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Abstract—We study the max-min fairness of multi-task jobs
in distributed computing platforms. We consider a setting where
each job consists of a set of parallel tasks that need to be
processed on different servers, and the job is completed once
all its tasks finish processing. Each job is associated with a
utility which is a decreasing function of its completion time, and
captures how sensitive it is to latency. The objective is to schedule
tasks in a way that achieves max-min fairness for jobs’ utilities,
i.e., an optimal schedule in which any attempt to improve the
utility of a job necessarily results in hurting the utility of some
other job with smaller or equal utility.

We first show a strong result regarding NP-hardness of finding
the max-min fair vector of job utilities. The implication of
this result is that achieving max-min fairness in many other
distributed scheduling problems (e.g., coflow scheduling) is NP-
hard. We then proceed to define two notions of approximation
solutions: one based on finding a certain number of elements of
the max-min fair vector, and the other based on a single-objective
optimization whose solution gives the max-min fair vector. We
develop scheduling algorithms that provide guarantees under
these approximation notions, using dynamic programming and
random perturbation of tasks’ processing times. We verify the
performance of our algorithms through extensive simulations,
using a real traffic trace from a large Google cluster.

Index Terms—Scheduling Algorithms, Max-Min Fairness, Lex-
icographic Optimization, Data Centers

I. INTRODUCTION

Distributed computing platforms, such as MapReduce [1],
Dryad [2], Spark [3], etc., have been widely adapted for large-
scale data processing in cloud and computing clusters. The
data set is typically distributed among a set of servers, and
processed by executing a job consisting of a set of tasks
in servers. The tasks are typically processed in the servers
where their input data is stored (a.k.a data locality) [1]. The
collective behavior of tasks is more important than each of
the tasks individually, as the job can be completed, or moved
to another computation stage, only when all of its tasks finish
their processing [1]–[3].

Jobs from a wide range applications and different users can
coexist in the same cluster, and often have diverse tasks and
processing requirements. Efficient and fair allocation of the
cluster’s resources among jobs is crucial to guarantee their
timely completions. This has been amplified by the increasing
complexity of workloads, i.e., from traditional batch jobs, to
queries, graph processing, streaming, machine learning jobs,
etc., that all need to share the same cluster, and often have
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very different latency and priority requirements. For example,
analysis of a Google cluster’s trace in [4] shows a diverse mix
of jobs in the same cluster, ranging from latency-tolerant jobs
(∼ 24%) to latency-sensitive jobs (∼ 42%).

Fair allocation of resources in shared clusters among ap-
plications and organizations has been studied in, e.g., [5]–[7],
where the cluster’s resources are usually divided among dif-
ferent applications through some notion of fairness, e.g. DRF
(Dominant Resource Fair) [5]. The scheduler then manages
queues of tasks for applications and schedules their tasks. For
example, Hadoop [8] reserves resources by launching con-
tainers or virtual machines in servers. Each container reserves
memory and CPU for processing a task at a time. The Hadoop
scheduler uses FIFO scheduling or memory-based DRF [9].
However, these schedulers ignore the completion times of jobs
and their latency requirements when allocating resources. As-
signing priorities can alleviate this problem, however priorities
are typically assigned to applications manually [10], and it
is not clear how to assign priorities to jobs (and their tasks)
dynamically, based on the existing jobs in the cluster and their
sensitivities to latency. Further, application priority in Hadoop
is supported only for FIFO scheduling [10].

Despite the vast research on scheduling algorithms (see
Related Work), theoretical study of fairness with focus on
sensitivities of jobs to latency is very limited. Moreover, prior
work is mainly based on simple models that assume each job
is only one task (ignoring dependency among tasks and their
collective impact on the job’s completion time), or tasks are
processed on any server arbitrarily (ignoring data locality).

In this paper, we consider a multi-task job scheduling model
that captures such features. Each job consists of a set of
tasks whose completion time is determined by the completion
time of its last task. As in [11], [12], to capture latency-
sensitivity, we consider a utility for each job as a function
of its completion time. For example, a highly latency-sensitive
job can specify a utility function that decays rapidly to zero as
its completion time increases. We consider the notion of max-
min fairness which is one of the most widely used resource
allocation mechanisms [13]–[15]. Our objective is to schedule
tasks in a way that achieves max-min fairness among jobs’
utilities, i.e., maximize the worst utility across all the jobs,
then maximize the second-worst utility without affecting the
worst utility, and so on. We refer to this problem as max-
min fair scheduling. Note that this implies that at the optimal
solution, we cannot increase the utility of any job without
hurting the utility of some job with smaller or equal utility.



We also would like to mention that the max-min fair
scheduling problem for our multi-task job model is of interest
from theoretical point of view. As we see later, our model can
be reduced to the three scheduling problems considered in the
literature to achieve max-min fairness for jobs and coflows1

considered in [12], [17], [18]. Hence, all the three problems
are at least as hard as our problem.

A. Related Work

There has been much work on fair scheduling in data
centers, e.g. [5]–[7], [11], [12], [17], [19]–[21]. They mostly
consider fair resource allocation to guarantee properties such
as sharing-incentive among users of a shared cloud [5]–[7],
with little focus on the sensitivity of jobs to their completion
times, or consider heuristics for different notions of fairness for
maximizing total utility [19], meeting deadlines [21], or fair
resource assignment to each job [20]. Generating proper utility
functions based on jobs’ priorities and completion times was
studied in [11]. In [19], a Risk-Reward heuristic was presented
where scheduling decisions are made based on the cost of
reallocating resources and future utility gain. The max-min
fairness of job utilities were studied in [12], [17], however,
their models assume each job has only one task and the cloud
cluster is one large pool for each resource type. Moreover,
in their solution, a job can be allocated different resource
types in different unrelated time slots, as opposed to having
all its required resources available at the same time. Further,
despite their plausible algorithms that try to solve the problem
optimally, we show in this paper that the problems are NP-hard
in a strong sense.

Our model is closely related to the concurrent open shop
model [22]–[25] in scheduling literature. Minimizing the
(weighted) average completion time of jobs in this model has
been widely studied, with several approximation algorithms
in [23]–[25]. However, to the best of our knowledge, there is
no theoretical result on max-min fairness in this model.

Max-min fair is one of the most widely used notions of
fairness [13]–[15]. Moreover, the use of utilities and the net-
work utility maximization for rate allocation in communication
networks has been extensively studied (e.g. see [26] and
references therein). However, the results cannot be extended
to max-min fair job scheduling in data centers. The max-min
fair optimization is not a single-objective optimization, as we
aim to optimize a vector of objective functions (utilities) in
the sense of max-min fairness. Multi-objective optimization
programs have been widely studied and different methods have
been developed to solve these problems efficiently in special
cases [27]–[29]. However, as we show, solving the multi-
objective optimization in our setting is a hard problem (NP-
hard). In [29], existence and computation of a set of equivalent
weights was studied which enable the conversion of a given
multi-objective optimization to a single-objective optimization.
We use this method in our paper to study the performance of
one of our proposed algorithms.

1a collection of flows whose completion time is the completion time of the
last flow in the collection [16].

We would like to mention that, there exist well-established
techniques to estimate tasks’ durations to the scheduler, based
on the history of prior runs for recurring jobs, using tasks’
peak demands, or measuring statistics from the first few tasks
in each job, see [30], [31]. Hence, throughout the paper, we
assume that tasks’ processing times are known.

B. Main Contributions

Our main contributions can be summarized as follows:
• NP-Hardness of Max-Min Fair Scheduling: We first show

that it is NP-hard to optimally solve the max-min fair
scheduling problem. We actually prove a stronger complex-
ity result. Given n multi-task jobs in a cluster of machines,
it is NP-hard to find a schedule in which even the first
O(nε) � n number of jobs, for any ε > 0, conform to
their optimal max-min fair solution. Further, we conclude
that the scheduling problems considered in [12], [17], [18]
are NP-hard.

• Approximation Algorithms: We define two notions of
approximation solutions for this problem: one based on
finding a constant number of elements of the max-min
fair vector, and the other based on a single-objective opti-
mization whose solution gives the max-min fair vector. We
develop scheduling algorithms, using dynamic programming
and random perturbation of tasks’ processing times, that
provide guarantees under both notions of approximation
solutions.

• Empirical Evaluation: We use a real traffic trace from a
large Google cluster to verify that our algorithms in fact
perform very well compared to other scheduling policies.

II. MODEL AND PROBLEM STATEMENT

Cluster and Job Model: We consider a cluster of m ma-
chines, denoted by the set M = {1, ...,m}. Each machine
can be thought of as a container or virtual machine [8] that
can process one task at a time. There is a collection of n jobs,
denoted by the set N = {1, ..., n}. Each job j ∈ N consists of
up to m different tasks that need to be processed on different
machines. Each task requires a specific processing time from
its corresponding machine2. Specifically, the task of job j on
machine i, denoted by task (i, j), requires a processing time
pij ≥ 0 from machine i. For each job j, we use Mj ⊆ M
to denote the subset of machines that contain tasks of job j,
i.e., pij > 0 for each i ∈ Mj . Without loss of generality,
we assume processing times of all non-zero tasks are integer
numbers and the smallest processing time is at least one. This
can be done by defining a proper time unit and representing
the tasks’ processing times using integer multiples of this unit.

Tasks are independent of each other in the sense that
tasks of the same job can be processed in parallel on their
corresponding machines. However, a job is completed only
when all of its tasks finish their processing. Define Cij to be

2In the case that a job has multiple tasks on a specific machine, we can view
them as a single task with processing time equal to the cumulative original
tasks’ processing times.



the completion time of task (i, j). Then, the completion time
of job j, denoted by Cj , is given by

Cj = max
i∈Mj

Cij . (1)

This model is known as the concurrent open shop prob-
lem [22]–[25] in scheduling literature. The total time that it
takes to complete all the jobs in N is called makespan and is
denoted by τ (N). Note that by definition τ (N) = maxj∈N Cj .
It is easy to see that any valid schedule that does not leave
a machine idle, unless it has completed all its corresponding
tasks, achieves the optimal makespan which is equal to

τ (N) = max
i∈M

∑
j∈N

pij . (2)

Max-Min Fair Objective: As in [11], [12], we assume each
job j specifies a utility Uj(Cj), which is a function Uj(·)
of its completion time Cj , and captures its sensitivity to its
completion time. Since each job prefers an earlier completion
time, the utility function is assumed to be decreasing (with
respect to the completion time). We further assume that the
utility function is Lipschitz continuous (i.e., its first derivative
is bounded). To define our max-min fairness, we first define
the lexicographic order for two given vectors [32], as follows.

Definition 1 (Lexicographic Order). Let X = (X1, · · · , Xk)
and Y = (Y1, · · · , Yk) be two vectors of length k. Sort
elements of X and Y in a non-decreasing order and denote
the corresponding vectors by X̄ and Ȳ , respectively. We write
X � Y , and say X is lexicographically greater than Y , if
X̄i > Ȳi for the first i that X̄i and Ȳi differ. Consequently,
we write X � Y and say vector X is not lexicographically
smaller than Y if X̄ = Ȳ or X � Y .

Our objective is to schedule jobs (their tasks) in a way
that achieves the max-min fairness across the vector of jobs’
utilities. In other words, we wish to maximize the worst
(minimum) job utility across all the jobs, and then sequentially
maximize the next-worst utility without affecting the previous-
worst utility, and so on. Formally, let C = (C1, · · · , CN ) be
the vector of completion times of jobs in set N and define
U(C) = (U1(C1), · · · , UN (CN )). We seek to schedule jobs
in a way that the optimal completion time vector, denoted by
C?, has the property that the vector U(C?) is lexicographically
greater than U(C) for any other valid scheduling of jobs with
completion time vector C, i.e., U(C?) � U(C). Note that by
Definition 1, the sorted optimal vector Ū(C?) is unique.

Preemptive vs Non-preemptive Scheduling: The scheduling
algorithm could be preemptive or non-preemptive. In a non-
preemptive algorithm, a task cannot be preempted once it
starts its processing on its corresponding machine, while in a
preemptive algorithm, a task may be preempted and resumed
later on the same machine.

III. LEXICOGRAPHIC MAX-MIN FAIR SCHEDULE AND
NP-HARDNESS

In this section, we first characterize the structure of optimal
schedules for max-min fair problem. Then we show a strong

result regarding NP-hardness of finding the optimal schedule.

A. Structure of Optimal Schedule

In a non-preemptive schedule (Section II), tasks on each
machine are processed according to some order. We say a task
is at position l, l = 1, · · · , n, on machine i if it is the l-th task
that is completed in machine i. Hence, to fully describe a non-
preemptive schedule, it is sufficient to specify a permutation
πi for each machine i, i ∈M , as formally defined below.

Definition 2 (Permutation of Tasks on Machine i). Given a
set of jobs N = {1, 2, . . . , n} and a valid non-preemptive
schedule on machine i, a permutation πi : N → {1, 2, . . . , n}
is a one-to-one mapping of jobs to positions {1, 2, . . . , n}
according to which their tasks on machine i are completed.

Hence πi(j) determines the position of job j’s task on
machine i. Note that some jobs might not have any tasks
on machine i. For these jobs, we consider tasks with zero
processing time on machine i. These zero-processing tasks
do not contribute to the completion times of jobs and their
utilities; nevertheless, including them in Definition 2 will
make the future arguments easier. The following theorem
characterizes the structure of optimal solution.

Theorem 1. Any optimal schedule for max-min fair problem
can be converted to another optimal schedule in which all the
tasks are scheduled in a non-preemptive fashion, according to
the same permutation on all the machines.

Proof Overview. Given any optimal schedule, we construct a
non-preemptive schedule, with identical permutation for all
machines: Starting from the last job (the job with the largest
completion time) in the given solution, we move all its tasks to
the end of the schedule in their corresponding machines, and
sequentially do this for all the jobs. We omit the details.

Hence, by Theorem 1, in order to find an optimal solution,
it is sufficient to only consider non-preemptive schedules with
the same permutation of jobs πi = π on all machines i ∈M .

B. NP-Hardness

Next, we show that finding an optimal solution to the max-
min fair scheduling is NP-hard. In fact, we prove a stronger
complexity result. Before stating the result, we make the
following definition.

Definition 3 (f(n)-max-min fair). Let Ū(C) denote the sorted
utility vector corresponding to completion time vector C.
We say a solution C is f(n)-max-min fair, if the first f(n)
elements of Ū(C) match the first f(n) elements of Ū(C?)
where C? is completion time vector for some optimal solution.

Consider any increasing function f(n) ≤ n for which
f−1(n) is bounded by a polynomial in n. We show that it
is NP-hard to find a schedule (or equivalently a permutation
of jobs by Theorem 1) for which the first f(n) elements of
the sorted utility vector matches the first f(n) elements of the
sorted max-min fair utility vector. We state the result in the
following theorem.



Theorem 2. Given a set of machines M = {1, ...,m} and a
set of jobs N = {1, ..., n}, scheduling jobs to achieve f(n)-
max-min utility optimal is NP-hard, for any increasing function
f(n) for which f−1(n) is polynomially bounded in n. The
result holds even if all the utility functions are the same, i.e.,
Uj(Cj) = U(Cj), ∀j ∈ N .

For instance, Theorem 2 holds for any sublinear function
f(n) = nε, for any ε ∈ (0, 1], but not for f(n) = log(n).

In the case of identical utility functions, Uj(Cj) = U(Cj),
∀j ∈ N , it is easy to observe that “max-min” fairness among
utilities is equivalent to “min-max” among the completion
times. In the latter problem, we minimize the largest com-
pletion time across the jobs, and then successively minimize
the next largest completion time as long as it does not affect
the previous largest completion time, and so on. We formally
state this fact in the following lemma.

Lemma 1. In the case that Uj(Cj) = U(Cj), ∀j ∈ N ,
max-min fairness among utilities is equivalent to min-max of
completion times.

Proof. Given that the utility function U(.) is not increasing,
the result is immediate.

Proof of Theorem 2. We prove the theorem for the special
case when all jobs’ utility functions are the same. This implies
NP-hardness of the problem for general cases with any non-
increasing utility functions. To prove this, we use a reduction
from the Minimum Vertex Cover Problem which is known to
be NP-hard [33]. An instance I of Minimum Vertex Cover
Problem is given by a graph G = (V,E), where the goal is
to find a minimum cardinality set of vertices W ⊂ V such
that each edge e ∈ E is incident to at least one vertex of W .
We use VC(G) to denote the cardinality of W . We map this
instance to an instance I ′ of the problem of f(n)-min-max
completion times using a polynomial time procedure.

Instance I ′ has m = |E|+ n′ machines, one for each edge
e ∈ E, plus n′ extra machines to be specified shortly, and
n = |V | + n′ jobs, one for each vertex v ∈ V and extra n′

jobs. Let dv denote the degree of vertex v in G. For each
vertex v ∈ V , we consider a job j(v) consisting of dv tasks
(j(v), e), such that pj(v)e = 1 if edge e ∈ E is incident to
v, and 0 otherwise. We refer to these jobs as vertex jobs. The
remaining n′ jobs, each has a unit-sized task on one of the
last n′ machines, such that each of the n′ machines only has
one task to process. We refer to these jobs as dummy jobs. We
choose n′ = f−1(|V |)−|V |. Note that f(|V |) ≤ |V | and f is
an increasing function (and so is f−1), therefore, n′ ≥ 0. At
the end of this construction, each machine has either 1 or 2
tasks to process; hence, all the jobs can be scheduled in two
time slots. Consider a schedule with the following properties:
(1) it finishes all the jobs using two time slots, (2) all the n′

dummy jobs are completed in the first time slot Note that the
set of tasks completed in the second time slot belong to a set
of vertex jobs. This set of vertex jobs creates a vertex cover
for G, because each of the first |E| machines has to process
some task from these jobs in the second time slot.

Note that by the choice of n′,

f(n) = f(|V |+ n′) = f(f−1(|V |)) = |V | > VC(G). (3)

Out of the first f(n) = V jobs in the sorted completion time
vector, some jobs have completion time equal to 2 and some
jobs have completion time equal to 1. To find the f(n)-min-
max vector, we therefore need to minimize the number of
jobs completed in the second time slot, which is equivalent
to finding the minimum vertex cover of G. Note that the
remaining jobs correspond to an independent set in graph G,
and hence all their tasks can be scheduled in the first time
slot. However, it is NP-hard to find the minimum vertex cover
of graph G = (V,E) [33].

As a result of Theorem 2, we can conclude that the max-
min fairness problem for single-task jobs considered in [12]
(see Section I-A for more details) and the max-min fairness
scheduling of coflows considered in [18] are both NP-hard
problems, that were not shown before. The proof is based on
reduction of our problem to these scheduling problems. The
details are omitted due to space constraint.

Corollary 1. The max-min fair scheduling problems consid-
ered in [12], [17], [18] are NP-hard.

IV. DEFINING APPROXIMATION SOLUTIONS

In single-objective optimization, in case the problem is NP-
hard, we try to find approximation algorithms, which run in
polynomial time, and can return a solution with provable
guarantee on its distance from the optimal solution (e.g.,
approximation ratio) [34]. However, the optimization problem
in our setting is not a single-objective optimization, as we
aim to optimize a vector of objective functions in the sense of
max-min fairness. Consequently, given that finding the optimal
vector solution to our problem is NP-hard (Theorem 2), it is
not clear how to define the approximation algorithms in our
setting. In this section, we describe two possible definitions for
approximation solutions. We focus on the case that all jobs’
utility functions are the same, i.e., Uj(Cj) = U(Cj), j ∈ N .
Recall that by Lemma 1, this is equivalent to the problem
of min-max of completion times, which is still NP-hard by
Theorem 2. In Section VI, we discuss possible extensions to
unequal utility functions.

A. k-min-max fair approximation

A natural way of extending the idea of approximation
ratio is through αn-min-max, for some α < 1, based on
f(n) = αn in Definition 3. We can attempt to find an ap-
proximate algorithm (schedule) such that the first αn elements
of its corresponding sorted completion time vector matches
the first αn elements of the sorted min-max vector. However,
Theorem 2 implies that even finding such a schedule is NP-
hard for any constant α > 0. Therefore, we ask for less,
and consider finding the first k elements of the sorted optimal
vector, for a fixed constant k < n.



B. Single-objective approximation

The second approach could be to formulate a single-
objective optimization whose optimal solution coincides with
the min-max vector. We can then use this single-objective op-
timization to measure the quality of an approximation solution
to the min-max problem. We describe one such formulation
based on an integer program.

An Equivalent Integer Program (IP). We formulate an
Integer Program based on minimization of the total weighted
completion times of jobs. In traditional minimization of total
weighted completion times [23]–[25], each job j has a positive
fixed weight wj and the objective is to minimize

∑
j∈N wjCj .

The optimization that we consider here is different as the
weights of jobs are not fixed in advance and depend on
their positions in permutation. Formally, for any position
l ∈ {1, 2, . . . , n} and any job j ∈ N , we define a binary
variable xlj which is 1 if job j is the l-th job to complete
in the schedule, and 0 otherwise. In view of Definition 2,
xlj = 1 is equivalent to having π(j) = l, when πi(j) = π(j)
for all i ∈ M . We refer to {xlj} as permutation variables.
Each position l ∈ {1, 2, . . . , n} is assigned a non-negative
weight wl. Define C(l) to be the completion time of the l-th
job completed in the schedule

(IP) min

n∑
l=1

wlC
(l) (4a)

C(l) ≥
l∑

s=1

∑
j∈N

pijxsj , i ∈M, 1 ≤ l ≤ n (4b)

n∑
l=1

xlj = 1, j ∈ N (4c)∑
j∈N

xlj = 1, 1 ≤ l ≤ n (4d)

xlj ∈ {0, 1}, 1 ≤ l ≤ n, j ∈ N (4e)

Constraint (4b) is based on the definition of permutation
variables and the fact that the completion time of the l-
th job is greater than completion time of its task on any
machine i. Constraints (4c) and (4d), capture the requirement
that each job is assigned to a position, and each position is
assigned to a job, respectively. Let C?(l) denote the value
of completion time of the l-th job in an optimal solution
to (IP). Observe that by the minimization objective, for any
job there is a machine for which Constraint (4b) turns to
equality at the optimal solution. Let i? denote the machine
for which C?(l−1) =

∑l−1
s=1

∑
j∈N pi?jx

?
sj . Then, as a result

of Constraint (4b) on machine i? for the l-th job we have,

C?(l) ≥
l∑

s=1

∑
j∈N

pi?jx
?
sj ≥

l−1∑
s=1

∑
j∈N

pi?jx
?
sj = C?(l−1).

This implies that C?(1) ≤ · · · ≤ C?(n), i.e. the values of
C?(l) are consistent with our definition of jobs’ positions l =
1, · · · , n. However, since a job l with no task on a machine i
is assumed to have a task with zero processing time on that
machine, and Constraint (4b) is on all machines i ∈ M , the

completion time of the job may be dominated by one of its
zero-processing tasks. This can result in a larger value for
C?(l) than the actual completion time of the l-th job in the
schedule according to (1). We need to show that C?(l) is indeed
the completion time of the l-th job in the schedule.

Lemma 2. For any job h and its corresponding position l
(i.e., x?lh = 1) in an optimal solution to IP (4),

Ch = C?(l) =

l∑
s=1

∑
j∈N

pi?jx
?
sj , for some i? ∈Mh.

Therefore, C?(l) is indeed the completion time of job h in the
schedule corresponding to optimal permutation variables x?lj
(or its corresponding job permutation π?).

The proof of Lemma 2 is based on a contradiction argument
and optimality of C?. We omit the proof due to page limit.

Next, we show that by an appropriate choice of weights wl,
l = 1, 2, . . . , n, we can force the optimal solution to IP (4) to
coincide with the optimal min-max vector of completion times.
Recall the definition of τ (N) in (2). The following lemma
states the result for non-trivial instances of min-max problem.

Lemma 3. Let w0 = (τ (N))n and assume that τ (N) ≥ 2 and
n ≥ 3. The optimal solution to IP (4) is an optimal solution
for min-max problem if we set wl = wl0.

Proof Overview. Consider an optimal solution C?(l), l =
1, · · · , n, to IP (4), and let C̃(l) be the completion time of the
l-th job in a min-max solution. The proof is by contradiction.
Suppose {C?(l)}nl=1 is not a min-max optimal solution. Then,
it follows that there must exist some position l, 1 ≤ l ≤ n,
for which the following relation holds,

C?(l
′) = C̃(l′) ∀l′ > l,

C?(l
′) > C̃(l) for l′ = l,

C?(l
′) < C̃(l′) ∀l′ < l.

We then proceed to show that by the choice of weights as
in the lemma’s statement, even if the completion time of the
l-th job, C?(l) is greater than C̃(l) by only one time unit, we
get

∑l
l′=1 wl′C

?(l′) >
∑l
l′=1 wl′C̃

(l′), which contradicts the
optimality of {C?(l)}nl=1 for IP (4). We omit the details due
to page limit.

Note that the total number of bits required to represent the
weights in Lemma 3 is polynomially bounded in the problem
input. Specifically, the number of bits required to represent
the largest weight wn is O(n2 log τ (N)), therefore we need at
most O(n3 log τ (N)) bits to represent all the weights.

V. APPROXIMATION ALGORITHMS FOR EQUAL UTILITY
FUNCTIONS

In this section, we consider the case where all jobs’ utility
functions are the same. Before presenting our scheduling
algorithms, we describe a set of permutations that contains
an optimal schedule. Recall that for each job j ∈ N , Mj

denotes the set of machines for which pij > 0.



Lemma 4. Consider the problem of finding the optimal min-
max solution of jobs’ completion times. For any two jobs h and
k, 1) If pi,h ≤ pi,k,∀i ∈ Mh ∩Mk, then there is an optimal
schedule that job h precedes job k in the permutation. 2) If
pi,h = pi,k = p,∀i ∈ Mh ∩ Mk, then there is an optimal
schedule that jobs h and k are adjacent in the permutation.

The proof of Lemma 4 is based on an exchange argument
and is omitted due to space constraint. We use Lemma 4 later
in this section to augment the solution of an algorithm.

A. k-Max-Min Scheduling Algorithm

We aim to find a k-min-max fair schedule as defined
in Section IV-A. This is equivalent to finding the last k
jobs in the corresponding optimal permutation. Algorithm 1
gives a description of our algorithm. It is based on dynamic
programming and starts by finding the last job and moves
backward to find the last k jobs in the optimal permutation.

Algorithm 1 k-Max-Min Algorithm

1. If k > 1,
1.1. compute the busy duration of each machine i ∈ M ,

given the job set N as τ (N)
i =

∑
j∈N pij .

1.2. Compute the set of candidate jobs to be the last job to
complete as IN = arg minj∈N maxi∈M (τ

(N)
i − pij).

1.3. For each job j ∈ IN , run Algorithm 1 for N ← N \
{j}, and k ← k−1 and denote the output permutation
by πj . Assign πj(j) = n for j ∈ IN .

1.4. Compare the output permutations {πj}, and set π1
to be the one whose corresponding completion time
vector dominates the others in the sense of min-max
fairness.

2. Else (k = 0), Ñ = ∅, π1 = ∅.

Let π1 be the output of Algorithm 1, and Ñ = {j ∈ N :
π1(j) = n, · · · , n−k+1}. To schedule remaining jobs, we can
compute a random permutation over remaining jobs N\Ñ , and
modify it by exchanging jobs’ positions according to Lemma 4
to get a permutation π2. We can then use π = [π2, π1] to
schedule all jobs.

1) Correctness of Algorithm 1: Consider a machine i. The
time that this machine needs to process all its associated
tasks is given by τ (N)

i as defined in line 1.1. Therefore, there
exists a task (i, j) that completes at time τ

(N)
i . Also, the

completion time of the last job in any optimal schedule is
equal to τ (N) = maxi∈M τ

(N)
i , which is the optimal makespan

(2). Now the algorithm needs to decide which job should it
actually complete last in the schedule. Assume that it chooses
job j as the last job to complete (equivalently, π(j) = n), then
the second-largest completion time across all the jobs will be
equal to

τ (N\{j}) = max
i∈M

τ
(N\{j})
i = max

i∈M
(τ

(N)
i − pij).

Hence, the algorithm finds the set of jobs IN such that
τ (N\{j}) is minimized for j ∈ IN . Note that this is necessary
in order to achieve a min-max fair vector. Also, note that the

maximization in line 1.2 of the algorithm is over the set M
and not Mj , for all j ∈ N , to ensure that position n is assigned
to a job with the largest completion time. Applying a similar
argument, we conclude that Algorithm 1 correctly finds the
last k jobs in the optimal schedule.

2) Time Complexity of Algorithm 1: Observe that the size
of set IN (line 1.2) is at most n. This implies that running
time of the algorithm is O(kmnk) which is polynomial in
input size for a fixed value of k. If we set k = n, we need to
check all the n! possible permutations to find out the optimal
solution. As we can observe from execution of Algorithm 1,
the reason that we need to consider all possibilities for the
optimal permutation of jobs (that can blow to n!) is that size
of candidate set IN is generally greater than one. Hence, the
Algorithm requires to check which candidate job it should
choose for each position. In the case that there is a unique
candidate job at each iteration, the optimal permutation can
be computed in O(mn2 + mn log(p)) time, where p is the
maximum task processing time.

B. Perturbation-Based Scheduling Algorithm

Algorithm 2 Perturbation-Based Algorithm

1. Choose a constant ε > 0.
2. For every job j ∈ N , draw a number εj randomly from

interval [0, ε]. Then update its tasks’ processing times
pij ← pij + εj .

3. For l = n to 1, compute the busy duration of each
machine i ∈ M corresponding to set N , as in line 1.1
of Algorithm 1.

4. Let IN = arg minj∈N maxi∈M (τ
(N)
i − pij).

5. If |IN | 6= 1, go to line 2. Else, set the l-th position in the
permutation to be the unique job j? ∈ IN , i.e., π(j?) = l,
and update N ← N \ {j?}.

6. Schedule jobs (with the original processing times) accord-
ing to the obtained permutation π.

Algorithm 2 gives a description of our perturbation-based
algorithm to schedule multi-task jobs so as to approximate
the min-max completion time vector, in the single-objective
approximation sense (Section IV-B). At a high level, given
an instance of the problem, we perturb the tasks’ processing
times with a small random noise. This is an attempt to ensure
in execution of Algorithm 1, the number of candidate jobs
calculated in line 2 reduces to 1 with high probability. For each
job j, we draw a noise εj uniformly at random from interval
[0, ε]. Define p′ij = pij + εj to be the processing times in the
perturbed instance. Similar to Algorithm 1, for the perturbed
instance, we compute the optimal permutation starting from
the last position n. The perturbation noises in practice are not
real numbers, hence, the probability that the set of candidate
jobs for the l-th position, l = 1, . . . , n, contains more than one
job is small but not zero. To resolve possible collisions in a
candidate set, we have lines 5 in Algorithm 2.



1) Evaluation of Algorithm 2: Consider an instance of our
problem. Let π denote the permutation of jobs computed by
Algorithm 2. We use optimal objective value of IP (4) to
measure the distance of the computed solution by Algorithm 2
to the optimal solution.

Theorem 3. Let π be the permutation of jobs computed
by Algorithm 2 and C denote the objective value of IP (4)
according to this permutation. Also let OPT be the objective
value of IP for an optimal min-max fair schedule. Then,
C ≤ OPT + g(ε), where g(ε) is a strictly decreasing function
in ε, and g(ε)→ 0 as ε→ 0.

We refer to the instance before applying perturbation as
original instance. Recall that optimal solution of IP (4) is
equivalent to the optimal max-min solution for the original
instance; therefore, difference of the two objective values C
and OPT, denoted by g(ε) is a sound metric to evaluate the
quality of permutation π computed by Algorithm 2 for the
original instance. Moreover, note that we can choose any ε by
considering sufficiently large number of bits to represent the
perturbation noise which incurs greater complexity. This issue
is addressed in Subsection V-B2.

Proof Overview. The permutation π computed by Algorithm 2
is optimal for the perturbed instance. Therefore, by Lemma 3,
π yields to the smallest objective value, ÕPT, for IP (4)
(when equipped with weights that correspond to the perturbed
instance). Next, we apply the optimal permutation of the
original instance, π?, on the perturbed instance and use C̄ to
denote its IP’s value. We find the relationship between OPT
and C, by comparing their values with ÕPT and C̄. It follows
that g(ε) = (n2 + 1)ε

∑n
l=1 lwl + ε2f(ε), for a polynomial

function f . We omit the details due to space constraint.

2) Time Complexity of Algorithm 2: Let b denote the
number of bits used to represent the perturbation noises. The
probability of having more than one job in set IN in the
first iteration is less than

(
n
2

)
× 2−b by the union bound.

Therefore, the probability of not encountering any collision
in IN is at least 1 − 2−(b+1)n2. Choosing b = 3 × log(n),
the average number of times we should execute the algorithm
to pass the first iteration successfully is less than 2n

2n−1 ≤ 2.
Applying the same argument, the average number of times
needed to successfully complete all the iterations is polynomial
in the input size. Therefore, Algorithm 2, on average, has
polynomial time complexity in the input size of the original
instance (i.e., O(mn2+mn log(p))). In simulations for Google
trace (Section VII), the algorithm always found each position
successfully in one try.

VI. GENERAL UTILITY FUNCTIONS

The main obstacle in extending the results in Section IV
and V to unequal utility functions is that the jobs’ positions
in the optimal permutation, based on jobs’ completion times,
may not be the same as the jobs’ positions according to jobs’
utilities. Algorithm 1 used the fact that for any set of jobs
N , there exists a job that completes at the optimal makespan

τ (N) (Equation (2)). This gives the min-max of completion
times and also helps us decide which job to schedule last.
However, in the case of unequal utility functions, the job that
is scheduled last with the largest completion time may not be
the job with the worst utility. Therefore, Algorithm 1 cannot
be generalized to find the last k jobs with the worst utilities
in the case of general utility functions.

Nevertheless, we present a generalization of the
perturbation-based algorithm (Algorithm 2) to unequal
utility functions. Since utility functions are assumed to be
Lipschitz continuous (bounded first derivative), we can choose
the noise parameter ε small enough such that job utilities
do not change dramatically after perturbing task processing
times. The algorithm is essentially the same as Algorithm 2,
except that we do not update processing times in line 2, and
instead in line 4, the set of candidate jobs is computed as

IN = arg max
j∈N

min
i∈Mj

Uj(τ
(N)
i + εj).

Note that the positions of jobs in the obtained permutation π
by this algorithm, is neither the same as the positions based on
the sorted completion time vector (Definition 2), nor the same
as the positions based on the sorted utility vector. Nevertheless,
we can use this permutation π to schedule jobs. We evaluate
the performance of this algorithm empirically in simulations.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our algo-
rithms using a real traffic trace from a large Google clus-
ter [35]. The original trace is based on ∼11000 servers over
a month long period. In our experiments, we filter jobs and
consider a set of jobs with at most 200 number of tasks which
are about 99% of all the jobs in the production class. Also, in
order to have reasonable traffic density on each machine (since
otherwise the problem is trivial), we consider a cluster with
200 machines and randomly map machines of the original set
to machines of this set. In simulations, we choose parameter
ε in Algorithm 2 and its generalized version to be 10−4 times
the smallest task processing time in the data set. For brevity,
in Figures, we refer to both Algorithm 2 and its generalized
version as PBA (Perturbation-Based Algorithm).

We evaluate the performance of our algorithms in two cases:
• Equal Utility Functions: When all the jobs have the

same utility function, lexicographic max-min of utilities is
equivalent to lexicographic min-max of completion times
(by Lemma 1). We compare Algorithm 2 (PBA) with First-
In First-Out (FIFO), and Shortest Processing Time First
(SPTF). In FIFO, we list jobs based to their arrival times
and schedule tasks on each machine according to this list.
In SPTF, we list tasks on each machine in non-increasing
order of their processing times, and schedule tasks starting
from the first task in this list.

• General Utility Functions: We consider linear utility func-
tions for jobs with different slopes that capture the priority
information which is available for each job in the data set.
In this case, we compare the performance of generalized
Algorithm 2 as described in Section VI (PBA), First-In



Completion Time (second) ×106

0 1 2 3 4 5 6

F
ra

c
ti

o
n

 o
f 

J
o

b
s

0

0.2

0.4

0.6

0.8

1
Empirical CDF

PBA

SPTF

FIFO

(a) Empirical CDF.

       Average      4th Quartile-Average      Deviation      

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e
c
o

n
d

)

×106

0

0.5

1

1.5

2

2.5

3

PBA

SPTF

FIFO

(b) Average and Deviation.

Fig. 1: Job completion times under PBA, SPTF, and FIFO in
the offline setting. Lower average and lower deviation is better.
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Fig. 2: Job utilities under PBA, LUF, and FIFO, in the offline
setting. Higher averages and lower deviation is better.

First-Out (FIFO), and Largest Utility First (LUF). In LUF,
we consider a utility for each task, using the utility function
of its corresponding job. Then on each machine at any time,
we list tasks according to their utility values, and schedule
the task that gives the largest utility upon completion, then
move to the next task, and so on.

We examine algorithms by looking at Cumulative Distribu-
tion Function (CDF) for job completion times and utilities,
in online and offline setting, with equal and unequal utility
functions. In addition, we report 3 performance metrics:

• Average: the average of completion times of jobs (in the case
of equal utility functions), or the average of their utilities
(in the case of unequal utility functions).

• 4th Quartile-Average: the average of the worst 25% of com-
pletion times or utilities among jobs. This metric indicates
how much each algorithm starves long or low-utility jobs
compared to the average.

• Deviation: the standard deviation of the job completion
times (or their utilities) from the average, which is a metric
of overall fairness to all jobs

In the case of equal utility functions, we report the results
for job completion times, hence, smaller average and smaller
4th quartile-average are preferable. In the case of general
utilities, we report the results for job utility values, hence in
this case, larger average and larger 4th quartile-average are
preferable. Moreover, in both cases, smaller deviation value
for an algorithm shows that it has a better overall fairness.

A. Offline Setting

We first present the results in the offline setting.

1) Equal Utility Functions: Figure 1a depicts the empirical
CDF of PBA, SPTF, and FIFO. Furthermore, Figure 1b shows
the three aforementioned performance metrics (Average, 4th
Quartile-Average, and Deviation) for job completion times.
Not only our algorithm is better in terms of fairness, as
shown by its deviation which is 0.65 of deviation of the other
algorithms, and does not starve long jobs compared to other
algorithms, but interestingly it also improves the average job
completion time by a factor of almost 1.7 and 3, compared to
SPTF and FIFO, respectively.

2) General Utility Functions: In the data set, each jobs has
a priority that roughly represents how sensitive it is to latency.
There are 9 different values of job priorities. For job j, we
consider the utility function Uj(t) = Pj × (τ − t), where τ
is the makespan of completing all the jobs (a constant just to
ensure utilities are positive) and Pj is the priority of job j.

Figure 2a shows the empirical CDF of PBA, LUF, and FIFO,
and Figure 2b shows the average, 4th quartile-average, and
deviation of jobs’ obtained utilities. The worst utility among
all the jobs under PBA is 9.5 and 6.9 times greater than the
worst utility under LUF and FIFO, respectively. Note that, the
CDF plot of PBA is sharper around its average value. PBA
reduces deviation in obtained utilities, compared to LUF and
FIFO, by a factor of 1.6 and 1.4, respectively, while it achieves
almost the same average utility as LUF.

B. Online Setting

In the online setting, jobs arrive according to the arrival
times information in the data set. Upon arrival of a job, SPTF
updates its list and proceeds with the new list. However, it
does not preempt an ongoing task in a machine. Similar to
SPTF, LUF updates its list upon arrival of a job and proceeds
with the new list in a non-preemptive fashion.

To extend our algorithm to online setting, we choose a
parameter δ that is tunable. We divide time into time intervals
of length δ time-units. At the beginning of each interval, we
run the offline algorithm on the set of jobs consisting of
jobs that are not scheduled yet and those that arrived in the
previous interval. Further, tasks on the boundary of intervals
are processed non-preemptively, i.e., if some task is running in
some machine according to the previously computed schedule,
we let it finish and then proceed with the new schedule. It is
preferred to start with a smaller value of δ at the beginning,
to avoid delaying the initial jobs in the system for δ amount
of time before starting scheduling them. Therefore, we use an
adaptive choice of δ to improve the performance of our online
algorithm. We choose the length of the i-th interval, δi, as

δi = δ0/(1 + α× exp(−βi)), i = 1, 2, · · ·
We choose δ0 = 3.3 × 105 seconds, and α = 50 and β = 3.
All the jobs arrive over a time horizon of 3.3× 106 seconds.

1) Equal Utility Functions: Figure 3a and 3b show the
performance of PBA, SPTF, and FIFO in the online setting.
We present the results in terms of job delay, which is the time
between a job arrival and its completion time. PBA improves
the average job delay by a factor of 1.7 and 3.3, compared
to SPTF and FIFO. It also achieves better fairness by a factor
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Fig. 3: Job delays under PBA, SPTF, and FIFO, in the online
setting. Lower averages and lower deviation is better.
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Fig. 4: Job utilities under PBA, LUF, and FIFO, in the online
setting. Higher averages and lower deviation is better.

1.9 and 1.7 compared to SPTF and FIFO for the 4th quartile-
average.

2) General Utility Functions: In the online setting, variable
t used in the job utility function is measured from arrival of job
j to the system. Figure 4a shows the empirical CDF of PBA,
SPTF, and FIFO. Further, Figure 4b shows the average and
deviation of jobs’ obtained utilities. The smallest utility value
among all the jobs under PBA is 1.9 and 14.6 times greater
than the smallest utility value of jobs under FIFO and LUF,
respectively. PBA also improves utility deviation compared to
LUF and FIFO by a factor of 1.8 and 1.3, respectively.
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G. Koenig, G. Okonski, and S. Poole, “Time utility functions for mod-
eling and evaluating resource allocations in a heterogeneous computing
system,” in IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011, pp. 7–19.

[12] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for speed: Cora scheduler for optimizing completion-times
in the cloud,” in IEEE INFOCOM, 2015, pp. 891–899.

[13] J. Jaffe, “Bottleneck flow control,” IEEE Transactions on Communica-
tions, vol. 29, no. 7, pp. 954–962, 1981.

[14] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[15] B. Avi-Itzhak and H. Levy, “On measuring fairness in queues,” Advances
in applied probability, vol. 36, no. 3, pp. 919–936, 2004.

[16] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks. ACM, 2012, pp. 31–36.

[17] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Rush: A robust scheduler to manage uncertain completion-times
in shared clouds,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2016, pp. 242–251.

[18] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion times
with utility max-min fairness,” in INFOCOM 2016, 2016, pp. 1–9.

[19] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and reward
in a market-based task service,” in International Symposium on High-
Performance Distributed Computing,, 2004, pp. 160–169.

[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
Conference on Computer Systems. ACM, 2010, pp. 265–278.

[21] S. Dimopoulos, C. Krintz, and R. Wolski, “Justice: A deadline-aware,
fair-share resource allocator for implementing multi-analytics,” in IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp.
233–244.

[22] R. Ahmadi, U. Bagchi, and T. A. Roemer, “Coordinated scheduling of
customer orders for quick response,” Naval Research Logistics (NRL),
vol. 52, no. 6, pp. 493–512, 2005.

[23] N. Garg, A. Kumar, and V. Pandit, “Order scheduling models: Hardness
and algorithms,” in Int. Conf. on Foundations of Software Technology
and Theoretical Computer Science. Springer, 2007, pp. 96–107.

[24] J. Y.-T. Leung, H. Li, and M. Pinedo, “Scheduling orders for multiple
product types to minimize total weighted completion time,” Discrete
Applied Mathematics, vol. 155, no. 8, pp. 945–970, 2007.

[25] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A.
Uhan, “Minimizing the sum of weighted completion times in a con-
current open shop,” Operations Research Letters, vol. 38, no. 5, pp.
390–395, 2010.

[26] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[27] P.-L. Yu, “Domination structures and nondominated solutions,” in
Multiple-Criteria Decision Making. Springer, 1985, pp. 163–214.

[28] J. P. Evans and R. E. Steuer, “A revised simplex method for linear
multiple objective programs,” Mathematical Programming, vol. 5, no. 1,
pp. 54–72, 1973.

[29] H. D. Sherali, “Equivalent weights for lexicographic multi-objective
programs: Characterizations and computations,” European Journal of
Operational Research, vol. 11, no. 4, pp. 367–379, 1982.

[30] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2015.

[31] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Re-optimizing data-parallel computing,” in Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation,
2012, pp. 21–21.

[32] M. Ehrgott, Multicriteria optimization. Springer Science & Business
Media, 2005, vol. 491.

[33] M. R. Garey and D. S. Johnson, Computers and intractability. W. H.
Freeman New York, 2002, vol. 29.

[34] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[35] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, posted at http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.


