seafloor, indicating the promise of these
methods [49]. We investigate a low-frequency case with the sound being transmitted by a source
and received at a vertical line array with 20 hydrophones (see Figure 1). The phone spacing is 5
m and the source frequency is 400 Hz. The source-array distance is 10 km and the source depth is
50 m. The water column sound speed profile c(z) is a typical shallow water downward refracting
profile and the water depth is 111 m. One isovelocity sediment layer is assumed with varying sound
speed c and attenuation α, representing different sediment types (clay, silt, sand, gravel) over a
chalk halfspace. The sediment thickness is τ = 5 m.

3.2 The data

Using normal modes [50] we synthesize the pressure field at the VLA for the four sediment types;
each field has 20 components corresponding to the 20 VLA receivers; these are equispaced with the
first one located at a depth of 5 m. Values of 1500, 1575, 1650, and 1800 m/s are the assumed sound
speeds for clay, silt, sand, and gravel, respectively [51]. Values of 0.2, 1, 0.8, and 0.6 dB/λ, where
λ is the acoustic wavelength, are the corresponding attenuations. These sediment sound speed-
attenuation values are listed in the first column of Table 2. One-thousand noisy field realizations
are then synthesized for each sediment type by adding zero-mean complex Gaussian noise. The
generated noisy fields are used to train a set of classifiers. The noise-free fields for each class are
shown in Figure 1(b). Subsequently, we perturb the sediment sound speed and attenuation values.
The new c and α values still represent the same sediment types but now with variation. We create
environments for ten sets for each sound speed-attenuation pair (listed in Table 1) and one-thousand
noisy realizations for each case for a total of ten-thousand pressure fields. Then, the responses are
the predictions F(m) and observables Y of Section 2 that form the training and test sets.

Data generation for both training and testing sets was repeated for a number of Signal-to-Noise-
Ratios (SNRs) to highlight the effects of noise dependence on the relative classifier performance.

3.3 Sediment Classification

The goal of our experiments is to determine whether sediment class can be determined correctly
when the classifiers are tested on data generated for similar, but not identical, environments to
those used for the generation of the training data.

Before we implemented machine learning techniques, we constructed a classifier based on MFI;
that served well for the performance evaluation of the proposed techniques. The MFI/MFP classifier
relied on the computation of a simple inner product between the data to be classified and normalized
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Figure 2: (a) Classification performance of different trained machine learning classifiers on test
data. The y− axis is the test accuracy, the ratio of correct predictions and total predictions. (b)
and (c) Confusion matrices indicate how many instances of the true class (row) were classified
as a predicted class (column). The diagonal cells correspond to observations that are correctly
classified. The off-diagonal cells correspond to incorrectly classified observations. The bottom rows
show the percentages of all the signals predicted to belong to each class that are correctly classified
(precision). The rightmost columns in each plot show the percentages of all the signals belonging
to each class that are correctly classified (recall). The confusion matrices are given for sediment
classification with (b) matched field processing, and (c) logistic regression, on noisy KRAKEN data
(SNR = 18 dB). The results in (d), (e) and (f), reflect the performance of the classifiers on a test
set with variable top layer thickness.

replica fields calculated for the nominal values of sediment properties. The formula for MFP stems
from the calculation of the likelihood function of the unknown parameters including noise variance
and source spectrum red [9]. black The replica fields for the four classes are the measurements
shown in Figure 1. Given model parameters m = (c, α), noisy pressure measurements at n = 20
receiver locations (xk, zk) are modeled by F(m) = p(m) = (p(xk, zk))

n
k=1, where p is the solution

to (1). The MFP classifier predicts the parameters m̂ of an observable signal Y by maximizing the
inner product:

m̂ = argmax
m∈M

|〈p(m),Y〉|2

‖p(m)‖2
, (2)

where the search space consists of material parameters of the four different classes,M = {(cj , αj)}4j=1.
The MFP classifier required no training.

The following baseline classifiers were implemented in scikit-learn [52]: grouping methods,
such as k-nearest neighbors (KNN) and Nearest Centroid (NC), Support Vector Classifiers that find
the best separating hyperplane (SVC-1), ensemble methods such as Decision Tree Classifiers (DT),
feed-forward neural nets, in particular, multi-layer perceptron (MLP), and Logistic Regression
(LR). The hyperparameters of each classifier were determined using a randomized grid search over
a range of possible parameters. Five-fold cross-validation was used for model selection.

The training data set consisted of the 4,000 labeled noisy pressure field measurements for the
nominal values of the four sediment classes. We tested the methods on ten sets of 1,000 realizations
for each sediment class, each set for perturbed pairs of sediment parameters. That is, no testing
signal was generated for the exact c and α values used to generate the training set vectors. Figure
2(a) shows the overall accuracy of different classifiers. For high noise levels (low SNR), MFP seems
to perform well but LR classification exhibits the best performance. While linear regression models
fit data with a linear function, logistic regression models instead use the more flexible sigmoid
function that is less sensitive to outliers. Unlike linear classifiers, LR models can produce nonlinear
decision boundaries, which may improve the ability to discriminate between points that are close
together but belong to different classes.

As the SNR increases, there was a marked difference between MFP and other classifiers, which
all outperform MFP. Figure 2(b) and (c) show the confusion matrices for MFP and LR for an
SNR of 18 dB. We observed that MFP mislabeled signals from the silt class with gravel, whereas
LR incorrectly classified about half of the signals from the clay class as silt, but had superior
performance for the other materials. An interesting inference can be made from the LR classification
results. Signals classified as clay, sand, or gravel were likely to be correctly characterized. In the
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case of silt, however, there was a possibility of misclassification. Identifying a feature that further
distinguishes clay from silt measurements could potentially resolve the ambiguity.

Following this experiment, we tested the classifiers on more realistic and challenging data.
Although we kept the training dataset the same, the test dataset was generated using perturbations
of thickness in addition to sound speed and attenuation; this is something faced in practice where
prior but not exact knowledge on the layer thickness is given. Again, we generated 40,000 test
patterns corresponding to ten perturbations of the sound speed, attenuation, and thickness. The
thicknesses were drawn from a normal distribution with a mean of 5 m and a standard deviation
of 2. The sound speed and attenuation values are those in Table 2. The accuracy of the different
classifiers vs. SNR is shown in Fig. 2(d) and confusion matrices for MFP and LR are illustrated
in (e) and (f). The overall behavior was similar to the experiment with fixed thickness, for all
classifiers, with slightly lower accuracy.

4 Backscatter

If the spatial scale of the seafloor roughness is much smaller than the acoustic wavelength, a source
ping smoothly reflects from the seafloor, and analytical methods described in the previous section
are preferable because of the accuracy and low computational cost. On the other hand, when the
spatial scale of seafloor heterogeneities is similar to the acoustic wavelength, these methods fail to
approximate the measured backscatter, and more accurate modeling is needed.

Finding exact solutions to (1) can be very difficult, even for homogeneous environments with
simple geometries, and at higher frequencies, the problem becomes even more complex, with features
such as roughness complicating the task of modeling and classification. In the case of rough, layered
sediments, numerical methods such as the finite element method (FEM) provide an attractive
option. The FEM discretization of the governing acoustic wave equations in underwater domains
enables accurate modeling of the seafloor environment [53, 54, 55, 56, 57, 58, 59, 60]. Not limited
by constraints on the degree of surface roughness or range dependence, FEM offers flexibility
and can incorporate physics generated from realistic scenarios. In computational ocean acoustics
applications, FEM is usually used for providing benchmark solutions, short-range scattering, or
as a part of a hybrid approach [61, 62, 63, 64] in which the scattering is approximated using a
FEM discretization of a small region near the seafloor and the reverberant field is modeled using
traditional, more efficient techniques.

The primary disadvantage of FEM and other numerical methods for solving high-frequency
Helmholtz equations is the high computational cost of approximating O(λ−1) unknowns in each
spatial dimension, where λ is the acoustic wavelength. Computing solutions for large spatial do-
mains in the high-frequency regime, in which each forward solve may need to resolve up to billions
of unknowns, is a notoriously hard problem and a topic of intense interest in the scientific com-
puting community [65]. In practice, the balance between accuracy and computational cost often
results in model simplifications that limit the recovery of small-scale features in a range of complex
underwater environments. A main challenge in ocean acoustics is to find ways to improve existing
models in a way that is both physically justified and computationally efficient.

To address the scalability of the high-frequency models to large seafloor domains, we divide the
region near the seafloor into segments and perform local simulations on these subdomains. The
resulting simulations produce acoustic templates from small, representative seafloor environments
that can be assumed to have homogeneous properties. Our rationale for this model reduction is
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based on the framework of multiscale modeling for partial differential equations, in which a low-cost
large-scale solver of an effective model is coupled with a fine-scale solver that resolves detail. The
range of validity for these methods is problem-dependent and our justification in the present work
is based on physical assumptions of scale-separation and spatial stationarity in the problem.

The forward process can be summarized in terms of three main stages: (I) the incoming wave
from the source to the seafloor; (II) scattering and reflection from the seafloor; and (III) traveling
waves recorded by receivers (See Figure 3). Stages (I) and (III) are relatively easy to model for
a wide range of source frequencies. It should be noted that variable wave propagation velocity in
the water can easily be handled by existing tools, e.g. geometrical optics. The critical interactions
with the seafloor that occur in stage (II) deserve accurate modeling at high frequencies to resolve
significant contributions from scattering effects near the ocean floor. In this case, fine-scale features
such as seafloor roughness must be incorporated in modeling.

Given the availability of tools for modeling wave propagation at lower frequencies, we limit
the present discussion to modeling the high-frequency scattering that occurs in stage (II) and
testing the performance of these models in sediment classification. Though it is out of the scope of
the present work, it is an important problem to further analyze multiscale couplings between the
different stages in the forward process and find ways to systematically build hybrid algorithms that
adapt to more complicated physical processes occurring in the ocean.

Below we will discuss how we approach the backscatter modeling for high-frequency scattering
and sediment characterization.

4.1 Problem setup

We consider models for acoustic backscatter on template domains shown in Figure 3(a). When
the acoustic wave generated by a source located near the surface reaches this template domain,
it can be modeled as an incident plane wave traveling in the direction given by the vector kθ =
ω
cw

(sin θ,− cos θ), where θ is the incident angle with respect to the z axis,

pin(x, z) = e−ikθ·(x,z). (3)

The interaction of these waves with the seafloor produces scattered waves in multiple directions
due to objects on the seafloor, the roughness of the water-sediment interface caused by sand ripples,
as well as heterogeneities in the sediment, including interactions between multiple sediment layers.
The total pressure field p solves the homogeneous equation (1) with s = 0 and can be expressed in
the water domain as the sum of the incident field and the scattered wavefield, p = pin + pscatt.

Sufficiently far from caustics, pscatt can be approximated by the superposition

pscatt(x, z) '
∑
β

Pβ(x, z)eikβ ·(x,z), (4)

where Pβ(x, z) is the complex amplitude of the outgoing wave traveling in the direction β and
is assumed to be locally smooth and independent of wavelength. For co-located sources and re-
ceivers, the backscattered direction is θ̃ = π/2 + θ, and we model the received signal as backscatter
measurements,

Y =
(
|Pθ̃(xk, z∗)|

)n
k=1

. (5)

where (xk, z0) is a set of observation points located at a fixed depth z ≡ z0 above the seafloor.
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For unlayered seabeds, there has been significant progress in quantifying the dominant contri-
butions to backscatter at high frequencies [66, 67, 68, 69, 70]. Many approaches rely on cancellation
effects from neighboring waves to simplify the model, and the situation is even more complicated
when there are multiple sediment layers within the acoustic penetration range. Numerical ap-
proaches for approximating far-field scattering from targets using FEM include boundary-element
methods [56, 71] and techniques for post-processing solutions using the Helmholtz-Kirchhoff (HK)
boundary integral formulation of the scattering problem [72]. Another technique called numeri-
cal microlocal analysis (NMLA) [73, 74] aims to isolate direction angles and amplitudes of waves
crossing an observation location (x0, z0) without relying on knowledge of the solution on the entire
boundary of a scatterer. The main idea is that if the acoustic wavelength λ = 2π/k contains vari-
ations on a scale sufficiently small with respect to the seafloor geometry, the solution p(x, z) to (1)
behaves like a finite superposition of plane waves (4). Then, discrete measurements of the solution
on a observation circle, p(x0 + r cos(tj), z0 + r sin(tj)), can be expressed as a 2D Jacobi-Anger ex-
pansion that contains the amplitudes and angles of interest. By filtering the vector of observations
using the fast Fourier transform, the method recovers the dominant directions and amplitudes of
scattered waves. Recently, research and implementations for high-frequency Helmholtz equations
further improve the accuracy and stability of the method [75, 76].

The plots in Figure 3(b) show the acoustic response approximated by FEM and NMLA at
z = f̄ − 1.5 m above the seafloor (where f̄ is the average of f(x)) from a rough, two-layer seafloor
model. Figure 3(a) shows approximate backscatter signals |Pθ̃(x, z0)| in (5) modeled with FEM
and NMLA on the domain 0 < x < 2,−2 < z < 2 for environments with varying environmental
parameters m = (c, ρ, τ) and a fixed realization of the water-sediment interface. The signals
corresponding to the environment having an upper sediment layer with the largest thickness, τ = 1
m, are visually well-separated owing to the high attenuation of the signal in the sediment. For
τ = .25 m, however, the plots of the signals reflect the effects of the complex interactions that
occur when the acoustic energy penetrates to the bottom sediment layer. These plots indicate
the difficulty and ill-posedness of the inverse problem in the multi-layer setting, and why machine
learning, described below, can play a valuable role in discriminating these signals based on material
type or other classes.

4.2 The data

Backscatter signals were generated for a fixed source frequency ω = 15 kHz, incident angle θ = π/12
radians, and sound attenuation α = 0.5 dB per 1 meter per 1 kHz. In the current study we chose
not to distinguish attenuation based on material type. For our current purposes, we chose to isolate
the small-scale effects of the seafloor by assuming that f = f̄ + f̃ , where f̃ is a mean-zero function
with prescribed root mean square (RMS) height and correlation length. A random selection of the
available environmental parameters, summarized in Table 2, was used to generate the balanced
datasets of backscatter signals (5). We set the sound speed and density of water to be cw = 1500
m/s and ρw =1000 kg/m3 respectively.

Full wave solutions were generated using the COMSOL Multiphysics R© Acoustics Module [77]
for the solution of the Helmholtz equation on a 2 m × 2 m square domain using a P 2− finite
element method discretization, which translates to about 105 degrees of freedom per template. For
more details on sonar forward modeling using COMSOL Multiphysics R© see [58, 53]. Then, NMLA
implemented in MATLAB, is applied to approximate backscatter at n = 1024 locations (xk, z0),
representing a uniformly spaced horizontal discretization of the water domain and a depth 1 meter
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above the seafloor z0 = f̄ − 1.

4.3 Sediment classification

The top part of Table 3 shows the accuracy of different machine learning classifiers implemented
in scikit-learn as described in 3.3, a Support Vector Classifier with radial basis function kernel
and a Random Forest Classifier.

These baseline classifiers were trained on N = 20, 000 signals taken from the training data set,
20% of which are set aside for validation. The performance of the classifiers was evaluated on 5,000
signals from each of the four different test environments with different realizations of the water-
sediment interface f . Results from these experiments, shown in Table 3 indicate that the baseline
machine learning classifiers did not generalize to different test sets generated from environments
with slightly perturbed parameters. Based on our findings, described next, the deeper neural
networks exhibited a better classification performance on the validation data and test environments.

4.3.1 Implementation of CNNs

Initially, we constructed two smaller convolutional neural networks, ‘CNN-3’ and ‘CNN-4’, having
three and four convolutional layers, respectively. In both cases, each convolutional layer is followed
by a batch normalization layer, ReLU activation functions, and a max pooling layer, and the
filter sizes vary from 16×1 to 256×1. We also considered the following well-known deeper CNNs
by adapting them to the 1D setting: AlexNet [78] (8 convolutional layers), GoogleNet [79] (22
convolutional layers), ResNet50 [80] (50 convolutional layers), and VGG-19 [81] (19 convolutional
layers). MATLAB code and the trained models are publicly available1.

We use the Deep Learning toolbox in MATLAB to train CNNs using N = 80, 000 signals taken
from the training data set, 20% of which are set aside for hold-out validation. The performance is
evaluated using 5,000 signals from each of the four different test sets. The labels of the test signals
correspond to the closest match, in terms of absolute distance, between the sound speed of the top
layer and the four sound speed classes used in the training dataset.

Learnable parameters in each CNN are determined using the ADAM method for stochastic
optimization [83]. Training options for the ADAM optimizer were chosen based on trial and error.
We chose a mini-batch size of 500; the learning rate schedule varied between 1e−4 and 1e−3, with
a 50% drop in the learning rate scheduled periodically (every 10-50 epochs) during the training;
the training data are shuffled before every epoch; the validation data are shuffled before each
network validation; the gradient threshold was set to 1; and the L2 regularization factor was
set to 1e−4. The termination criteria were determined to ensure a decreasing validation loss.
For the deeper CNNs, the training was performed on one NVIDIA Tesla P100 16GB GPU or
two GPUs in parallel, as needed. Figure 4 shows plots of the cross-entropy training loss and
validation loss for six different CNN architectures. The cross-entropy loss function is defined as
`(P,Q) = −

∑M
t=1

∑
x∈X Pt(x) logQt(x) where M is the number of classes (4 in our case), X is the

set of observations (either the training or validation set), Pt(x) indicates whether the true label of
x is t, and Qt(x) is the predicted probability of x belonging to class t according to the classifier.

The training times and test accuracy (discussed next) for each classifier are listed in Table 3.

1https://github.com/cf87/Seabed-Classification-2020
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4.3.2 Results

Figures 5(a) and (b) contain plots of the mean test accuracy of different CNNs used to classify
data with varying SNR. The mean is taken over four realizations of noise added to each of the
5,000 signals, resulting in 20,000 predicted labels. Out of the classifiers that were tested, the CNNs
that showed the most robustness to noise were AlexNet-1D, GoogleNet-1D, and to a lesser extent,
CNN-3. This performance was also seen for the other test environments not shown.

One criticism that deep learning techniques receive is the lack of interpretability, especially when
compared with classifiers like SVM and KNN. In physical scenarios, such as seabed classification,
predictive models that rely on the governing equations offer the ability to test many different envi-
ronments. This advantage can lead to gained insight on the capability to generalize. Classification
results for the four test environments in our experiments shed light on the sensitivity of the ma-
chine learning outcomes to physical parameters. Figure 6(a) and (b) contains confusion matrices
for the best classifier, AlexNet-1D, corresponding to noisy test data with an SNR of 20. There
was significant misclassification among all classifiers of signals in Test 3 corresponding to responses
from environments with clay and silt top layer. This indicates that the layer thickness can have
a significant influence on misclassification, which is consistent with physical intuition about the
interaction between thin sediment layers and indicates the need to resolve the layer thickness with
high accuracy to obtain better classification results. The classifier performance in Test 4 shows
improved accuracy.

Although GoogleNet-1D demonstrated similar accuracy and robustness to noisy data, the train-
ing times, listed in the bottom part of Table 3, indicate the superiority of AlexNet-1D (under 11
minutes) over GoogleNet-1D (over 7 hours). Although the smaller, custom CNNs have low training
times and performed well on test sets with low SNR, they did not show robustness to noise. Even at
low SNR, AlexNet-1D outperformed the best baseline machine learning classifiers, however, in the
case of noisy data, the baseline classifiers performed much better overall than the custom CNNs,
ResNet50-1D, and VGG19-1D. Interestingly, SVC performed the best on the Test 3 dataset corre-
sponding to an environment with perturbed layer thickness, which was the most challenging test
case.

An interesting outcome of these numerical experiments is that some of the deep learning classi-
fiers that perform well on the validation set are vulnerable to noise and small perturbations in the
geoacoustic properties of the test environments. Both AlexNet-1D and GoogleNet-1D demonstrated
good generalization behavior whereas ResNet-1D, VGG19-1D, and CNN-4 did not generalize at all.
The poorest performing classifier makes predictions that have about the same accuracy as a random
guess. Understanding in what context deep learning classifiers are good at generalizing is currently
an open question within machine learning (see for instance [84]).

4.4 Further Discussion

One way to visualize the behavior of deep neural networks is by plotting the activation patterns of
different layers for a given input. Figure 7(a) contains plots of the activations of the first convo-
lutional layer in the trained AlexNet-1D for four different input test signals. The pixel intensities
signify which channels are activated. Thes plots give a sense of which filters in each layer are acti-
vated by different inputs, for example, the filters in the 50-100 range are activated by input signals
from the gravel class much more than the other three materials. Furthermore, these plots highlight
the ease of separating signals with strong activations in this layer (sand and gravel environments)
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from signals with weaker activations (silt and clay environments).
Viewing activations in this way across many signals can be challenging since the set of acti-

vations in each layer corresponds to a high-dimensional vector. One way to approach the task
is the t-Distributed Stochastic Neighbor Embedding (t-SNE), [85], which constructs a probability
distribution defined on pairs of activation vectors, where the probability of sampling two vectors
increases as the distance between the vectors decreases. Typically, this distribution is modeled
with a Gaussian kernel. Then, gradient descent is used to find a map between the high-dimensional
distribution and a Student’s t− distribution, defined on a low-dimensional space, that minimizes
the Kullback−Leibler divergence. The Student’s t− distribution arises from estimating the mean
of a normally distributed population; it is symmetric and bell-shaped but it has heavier tails than
a Gaussian distribution. We refer the reader to the t-SNE paper [85] for a formal definition and a
justification of the visualization technique. black The t-SNE plots in Figure 7(b) correspond to the
layer activations for all of the signals in the Test 4 dataset corresponding to the first max pooling
layer, final convolutional layer, and the softmax layer that produces a probability distribution on
the set of possible classes. This visualization suggests that in the initial layer and fifth convolutional
layer, the activations corresponding to different class boundaries overlap, however, in the final fully
connected layer, the class boundaries are more separated. This indicates that the full architecture
of AlexNet-1D is needed for increased accuracy.

5 Conclusions

We employed a model-based approach for designing training and test datasets of acoustic templates
for capturing the relevant physics of representative patches of the seafloor. At low frequencies, this
is accomplished with normal mode propagation, and at higher frequencies, local modeling on smaller
computational domains enables fast, parallelizable simulations. An underlying assumption is the
spatial stationarity of the seafloor, which is reasonable in situations where roughness statistics
are similar over an area larger than the ensonified area. In this study we performed sediment
classification in a two-layer seafloor, varying both geoacoustic parameters (sound speed, density)
and geometric parameters (roughness, thickness) in the training and test data.

In low-frequency models, standard machine learning classifiers, such as logistic regression mod-
els and support vector machines, outperformed traditional matched-field processing techniques,
especially when the test data had a low signal-to-noise ratio. Confusion matrices summarizing the
classification results indicate that signals from certain classes have a higher likelihood of misclas-
sification, namely silt and clay. On the other hand, predictions of signals from gravel and sand
classes are more likely to be correct. For backscatter data, the standard machine learning classi-
fiers demonstrated poor accuracy and did not generalize well to test environments with added noise
and perturbed parameters. Some of the deep learning classifiers, namely AlexNet and GoogleNet,
adapted to 1D signals, were more costly to train but demonstrated higher accuracy and improved
generalization. These results also indicate that the layer thickness can have a significant influence
on misclassification rates. Further investigation must place an emphasis on resolving the layer
thickness with high accuracy.

Our results indicate the promise of machine learning and deep learning for the difficult problem
of geoacoustic classification. The results from our simulations highlight the need to test models
for a broad spectrum of environments to ensure generalization. Producing a well-performing deep
learning model requires thorough experimental design. Several new directions can be explored with
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this framework, for example, finding elastic properties of sediments and incorporating the influence
of the material type on the statistical properties of the seafloor roughness.
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6 Tables

Parameter Training Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

c (m/s)
Clay 1500 1517 1521 1517 1546 1517 1529 1526 1518 1527 1518
Silt 1575 1577 1592 1582 1574 1591 1586 1596 1581 1584 1580
Sand 1650 1658 1632 1663 1647 1652 1644 1642 1672 1648 1655
Gravel 1800 1794 1795 1799 1796 1792 1802 1809 1791 1801 1784

α (dB/λ)
Clay 0.2 0.271 0.077 0.296 0.175 0.224 0.160 0.066 0.256 0.215 0.166
Silt 1.0 1.050 1.064 0.954 0.892 0.982 1.039 1.188 1.046 0.922 1.189
Sand 0.8 1.042 0.843 0.914 0.708 0.839 0.681 0.970 0.881 0.595 0.797
Gravel 0.6 0.495 0.683 0.547 0.458 0.666 0.616 0.740 0.651 0.680 0.775

τ (m)
All 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 1: Environmental parameters varied to generate synthetic data with KRAKEN. An ‘∗′ indi-
cates the parameters used are the same as those used in the training data.
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Parameter Units Training Test 1 Test 2 Test 3 Test 4

Roughness
RMS height (cm) .5 .46 .46 .46 .46
RMS corr. len. (cm) 2 1.5 1.5 1.5 1.5

Sound Speed
(ctop, cbottom)
Clay (m/s) (1500, 5250) ∗ (1501.57, ∗) ∗ (1501.57, 5254.58)
Silt (m/s) (1575, 5250) ∗ (1577.03, ∗) ∗ (1577.03, 5254.65)
Sand (m/s) (1650, 5250) ∗ (1648.13, ∗) ∗ (1648.13, 5246.58)
Gravel (m/s) (1800, 5250) ∗ (1802.07, ∗) ∗ (1802.07 ,5254.71)

Density
(ρtop, ρbottom)
Clay (kg/m3) (1500, 2700) ∗ (1500.66, ∗) ∗ (1500.66, 2704.57)
Silt (kg/m3) (1700, 2700) ∗ (1697.99, ∗) ∗ (1697.99, 2699.85)
Sand (kg/m3) (1900, 2700) ∗ (1898.89, ∗) ∗ (1898.89, 2703.00)
Gravel (kg/m3) (2000, 2700) ∗ (1802.07, ∗) ∗ (1802.07, 2696.42)

Thickness {0.253, 0.504,
τ (m) {.25, .5, .75, 1} ∗ ∗ 0.725, 1.004} ∗

Table 2: Environmental parameters varied to generate synthetic backscatter data. An ‘∗′ indicates
the parameters used are the same as those used in the training data. Among the parameters that
are fixed throughout all of the data are the acoustic frequency ω = 15 kHz, incident angle θ = π/12
radians, and domain size of 2× 2 meters.
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Figure 3: (a) High-frequency scattering from a two-layer seafloor with rough water-sediment in-
terface given by z = f(x). The acoustic wavelength λ of the incoming source ping is comparable
to the spatial wavelength λf of the water-sediment interface. (b) Approximate backscatter signals
corresponding to environments with varying sediments and top layer thicknesses (τ).
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Figure 4: Cross entropy loss as a function of training epoch for six CNN classifiers.
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Figure 5: Classification performance of different trained CNNs on the (a) Test 3 and (b) Test 4
environments.

(a) (b)

Figure 6: Confusion matrices for sediment classification using AlexNet-1D on noisy test data (SNR
= 20 dB) on the (a) Test 3 and (b) Test 4 environments.
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(a)
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Figure 7: (a) Activations in the ‘Conv1’ layer of the trained AlexNet-1D classifier given input test
signals from environments with different sediment types. (b) t-SNE visualization of the activations
in three different layers of the trained AlexNet-1D classifier applied to test data from the Test 4
environment.
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Classifier Training Time Classification Accuracy (%)
Val. Test 1 Test 2 Test 3 Test 4

(CPU)
Nearest Centroid 0:00:03 63.3 66.63 64.54 53.37 64.67
Random Forest Classifier 0:00:07 71.5 71.74 70.15 53.86 71.44
Decision Tree Classifier 0:00:10 55.1 55.95 54.36 43.17 53.94
K Neighbors Classifier 0:00:34 55.7 59.41 57.08 46.29 57.36
SVC (radial basis kernel) 0:02:05 77.3 76.62 75.76 56.63 76.19
SVC (linear kernel) 0:02:18 67.4 59.44 58.14 42.98 58.36
Multilayer Perceptron 0:05:38 73.6 73.04 72.43 51.47 73.43
Logistic Regression 0:45:52 67.7 57.38 55.74 41.54 56.36

(GPU)
AlexNet-1D 00:05:30 88.95 89.72 88.46 58.19 88.78
CNN-3 00:08:28 91.61 43.45 42.49 37.18 42.60
CNN-4 00:10:47 92.41 24.34 24.10 24.08 24.12
ResNet50-1D 01:00:20 89.62 26.16 25.08 25.09 25.02
GoogleNet-1D 07:30:01 86.03 86.14 86.61 57.95 85.88
VGG19-1D 31:37:46 90.31 26.19 25.12 25.15 25.04

Table 3: Training time and accuracy of different shallow machine learning tools (top) and CNNs
(bottom) applied to a validation set (no added noise) and four test sets (noise added with SNR =
20 dB).
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